xref: /openbmc/linux/fs/btrfs/backref.c (revision 3f58ff6b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 #include "tree-mod-log.h"
18 #include "fs.h"
19 #include "accessors.h"
20 #include "extent-tree.h"
21 #include "relocation.h"
22 #include "tree-checker.h"
23 
24 /* Just arbitrary numbers so we can be sure one of these happened. */
25 #define BACKREF_FOUND_SHARED     6
26 #define BACKREF_FOUND_NOT_SHARED 7
27 
28 struct extent_inode_elem {
29 	u64 inum;
30 	u64 offset;
31 	u64 num_bytes;
32 	struct extent_inode_elem *next;
33 };
34 
35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36 			      const struct btrfs_key *key,
37 			      const struct extent_buffer *eb,
38 			      const struct btrfs_file_extent_item *fi,
39 			      struct extent_inode_elem **eie)
40 {
41 	const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
42 	u64 offset = key->offset;
43 	struct extent_inode_elem *e;
44 	const u64 *root_ids;
45 	int root_count;
46 	bool cached;
47 
48 	if (!btrfs_file_extent_compression(eb, fi) &&
49 	    !btrfs_file_extent_encryption(eb, fi) &&
50 	    !btrfs_file_extent_other_encoding(eb, fi)) {
51 		u64 data_offset;
52 
53 		data_offset = btrfs_file_extent_offset(eb, fi);
54 
55 		if (ctx->extent_item_pos < data_offset ||
56 		    ctx->extent_item_pos >= data_offset + data_len)
57 			return 1;
58 		offset += ctx->extent_item_pos - data_offset;
59 	}
60 
61 	if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
62 		goto add_inode_elem;
63 
64 	cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
65 				   &root_count);
66 	if (!cached)
67 		goto add_inode_elem;
68 
69 	for (int i = 0; i < root_count; i++) {
70 		int ret;
71 
72 		ret = ctx->indirect_ref_iterator(key->objectid, offset,
73 						 data_len, root_ids[i],
74 						 ctx->user_ctx);
75 		if (ret)
76 			return ret;
77 	}
78 
79 add_inode_elem:
80 	e = kmalloc(sizeof(*e), GFP_NOFS);
81 	if (!e)
82 		return -ENOMEM;
83 
84 	e->next = *eie;
85 	e->inum = key->objectid;
86 	e->offset = offset;
87 	e->num_bytes = data_len;
88 	*eie = e;
89 
90 	return 0;
91 }
92 
93 static void free_inode_elem_list(struct extent_inode_elem *eie)
94 {
95 	struct extent_inode_elem *eie_next;
96 
97 	for (; eie; eie = eie_next) {
98 		eie_next = eie->next;
99 		kfree(eie);
100 	}
101 }
102 
103 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
104 			     const struct extent_buffer *eb,
105 			     struct extent_inode_elem **eie)
106 {
107 	u64 disk_byte;
108 	struct btrfs_key key;
109 	struct btrfs_file_extent_item *fi;
110 	int slot;
111 	int nritems;
112 	int extent_type;
113 	int ret;
114 
115 	/*
116 	 * from the shared data ref, we only have the leaf but we need
117 	 * the key. thus, we must look into all items and see that we
118 	 * find one (some) with a reference to our extent item.
119 	 */
120 	nritems = btrfs_header_nritems(eb);
121 	for (slot = 0; slot < nritems; ++slot) {
122 		btrfs_item_key_to_cpu(eb, &key, slot);
123 		if (key.type != BTRFS_EXTENT_DATA_KEY)
124 			continue;
125 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
126 		extent_type = btrfs_file_extent_type(eb, fi);
127 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
128 			continue;
129 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
130 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
131 		if (disk_byte != ctx->bytenr)
132 			continue;
133 
134 		ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
135 		if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
136 			return ret;
137 	}
138 
139 	return 0;
140 }
141 
142 struct preftree {
143 	struct rb_root_cached root;
144 	unsigned int count;
145 };
146 
147 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
148 
149 struct preftrees {
150 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
151 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
152 	struct preftree indirect_missing_keys;
153 };
154 
155 /*
156  * Checks for a shared extent during backref search.
157  *
158  * The share_count tracks prelim_refs (direct and indirect) having a
159  * ref->count >0:
160  *  - incremented when a ref->count transitions to >0
161  *  - decremented when a ref->count transitions to <1
162  */
163 struct share_check {
164 	struct btrfs_backref_share_check_ctx *ctx;
165 	struct btrfs_root *root;
166 	u64 inum;
167 	u64 data_bytenr;
168 	u64 data_extent_gen;
169 	/*
170 	 * Counts number of inodes that refer to an extent (different inodes in
171 	 * the same root or different roots) that we could find. The sharedness
172 	 * check typically stops once this counter gets greater than 1, so it
173 	 * may not reflect the total number of inodes.
