1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 #include "tree-mod-log.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "extent-tree.h" 21 #include "relocation.h" 22 #include "tree-checker.h" 23 24 /* Just arbitrary numbers so we can be sure one of these happened. */ 25 #define BACKREF_FOUND_SHARED 6 26 #define BACKREF_FOUND_NOT_SHARED 7 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 u64 num_bytes; 32 struct extent_inode_elem *next; 33 }; 34 35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 36 const struct btrfs_key *key, 37 const struct extent_buffer *eb, 38 const struct btrfs_file_extent_item *fi, 39 struct extent_inode_elem **eie) 40 { 41 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi); 42 u64 offset = key->offset; 43 struct extent_inode_elem *e; 44 const u64 *root_ids; 45 int root_count; 46 bool cached; 47 48 if (!ctx->ignore_extent_item_pos && 49 !btrfs_file_extent_compression(eb, fi) && 50 !btrfs_file_extent_encryption(eb, fi) && 51 !btrfs_file_extent_other_encoding(eb, fi)) { 52 u64 data_offset; 53 54 data_offset = btrfs_file_extent_offset(eb, fi); 55 56 if (ctx->extent_item_pos < data_offset || 57 ctx->extent_item_pos >= data_offset + data_len) 58 return 1; 59 offset += ctx->extent_item_pos - data_offset; 60 } 61 62 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup) 63 goto add_inode_elem; 64 65 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids, 66 &root_count); 67 if (!cached) 68 goto add_inode_elem; 69 70 for (int i = 0; i < root_count; i++) { 71 int ret; 72 73 ret = ctx->indirect_ref_iterator(key->objectid, offset, 74 data_len, root_ids[i], 75 ctx->user_ctx); 76 if (ret) 77 return ret; 78 } 79 80 add_inode_elem: 81 e = kmalloc(sizeof(*e), GFP_NOFS); 82 if (!e) 83 return -ENOMEM; 84 85 e->next = *eie; 86 e->inum = key->objectid; 87 e->offset = offset; 88 e->num_bytes = data_len; 89 *eie = e; 90 91 return 0; 92 } 93 94 static void free_inode_elem_list(struct extent_inode_elem *eie) 95 { 96 struct extent_inode_elem *eie_next; 97 98 for (; eie; eie = eie_next) { 99 eie_next = eie->next; 100 kfree(eie); 101 } 102 } 103 104 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 105 const struct extent_buffer *eb, 106 struct extent_inode_elem **eie) 107 { 108 u64 disk_byte; 109 struct btrfs_key key; 110 struct btrfs_file_extent_item *fi; 111 int slot; 112 int nritems; 113 int extent_type; 114 int ret; 115 116 /* 117 * from the shared data ref, we only have the leaf but we need 118 * the key. thus, we must look into all items and see that we 119 * find one (some) with a reference to our extent item. 120 */ 121 nritems = btrfs_header_nritems(eb); 122 for (slot = 0; slot < nritems; ++slot) { 123 btrfs_item_key_to_cpu(eb, &key, slot); 124 if (key.type != BTRFS_EXTENT_DATA_KEY) 125 continue; 126 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 127 extent_type = btrfs_file_extent_type(eb, fi); 128 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 129 continue; 130 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 131 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 132 if (disk_byte != ctx->bytenr) 133 continue; 134 135 ret = check_extent_in_eb(ctx, &key, eb, fi, eie); 136 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 137 return ret; 138 } 139 140 return 0; 141 } 142 143 struct preftree { 144 struct rb_root_cached root; 145 unsigned int count; 146 }; 147 148 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 149 150 struct preftrees { 151 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 152 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 153 struct preftree indirect_missing_keys; 154 }; 155 156 /* 157 * Checks for a shared extent during backref search. 158 * 159 * The share_count tracks prelim_refs (direct and indirect) having a 160 * ref->count >0: 161 * - incremented when a ref->count transitions to >0 162 * - decremented when a ref->count transitions to <1 163 */ 164 struct share_check { 165 struct btrfs_backref_share_check_ctx *ctx; 166 struct btrfs_root *root; 167 u64 inum; 168 u64 data_bytenr; 169 u64 data_extent_gen; 170 /* 171 * Counts number of inodes that refer to an extent (different inodes in 172 * the same root or different roots) that we could find. The sharedness 173 * check typically stops once this counter gets greater than 1, so it 174 * may not reflect the total number of inodes. 175 */ 176 int share_count; 177 /* 178 * The number of times we found our inode refers to the data extent we 179 * are determining the sharedness. In other words, how many file extent 180 * items we could find for our inode that point to our target data 181 * extent. The value we get here after finishing the extent sharedness 182 * check may be smaller than reality, but if it ends up being greater 183 * than 1, then we know for sure the inode has multiple file extent 184 * items that point to our inode, and we can safely assume it's useful 185 * to cache the sharedness check result. 186 */ 187 int self_ref_count; 188 bool have_delayed_delete_refs; 189 }; 190 191 static inline int extent_is_shared(struct share_check *sc) 192 { 193 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 194 } 195 196 static struct kmem_cache *btrfs_prelim_ref_cache; 197 198 int __init btrfs_prelim_ref_init(void) 199 { 200 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 201 sizeof(struct prelim_ref), 202 0, 203 SLAB_MEM_SPREAD, 204 NULL); 205 if (!btrfs_prelim_ref_cache) 206 return -ENOMEM; 207 return 0; 208 } 209 210 void __cold btrfs_prelim_ref_exit(void) 211 { 212 kmem_cache_destroy(btrfs_prelim_ref_cache); 213 } 214 215 static void free_pref(struct prelim_ref *ref) 216 { 217 kmem_cache_free(btrfs_prelim_ref_cache, ref); 218 } 219 220 /* 221 * Return 0 when both refs are for the same block (and can be merged). 222 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 223 * indicates a 'higher' block. 224 */ 225 static int prelim_ref_compare(struct prelim_ref *ref1, 226 struct prelim_ref *ref2) 227 { 228 if (ref1->level < ref2->level) 229 return -1; 230 if (ref1->level > ref2->level) 231 return 1; 232 if (ref1->root_id < ref2->root_id) 233 return -1; 234 if (ref1->root_id > ref2->root_id) 235 return 1; 236 if (ref1->key_for_search.type < ref2->key_for_search.type) 237 return -1; 238 if (ref1->key_for_search.type > ref2->key_for_search.type) 239 return 1; 240 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 241 return -1; 242 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 243 return 1; 244 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 245 return -1; 246 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 247 return 1; 248 if (ref1->parent < ref2->parent) 249 return -1; 250 if (ref1->parent > ref2->parent) 251 return 1; 252 253 return 0; 254 } 255 256 static void update_share_count(struct share_check *sc, int oldcount, 257 int newcount, struct prelim_ref *newref) 258 { 259 if ((!sc) || (oldcount == 0 && newcount < 1)) 260 return; 261 262 if (oldcount > 0 && newcount < 1) 263 sc->share_count--; 264 else if (oldcount < 1 && newcount > 0) 265 sc->share_count++; 266 267 if (newref->root_id == sc->root->root_key.objectid && 268 newref->wanted_disk_byte == sc->data_bytenr && 269 newref->key_for_search.objectid == sc->inum) 270 sc->self_ref_count += newref->count; 271 } 272 273 /* 274 * Add @newref to the @root rbtree, merging identical refs. 275 * 276 * Callers should assume that newref has been freed after calling. 277 */ 278 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 279 struct preftree *preftree, 280 struct prelim_ref *newref, 281 struct share_check *sc) 282 { 283 struct rb_root_cached *root; 284 struct rb_node **p; 285 struct rb_node *parent = NULL; 286 struct prelim_ref *ref; 287 int result; 288 bool leftmost = true; 289 290 root = &preftree->root; 291 p = &root->rb_root.rb_node; 292 293 while (*p) { 294 parent = *p; 295 ref = rb_entry(parent, struct prelim_ref, rbnode); 296 result = prelim_ref_compare(ref, newref); 297 if (result < 0) { 298 p = &(*p)->rb_left; 299 } else if (result > 0) { 300 p = &(*p)->rb_right; 301 leftmost = false; 302 } else { 303 /* Identical refs, merge them and free @newref */ 304 struct extent_inode_elem *eie = ref->inode_list; 305 306 while (eie && eie->next) 307 eie = eie->next; 308 309 if (!eie) 310 ref->inode_list = newref->inode_list; 311 else 312 eie->next = newref->inode_list; 313 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 314 preftree->count); 315 /* 316 * A delayed ref can have newref->count < 0. 317 * The ref->count is updated to follow any 318 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 319 */ 320 update_share_count(sc, ref->count, 321 ref->count + newref->count, newref); 322 ref->count += newref->count; 323 free_pref(newref); 324 return; 325 } 326 } 327 328 update_share_count(sc, 0, newref->count, newref); 329 preftree->count++; 330 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 331 rb_link_node(&newref->rbnode, parent, p); 332 rb_insert_color_cached(&newref->rbnode, root, leftmost); 333 } 334 335 /* 336 * Release the entire tree. We don't care about internal consistency so 337 * just free everything and then reset the tree root. 338 */ 339 static void prelim_release(struct preftree *preftree) 340 { 341 struct prelim_ref *ref, *next_ref; 342 343 rbtree_postorder_for_each_entry_safe(ref, next_ref, 344 &preftree->root.rb_root, rbnode) { 345 free_inode_elem_list(ref->inode_list); 346 free_pref(ref); 347 } 348 349 preftree->root = RB_ROOT_CACHED; 350 preftree->count = 0; 351 } 352 353 /* 354 * the rules for all callers of this function are: 355 * - obtaining the parent is the goal 356 * - if you add a key, you must know that it is a correct key 357 * - if you cannot add the parent or a correct key, then we will look into the 358 * block later to set a correct key 359 * 360 * delayed refs 361 * ============ 362 * backref type | shared | indirect | shared | indirect 363 * information | tree | tree | data | data 364 * --------------------+--------+----------+--------+---------- 365 * parent logical | y | - | - | - 366 * key to resolve | - | y | y | y 367 * tree block logical | - | - | - | - 368 * root for resolving | y | y | y | y 369 * 370 * - column 1: we've the parent -> done 371 * - column 2, 3, 4: we use the key to find the parent 372 * 373 * on disk refs (inline or keyed) 374 * ============================== 375 * backref type | shared | indirect | shared | indirect 376 * information | tree | tree | data | data 377 * --------------------+--------+----------+--------+---------- 378 * parent logical | y | - | y | - 379 * key to resolve | - | - | - | y 380 * tree block logical | y | y | y | y 381 * root for resolving | - | y | y | y 382 * 383 * - column 1, 3: we've the parent -> done 384 * - column 2: we take the first key from the block to find the parent 385 * (see add_missing_keys) 386 * - column 4: we use the key to find the parent 387 * 388 * additional information that's available but not required to find the parent 389 * block might help in merging entries to gain some speed. 390 */ 391 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 392 struct preftree *preftree, u64 root_id, 393 const struct btrfs_key *key, int level, u64 parent, 394 u64 wanted_disk_byte, int count, 395 struct share_check *sc, gfp_t gfp_mask) 396 { 397 struct prelim_ref *ref; 398 399 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 400 return 0; 401 402 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 403 if (!ref) 404 return -ENOMEM; 405 406 ref->root_id = root_id; 407 if (key) 408 ref->key_for_search = *key; 409 else 410 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 411 412 ref->inode_list = NULL; 413 ref->level = level; 414 ref->count = count; 415 ref->parent = parent; 416 ref->wanted_disk_byte = wanted_disk_byte; 417 prelim_ref_insert(fs_info, preftree, ref, sc); 418 return extent_is_shared(sc); 419 } 420 421 /* direct refs use root == 0, key == NULL */ 422 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 423 struct preftrees *preftrees, int level, u64 parent, 424 u64 wanted_disk_byte, int count, 425 struct share_check *sc, gfp_t gfp_mask) 426 { 427 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 428 parent, wanted_disk_byte, count, sc, gfp_mask); 429 } 430 431 /* indirect refs use parent == 0 */ 432 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 433 struct preftrees *preftrees, u64 root_id, 434 const struct btrfs_key *key, int level, 435 u64 wanted_disk_byte, int count, 436 struct share_check *sc, gfp_t gfp_mask) 437 { 438 struct preftree *tree = &preftrees->indirect; 439 440 if (!key) 441 tree = &preftrees->indirect_missing_keys; 442 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 443 wanted_disk_byte, count, sc, gfp_mask); 444 } 445 446 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 447 { 448 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 449 struct rb_node *parent = NULL; 450 struct prelim_ref *ref = NULL; 451 struct prelim_ref target = {}; 452 int result; 453 454 target.parent = bytenr; 455 456 while (*p) { 457 parent = *p; 458 ref = rb_entry(parent, struct prelim_ref, rbnode); 459 result = prelim_ref_compare(ref, &target); 460 461 if (result < 0) 462 p = &(*p)->rb_left; 463 else if (result > 0) 464 p = &(*p)->rb_right; 465 else 466 return 1; 467 } 468 return 0; 469 } 470 471 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx, 472 struct btrfs_root *root, struct btrfs_path *path, 473 struct ulist *parents, 474 struct preftrees *preftrees, struct prelim_ref *ref, 475 int level) 476 { 477 int ret = 0; 478 int slot; 479 struct extent_buffer *eb; 480 struct btrfs_key key; 481 struct btrfs_key *key_for_search = &ref->key_for_search; 482 struct btrfs_file_extent_item *fi; 483 struct extent_inode_elem *eie = NULL, *old = NULL; 484 u64 disk_byte; 485 u64 wanted_disk_byte = ref->wanted_disk_byte; 486 u64 count = 0; 487 u64 data_offset; 488 u8 type; 489 490 if (level != 0) { 491 eb = path->nodes[level]; 492 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 493 if (ret < 0) 494 return ret; 495 return 0; 496 } 497 498 /* 499 * 1. We normally enter this function with the path already pointing to 500 * the first item to check. But sometimes, we may enter it with 501 * slot == nritems. 502 * 2. We are searching for normal backref but bytenr of this leaf 503 * matches shared data backref 504 * 3. The leaf owner is not equal to the root we are searching 505 * 506 * For these cases, go to the next leaf before we continue. 507 */ 508 eb = path->nodes[0]; 509 if (path->slots[0] >= btrfs_header_nritems(eb) || 510 is_shared_data_backref(preftrees, eb->start) || 511 ref->root_id != btrfs_header_owner(eb)) { 512 if (ctx->time_seq == BTRFS_SEQ_LAST) 513 ret = btrfs_next_leaf(root, path); 514 else 515 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 516 } 517 518 while (!ret && count < ref->count) { 519 eb = path->nodes[0]; 520 slot = path->slots[0]; 521 522 btrfs_item_key_to_cpu(eb, &key, slot); 523 524 if (key.objectid != key_for_search->objectid || 525 key.type != BTRFS_EXTENT_DATA_KEY) 526 break; 527 528 /* 529 * We are searching for normal backref but bytenr of this leaf 530 * matches shared data backref, OR 531 * the leaf owner is not equal to the root we are searching for 532 */ 533 if (slot == 0 && 534 (is_shared_data_backref(preftrees, eb->start) || 535 ref->root_id != btrfs_header_owner(eb))) { 536 if (ctx->time_seq == BTRFS_SEQ_LAST) 537 ret = btrfs_next_leaf(root, path); 538 else 539 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 540 continue; 541 } 542 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 543 type = btrfs_file_extent_type(eb, fi); 544 if (type == BTRFS_FILE_EXTENT_INLINE) 545 goto next; 546 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 547 data_offset = btrfs_file_extent_offset(eb, fi); 548 549 if (disk_byte == wanted_disk_byte) { 550 eie = NULL; 551 old = NULL; 552 if (ref->key_for_search.offset == key.offset - data_offset) 553 count++; 554 else 555 goto next; 556 if (!ctx->skip_inode_ref_list) { 557 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie); 558 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 559 ret < 0) 560 break; 561 } 562 if (ret > 0) 563 goto next; 564 ret = ulist_add_merge_ptr(parents, eb->start, 565 eie, (void **)&old, GFP_NOFS); 566 if (ret < 0) 567 break; 568 if (!ret && !ctx->skip_inode_ref_list) { 569 while (old->next) 570 old = old->next; 571 old->next = eie; 572 } 573 eie = NULL; 574 } 575 next: 576 if (ctx->time_seq == BTRFS_SEQ_LAST) 577 ret = btrfs_next_item(root, path); 578 else 579 ret = btrfs_next_old_item(root, path, ctx->time_seq); 580 } 581 582 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 583 free_inode_elem_list(eie); 584 else if (ret > 0) 585 ret = 0; 586 587 return ret; 588 } 589 590 /* 591 * resolve an indirect backref in the form (root_id, key, level) 592 * to a logical address 593 */ 594 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx, 595 struct btrfs_path *path, 596 struct preftrees *preftrees, 597 struct prelim_ref *ref, struct ulist *parents) 598 { 599 struct btrfs_root *root; 600 struct extent_buffer *eb; 601 int ret = 0; 602 int root_level; 603 int level = ref->level; 604 struct btrfs_key search_key = ref->key_for_search; 605 606 /* 607 * If we're search_commit_root we could possibly be holding locks on 608 * other tree nodes. This happens when qgroups does backref walks when 609 * adding new delayed refs. To deal with this we need to look in cache 610 * for the root, and if we don't find it then we need to search the 611 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 612 * here. 613 */ 614 if (path->search_commit_root) 615 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id); 616 else 617 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false); 618 if (IS_ERR(root)) { 619 ret = PTR_ERR(root); 620 goto out_free; 621 } 622 623 if (!path->search_commit_root && 624 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 625 ret = -ENOENT; 626 goto out; 627 } 628 629 if (btrfs_is_testing(ctx->fs_info)) { 630 ret = -ENOENT; 631 goto out; 632 } 633 634 if (path->search_commit_root) 635 root_level = btrfs_header_level(root->commit_root); 636 else if (ctx->time_seq == BTRFS_SEQ_LAST) 637 root_level = btrfs_header_level(root->node); 638 else 639 root_level = btrfs_old_root_level(root, ctx->time_seq); 640 641 if (root_level + 1 == level) 642 goto out; 643 644 /* 645 * We can often find data backrefs with an offset that is too large 646 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 647 * subtracting a file's offset with the data offset of its 648 * corresponding extent data item. This can happen for example in the 649 * clone ioctl. 650 * 651 * So if we detect such case we set the search key's offset to zero to 652 * make sure we will find the matching file extent item at 653 * add_all_parents(), otherwise we will miss it because the offset 654 * taken form the backref is much larger then the offset of the file 655 * extent item. This can make us scan a very large number of file 656 * extent items, but at least it will not make us miss any. 657 * 658 * This is an ugly workaround for a behaviour that should have never 659 * existed, but it does and a fix for the clone ioctl would touch a lot 660 * of places, cause backwards incompatibility and would not fix the 661 * problem for extents cloned with older kernels. 662 */ 663 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 664 search_key.offset >= LLONG_MAX) 665 search_key.offset = 0; 666 path->lowest_level = level; 667 if (ctx->time_seq == BTRFS_SEQ_LAST) 668 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 669 else 670 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq); 671 672 btrfs_debug(ctx->fs_info, 673 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 674 ref->root_id, level, ref->count, ret, 675 ref->key_for_search.objectid, ref->key_for_search.type, 676 ref->key_for_search.offset); 677 if (ret < 0) 678 goto out; 679 680 eb = path->nodes[level]; 681 while (!eb) { 682 if (WARN_ON(!level)) { 683 ret = 1; 684 goto out; 685 } 686 level--; 687 eb = path->nodes[level]; 688 } 689 690 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level); 691 out: 692 btrfs_put_root(root); 693 out_free: 694 path->lowest_level = 0; 695 btrfs_release_path(path); 696 return ret; 697 } 698 699 static struct extent_inode_elem * 700 unode_aux_to_inode_list(struct ulist_node *node) 701 { 702 if (!node) 703 return NULL; 704 return (struct extent_inode_elem *)(uintptr_t)node->aux; 705 } 706 707 static void free_leaf_list(struct ulist *ulist) 708 { 709 struct ulist_node *node; 710 struct ulist_iterator uiter; 711 712 ULIST_ITER_INIT(&uiter); 713 while ((node = ulist_next(ulist, &uiter))) 714 free_inode_elem_list(unode_aux_to_inode_list(node)); 715 716 ulist_free(ulist); 717 } 718 719 /* 720 * We maintain three separate rbtrees: one for direct refs, one for 721 * indirect refs which have a key, and one for indirect refs which do not 722 * have a key. Each tree does merge on insertion. 723 * 724 * Once all of the references are located, we iterate over the tree of 725 * indirect refs with missing keys. An appropriate key is located and 726 * the ref is moved onto the tree for indirect refs. After all missing 727 * keys are thus located, we iterate over the indirect ref tree, resolve 728 * each reference, and then insert the resolved reference onto the 729 * direct tree (merging there too). 730 * 731 * New backrefs (i.e., for parent nodes) are added to the appropriate 732 * rbtree as they are encountered. The new backrefs are subsequently 733 * resolved as above. 734 */ 735 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx, 736 struct btrfs_path *path, 737 struct preftrees *preftrees, 738 struct share_check *sc) 739 { 740 int err; 741 int ret = 0; 742 struct ulist *parents; 743 struct ulist_node *node; 744 struct ulist_iterator uiter; 745 struct rb_node *rnode; 746 747 parents = ulist_alloc(GFP_NOFS); 748 if (!parents) 749 return -ENOMEM; 750 751 /* 752 * We could trade memory usage for performance here by iterating 753 * the tree, allocating new refs for each insertion, and then 754 * freeing the entire indirect tree when we're done. In some test 755 * cases, the tree can grow quite large (~200k objects). 756 */ 757 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 758 struct prelim_ref *ref; 759 760 ref = rb_entry(rnode, struct prelim_ref, rbnode); 761 if (WARN(ref->parent, 762 "BUG: direct ref found in indirect tree")) { 763 ret = -EINVAL; 764 goto out; 765 } 766 767 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 768 preftrees->indirect.count--; 769 770 if (ref->count == 0) { 771 free_pref(ref); 772 continue; 773 } 774 775 if (sc && ref->root_id != sc->root->root_key.objectid) { 776 free_pref(ref); 777 ret = BACKREF_FOUND_SHARED; 778 goto out; 779 } 780 err = resolve_indirect_ref(ctx, path, preftrees, ref, parents); 781 /* 782 * we can only tolerate ENOENT,otherwise,we should catch error 783 * and return directly. 784 */ 785 if (err == -ENOENT) { 786 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, 787 NULL); 788 continue; 789 } else if (err) { 790 free_pref(ref); 791 ret = err; 792 goto out; 793 } 794 795 /* we put the first parent into the ref at hand */ 796 ULIST_ITER_INIT(&uiter); 797 node = ulist_next(parents, &uiter); 798 ref->parent = node ? node->val : 0; 799 ref->inode_list = unode_aux_to_inode_list(node); 800 801 /* Add a prelim_ref(s) for any other parent(s). */ 802 while ((node = ulist_next(parents, &uiter))) { 803 struct prelim_ref *new_ref; 804 805 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 806 GFP_NOFS); 807 if (!new_ref) { 808 free_pref(ref); 809 ret = -ENOMEM; 810 goto out; 811 } 812 memcpy(new_ref, ref, sizeof(*ref)); 813 new_ref->parent = node->val; 814 new_ref->inode_list = unode_aux_to_inode_list(node); 815 prelim_ref_insert(ctx->fs_info, &preftrees->direct, 816 new_ref, NULL); 817 } 818 819 /* 820 * Now it's a direct ref, put it in the direct tree. We must 821 * do this last because the ref could be merged/freed here. 822 */ 823 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL); 824 825 ulist_reinit(parents); 826 cond_resched(); 827 } 828 out: 829 /* 830 * We may have inode lists attached to refs in the parents ulist, so we 831 * must free them before freeing the ulist and its refs. 832 */ 833 free_leaf_list(parents); 834 return ret; 835 } 836 837 /* 838 * read tree blocks and add keys where required. 839 */ 840 static int add_missing_keys(struct btrfs_fs_info *fs_info, 841 struct preftrees *preftrees, bool lock) 842 { 843 struct prelim_ref *ref; 844 struct extent_buffer *eb; 845 struct preftree *tree = &preftrees->indirect_missing_keys; 846 struct rb_node *node; 847 848 while ((node = rb_first_cached(&tree->root))) { 849 struct btrfs_tree_parent_check check = { 0 }; 850 851 ref = rb_entry(node, struct prelim_ref, rbnode); 852 rb_erase_cached(node, &tree->root); 853 854 BUG_ON(ref->parent); /* should not be a direct ref */ 855 BUG_ON(ref->key_for_search.type); 856 BUG_ON(!ref->wanted_disk_byte); 857 858 check.level = ref->level - 1; 859 check.owner_root = ref->root_id; 860 861 eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check); 862 if (IS_ERR(eb)) { 863 free_pref(ref); 864 return PTR_ERR(eb); 865 } 866 if (!extent_buffer_uptodate(eb)) { 867 free_pref(ref); 868 free_extent_buffer(eb); 869 return -EIO; 870 } 871 872 if (lock) 873 btrfs_tree_read_lock(eb); 874 if (btrfs_header_level(eb) == 0) 875 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 876 else 877 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 878 if (lock) 879 btrfs_tree_read_unlock(eb); 880 free_extent_buffer(eb); 881 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 882 cond_resched(); 883 } 884 return 0; 885 } 886 887 /* 888 * add all currently queued delayed refs from this head whose seq nr is 889 * smaller or equal that seq to the list 890 */ 891 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 892 struct btrfs_delayed_ref_head *head, u64 seq, 893 struct preftrees *preftrees, struct share_check *sc) 894 { 895 struct btrfs_delayed_ref_node *node; 896 struct btrfs_key key; 897 struct rb_node *n; 898 int count; 899 int ret = 0; 900 901 spin_lock(&head->lock); 902 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 903 node = rb_entry(n, struct btrfs_delayed_ref_node, 904 ref_node); 905 if (node->seq > seq) 906 continue; 907 908 switch (node->action) { 909 case BTRFS_ADD_DELAYED_EXTENT: 910 case BTRFS_UPDATE_DELAYED_HEAD: 911 WARN_ON(1); 912 continue; 913 case BTRFS_ADD_DELAYED_REF: 914 count = node->ref_mod; 915 break; 916 case BTRFS_DROP_DELAYED_REF: 917 count = node->ref_mod * -1; 918 break; 919 default: 920 BUG(); 921 } 922 switch (node->type) { 923 case BTRFS_TREE_BLOCK_REF_KEY: { 924 /* NORMAL INDIRECT METADATA backref */ 925 struct btrfs_delayed_tree_ref *ref; 926 struct btrfs_key *key_ptr = NULL; 927 928 if (head->extent_op && head->extent_op->update_key) { 929 btrfs_disk_key_to_cpu(&key, &head->extent_op->key); 930 key_ptr = &key; 931 } 932 933 ref = btrfs_delayed_node_to_tree_ref(node); 934 ret = add_indirect_ref(fs_info, preftrees, ref->root, 935 key_ptr, ref->level + 1, 936 node->bytenr, count, sc, 937 GFP_ATOMIC); 938 break; 939 } 940 case BTRFS_SHARED_BLOCK_REF_KEY: { 941 /* SHARED DIRECT METADATA backref */ 942 struct btrfs_delayed_tree_ref *ref; 943 944 ref = btrfs_delayed_node_to_tree_ref(node); 945 946 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 947 ref->parent, node->bytenr, count, 948 sc, GFP_ATOMIC); 949 break; 950 } 951 case BTRFS_EXTENT_DATA_REF_KEY: { 952 /* NORMAL INDIRECT DATA backref */ 953 struct btrfs_delayed_data_ref *ref; 954 ref = btrfs_delayed_node_to_data_ref(node); 955 956 key.objectid = ref->objectid; 957 key.type = BTRFS_EXTENT_DATA_KEY; 958 key.offset = ref->offset; 959 960 /* 961 * If we have a share check context and a reference for 962 * another inode, we can't exit immediately. This is 963 * because even if this is a BTRFS_ADD_DELAYED_REF 964 * reference we may find next a BTRFS_DROP_DELAYED_REF 965 * which cancels out this ADD reference. 