174 	 */
175 	int share_count;
176 	/*
177 	 * The number of times we found our inode refers to the data extent we
178 	 * are determining the sharedness. In other words, how many file extent
179 	 * items we could find for our inode that point to our target data
180 	 * extent. The value we get here after finishing the extent sharedness
181 	 * check may be smaller than reality, but if it ends up being greater
182 	 * than 1, then we know for sure the inode has multiple file extent
183 	 * items that point to our inode, and we can safely assume it's useful
184 	 * to cache the sharedness check result.
185 	 */
186 	int self_ref_count;
187 	bool have_delayed_delete_refs;
188 };
189 
190 static inline int extent_is_shared(struct share_check *sc)
191 {
192 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
193 }
194 
195 static struct kmem_cache *btrfs_prelim_ref_cache;
196 
197 int __init btrfs_prelim_ref_init(void)
198 {
199 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
200 					sizeof(struct prelim_ref),
201 					0,
202 					SLAB_MEM_SPREAD,
203 					NULL);
204 	if (!btrfs_prelim_ref_cache)
205 		return -ENOMEM;
206 	return 0;
207 }
208 
209 void __cold btrfs_prelim_ref_exit(void)
210 {
211 	kmem_cache_destroy(btrfs_prelim_ref_cache);
212 }
213 
214 static void free_pref(struct prelim_ref *ref)
215 {
216 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
217 }
218 
219 /*
220  * Return 0 when both refs are for the same block (and can be merged).
221  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
222  * indicates a 'higher' block.
223  */
224 static int prelim_ref_compare(struct prelim_ref *ref1,
225 			      struct prelim_ref *ref2)
226 {
227 	if (ref1->level < ref2->level)
228 		return -1;
229 	if (ref1->level > ref2->level)
230 		return 1;
231 	if (ref1->root_id < ref2->root_id)
232 		return -1;
233 	if (ref1->root_id > ref2->root_id)
234 		return 1;
235 	if (ref1->key_for_search.type < ref2->key_for_search.type)
236 		return -1;
237 	if (ref1->key_for_search.type > ref2->key_for_search.type)
238 		return 1;
239 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
240 		return -1;
241 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
242 		return 1;
243 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
244 		return -1;
245 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
246 		return 1;
247 	if (ref1->parent < ref2->parent)
248 		return -1;
249 	if (ref1->parent > ref2->parent)
250 		return 1;
251 
252 	return 0;
253 }
254 
255 static void update_share_count(struct share_check *sc, int oldcount,
256 			       int newcount, struct prelim_ref *newref)
257 {
258 	if ((!sc) || (oldcount == 0 && newcount < 1))
259 		return;
260 
261 	if (oldcount > 0 && newcount < 1)
262 		sc->share_count--;
263 	else if (oldcount < 1 && newcount > 0)
264 		sc->share_count++;
265 
266 	if (newref->root_id == sc->root->root_key.objectid &&
267 	    newref->wanted_disk_byte == sc->data_bytenr &&
268 	    newref->key_for_search.objectid == sc->inum)
269 		sc->self_ref_count += newref->count;
270 }
271 
272 /*
273  * Add @newref to the @root rbtree, merging identical refs.
274  *
275  * Callers should assume that newref has been freed after calling.
276  */
277 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
278 			      struct preftree *preftree,
279 			      struct prelim_ref *newref,
280 			      struct share_check *sc)
281 {
282 	struct rb_root_cached *root;
283 	struct rb_node **p;
284 	struct rb_node *parent = NULL;
285 	struct prelim_ref *ref;
286 	int result;
287 	bool leftmost = true;
288 
289 	root = &preftree->root;
290 	p = &root->rb_root.rb_node;
291 
292 	while (*p) {
293 		parent = *p;
294 		ref = rb_entry(parent, struct prelim_ref, rbnode);
295 		result = prelim_ref_compare(ref, newref);
296 		if (result < 0) {
297 			p = &(*p)->rb_left;
298 		} else if (result > 0) {
299 			p = &(*p)->rb_right;
300 			leftmost = false;
301 		} else {
302 			/* Identical refs, merge them and free @newref */
303 			struct extent_inode_elem *eie = ref->inode_list;
304 
305 			while (eie && eie->next)
306 				eie = eie->next;
307 
308 			if (!eie)
309 				ref->inode_list = newref->inode_list;
310 			else
311 				eie->next = newref->inode_list;
312 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
313 						     preftree->count);
314 			/*
315 			 * A delayed ref can have newref->count < 0.