966 * 967 * If this is a DROP reference and there was no previous 968 * ADD reference, then we need to signal that when we 969 * process references from the extent tree (through 970 * add_inline_refs() and add_keyed_refs()), we should 971 * not exit early if we find a reference for another 972 * inode, because one of the delayed DROP references 973 * may cancel that reference in the extent tree. 974 */ 975 if (sc && count < 0) 976 sc->have_delayed_delete_refs = true; 977 978 ret = add_indirect_ref(fs_info, preftrees, ref->root, 979 &key, 0, node->bytenr, count, sc, 980 GFP_ATOMIC); 981 break; 982 } 983 case BTRFS_SHARED_DATA_REF_KEY: { 984 /* SHARED DIRECT FULL backref */ 985 struct btrfs_delayed_data_ref *ref; 986 987 ref = btrfs_delayed_node_to_data_ref(node); 988 989 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 990 node->bytenr, count, sc, 991 GFP_ATOMIC); 992 break; 993 } 994 default: 995 WARN_ON(1); 996 } 997 /* 998 * We must ignore BACKREF_FOUND_SHARED until all delayed 999 * refs have been checked. 1000 */ 1001 if (ret && (ret != BACKREF_FOUND_SHARED)) 1002 break; 1003 } 1004 if (!ret) 1005 ret = extent_is_shared(sc); 1006 1007 spin_unlock(&head->lock); 1008 return ret; 1009 } 1010 1011 /* 1012 * add all inline backrefs for bytenr to the list 1013 * 1014 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1015 */ 1016 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx, 1017 struct btrfs_path *path, 1018 int *info_level, struct preftrees *preftrees, 1019 struct share_check *sc) 1020 { 1021 int ret = 0; 1022 int slot; 1023 struct extent_buffer *leaf; 1024 struct btrfs_key key; 1025 struct btrfs_key found_key; 1026 unsigned long ptr; 1027 unsigned long end; 1028 struct btrfs_extent_item *ei; 1029 u64 flags; 1030 u64 item_size; 1031 1032 /* 1033 * enumerate all inline refs 1034 */ 1035 leaf = path->nodes[0]; 1036 slot = path->slots[0]; 1037 1038 item_size = btrfs_item_size(leaf, slot); 1039 BUG_ON(item_size < sizeof(*ei)); 1040 1041 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1042 1043 if (ctx->check_extent_item) { 1044 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx); 1045 if (ret) 1046 return ret; 1047 } 1048 1049 flags = btrfs_extent_flags(leaf, ei); 1050 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1051 1052 ptr = (unsigned long)(ei + 1); 1053 end = (unsigned long)ei + item_size; 1054 1055 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 1056 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1057 struct btrfs_tree_block_info *info; 1058 1059 info = (struct btrfs_tree_block_info *)ptr; 1060 *info_level = btrfs_tree_block_level(leaf, info); 1061 ptr += sizeof(struct btrfs_tree_block_info); 1062 BUG_ON(ptr > end); 1063 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 1064 *info_level = found_key.offset; 1065 } else { 1066 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1067 } 1068 1069 while (ptr < end) { 1070 struct btrfs_extent_inline_ref *iref; 1071 u64 offset; 1072 int type; 1073 1074 iref = (struct btrfs_extent_inline_ref *)ptr; 1075 type = btrfs_get_extent_inline_ref_type(leaf, iref, 1076 BTRFS_REF_TYPE_ANY); 1077 if (type == BTRFS_REF_TYPE_INVALID) 1078 return -EUCLEAN; 1079 1080 offset = btrfs_extent_inline_ref_offset(leaf, iref); 1081 1082 switch (type) { 1083 case BTRFS_SHARED_BLOCK_REF_KEY: 1084 ret = add_direct_ref(ctx->fs_info, preftrees, 1085 *info_level + 1, offset, 1086 ctx->bytenr, 1, NULL, GFP_NOFS); 1087 break; 1088 case BTRFS_SHARED_DATA_REF_KEY: { 1089 struct btrfs_shared_data_ref *sdref; 1090 int count; 1091 1092 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1093 count = btrfs_shared_data_ref_count(leaf, sdref); 1094 1095 ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset, 1096 ctx->bytenr, count, sc, GFP_NOFS); 1097 break; 1098 } 1099 case BTRFS_TREE_BLOCK_REF_KEY: 1100 ret = add_indirect_ref(ctx->fs_info, preftrees, offset, 1101 NULL, *info_level + 1, 1102 ctx->bytenr, 1, NULL, GFP_NOFS); 1103 break; 1104 case BTRFS_EXTENT_DATA_REF_KEY: { 1105 struct btrfs_extent_data_ref *dref; 1106 int count; 1107 u64 root; 1108 1109 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1110 count = btrfs_extent_data_ref_count(leaf, dref); 1111 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1112 dref); 1113 key.type = BTRFS_EXTENT_DATA_KEY; 1114 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1115 1116 if (sc && key.objectid != sc->inum && 1117 !sc->have_delayed_delete_refs) { 1118 ret = BACKREF_FOUND_SHARED; 1119 break; 1120 } 1121 1122 root = btrfs_extent_data_ref_root(leaf, dref); 1123 1124 if (!ctx->skip_data_ref || 1125 !ctx->skip_data_ref(root, key.objectid, key.offset, 1126 ctx->user_ctx)) 1127 ret = add_indirect_ref(ctx->fs_info, preftrees, 1128 root, &key, 0, ctx->bytenr, 1129 count, sc, GFP_NOFS); 1130 break; 1131 } 1132 default: 1133 WARN_ON(1); 1134 } 1135 if (ret) 1136 return ret; 1137 ptr += btrfs_extent_inline_ref_size(type); 1138 } 1139 1140 return 0; 1141 } 1142 1143 /* 1144 * add all non-inline backrefs for bytenr to the list 1145 * 1146 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1147 */ 1148 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx, 1149 struct btrfs_root *extent_root, 1150 struct btrfs_path *path, 1151 int info_level, struct preftrees *preftrees, 1152 struct share_check *sc) 1153 { 1154 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1155 int ret; 1156 int slot; 1157 struct extent_buffer *leaf; 1158 struct btrfs_key key; 1159 1160 while (1) { 1161 ret = btrfs_next_item(extent_root, path); 1162 if (ret < 0) 1163 break; 1164 if (ret) { 1165 ret = 0; 1166 break; 1167 } 1168 1169 slot = path->slots[0]; 1170 leaf = path->nodes[0]; 1171 btrfs_item_key_to_cpu(leaf, &key, slot); 1172 1173 if (key.objectid != ctx->bytenr) 1174 break; 1175 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1176 continue; 1177 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1178 break; 1179 1180 switch (key.type) { 1181 case BTRFS_SHARED_BLOCK_REF_KEY: 1182 /* SHARED DIRECT METADATA backref */ 1183 ret = add_direct_ref(fs_info, preftrees, 1184 info_level + 1, key.offset, 1185 ctx->bytenr, 1, NULL, GFP_NOFS); 1186 break; 1187 case BTRFS_SHARED_DATA_REF_KEY: { 1188 /* SHARED DIRECT FULL backref */ 1189 struct btrfs_shared_data_ref *sdref; 1190 int count; 1191 1192 sdref = btrfs_item_ptr(leaf, slot, 1193 struct btrfs_shared_data_ref); 1194 count = btrfs_shared_data_ref_count(leaf, sdref); 1195 ret = add_direct_ref(fs_info, preftrees, 0, 1196 key.offset, ctx->bytenr, count, 1197 sc, GFP_NOFS); 1198 break; 1199 } 1200 case BTRFS_TREE_BLOCK_REF_KEY: 1201 /* NORMAL INDIRECT METADATA backref */ 1202 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1203 NULL, info_level + 1, ctx->bytenr, 1204 1, NULL, GFP_NOFS); 1205 break; 1206 case BTRFS_EXTENT_DATA_REF_KEY: { 1207 /* NORMAL INDIRECT DATA backref */ 1208 struct btrfs_extent_data_ref *dref; 1209 int count; 1210 u64 root; 1211 1212 dref = btrfs_item_ptr(leaf, slot, 1213 struct btrfs_extent_data_ref); 1214 count = btrfs_extent_data_ref_count(leaf, dref); 1215 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1216 dref); 1217 key.type = BTRFS_EXTENT_DATA_KEY; 1218 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1219 1220 if (sc && key.objectid != sc->inum && 1221 !sc->have_delayed_delete_refs) { 1222 ret = BACKREF_FOUND_SHARED; 1223 break; 1224 } 1225 1226 root = btrfs_extent_data_ref_root(leaf, dref); 1227 1228 if (!ctx->skip_data_ref || 1229 !ctx->skip_data_ref(root, key.objectid, key.offset, 1230 ctx->user_ctx)) 1231 ret = add_indirect_ref(fs_info, preftrees, root, 1232 &key, 0, ctx->bytenr, 1233 count, sc, GFP_NOFS); 1234 break; 1235 } 1236 default: 1237 WARN_ON(1); 1238 } 1239 if (ret) 1240 return ret; 1241 1242 } 1243 1244 return ret; 1245 } 1246 1247 /* 1248 * The caller has joined a transaction or is holding a read lock on the 1249 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1250 * snapshot field changing while updating or checking the cache. 1251 */ 1252 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1253 struct btrfs_root *root, 1254 u64 bytenr, int level, bool *is_shared) 1255 { 1256 const struct btrfs_fs_info *fs_info = root->fs_info; 1257 struct btrfs_backref_shared_cache_entry *entry; 1258 1259 if (!current->journal_info) 1260 lockdep_assert_held(&fs_info->commit_root_sem); 1261 1262 if (!ctx->use_path_cache) 1263 return false; 1264 1265 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1266 return false; 1267 1268 /* 1269 * Level -1 is used for the data extent, which is not reliable to cache 1270 * because its reference count can increase or decrease without us 1271 * realizing. We cache results only for extent buffers that lead from 1272 * the root node down to the leaf with the file extent item. 1273 */ 1274 ASSERT(level >= 0); 1275 1276 entry = &ctx->path_cache_entries[level]; 1277 1278 /* Unused cache entry or being used for some other extent buffer. */ 1279 if (entry->bytenr != bytenr) 1280 return false; 1281 1282 /* 1283 * We cached a false result, but the last snapshot generation of the 1284 * root changed, so we now have a snapshot. Don't trust the result. 1285 */ 1286 if (!entry->is_shared && 1287 entry->gen != btrfs_root_last_snapshot(&root->root_item)) 1288 return false; 1289 1290 /* 1291 * If we cached a true result and the last generation used for dropping 1292 * a root changed, we can not trust the result, because the dropped root 1293 * could be a snapshot sharing this extent buffer. 1294 */ 1295 if (entry->is_shared && 1296 entry->gen != btrfs_get_last_root_drop_gen(fs_info)) 1297 return false; 1298 1299 *is_shared = entry->is_shared; 1300 /* 1301 * If the node at this level is shared, than all nodes below are also 1302 * shared. Currently some of the nodes below may be marked as not shared 1303 * because we have just switched from one leaf to another, and switched 1304 * also other nodes above the leaf and below the current level, so mark 1305 * them as shared. 1306 */ 1307 if (*is_shared) { 1308 for (int i = 0; i < level; i++) { 1309 ctx->path_cache_entries[i].is_shared = true; 1310 ctx->path_cache_entries[i].gen = entry->gen; 1311 } 1312 } 1313 1314 return true; 1315 } 1316 1317 /* 1318 * The caller has joined a transaction or is holding a read lock on the 1319 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1320 * snapshot field changing while updating or checking the cache. 1321 */ 1322 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1323 struct btrfs_root *root, 1324 u64 bytenr, int level, bool is_shared) 1325 { 1326 const struct btrfs_fs_info *fs_info = root->fs_info; 1327 struct btrfs_backref_shared_cache_entry *entry; 1328 u64 gen; 1329 1330 if (!current->journal_info) 1331 lockdep_assert_held(&fs_info->commit_root_sem); 1332 1333 if (!ctx->use_path_cache) 1334 return; 1335 1336 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1337 return; 1338 1339 /* 1340 * Level -1 is used for the data extent, which is not reliable to cache 1341 * because its reference count can increase or decrease without us 1342 * realizing. We cache results only for extent buffers that lead from 1343 * the root node down to the leaf with the file extent item. 1344 */ 1345 ASSERT(level >= 0); 1346 1347 if (is_shared) 1348 gen = btrfs_get_last_root_drop_gen(fs_info); 1349 else 1350 gen = btrfs_root_last_snapshot(&root->root_item); 1351 1352 entry = &ctx->path_cache_entries[level]; 1353 entry->bytenr = bytenr; 1354 entry->is_shared = is_shared; 1355 entry->gen = gen; 1356 1357 /* 1358 * If we found an extent buffer is shared, set the cache result for all 1359 * extent buffers below it to true. As nodes in the path are COWed, 1360 * their sharedness is moved to their children, and if a leaf is COWed, 1361 * then the sharedness of a data extent becomes direct, the refcount of 1362 * data extent is increased in the extent item at the extent tree. 1363 */ 1364 if (is_shared) { 1365 for (int i = 0; i < level; i++) { 1366 entry = &ctx->path_cache_entries[i]; 1367 entry->is_shared = is_shared; 1368 entry->gen = gen; 1369 } 1370 } 1371 } 1372 1373 /* 1374 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1375 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1376 * indirect refs to their parent bytenr. 1377 * When roots are found, they're added to the roots list 1378 * 1379 * @ctx: Backref walking context object, must be not NULL. 1380 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a 1381 * shared extent is detected. 1382 * 1383 * Otherwise this returns 0 for success and <0 for an error. 1384 * 1385 * FIXME some caching might speed things up 1386 */ 1387 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx, 1388 struct share_check *sc) 1389 { 1390 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr); 1391 struct btrfs_key key; 1392 struct btrfs_path *path; 1393 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1394 struct btrfs_delayed_ref_head *head; 1395 int info_level = 0; 1396 int ret; 1397 struct prelim_ref *ref; 1398 struct rb_node *node; 1399 struct extent_inode_elem *eie = NULL; 1400 struct preftrees preftrees = { 1401 .direct = PREFTREE_INIT, 1402 .indirect = PREFTREE_INIT, 1403 .indirect_missing_keys = PREFTREE_INIT 1404 }; 1405 1406 /* Roots ulist is not needed when using a sharedness check context. */ 1407 if (sc) 1408 ASSERT(ctx->roots == NULL); 1409 1410 key.objectid = ctx->bytenr; 1411 key.offset = (u64)-1; 1412 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA)) 1413 key.type = BTRFS_METADATA_ITEM_KEY; 1414 else 1415 key.type = BTRFS_EXTENT_ITEM_KEY; 1416 1417 path = btrfs_alloc_path(); 1418 if (!path) 1419 return -ENOMEM; 1420 if (!ctx->trans) { 1421 path->search_commit_root = 1; 1422 path->skip_locking = 1; 1423 } 1424 1425 if (ctx->time_seq == BTRFS_SEQ_LAST) 1426 path->skip_locking = 1; 1427 1428 again: 1429 head = NULL; 1430 1431 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1432 if (ret < 0) 1433 goto out; 1434 if (ret == 0) { 1435 /* This shouldn't happen, indicates a bug or fs corruption. */ 1436 ASSERT(ret != 0); 1437 ret = -EUCLEAN; 1438 goto out; 1439 } 1440 1441 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) && 1442 ctx->time_seq != BTRFS_SEQ_LAST) { 1443 /* 1444 * We have a specific time_seq we care about and trans which 1445 * means we have the path lock, we need to grab the ref head and 1446 * lock it so we have a consistent view of the refs at the given 1447 * time. 1448 */ 1449 delayed_refs = &ctx->trans->transaction->delayed_refs; 1450 spin_lock(&delayed_refs->lock); 1451 head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr); 1452 if (head) { 1453 if (!mutex_trylock(&head->mutex)) { 1454 refcount_inc(&head->refs); 1455 spin_unlock(&delayed_refs->lock); 1456 1457 btrfs_release_path(path); 1458 1459 /* 1460 * Mutex was contended, block until it's 1461 * released and try again 1462 */ 1463 mutex_lock(&head->mutex); 1464 mutex_unlock(&head->mutex); 1465 btrfs_put_delayed_ref_head(head); 1466 goto again; 1467 } 1468 spin_unlock(&delayed_refs->lock); 1469 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq, 1470 &preftrees, sc); 1471 mutex_unlock(&head->mutex); 1472 if (ret) 1473 goto out; 1474 } else { 1475 spin_unlock(&delayed_refs->lock); 1476 } 1477 } 1478 1479 if (path->slots[0]) { 1480 struct extent_buffer *leaf; 1481 int slot; 1482 1483 path->slots[0]--; 1484 leaf = path->nodes[0]; 1485 slot = path->slots[0]; 1486 btrfs_item_key_to_cpu(leaf, &key, slot); 1487 if (key.objectid == ctx->bytenr && 1488 (key.type == BTRFS_EXTENT_ITEM_KEY || 1489 key.type == BTRFS_METADATA_ITEM_KEY)) { 1490 ret = add_inline_refs(ctx, path, &info_level, 1491 &preftrees, sc); 1492 if (ret) 1493 goto out; 1494 ret = add_keyed_refs(ctx, root, path, info_level, 1495 &preftrees, sc); 1496 if (ret) 1497 goto out; 1498 } 1499 } 1500 1501 /* 1502 * If we have a share context and we reached here, it means the extent 1503 * is not directly shared (no multiple reference items for it), 1504 * otherwise we would have exited earlier with a return value of 1505 * BACKREF_FOUND_SHARED after processing delayed references or while 1506 * processing inline or keyed references from the extent tree. 1507 * The extent may however be indirectly shared through shared subtrees 1508 * as a result from creating snapshots, so we determine below what is 1509 * its parent node, in case we are dealing with a metadata extent, or 1510 * what's the leaf (or leaves), from a fs tree, that has a file extent 1511 * item pointing to it in case we are dealing with a data extent. 1512 */ 1513 ASSERT(extent_is_shared(sc) == 0); 1514 1515 /* 1516 * If we are here for a data extent and we have a share_check structure 1517 * it means the data extent is not directly shared (does not have 1518 * multiple reference items), so we have to check if a path in the fs 1519 * tree (going from the root node down to the leaf that has the file 1520 * extent item pointing to the data extent) is shared, that is, if any 1521 * of the extent buffers in the path is referenced by other trees. 1522 */ 1523 if (sc && ctx->bytenr == sc->data_bytenr) { 1524 /* 1525 * If our data extent is from a generation more recent than the 1526 * last generation used to snapshot the root, then we know that 1527 * it can not be shared through subtrees, so we can skip 1528 * resolving indirect references, there's no point in 1529 * determining the extent buffers for the path from the fs tree 1530 * root node down to the leaf that has the file extent item that 1531 * points to the data extent. 1532 */ 1533 if (sc->data_extent_gen > 1534 btrfs_root_last_snapshot(&sc->root->root_item)) { 1535 ret = BACKREF_FOUND_NOT_SHARED; 1536 goto out; 1537 } 1538 1539 /* 1540 * If we are only determining if a data extent is shared or not 1541 * and the corresponding file extent item is located in the same 1542 * leaf as the previous file extent item, we can skip resolving 1543 * indirect references for a data extent, since the fs tree path 1544 * is the same (same leaf, so same path). We skip as long as the 1545 * cached result for the leaf is valid and only if there's only 1546 * one file extent item pointing to the data extent, because in 1547 * the case of multiple file extent items, they may be located 1548 * in different leaves and therefore we have multiple paths. 1549 */ 1550 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr && 1551 sc->self_ref_count == 1) { 1552 bool cached; 1553 bool is_shared; 1554 1555 cached = lookup_backref_shared_cache(sc->ctx, sc->root, 1556 sc->ctx->curr_leaf_bytenr, 1557 0, &is_shared); 1558 if (cached) { 1559 if (is_shared) 1560 ret = BACKREF_FOUND_SHARED; 1561 else 1562 ret = BACKREF_FOUND_NOT_SHARED; 1563 goto out; 1564 } 1565 } 1566 } 1567 1568 btrfs_release_path(path); 1569 1570 ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0); 1571 if (ret) 1572 goto out; 1573 1574 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1575 1576 ret = resolve_indirect_refs(ctx, path, &preftrees, sc); 1577 if (ret) 1578 goto out; 1579 1580 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1581 1582 /* 1583 * This walks the tree of merged and resolved refs. Tree blocks are 1584 * read in as needed. Unique entries are added to the ulist, and 1585 * the list of found roots is updated. 1586 * 1587 * We release the entire tree in one go before returning. 1588 */ 1589 node = rb_first_cached(&preftrees.direct.root); 1590 while (node) { 1591 ref = rb_entry(node, struct prelim_ref, rbnode); 1592 node = rb_next(&ref->rbnode); 1593 /* 1594 * ref->count < 0 can happen here if there are delayed 1595 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1596 * prelim_ref_insert() relies on this when merging 1597 * identical refs to keep the overall count correct. 1598 * prelim_ref_insert() will merge only those refs 1599 * which compare identically. Any refs having 1600 * e.g. different offsets would not be merged, 1601 * and would retain their original ref->count < 0. 1602 */ 1603 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) { 1604 /* no parent == root of tree */ 1605 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS); 1606 if (ret < 0) 1607 goto out; 1608 } 1609 if (ref->count && ref->parent) { 1610 if (!ctx->skip_inode_ref_list && !ref->inode_list && 1611 ref->level == 0) { 1612 struct btrfs_tree_parent_check check = { 0 }; 1613 struct extent_buffer *eb; 1614 1615 check.level = ref->level; 1616 1617 eb = read_tree_block(ctx->fs_info, ref->parent, 1618 &check); 1619 if (IS_ERR(eb)) { 1620 ret = PTR_ERR(eb); 1621 goto out; 1622 } 1623 if (!extent_buffer_uptodate(eb)) { 1624 free_extent_buffer(eb); 1625 ret = -EIO; 1626 goto out; 1627 } 1628 1629 if (!path->skip_locking) 1630 btrfs_tree_read_lock(eb); 1631 ret = find_extent_in_eb(ctx, eb, &eie); 1632 if (!path->skip_locking) 1633 btrfs_tree_read_unlock(eb); 1634 free_extent_buffer(eb); 1635 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1636 ret < 0) 1637 goto out; 1638 ref->inode_list = eie; 1639 /* 1640 * We transferred the list ownership to the ref, 1641 * so set to NULL to avoid a double free in case 1642 * an error happens after this. 1643 */ 1644 eie = NULL; 1645 } 1646 ret = ulist_add_merge_ptr(ctx->refs, ref->parent, 1647 ref->inode_list, 1648 (void **)&eie, GFP_NOFS); 1649 if (ret < 0) 1650 goto out; 1651 if (!ret && !ctx->skip_inode_ref_list) { 1652 /* 1653 * We've recorded that parent, so we must extend 1654 * its inode list here. 1655 * 1656 * However if there was corruption we may not 1657 * have found an eie, return an error in this 1658 * case. 1659 */ 1660 ASSERT(eie); 1661 if (!eie) { 1662 ret = -EUCLEAN; 1663 goto out; 1664 } 1665 while (eie->next) 1666 eie = eie->next; 1667 eie->next = ref->inode_list; 1668 } 1669 eie = NULL; 1670 /* 1671 * We have transferred the inode list ownership from 1672 * this ref to the ref we added to the 'refs' ulist. 1673 * So set this ref's inode list to NULL to avoid 1674 * use-after-free when our caller uses it or double 1675 * frees in case an error happens before we return. 1676 */ 1677 ref->inode_list = NULL; 1678 } 1679 cond_resched(); 1680 } 1681 1682 out: 1683 btrfs_free_path(path); 1684 1685 prelim_release(&preftrees.direct); 1686 prelim_release(&preftrees.indirect); 1687 prelim_release(&preftrees.indirect_missing_keys); 1688 1689 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 1690 free_inode_elem_list(eie); 1691 return ret; 1692 } 1693 1694 /* 1695 * Finds all leaves with a reference to the specified combination of 1696 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are 1697 * added to the ulist at @ctx->refs, and that ulist is allocated by this 1698 * function. The caller should free the ulist with free_leaf_list() if 1699 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is 1700 * enough. 1701 * 1702 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated. 1703 */ 1704 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx) 1705 { 1706 int ret; 1707 1708 ASSERT(ctx->refs == NULL); 1709 1710 ctx->refs = ulist_alloc(GFP_NOFS); 1711 if (!ctx->refs) 1712 return -ENOMEM; 1713 1714 ret = find_parent_nodes(ctx, NULL); 1715 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1716 (ret < 0 && ret != -ENOENT)) { 1717 free_leaf_list(ctx->refs); 1718 ctx->refs = NULL; 1719 return ret; 1720 } 1721 1722 return 0; 1723 } 1724 1725 /* 1726 * Walk all backrefs for a given extent to find all roots that reference this 1727 * extent. Walking a backref means finding all extents that reference this 1728 * extent and in turn walk the backrefs of those, too. Naturally this is a 1729 * recursive process, but here it is implemented in an iterative fashion: We 1730 * find all referencing extents for the extent in question and put them on a 1731 * list. In turn, we find all referencing extents for those, further appending 1732 * to the list. The way we iterate the list allows adding more elements after 1733 * the current while iterating. The process stops when we reach the end of the 1734 * list. 1735 * 1736 * Found roots are added to @ctx->roots, which is allocated by this function if 1737 * it points to NULL, in which case the caller is responsible for freeing it 1738 * after it's not needed anymore. 1739 * This function requires @ctx->refs to be NULL, as it uses it for allocating a 1740 * ulist to do temporary work, and frees it before returning. 1741 * 1742 * Returns 0 on success, < 0 on error. 1743 */ 1744 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx) 1745 { 1746 const u64 orig_bytenr = ctx->bytenr; 1747 const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list; 1748 bool roots_ulist_allocated = false; 1749 struct ulist_iterator uiter; 1750 int ret = 0; 1751 1752 ASSERT(ctx->refs == NULL); 1753 1754 ctx->refs = ulist_alloc(GFP_NOFS); 1755 if (!ctx->refs) 1756 return -ENOMEM; 1757 1758 if (!ctx->roots) { 1759 ctx->roots = ulist_alloc(GFP_NOFS); 1760 if (!ctx->roots) { 1761 ulist_free(ctx->refs); 1762 ctx->refs = NULL; 1763 return -ENOMEM; 1764 } 1765 roots_ulist_allocated = true; 1766 } 1767 1768 ctx->skip_inode_ref_list = true; 1769 1770 ULIST_ITER_INIT(&uiter); 1771 while (1) { 1772 struct ulist_node *node; 1773 1774 ret = find_parent_nodes(ctx, NULL); 1775 if (ret < 0 && ret != -ENOENT) { 1776 if (roots_ulist_allocated) { 1777 ulist_free(ctx->roots); 1778 ctx->roots = NULL; 1779 } 1780 break; 1781 } 1782 ret = 0; 1783 node = ulist_next(ctx->refs, &uiter); 1784 if (!node) 1785 break; 1786 ctx->bytenr = node->val; 1787 cond_resched(); 1788 } 1789 1790 ulist_free(ctx->refs); 1791 ctx->refs = NULL; 1792 ctx->bytenr = orig_bytenr; 1793 ctx->skip_inode_ref_list = orig_skip_inode_ref_list; 1794 1795 return ret; 1796 } 1797 1798 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx, 1799 bool skip_commit_root_sem) 1800 { 1801 int ret; 1802 1803 if (!ctx->trans && !skip_commit_root_sem) 1804 down_read(&ctx->fs_info->commit_root_sem); 1805 ret = btrfs_find_all_roots_safe(ctx); 1806 if (!ctx->trans && !skip_commit_root_sem) 1807 up_read(&ctx->fs_info->commit_root_sem); 1808 return ret; 1809 } 1810 1811 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void) 1812 { 1813 struct btrfs_backref_share_check_ctx *ctx; 1814 1815 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1816 if (!ctx) 1817 return NULL; 1818 1819 ulist_init(&ctx->refs); 1820 1821 return ctx; 1822 } 1823 1824 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx) 1825 { 1826 if (!ctx) 1827 return; 1828 1829 ulist_release(&ctx->refs); 1830 kfree(ctx); 1831 } 1832 1833 /* 1834 * Check if a data extent is shared or not. 1835 * 1836 * @inode: The inode whose extent we are checking. 