316 			 * The ref->count is updated to follow any
317 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
318 			 */
319 			update_share_count(sc, ref->count,
320 					   ref->count + newref->count, newref);
321 			ref->count += newref->count;
322 			free_pref(newref);
323 			return;
324 		}
325 	}
326 
327 	update_share_count(sc, 0, newref->count, newref);
328 	preftree->count++;
329 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
330 	rb_link_node(&newref->rbnode, parent, p);
331 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
332 }
333 
334 /*
335  * Release the entire tree.  We don't care about internal consistency so
336  * just free everything and then reset the tree root.
337  */
338 static void prelim_release(struct preftree *preftree)
339 {
340 	struct prelim_ref *ref, *next_ref;
341 
342 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
343 					     &preftree->root.rb_root, rbnode) {
344 		free_inode_elem_list(ref->inode_list);
345 		free_pref(ref);
346 	}
347 
348 	preftree->root = RB_ROOT_CACHED;
349 	preftree->count = 0;
350 }
351 
352 /*
353  * the rules for all callers of this function are:
354  * - obtaining the parent is the goal
355  * - if you add a key, you must know that it is a correct key
356  * - if you cannot add the parent or a correct key, then we will look into the
357  *   block later to set a correct key
358  *
359  * delayed refs
360  * ============
361  *        backref type | shared | indirect | shared | indirect
362  * information         |   tree |     tree |   data |     data
363  * --------------------+--------+----------+--------+----------
364  *      parent logical |    y   |     -    |    -   |     -
365  *      key to resolve |    -   |     y    |    y   |     y
366  *  tree block logical |    -   |     -    |    -   |     -
367  *  root for resolving |    y   |     y    |    y   |     y
368  *
369  * - column 1:       we've the parent -> done
370  * - column 2, 3, 4: we use the key to find the parent
371  *
372  * on disk refs (inline or keyed)
373  * ==============================
374  *        backref type | shared | indirect | shared | indirect
375  * information         |   tree |     tree |   data |     data
376  * --------------------+--------+----------+--------+----------
377  *      parent logical |    y   |     -    |    y   |     -
378  *      key to resolve |    -   |     -    |    -   |     y
379  *  tree block logical |    y   |     y    |    y   |     y
380  *  root for resolving |    -   |     y    |    y   |     y
381  *
382  * - column 1, 3: we've the parent -> done
383  * - column 2:    we take the first key from the block to find the parent
384  *                (see add_missing_keys)
385  * - column 4:    we use the key to find the parent
386  *
387  * additional information that's available but not required to find the parent
388  * block might help in merging entries to gain some speed.
389  */
390 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
391 			  struct preftree *preftree, u64 root_id,
392 			  const struct btrfs_key *key, int level, u64 parent,
393 			  u64 wanted_disk_byte, int count,
394 			  struct share_check *sc, gfp_t gfp_mask)
395 {
396 	struct prelim_ref *ref;
397 
398 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
399 		return 0;
400 
401 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
402 	if (!ref)
403 		return -ENOMEM;
404 
405 	ref->root_id = root_id;
406 	if (key)
407 		ref->key_for_search = *key;
408 	else
409 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
410 
411 	ref->inode_list = NULL;
412 	ref->level = level;
413 	ref->count = count;
414 	ref->parent = parent;
415 	ref->wanted_disk_byte = wanted_disk_byte;
416 	prelim_ref_insert(fs_info, preftree, ref, sc);
417 	return extent_is_shared(sc);
418 }
419 
420 /* direct refs use root == 0, key == NULL */
421 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
422 			  struct preftrees *preftrees, int level, u64 parent,
423 			  u64 wanted_disk_byte, int count,
424 			  struct share_check *sc, gfp_t gfp_mask)
425 {
426 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
427 			      parent, wanted_disk_byte, count, sc, gfp_mask);
428 }
429 
430 /* indirect refs use parent == 0 */
431 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
432 			    struct preftrees *preftrees, u64 root_id,
433 			    const struct btrfs_key *key, int level,
434 			    u64 wanted_disk_byte, int count,
435 			    struct share_check *sc, gfp_t gfp_mask)
436 {
437 	struct preftree *tree = &preftrees->indirect;
438 
439 	if (!key)
440 		tree = &preftrees->indirect_missing_keys;