1837 * @bytenr: Logical bytenr of the extent we are checking. 1838 * @extent_gen: Generation of the extent (file extent item) or 0 if it is 1839 * not known. 1840 * @ctx: A backref sharedness check context. 1841 * 1842 * btrfs_is_data_extent_shared uses the backref walking code but will short 1843 * circuit as soon as it finds a root or inode that doesn't match the 1844 * one passed in. This provides a significant performance benefit for 1845 * callers (such as fiemap) which want to know whether the extent is 1846 * shared but do not need a ref count. 1847 * 1848 * This attempts to attach to the running transaction in order to account for 1849 * delayed refs, but continues on even when no running transaction exists. 1850 * 1851 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1852 */ 1853 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr, 1854 u64 extent_gen, 1855 struct btrfs_backref_share_check_ctx *ctx) 1856 { 1857 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 1858 struct btrfs_root *root = inode->root; 1859 struct btrfs_fs_info *fs_info = root->fs_info; 1860 struct btrfs_trans_handle *trans; 1861 struct ulist_iterator uiter; 1862 struct ulist_node *node; 1863 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1864 int ret = 0; 1865 struct share_check shared = { 1866 .ctx = ctx, 1867 .root = root, 1868 .inum = btrfs_ino(inode), 1869 .data_bytenr = bytenr, 1870 .data_extent_gen = extent_gen, 1871 .share_count = 0, 1872 .self_ref_count = 0, 1873 .have_delayed_delete_refs = false, 1874 }; 1875 int level; 1876 bool leaf_cached; 1877 bool leaf_is_shared; 1878 1879 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) { 1880 if (ctx->prev_extents_cache[i].bytenr == bytenr) 1881 return ctx->prev_extents_cache[i].is_shared; 1882 } 1883 1884 ulist_init(&ctx->refs); 1885 1886 trans = btrfs_join_transaction_nostart(root); 1887 if (IS_ERR(trans)) { 1888 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1889 ret = PTR_ERR(trans); 1890 goto out; 1891 } 1892 trans = NULL; 1893 down_read(&fs_info->commit_root_sem); 1894 } else { 1895 btrfs_get_tree_mod_seq(fs_info, &elem); 1896 walk_ctx.time_seq = elem.seq; 1897 } 1898 1899 ctx->use_path_cache = true; 1900 1901 /* 1902 * We may have previously determined that the current leaf is shared. 1903 * If it is, then we have a data extent that is shared due to a shared 1904 * subtree (caused by snapshotting) and we don't need to check for data 1905 * backrefs. If the leaf is not shared, then we must do backref walking 1906 * to determine if the data extent is shared through reflinks. 1907 */ 1908 leaf_cached = lookup_backref_shared_cache(ctx, root, 1909 ctx->curr_leaf_bytenr, 0, 1910 &leaf_is_shared); 1911 if (leaf_cached && leaf_is_shared) { 1912 ret = 1; 1913 goto out_trans; 1914 } 1915 1916 walk_ctx.skip_inode_ref_list = true; 1917 walk_ctx.trans = trans; 1918 walk_ctx.fs_info = fs_info; 1919 walk_ctx.refs = &ctx->refs; 1920 1921 /* -1 means we are in the bytenr of the data extent. */ 1922 level = -1; 1923 ULIST_ITER_INIT(&uiter); 1924 while (1) { 1925 const unsigned long prev_ref_count = ctx->refs.nnodes; 1926 1927 walk_ctx.bytenr = bytenr; 1928 ret = find_parent_nodes(&walk_ctx, &shared); 1929 if (ret == BACKREF_FOUND_SHARED || 1930 ret == BACKREF_FOUND_NOT_SHARED) { 1931 /* If shared must return 1, otherwise return 0. */ 1932 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0; 1933 if (level >= 0) 1934 store_backref_shared_cache(ctx, root, bytenr, 1935 level, ret == 1); 1936 break; 1937 } 1938 if (ret < 0 && ret != -ENOENT) 1939 break; 1940 ret = 0; 1941 1942 /* 1943 * More than one extent buffer (bytenr) may have been added to 1944 * the ctx->refs ulist, in which case we have to check multiple 1945 * tree paths in case the first one is not shared, so we can not 1946 * use the path cache which is made for a single path. Multiple 1947 * extent buffers at the current level happen when: 1948 * 1949 * 1) level -1, the data extent: If our data extent was not 1950 * directly shared (without multiple reference items), then 1951 * it might have a single reference item with a count > 1 for 1952 * the same offset, which means there are 2 (or more) file 1953 * extent items that point to the data extent - this happens 1954 * when a file extent item needs to be split and then one 1955 * item gets moved to another leaf due to a b+tree leaf split 1956 * when inserting some item. In this case the file extent 1957 * items may be located in different leaves and therefore 1958 * some of the leaves may be referenced through shared 1959 * subtrees while others are not. Since our extent buffer 1960 * cache only works for a single path (by far the most common 1961 * case and simpler to deal with), we can not use it if we 1962 * have multiple leaves (which implies multiple paths). 1963 * 1964 * 2) level >= 0, a tree node/leaf: We can have a mix of direct 1965 * and indirect references on a b+tree node/leaf, so we have 1966 * to check multiple paths, and the extent buffer (the 1967 * current bytenr) may be shared or not. One example is 1968 * during relocation as we may get a shared tree block ref 1969 * (direct ref) and a non-shared tree block ref (indirect 1970 * ref) for the same node/leaf. 1971 */ 1972 if ((ctx->refs.nnodes - prev_ref_count) > 1) 1973 ctx->use_path_cache = false; 1974 1975 if (level >= 0) 1976 store_backref_shared_cache(ctx, root, bytenr, 1977 level, false); 1978 node = ulist_next(&ctx->refs, &uiter); 1979 if (!node) 1980 break; 1981 bytenr = node->val; 1982 if (ctx->use_path_cache) { 1983 bool is_shared; 1984 bool cached; 1985 1986 level++; 1987 cached = lookup_backref_shared_cache(ctx, root, bytenr, 1988 level, &is_shared); 1989 if (cached) { 1990 ret = (is_shared ? 1 : 0); 1991 break; 1992 } 1993 } 1994 shared.share_count = 0; 1995 shared.have_delayed_delete_refs = false; 1996 cond_resched(); 1997 } 1998 1999 /* 2000 * If the path cache is disabled, then it means at some tree level we 2001 * got multiple parents due to a mix of direct and indirect backrefs or 2002 * multiple leaves with file extent items pointing to the same data 2003 * extent. We have to invalidate the cache and cache only the sharedness 2004 * result for the levels where we got only one node/reference. 2005 */ 2006 if (!ctx->use_path_cache) { 2007 int i = 0; 2008 2009 level--; 2010 if (ret >= 0 && level >= 0) { 2011 bytenr = ctx->path_cache_entries[level].bytenr; 2012 ctx->use_path_cache = true; 2013 store_backref_shared_cache(ctx, root, bytenr, level, ret); 2014 i = level + 1; 2015 } 2016 2017 for ( ; i < BTRFS_MAX_LEVEL; i++) 2018 ctx->path_cache_entries[i].bytenr = 0; 2019 } 2020 2021 /* 2022 * Cache the sharedness result for the data extent if we know our inode 2023 * has more than 1 file extent item that refers to the data extent. 2024 */ 2025 if (ret >= 0 && shared.self_ref_count > 1) { 2026 int slot = ctx->prev_extents_cache_slot; 2027 2028 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr; 2029 ctx->prev_extents_cache[slot].is_shared = (ret == 1); 2030 2031 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; 2032 ctx->prev_extents_cache_slot = slot; 2033 } 2034 2035 out_trans: 2036 if (trans) { 2037 btrfs_put_tree_mod_seq(fs_info, &elem); 2038 btrfs_end_transaction(trans); 2039 } else { 2040 up_read(&fs_info->commit_root_sem); 2041 } 2042 out: 2043 ulist_release(&ctx->refs); 2044 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr; 2045 2046 return ret; 2047 } 2048 2049 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 2050 u64 start_off, struct btrfs_path *path, 2051 struct btrfs_inode_extref **ret_extref, 2052 u64 *found_off) 2053 { 2054 int ret, slot; 2055 struct btrfs_key key; 2056 struct btrfs_key found_key; 2057 struct btrfs_inode_extref *extref; 2058 const struct extent_buffer *leaf; 2059 unsigned long ptr; 2060 2061 key.objectid = inode_objectid; 2062 key.type = BTRFS_INODE_EXTREF_KEY; 2063 key.offset = start_off; 2064 2065 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2066 if (ret < 0) 2067 return ret; 2068 2069 while (1) { 2070 leaf = path->nodes[0]; 2071 slot = path->slots[0]; 2072 if (slot >= btrfs_header_nritems(leaf)) { 2073 /* 2074 * If the item at offset is not found, 2075 * btrfs_search_slot will point us to the slot 2076 * where it should be inserted. In our case 2077 * that will be the slot directly before the 2078 * next INODE_REF_KEY_V2 item. In the case 2079 * that we're pointing to the last slot in a 2080 * leaf, we must move one leaf over. 2081 */ 2082 ret = btrfs_next_leaf(root, path); 2083 if (ret) { 2084 if (ret >= 1) 2085 ret = -ENOENT; 2086 break; 2087 } 2088 continue; 2089 } 2090 2091 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2092 2093 /* 2094 * Check that we're still looking at an extended ref key for 2095 * this particular objectid. If we have different 2096 * objectid or type then there are no more to be found 2097 * in the tree and we can exit. 2098 */ 2099 ret = -ENOENT; 2100 if (found_key.objectid != inode_objectid) 2101 break; 2102 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 2103 break; 2104 2105 ret = 0; 2106 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 2107 extref = (struct btrfs_inode_extref *)ptr; 2108 *ret_extref = extref; 2109 if (found_off) 2110 *found_off = found_key.offset; 2111 break; 2112 } 2113 2114 return ret; 2115 } 2116 2117 /* 2118 * this iterates to turn a name (from iref/extref) into a full filesystem path. 2119 * Elements of the path are separated by '/' and the path is guaranteed to be 2120 * 0-terminated. the path is only given within the current file system. 2121 * Therefore, it never starts with a '/'. the caller is responsible to provide 2122 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 2123 * the start point of the resulting string is returned. this pointer is within 2124 * dest, normally. 2125 * in case the path buffer would overflow, the pointer is decremented further 2126 * as if output was written to the buffer, though no more output is actually 2127 * generated. that way, the caller can determine how much space would be 2128 * required for the path to fit into the buffer. in that case, the returned 2129 * value will be smaller than dest. callers must check this! 2130 */ 2131 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 2132 u32 name_len, unsigned long name_off, 2133 struct extent_buffer *eb_in, u64 parent, 2134 char *dest, u32 size) 2135 { 2136 int slot; 2137 u64 next_inum; 2138 int ret; 2139 s64 bytes_left = ((s64)size) - 1; 2140 struct extent_buffer *eb = eb_in; 2141 struct btrfs_key found_key; 2142 struct btrfs_inode_ref *iref; 2143 2144 if (bytes_left >= 0) 2145 dest[bytes_left] = '\0'; 2146 2147 while (1) { 2148 bytes_left -= name_len; 2149 if (bytes_left >= 0) 2150 read_extent_buffer(eb, dest + bytes_left, 2151 name_off, name_len); 2152 if (eb != eb_in) { 2153 if (!path->skip_locking) 2154 btrfs_tree_read_unlock(eb); 2155 free_extent_buffer(eb); 2156 } 2157 ret = btrfs_find_item(fs_root, path, parent, 0, 2158 BTRFS_INODE_REF_KEY, &found_key); 2159 if (ret > 0) 2160 ret = -ENOENT; 2161 if (ret) 2162 break; 2163 2164 next_inum = found_key.offset; 2165 2166 /* regular exit ahead */ 2167 if (parent == next_inum) 2168 break; 2169 2170 slot = path->slots[0]; 2171 eb = path->nodes[0]; 2172 /* make sure we can use eb after releasing the path */ 2173 if (eb != eb_in) { 2174 path->nodes[0] = NULL; 2175 path->locks[0] = 0; 2176 } 2177 btrfs_release_path(path); 2178 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2179 2180 name_len = btrfs_inode_ref_name_len(eb, iref); 2181 name_off = (unsigned long)(iref + 1); 2182 2183 parent = next_inum; 2184 --bytes_left; 2185 if (bytes_left >= 0) 2186 dest[bytes_left] = '/'; 2187 } 2188 2189 btrfs_release_path(path); 2190 2191 if (ret) 2192 return ERR_PTR(ret); 2193 2194 return dest + bytes_left; 2195 } 2196 2197 /* 2198 * this makes the path point to (logical EXTENT_ITEM *) 2199 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 2200 * tree blocks and <0 on error. 2201 */ 2202 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 2203 struct btrfs_path *path, struct btrfs_key *found_key, 2204 u64 *flags_ret) 2205 { 2206 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); 2207 int ret; 2208 u64 flags; 2209 u64 size = 0; 2210 u32 item_size; 2211 const struct extent_buffer *eb; 2212 struct btrfs_extent_item *ei; 2213 struct btrfs_key key; 2214 2215 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2216 key.type = BTRFS_METADATA_ITEM_KEY; 2217 else 2218 key.type = BTRFS_EXTENT_ITEM_KEY; 2219 key.objectid = logical; 2220 key.offset = (u64)-1; 2221 2222 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2223 if (ret < 0) 2224 return ret; 2225 2226 ret = btrfs_previous_extent_item(extent_root, path, 0); 2227 if (ret) { 2228 if (ret > 0) 2229 ret = -ENOENT; 2230 return ret; 2231 } 2232 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 2233 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 2234 size = fs_info->nodesize; 2235 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 2236 size = found_key->offset; 2237 2238 if (found_key->objectid > logical || 2239 found_key->objectid + size <= logical) { 2240 btrfs_debug(fs_info, 2241 "logical %llu is not within any extent", logical); 2242 return -ENOENT; 2243 } 2244 2245 eb = path->nodes[0]; 2246 item_size = btrfs_item_size(eb, path->slots[0]); 2247 BUG_ON(item_size < sizeof(*ei)); 2248 2249 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 2250 flags = btrfs_extent_flags(eb, ei); 2251 2252 btrfs_debug(fs_info, 2253 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 2254 logical, logical - found_key->objectid, found_key->objectid, 2255 found_key->offset, flags, item_size); 2256 2257 WARN_ON(!flags_ret); 2258 if (flags_ret) { 2259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2260 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 2261 else if (flags & BTRFS_EXTENT_FLAG_DATA) 2262 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 2263 else 2264 BUG(); 2265 return 0; 2266 } 2267 2268 return -EIO; 2269 } 2270 2271 /* 2272 * helper function to iterate extent inline refs. ptr must point to a 0 value 2273 * for the first call and may be modified. it is used to track state. 2274 * if more refs exist, 0 is returned and the next call to 2275 * get_extent_inline_ref must pass the modified ptr parameter to get the 2276 * next ref. after the last ref was processed, 1 is returned. 2277 * returns <0 on error 2278 */ 2279 static int get_extent_inline_ref(unsigned long *ptr, 2280 const struct extent_buffer *eb, 2281 const struct btrfs_key *key, 2282 const struct btrfs_extent_item *ei, 2283 u32 item_size, 2284 struct btrfs_extent_inline_ref **out_eiref, 2285 int *out_type) 2286 { 2287 unsigned long end; 2288 u64 flags; 2289 struct btrfs_tree_block_info *info; 2290 2291 if (!*ptr) { 2292 /* first call */ 2293 flags = btrfs_extent_flags(eb, ei); 2294 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2295 if (key->type == BTRFS_METADATA_ITEM_KEY) { 2296 /* a skinny metadata extent */ 2297 *out_eiref = 2298 (struct btrfs_extent_inline_ref *)(ei + 1); 2299 } else { 2300 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 2301 info = (struct btrfs_tree_block_info *)(ei + 1); 2302 *out_eiref = 2303 (struct btrfs_extent_inline_ref *)(info + 1); 2304 } 2305 } else { 2306 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 2307 } 2308 *ptr = (unsigned long)*out_eiref; 2309 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 2310 return -ENOENT; 2311 } 2312 2313 end = (unsigned long)ei + item_size; 2314 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 2315 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 2316 BTRFS_REF_TYPE_ANY); 2317 if (*out_type == BTRFS_REF_TYPE_INVALID) 2318 return -EUCLEAN; 2319 2320 *ptr += btrfs_extent_inline_ref_size(*out_type); 2321 WARN_ON(*ptr > end); 2322 if (*ptr == end) 2323 return 1; /* last */ 2324 2325 return 0; 2326 } 2327 2328 /* 2329 * reads the tree block backref for an extent. tree level and root are returned 2330 * through out_level and out_root. ptr must point to a 0 value for the first 2331 * call and may be modified (see get_extent_inline_ref comment). 2332 * returns 0 if data was provided, 1 if there was no more data to provide or 2333 * <0 on error. 2334 */ 2335 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 2336 struct btrfs_key *key, struct btrfs_extent_item *ei, 2337 u32 item_size, u64 *out_root, u8 *out_level) 2338 { 2339 int ret; 2340 int type; 2341 struct btrfs_extent_inline_ref *eiref; 2342 2343 if (*ptr == (unsigned long)-1) 2344 return 1; 2345 2346 while (1) { 2347 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 2348 &eiref, &type); 2349 if (ret < 0) 2350 return ret; 2351 2352 if (type == BTRFS_TREE_BLOCK_REF_KEY || 2353 type == BTRFS_SHARED_BLOCK_REF_KEY) 2354 break; 2355 2356 if (ret == 1) 2357 return 1; 2358 } 2359 2360 /* we can treat both ref types equally here */ 2361 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 2362 2363 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 2364 struct btrfs_tree_block_info *info; 2365 2366 info = (struct btrfs_tree_block_info *)(ei + 1); 2367 *out_level = btrfs_tree_block_level(eb, info); 2368 } else { 2369 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 2370 *out_level = (u8)key->offset; 2371 } 2372 2373 if (ret == 1) 2374 *ptr = (unsigned long)-1; 2375 2376 return 0; 2377 } 2378 2379 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 2380 struct extent_inode_elem *inode_list, 2381 u64 root, u64 extent_item_objectid, 2382 iterate_extent_inodes_t *iterate, void *ctx) 2383 { 2384 struct extent_inode_elem *eie; 2385 int ret = 0; 2386 2387 for (eie = inode_list; eie; eie = eie->next) { 2388 btrfs_debug(fs_info, 2389 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 2390 extent_item_objectid, eie->inum, 2391 eie->offset, root); 2392 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx); 2393 if (ret) { 2394 btrfs_debug(fs_info, 2395 "stopping iteration for %llu due to ret=%d", 2396 extent_item_objectid, ret); 2397 break; 2398 } 2399 } 2400 2401 return ret; 2402 } 2403 2404 /* 2405 * calls iterate() for every inode that references the extent identified by 2406 * the given parameters. 2407 * when the iterator function returns a non-zero value, iteration stops. 2408 */ 2409 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx, 2410 bool search_commit_root, 2411 iterate_extent_inodes_t *iterate, void *user_ctx) 2412 { 2413 int ret; 2414 struct ulist *refs; 2415 struct ulist_node *ref_node; 2416 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 2417 struct ulist_iterator ref_uiter; 2418 2419 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu", 2420 ctx->bytenr); 2421 2422 ASSERT(ctx->trans == NULL); 2423 ASSERT(ctx->roots == NULL); 2424 2425 if (!search_commit_root) { 2426 struct btrfs_trans_handle *trans; 2427 2428 trans = btrfs_attach_transaction(ctx->fs_info->tree_root); 2429 if (IS_ERR(trans)) { 2430 if (PTR_ERR(trans) != -ENOENT && 2431 PTR_ERR(trans) != -EROFS) 2432 return PTR_ERR(trans); 2433 trans = NULL; 2434 } 2435 ctx->trans = trans; 2436 } 2437 2438 if (ctx->trans) { 2439 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem); 2440 ctx->time_seq = seq_elem.seq; 2441 } else { 2442 down_read(&ctx->fs_info->commit_root_sem); 2443 } 2444 2445 ret = btrfs_find_all_leafs(ctx); 2446 if (ret) 2447 goto out; 2448 refs = ctx->refs; 2449 ctx->refs = NULL; 2450 2451 ULIST_ITER_INIT(&ref_uiter); 2452 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2453 const u64 leaf_bytenr = ref_node->val; 2454 struct ulist_node *root_node; 2455 struct ulist_iterator root_uiter; 2456 struct extent_inode_elem *inode_list; 2457 2458 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux; 2459 2460 if (ctx->cache_lookup) { 2461 const u64 *root_ids; 2462 int root_count; 2463 bool cached; 2464 2465 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx, 2466 &root_ids, &root_count); 2467 if (cached) { 2468 for (int i = 0; i < root_count; i++) { 2469 ret = iterate_leaf_refs(ctx->fs_info, 2470 inode_list, 2471 root_ids[i], 2472 leaf_bytenr, 2473 iterate, 2474 user_ctx); 2475 if (ret) 2476 break; 2477 } 2478 continue; 2479 } 2480 } 2481 2482 if (!ctx->roots) { 2483 ctx->roots = ulist_alloc(GFP_NOFS); 2484 if (!ctx->roots) { 2485 ret = -ENOMEM; 2486 break; 2487 } 2488 } 2489 2490 ctx->bytenr = leaf_bytenr; 2491 ret = btrfs_find_all_roots_safe(ctx); 2492 if (ret) 2493 break; 2494 2495 if (ctx->cache_store) 2496 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx); 2497 2498 ULIST_ITER_INIT(&root_uiter); 2499 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) { 2500 btrfs_debug(ctx->fs_info, 2501 "root %llu references leaf %llu, data list %#llx", 2502 root_node->val, ref_node->val, 2503 ref_node->aux); 2504 ret = iterate_leaf_refs(ctx->fs_info, inode_list, 2505 root_node->val, ctx->bytenr, 2506 iterate, user_ctx); 2507 } 2508 ulist_reinit(ctx->roots); 2509 } 2510 2511 free_leaf_list(refs); 2512 out: 2513 if (ctx->trans) { 2514 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem); 2515 btrfs_end_transaction(ctx->trans); 2516 ctx->trans = NULL; 2517 } else { 2518 up_read(&ctx->fs_info->commit_root_sem); 2519 } 2520 2521 ulist_free(ctx->roots); 2522 ctx->roots = NULL; 2523 2524 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP) 2525 ret = 0; 2526 2527 return ret; 2528 } 2529 2530 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx) 2531 { 2532 struct btrfs_data_container *inodes = ctx; 2533 const size_t c = 3 * sizeof(u64); 2534 2535 if (inodes->bytes_left >= c) { 2536 inodes->bytes_left -= c; 2537 inodes->val[inodes->elem_cnt] = inum; 2538 inodes->val[inodes->elem_cnt + 1] = offset; 2539 inodes->val[inodes->elem_cnt + 2] = root; 2540 inodes->elem_cnt += 3; 2541 } else { 2542 inodes->bytes_missing += c - inodes->bytes_left; 2543 inodes->bytes_left = 0; 2544 inodes->elem_missed += 3; 2545 } 2546 2547 return 0; 2548 } 2549 2550 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2551 struct btrfs_path *path, 2552 void *ctx, bool ignore_offset) 2553 { 2554 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 2555 int ret; 2556 u64 flags = 0; 2557 struct btrfs_key found_key; 2558 int search_commit_root = path->search_commit_root; 2559 2560 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2561 btrfs_release_path(path); 2562 if (ret < 0) 2563 return ret; 2564 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2565 return -EINVAL; 2566 2567 walk_ctx.bytenr = found_key.objectid; 2568 if (ignore_offset) 2569 walk_ctx.ignore_extent_item_pos = true; 2570 else 2571 walk_ctx.extent_item_pos = logical - found_key.objectid; 2572 walk_ctx.fs_info = fs_info; 2573 2574 return iterate_extent_inodes(&walk_ctx, search_commit_root, 2575 build_ino_list, ctx); 2576 } 2577 2578 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2579 struct extent_buffer *eb, struct inode_fs_paths *ipath); 2580 2581 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath) 2582 { 2583 int ret = 0; 2584 int slot; 2585 u32 cur; 2586 u32 len; 2587 u32 name_len; 2588 u64 parent = 0; 2589 int found = 0; 2590 struct btrfs_root *fs_root = ipath->fs_root; 2591 struct btrfs_path *path = ipath->btrfs_path; 2592 struct extent_buffer *eb; 2593 struct btrfs_inode_ref *iref; 2594 struct btrfs_key found_key; 2595 2596 while (!ret) { 2597 ret = btrfs_find_item(fs_root, path, inum, 2598 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2599 &found_key); 2600 2601 if (ret < 0) 2602 break; 2603 if (ret) { 2604 ret = found ? 0 : -ENOENT; 2605 break; 2606 } 2607 ++found; 2608 2609 parent = found_key.offset; 2610 slot = path->slots[0]; 2611 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2612 if (!eb) { 2613 ret = -ENOMEM; 2614 break; 2615 } 2616 btrfs_release_path(path); 2617 2618 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2619 2620 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { 2621 name_len = btrfs_inode_ref_name_len(eb, iref); 2622 /* path must be released before calling iterate()! */ 2623 btrfs_debug(fs_root->fs_info, 2624 "following ref at offset %u for inode %llu in tree %llu", 2625 cur, found_key.objectid, 2626 fs_root->root_key.objectid); 2627 ret = inode_to_path(parent, name_len, 2628 (unsigned long)(iref + 1), eb, ipath); 2629 if (ret) 2630 break; 2631 len = sizeof(*iref) + name_len; 2632 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2633 } 2634 free_extent_buffer(eb); 2635 } 2636 2637 btrfs_release_path(path); 2638 2639 return ret; 2640 } 2641 2642 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath) 2643 { 2644 int ret; 2645 int slot; 2646 u64 offset = 0; 2647 u64 parent; 2648 int found = 0; 2649 struct btrfs_root *fs_root = ipath->fs_root; 2650 struct btrfs_path *path = ipath->btrfs_path; 2651 struct extent_buffer *eb; 2652 struct btrfs_inode_extref *extref; 2653 u32 item_size; 2654 u32 cur_offset; 2655 unsigned long ptr; 2656 2657 while (1) { 2658 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2659 &offset); 2660 if (ret < 0) 2661 break; 2662 if (ret) { 2663 ret = found ? 0 : -ENOENT; 2664 break; 2665 } 2666 ++found; 2667 2668 slot = path->slots[0]; 2669 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2670 if (!eb) { 2671 ret = -ENOMEM; 2672 break; 2673 } 2674 btrfs_release_path(path); 2675 2676 item_size = btrfs_item_size(eb, slot); 2677 ptr = btrfs_item_ptr_offset(eb, slot); 2678 cur_offset = 0; 2679 2680 while (cur_offset < item_size) { 2681 u32 name_len; 2682 2683 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2684 parent = btrfs_inode_extref_parent(eb, extref); 2685 name_len = btrfs_inode_extref_name_len(eb, extref); 2686 ret = inode_to_path(parent, name_len, 2687 (unsigned long)&extref->name, eb, ipath); 2688 if (ret) 2689 break; 2690 2691 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2692 cur_offset += sizeof(*extref); 2693 } 2694 free_extent_buffer(eb); 2695 2696 offset++; 2697 } 2698 2699 btrfs_release_path(path); 2700 2701 return ret; 2702 } 2703 2704 /* 2705 * returns 0 if the path could be dumped (probably truncated) 2706 * returns <0 in case of an error 2707 */ 2708 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2709 struct extent_buffer *eb, struct inode_fs_paths *ipath) 2710 { 2711 char *fspath; 2712 char *fspath_min; 2713 int i = ipath->fspath->elem_cnt; 2714 const int s_ptr = sizeof(char *); 2715 u32 bytes_left; 2716 2717 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2718 ipath->fspath->bytes_left - s_ptr : 0; 2719 2720 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2721 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2722 name_off, eb, inum, fspath_min, bytes_left); 2723 if (IS_ERR(fspath)) 2724 return PTR_ERR(fspath); 2725 2726 if (fspath > fspath_min) { 2727 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2728 ++ipath->fspath->elem_cnt; 2729 ipath->fspath->bytes_left = fspath - fspath_min; 2730 } else { 2731 ++ipath->fspath->elem_missed; 2732 ipath->fspath->bytes_missing += fspath_min - fspath; 2733 ipath->fspath->bytes_left = 0; 2734 } 2735 2736 return 0; 2737 } 2738 2739 /* 2740 * this dumps all file system paths to the inode into the ipath struct, provided 2741 * is has been created large enough. each path is zero-terminated and accessed 2742 * from ipath->fspath->val[i]. 2743 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2744 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2745 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2746 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2747 * have been needed to return all paths. 2748 */ 2749 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2750 { 2751 int ret; 2752 int found_refs = 0; 2753 2754 ret = iterate_inode_refs(inum, ipath); 2755 if (!ret) 2756 ++found_refs; 2757 else if (ret != -ENOENT) 2758 return ret; 2759 2760 ret = iterate_inode_extrefs(inum, ipath); 2761 if (ret == -ENOENT && found_refs) 2762 return 0; 2763 2764 return ret; 2765 } 2766 2767 struct btrfs_data_container *init_data_container(u32 total_bytes) 2768 { 2769 struct btrfs_data_container *data; 2770 size_t alloc_bytes; 2771 2772 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2773 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2774 if (!data) 2775 return ERR_PTR(-ENOMEM); 2776 2777 if (total_bytes >= sizeof(*data)) { 2778 data->bytes_left = total_bytes - sizeof(*data); 2779 data->bytes_missing = 0; 2780 } else { 2781 data->bytes_missing = sizeof(*data) - total_bytes; 2782 data->bytes_left = 0; 2783 } 2784 2785 data->elem_cnt = 0; 2786 data->elem_missed = 0; 2787 2788 return data; 2789 } 2790 2791 /* 2792 * allocates space to return multiple file system paths for an inode. 2793 * total_bytes to allocate are passed, note that space usable for actual path 2794 * information will be total_bytes - sizeof(struct inode_fs_paths). 2795 * the returned pointer must be freed with free_ipath() in the end. 2796 */ 2797 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2798 struct btrfs_path *path) 2799 { 2800 struct inode_fs_paths *ifp; 2801 struct btrfs_data_container *fspath; 2802 2803 fspath = init_data_container(total_bytes); 2804 if (IS_ERR(fspath)) 2805 return ERR_CAST(fspath); 2806 2807 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2808 if (!ifp) { 2809 kvfree(fspath); 2810 return ERR_PTR(-ENOMEM); 2811 } 2812 2813 ifp->btrfs_path = path; 2814 ifp->fspath = fspath; 2815 ifp->fs_root = fs_root; 2816 2817 return ifp; 2818 } 2819 2820 void free_ipath(struct inode_fs_paths *ipath) 2821 { 2822 if (!ipath) 2823 return; 2824 kvfree(ipath->fspath); 2825 kfree(ipath); 2826 } 2827 2828 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info) 2829 { 2830 struct btrfs_backref_iter *ret; 2831 2832 ret = kzalloc(sizeof(*ret), GFP_NOFS); 2833 if (!ret) 2834 return NULL; 2835 2836 ret->path = btrfs_alloc_path(); 2837 if (!ret->path) { 2838 kfree(ret); 2839 return NULL; 2840 } 2841 2842 /* Current backref iterator only supports iteration in commit root */ 2843 ret->path->search_commit_root = 1; 2844 ret->path->skip_locking = 1; 2845 ret->fs_info = fs_info; 2846 2847 return ret; 2848 } 2849 2850 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2851 { 2852 struct btrfs_fs_info *fs_info = iter->fs_info; 2853 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2854 struct btrfs_path *path = iter->path; 2855 struct btrfs_extent_item *ei; 2856 struct btrfs_key key; 2857 int ret; 2858 2859 key.objectid = bytenr; 2860 key.type = BTRFS_METADATA_ITEM_KEY; 2861 key.offset = (u64)-1; 2862 iter->bytenr = bytenr; 2863 2864 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2865 if (ret < 0) 2866 return ret; 2867 if (ret == 0) { 2868 ret = -EUCLEAN; 2869 goto release; 2870 } 2871 if (path->slots[0] == 0) { 2872 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2873 ret = -EUCLEAN; 2874 goto release; 2875 } 2876 path->slots[0]--; 2877 2878 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2879 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2880 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2881 ret = -ENOENT; 2882 goto release; 2883 } 2884 memcpy(&iter->cur_key, &key, sizeof(key)); 2885 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2886 path->slots[0]); 2887 iter->end_ptr = (u32)(iter->item_ptr + 2888 btrfs_item_size(path->nodes[0], path->slots[0])); 2889 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2890 struct btrfs_extent_item); 2891 2892 /* 2893 * Only support iteration on tree backref yet. 2894 * 2895 * This is an extra precaution for non skinny-metadata, where 2896 * EXTENT_ITEM is also used for tree blocks, that we can only use 2897 * extent flags to determine if it's a tree block. 2898 */ 2899 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2900 ret = -ENOTSUPP; 2901 goto release; 2902 } 2903 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2904 2905 /* If there is no inline backref, go search for keyed backref */ 2906 if (iter->cur_ptr >= iter->end_ptr) { 2907 ret = btrfs_next_item(extent_root, path); 2908 2909 /* No inline nor keyed ref */ 2910 if (ret > 0) { 2911 ret = -ENOENT; 2912 goto release; 2913 } 2914 if (ret < 0) 2915 goto release; 2916 2917 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2918 path->slots[0]); 2919 if (iter->cur_key.objectid != bytenr || 2920 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2921 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2922 ret = -ENOENT; 2923 goto release; 2924 } 2925 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2926 path->slots[0]); 2927 iter->item_ptr = iter->cur_ptr; 2928 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( 2929 path->nodes[0], path->slots[0])); 2930 } 2931 2932 return 0; 2933 release: 2934 btrfs_backref_iter_release(iter); 2935 return ret; 2936 } 2937 2938 /* 2939 * Go to the next backref item of current bytenr, can be either inlined or 2940 * keyed. 2941 * 2942 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2943 * 2944 * Return 0 if we get next backref without problem. 2945 * Return >0 if there is no extra backref for this bytenr. 2946 * Return <0 if there is something wrong happened. 2947 */ 2948 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2949 { 2950 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2951 struct btrfs_root *extent_root; 2952 struct btrfs_path *path = iter->path; 2953 struct btrfs_extent_inline_ref *iref; 2954 int ret; 2955 u32 size; 2956 2957 if (btrfs_backref_iter_is_inline_ref(iter)) { 2958 /* We're still inside the inline refs */ 2959 ASSERT(iter->cur_ptr < iter->end_ptr); 2960 2961 if (btrfs_backref_has_tree_block_info(iter)) { 2962 /* First tree block info */ 2963 size = sizeof(struct btrfs_tree_block_info); 2964 } else { 2965 /* Use inline ref type to determine the size */ 2966 int type; 2967 2968 iref = (struct btrfs_extent_inline_ref *) 2969 ((unsigned long)iter->cur_ptr); 2970 type = btrfs_extent_inline_ref_type(eb, iref); 2971 2972 size = btrfs_extent_inline_ref_size(type); 2973 } 2974 iter->cur_ptr += size; 2975 if (iter->cur_ptr < iter->end_ptr) 2976 return 0; 2977 2978 /* All inline items iterated, fall through */ 2979 } 2980 2981 /* We're at keyed items, there is no inline item, go to the next one */ 2982 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); 2983 ret = btrfs_next_item(extent_root, iter->path); 2984 if (ret) 2985 return ret; 2986 2987 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2988 if (iter->cur_key.objectid != iter->bytenr || 2989 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2990 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2991 return 1; 2992 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2993 path->slots[0]); 2994 iter->cur_ptr = iter->item_ptr; 2995 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], 2996 path->slots[0]); 2997 return 0; 2998 } 2999 3000 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 3001 struct btrfs_backref_cache *cache, int is_reloc) 3002 { 3003 int i; 3004 3005 cache->rb_root = RB_ROOT; 3006 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 3007 INIT_LIST_HEAD(&cache->pending[i]); 3008 INIT_LIST_HEAD(&cache->changed); 3009 INIT_LIST_HEAD(&cache->detached); 3010 INIT_LIST_HEAD(&cache->leaves); 3011 INIT_LIST_HEAD(&cache->pending_edge); 3012 INIT_LIST_HEAD(&cache->useless_node); 3013 cache->fs_info = fs_info; 3014 cache->is_reloc = is_reloc; 3015 } 3016 3017 struct btrfs_backref_node *btrfs_backref_alloc_node( 3018 struct btrfs_backref_cache *cache, u64 bytenr, int level) 3019 { 3020 struct btrfs_backref_node *node; 3021 3022 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 3023 node = kzalloc(sizeof(*node), GFP_NOFS); 3024 if (!node) 3025 return node; 3026 3027 INIT_LIST_HEAD(&node->list); 3028 INIT_LIST_HEAD(&node->upper); 3029 INIT_LIST_HEAD(&node->lower); 3030 RB_CLEAR_NODE(&node->rb_node); 3031 cache->nr_nodes++; 3032 node->level = level; 3033 node->bytenr = bytenr; 3034 3035 return node; 3036 } 3037 3038 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 3039 struct btrfs_backref_cache *cache) 3040 { 3041 struct btrfs_backref_edge *edge; 3042 3043 edge = kzalloc(sizeof(*edge), GFP_NOFS); 3044 if (edge) 3045 cache->nr_edges++; 3046 return edge; 3047 } 3048 3049 /* 3050 * Drop the backref node from cache, also cleaning up all its 3051 * upper edges and any uncached nodes in the path. 3052 * 3053 * This cleanup happens bottom up, thus the node should either 3054 * be the lowest node in the cache or a detached node. 3055 */ 3056 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 3057 struct btrfs_backref_node *node) 3058 { 3059 struct btrfs_backref_node *upper; 3060 struct btrfs_backref_edge *edge; 3061 3062 if (!node) 3063 return; 3064 3065 BUG_ON(!node->lowest && !node->detached); 3066 while (!list_empty(&node->upper)) { 3067 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 3068 list[LOWER]); 3069 upper = edge->node[UPPER]; 3070 list_del(&edge->list[LOWER]); 3071 list_del(&edge->list[UPPER]); 3072 btrfs_backref_free_edge(cache, edge); 3073 3074 /* 3075 * Add the node to leaf node list if no other child block 3076 * cached. 3077 */ 3078 if (list_empty(&upper->lower)) { 3079 list_add_tail(&upper->lower, &cache->leaves); 3080 upper->lowest = 1; 3081 } 3082 } 3083 3084 btrfs_backref_drop_node(cache, node); 3085 } 3086 3087 /* 3088 * Release all nodes/edges from current cache 3089 */ 3090 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 3091 { 3092 struct btrfs_backref_node *node; 3093 int i; 3094 3095 while (!list_empty(&cache->detached)) { 3096 node = list_entry(cache->detached.next, 3097 struct btrfs_backref_node, list); 3098 btrfs_backref_cleanup_node(cache, node); 3099 } 3100 3101 while (!list_empty(&cache->leaves)) { 3102 node = list_entry(cache->leaves.next, 3103 struct btrfs_backref_node, lower); 3104 btrfs_backref_cleanup_node(cache, node); 3105 } 3106 3107 cache->last_trans = 0; 3108 3109 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 3110 ASSERT(list_empty(&cache->pending[i])); 3111 ASSERT(list_empty(&cache->pending_edge)); 3112 ASSERT(list_empty(&cache->useless_node)); 3113 ASSERT(list_empty(&cache->changed)); 3114 ASSERT(list_empty(&cache->detached)); 3115 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 3116 ASSERT(!cache->nr_nodes); 3117 ASSERT(!cache->nr_edges); 3118 } 3119 3120 /* 3121 * Handle direct tree backref 3122 * 3123 * Direct tree backref means, the backref item shows its parent bytenr 3124 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 3125 * 3126 * @ref_key: The converted backref key. 3127 * For keyed backref, it's the item key. 3128 * For inlined backref, objectid is the bytenr, 3129 * type is btrfs_inline_ref_type, offset is 3130 * btrfs_inline_ref_offset. 3131 */ 3132 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 3133 struct btrfs_key *ref_key, 3134 struct btrfs_backref_node *cur) 3135 { 3136 struct btrfs_backref_edge *edge; 3137 struct btrfs_backref_node *upper; 3138 struct rb_node *rb_node; 3139 3140 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 3141 3142 /* Only reloc root uses backref pointing to itself */ 3143 if (ref_key->objectid == ref_key->offset) { 3144 struct btrfs_root *root; 3145 3146 cur->is_reloc_root = 1; 3147 /* Only reloc backref cache cares about a specific root */ 3148 if (cache->is_reloc) { 3149 root = find_reloc_root(cache->fs_info, cur->bytenr); 3150 if (!root) 3151 return -ENOENT; 3152 cur->root = root; 3153 } else { 3154 /* 3155 * For generic purpose backref cache, reloc root node 3156 * is useless. 3157 */ 3158 list_add(&cur->list, &cache->useless_node); 3159 } 3160 return 0; 3161 } 3162 3163 edge = btrfs_backref_alloc_edge(cache); 3164 if (!edge) 3165 return -ENOMEM; 3166 3167 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 3168 if (!rb_node) { 3169 /* Parent node not yet cached */ 3170 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 3171 cur->level + 1); 3172 if (!upper) { 3173 btrfs_backref_free_edge(cache, edge); 3174 return -ENOMEM; 3175 } 3176 3177 /* 3178 * Backrefs for the upper level block isn't cached, add the 3179 * block to pending list 3180 */ 3181 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3182 } else { 3183 /* Parent node already cached */ 3184 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 3185 ASSERT(upper->checked); 3186 INIT_LIST_HEAD(&edge->list[UPPER]); 3187 } 3188 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 3189 return 0; 3190 } 3191 3192 /* 3193 * Handle indirect tree backref 3194 * 3195 * Indirect tree backref means, we only know which tree the node belongs to. 3196 * We still need to do a tree search to find out the parents. This is for 3197 * TREE_BLOCK_REF backref (keyed or inlined). 3198 * 3199 * @trans: Transaction handle. 3200 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 3201 * @tree_key: The first key of this tree block. 3202 * @path: A clean (released) path, to avoid allocating path every time 3203 * the function get called. 3204 */ 3205 static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans, 3206 struct btrfs_backref_cache *cache, 3207 struct btrfs_path *path, 3208 struct btrfs_key *ref_key, 3209 struct btrfs_key *tree_key, 3210 struct btrfs_backref_node *cur) 3211 { 3212 struct btrfs_fs_info *fs_info = cache->fs_info; 3213 struct btrfs_backref_node *upper; 3214 struct btrfs_backref_node *lower; 3215 struct btrfs_backref_edge *edge; 3216 struct extent_buffer *eb; 3217 struct btrfs_root *root; 3218 struct rb_node *rb_node; 3219 int level; 3220 bool need_check = true; 3221 int ret; 3222 3223 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 3224 if (IS_ERR(root)) 3225 return PTR_ERR(root); 3226 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3227 cur->cowonly = 1; 3228 3229 if (btrfs_root_level(&root->root_item) == cur->level) { 3230 /* Tree root */ 3231 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 3232 /* 3233 * For reloc backref cache, we may ignore reloc root. But for 3234 * general purpose backref cache, we can't rely on 3235 * btrfs_should_ignore_reloc_root() as it may conflict with 3236 * current running relocation and lead to missing root. 3237 * 3238 * For general purpose backref cache, reloc root detection is 3239 * completely relying on direct backref (key->offset is parent 3240 * bytenr), thus only do such check for reloc cache. 3241 */ 3242 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 3243 btrfs_put_root(root); 3244 list_add(&cur->list, &cache->useless_node); 3245 } else { 3246 cur->root = root; 3247 } 3248 return 0; 3249 } 3250 3251 level = cur->level + 1; 3252 3253 /* Search the tree to find parent blocks referring to the block */ 3254 path->search_commit_root = 1; 3255 path->skip_locking = 1; 3256 path->lowest_level = level; 3257 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 3258 path->lowest_level = 0; 3259 if (ret < 0) { 3260 btrfs_put_root(root); 3261 return ret; 3262 } 3263 if (ret > 0 && path->slots[level] > 0) 3264 path->slots[level]--; 3265 3266 eb = path->nodes[level]; 3267 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 3268 btrfs_err(fs_info, 3269 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 3270 cur->bytenr, level - 1, root->root_key.objectid, 3271 tree_key->objectid, tree_key->type, tree_key->offset); 3272 btrfs_put_root(root); 3273 ret = -ENOENT; 3274 goto out; 3275 } 3276 lower = cur; 3277 3278 /* Add all nodes and edges in the path */ 3279 for (; level < BTRFS_MAX_LEVEL; level++) { 3280 if (!path->nodes[level]) { 3281 ASSERT(btrfs_root_bytenr(&root->root_item) == 3282 lower->bytenr); 3283 /* Same as previous should_ignore_reloc_root() call */ 3284 if (btrfs_should_ignore_reloc_root(root) && 3285 cache->is_reloc) { 3286 btrfs_put_root(root); 3287 list_add(&lower->list, &cache->useless_node); 3288 } else { 3289 lower->root = root; 3290 } 3291 break; 3292 } 3293 3294 edge = btrfs_backref_alloc_edge(cache); 3295 if (!edge) { 3296 btrfs_put_root(root); 3297 ret = -ENOMEM; 3298 goto out; 3299 } 3300 3301 eb = path->nodes[level]; 3302 rb_node = rb_simple_search(&cache->rb_root, eb->start); 3303 if (!rb_node) { 3304 upper = btrfs_backref_alloc_node(cache, eb->start, 3305 lower->level + 1); 3306 if (!upper) { 3307 btrfs_put_root(root); 3308 btrfs_backref_free_edge(cache, edge); 3309 ret = -ENOMEM; 3310 goto out; 3311 } 3312 upper->owner = btrfs_header_owner(eb); 3313 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3314 upper->cowonly = 1; 3315 3316 /* 3317 * If we know the block isn't shared we can avoid 3318 * checking its backrefs. 3319 */ 3320 if (btrfs_block_can_be_shared(trans, root, eb)) 3321 upper->checked = 0; 3322 else 3323 upper->checked = 1; 3324 3325 /* 3326 * Add the block to pending list if we need to check its 3327 * backrefs, we only do this once while walking up a 3328 * tree as we will catch anything else later on. 3329 */ 3330 if (!upper->checked && need_check) { 3331 need_check = false; 3332 list_add_tail(&edge->list[UPPER], 3333 &cache->pending_edge); 3334 } else { 3335 if (upper->checked) 3336 need_check = true; 3337 INIT_LIST_HEAD(&edge->list[UPPER]); 3338 } 3339 } else { 3340 upper = rb_entry(rb_node, struct btrfs_backref_node, 3341 rb_node); 3342 ASSERT(upper->checked); 3343 INIT_LIST_HEAD(&edge->list[UPPER]); 3344 if (!upper->owner) 3345 upper->owner = btrfs_header_owner(eb); 3346 } 3347 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 3348 3349 if (rb_node) { 3350 btrfs_put_root(root); 3351 break; 3352 } 3353 lower = upper; 3354 upper = NULL; 3355 } 3356 out: 3357 btrfs_release_path(path); 3358 return ret; 3359 } 3360 3361 /* 3362 * Add backref node @cur into @cache. 3363 * 3364 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 3365 * links aren't yet bi-directional. Needs to finish such links. 3366 * Use btrfs_backref_finish_upper_links() to finish such linkage. 3367 * 3368 * @trans: Transaction handle. 3369 * @path: Released path for indirect tree backref lookup 3370 * @iter: Released backref iter for extent tree search 3371 * @node_key: The first key of the tree block 3372 */ 3373 int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans, 3374 struct btrfs_backref_cache *cache, 3375 struct btrfs_path *path, 3376 struct btrfs_backref_iter *iter, 3377 struct btrfs_key *node_key, 3378 struct btrfs_backref_node *cur) 3379 { 3380 struct btrfs_backref_edge *edge; 3381 struct btrfs_backref_node *exist; 3382 int ret; 3383 3384 ret = btrfs_backref_iter_start(iter, cur->bytenr); 3385 if (ret < 0) 3386 return ret; 3387 /* 3388 * We skip the first btrfs_tree_block_info, as we don't use the key 3389 * stored in it, but fetch it from the tree block 3390 */ 3391 if (btrfs_backref_has_tree_block_info(iter)) { 3392 ret = btrfs_backref_iter_next(iter); 3393 if (ret < 0) 3394 goto out; 3395 /* No extra backref? This means the tree block is corrupted */ 3396 if (ret > 0) { 3397 ret = -EUCLEAN; 3398 goto out; 3399 } 3400 } 3401 WARN_ON(cur->checked); 3402 if (!list_empty(&cur->upper)) { 3403 /* 3404 * The backref was added previously when processing backref of 3405 * type BTRFS_TREE_BLOCK_REF_KEY 3406 */ 3407 ASSERT(list_is_singular(&cur->upper)); 3408 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 3409 list[LOWER]); 3410 ASSERT(list_empty(&edge->list[UPPER])); 3411 exist = edge->node[UPPER]; 3412 /* 3413 * Add the upper level block to pending list if we need check 3414 * its backrefs 3415 */ 3416 if (!exist->checked) 3417 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3418 } else { 3419 exist = NULL; 3420 } 3421 3422 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 3423 struct extent_buffer *eb; 3424 struct btrfs_key key; 3425 int type; 3426 3427 cond_resched(); 3428 eb = btrfs_backref_get_eb(iter); 3429 3430 key.objectid = iter->bytenr; 3431 if (btrfs_backref_iter_is_inline_ref(iter)) { 3432 struct btrfs_extent_inline_ref *iref; 3433 3434 /* Update key for inline backref */ 3435 iref = (struct btrfs_extent_inline_ref *) 3436 ((unsigned long)iter->cur_ptr); 3437 type = btrfs_get_extent_inline_ref_type(eb, iref, 3438 BTRFS_REF_TYPE_BLOCK); 3439 if (type == BTRFS_REF_TYPE_INVALID) { 3440 ret = -EUCLEAN; 3441 goto out; 3442 } 3443 key.type = type; 3444 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3445 } else { 3446 key.type = iter->cur_key.type; 3447 key.offset = iter->cur_key.offset; 3448 } 3449 3450 /* 3451 * Parent node found and matches current inline ref, no need to 3452 * rebuild this node for this inline ref 3453 */ 3454 if (exist && 3455 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 3456 exist->owner == key.offset) || 3457 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 3458 exist->bytenr == key.offset))) { 3459 exist = NULL; 3460 continue; 3461 } 3462 3463 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 3464 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 3465 ret = handle_direct_tree_backref(cache, &key, cur); 3466 if (ret < 0) 3467 goto out; 3468 } else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) { 3469 /* 3470 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref 3471 * offset means the root objectid. We need to search 3472 * the tree to get its parent bytenr. 3473 */ 3474 ret = handle_indirect_tree_backref(trans, cache, path, 3475 &key, node_key, cur); 3476 if (ret < 0) 3477 goto out; 3478 } 3479 /* 3480 * Unrecognized tree backref items (if it can pass tree-checker) 3481 * would be ignored. 3482 */ 3483 } 3484 ret = 0; 3485 cur->checked = 1; 3486 WARN_ON(exist); 3487 out: 3488 btrfs_backref_iter_release(iter); 3489 return ret; 3490 } 3491 3492 /* 3493 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 3494 */ 3495 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 3496 struct btrfs_backref_node *start) 3497 { 3498 struct list_head *useless_node = &cache->useless_node; 3499 struct btrfs_backref_edge *edge; 3500 struct rb_node *rb_node; 3501 LIST_HEAD(pending_edge); 3502 3503 ASSERT(start->checked); 3504 3505 /* Insert this node to cache if it's not COW-only */ 3506 if (!start->cowonly) { 3507 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 3508 &start->rb_node); 3509 if (rb_node) 3510 btrfs_backref_panic(cache->fs_info, start->bytenr, 3511 -EEXIST); 3512 list_add_tail(&start->lower, &cache->leaves); 3513 } 3514 3515 /* 3516 * Use breadth first search to iterate all related edges. 3517 * 3518 * The starting points are all the edges of this node 3519 */ 3520 list_for_each_entry(edge, &start->upper, list[LOWER]) 3521 list_add_tail(&edge->list[UPPER], &pending_edge); 3522 3523 while (!list_empty(&pending_edge)) { 3524 struct btrfs_backref_node *upper; 3525 struct btrfs_backref_node *lower; 3526 3527 edge = list_first_entry(&pending_edge, 3528 struct btrfs_backref_edge, list[UPPER]); 3529 list_del_init(&edge->list[UPPER]); 3530 upper = edge->node[UPPER]; 3531 lower = edge->node[LOWER]; 3532 3533 /* Parent is detached, no need to keep any edges */ 3534 if (upper->detached) { 3535 list_del(&edge->list[LOWER]); 3536 btrfs_backref_free_edge(cache, edge); 3537 3538 /* Lower node is orphan, queue for cleanup */ 3539 if (list_empty(&lower->upper)) 3540 list_add(&lower->list, useless_node); 3541 continue; 3542 } 3543 3544 /* 3545 * All new nodes added in current build_backref_tree() haven't 3546 * been linked to the cache rb tree. 3547 * So if we have upper->rb_node populated, this means a cache 3548 * hit. We only need to link the edge, as @upper and all its 3549 * parents have already been linked. 3550 */ 3551 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3552 if (upper->lowest) { 3553 list_del_init(&upper->lower); 3554 upper->lowest = 0; 3555 } 3556 3557 list_add_tail(&edge->list[UPPER], &upper->lower); 3558 continue; 3559 } 3560 3561 /* Sanity check, we shouldn't have any unchecked nodes */ 3562 if (!upper->checked) { 3563 ASSERT(0); 3564 return -EUCLEAN; 3565 } 3566 3567 /* Sanity check, COW-only node has non-COW-only parent */ 3568 if (start->cowonly != upper->cowonly) { 3569 ASSERT(0); 3570 return -EUCLEAN; 3571 } 3572 3573 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3574 if (!upper->cowonly) { 3575 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3576 &upper->rb_node); 3577 if (rb_node) { 3578 btrfs_backref_panic(cache->fs_info, 3579 upper->bytenr, -EEXIST); 3580 return -EUCLEAN; 3581 } 3582 } 3583 3584 list_add_tail(&edge->list[UPPER], &upper->lower); 3585 3586 /* 3587 * Also queue all the parent edges of this uncached node 3588 * to finish the upper linkage 3589 */ 3590 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3591 list_add_tail(&edge->list[UPPER], &pending_edge); 3592 } 3593 return 0; 3594 } 3595 3596 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3597 struct btrfs_backref_node *node) 3598 { 3599 struct btrfs_backref_node *lower; 3600 struct btrfs_backref_node *upper; 3601 struct btrfs_backref_edge *edge; 3602 3603 while (!list_empty(&cache->useless_node)) { 3604 lower = list_first_entry(&cache->useless_node, 3605 struct btrfs_backref_node, list); 3606 list_del_init(&lower->list); 3607 } 3608 while (!list_empty(&cache->pending_edge)) { 3609 edge = list_first_entry(&cache->pending_edge, 3610 struct btrfs_backref_edge, list[UPPER]); 3611 list_del(&edge->list[UPPER]); 3612 list_del(&edge->list[LOWER]); 3613 lower = edge->node[LOWER]; 3614 upper = edge->node[UPPER]; 3615 btrfs_backref_free_edge(cache, edge); 3616 3617 /* 3618 * Lower is no longer linked to any upper backref nodes and 3619 * isn't in the cache, we can free it ourselves. 3620 */ 3621 if (list_empty(&lower->upper) && 3622 RB_EMPTY_NODE(&lower->rb_node)) 3623 list_add(&lower->list, &cache->useless_node); 3624 3625 if (!RB_EMPTY_NODE(&upper->rb_node)) 3626 continue; 3627 3628 /* Add this guy's upper edges to the list to process */ 3629 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3630 list_add_tail(&edge->list[UPPER], 3631 &cache->pending_edge); 3632 if (list_empty(&upper->upper)) 3633 list_add(&upper->list, &cache->useless_node); 3634 } 3635 3636 while (!list_empty(&cache->useless_node)) { 3637 lower = list_first_entry(&cache->useless_node, 3638 struct btrfs_backref_node, list); 3639 list_del_init(&lower->list); 3640 if (lower == node) 3641 node = NULL; 3642 btrfs_backref_drop_node(cache, lower); 3643 } 3644 3645 btrfs_backref_cleanup_node(cache, node); 3646 ASSERT(list_empty(&cache->useless_node) && 3647 list_empty(&cache->pending_edge)); 3648 } 3649