441 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
442 			      wanted_disk_byte, count, sc, gfp_mask);
443 }
444 
445 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
446 {
447 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
448 	struct rb_node *parent = NULL;
449 	struct prelim_ref *ref = NULL;
450 	struct prelim_ref target = {};
451 	int result;
452 
453 	target.parent = bytenr;
454 
455 	while (*p) {
456 		parent = *p;
457 		ref = rb_entry(parent, struct prelim_ref, rbnode);
458 		result = prelim_ref_compare(ref, &target);
459 
460 		if (result < 0)
461 			p = &(*p)->rb_left;
462 		else if (result > 0)
463 			p = &(*p)->rb_right;
464 		else
465 			return 1;
466 	}
467 	return 0;
468 }
469 
470 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
471 			   struct btrfs_root *root, struct btrfs_path *path,
472 			   struct ulist *parents,
473 			   struct preftrees *preftrees, struct prelim_ref *ref,
474 			   int level)
475 {
476 	int ret = 0;
477 	int slot;
478 	struct extent_buffer *eb;
479 	struct btrfs_key key;
480 	struct btrfs_key *key_for_search = &ref->key_for_search;
481 	struct btrfs_file_extent_item *fi;
482 	struct extent_inode_elem *eie = NULL, *old = NULL;
483 	u64 disk_byte;
484 	u64 wanted_disk_byte = ref->wanted_disk_byte;
485 	u64 count = 0;
486 	u64 data_offset;
487 
488 	if (level != 0) {
489 		eb = path->nodes[level];
490 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
491 		if (ret < 0)
492 			return ret;
493 		return 0;
494 	}
495 
496 	/*
497 	 * 1. We normally enter this function with the path already pointing to
498 	 *    the first item to check. But sometimes, we may enter it with
499 	 *    slot == nritems.
500 	 * 2. We are searching for normal backref but bytenr of this leaf
501 	 *    matches shared data backref
502 	 * 3. The leaf owner is not equal to the root we are searching
503 	 *
504 	 * For these cases, go to the next leaf before we continue.
505 	 */
506 	eb = path->nodes[0];
507 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
508 	    is_shared_data_backref(preftrees, eb->start) ||
509 	    ref->root_id != btrfs_header_owner(eb)) {
510 		if (ctx->time_seq == BTRFS_SEQ_LAST)
511 			ret = btrfs_next_leaf(root, path);
512 		else
513 			ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
514 	}
515 
516 	while (!ret && count < ref->count) {
517 		eb = path->nodes[0];
518 		slot = path->slots[0];
519 
520 		btrfs_item_key_to_cpu(eb, &key, slot);
521 
522 		if (key.objectid != key_for_search->objectid ||
523 		    key.type != BTRFS_EXTENT_DATA_KEY)
524 			break;
525 
526 		/*
527 		 * We are searching for normal backref but bytenr of this leaf
528 		 * matches shared data backref, OR
529 		 * the leaf owner is not equal to the root we are searching for
530 		 */
531 		if (slot == 0 &&
532 		    (is_shared_data_backref(preftrees, eb->start) ||
533 		     ref->root_id != btrfs_header_owner(eb))) {
534 			if (ctx->time_seq == BTRFS_SEQ_LAST)
535 				ret = btrfs_next_leaf(root, path);
536 			else
537 				ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
538 			continue;
539 		}
540 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
541 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
542 		data_offset = btrfs_file_extent_offset(eb, fi);
543 
544 		if (disk_byte == wanted_disk_byte) {
545 			eie = NULL;
546 			old = NULL;
547 			if (ref->key_for_search.offset == key.offset - data_offset)
548 				count++;
549 			else
550 				goto next;
551 			if (!ctx->ignore_extent_item_pos) {
552 				ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
553 				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
554 				    ret < 0)
555 					break;
556 			}
557 			if (ret > 0)
558 				goto next;
559 			ret = ulist_add_merge_ptr(parents, eb->start,
560 						  eie, (void **)&old, GFP_NOFS);
561 			if (ret < 0)
562 				break;
563 			if (!ret && !ctx->ignore_extent_item_pos) {
564 				while (old->next)
565 					old = old->next;
566 				old->next = eie;
567 			}
568 			eie = NULL;
569 		}
570 next:
571 		if (ctx->time_seq == BTRFS_SEQ_LAST)
572 			ret = btrfs_next_item(root, path);
573 		else
574 			ret = btrfs_next_old_item(root, path, ctx->time_seq);
575 	}
576 
577 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
578 		free_inode_elem_list(eie);
579 	else if (ret > 0)
580 		ret = 0;
581 
582 	return ret;
583 }
584 
585 /*
586  * resolve an indirect backref in the form (root_id, key, level)
587  * to a logical address
588  */
589 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
590 				struct btrfs_path *path,
591 				struct preftrees *preftrees,
592 				struct prelim_ref *ref, struct ulist *parents)
593 {
594 	struct btrfs_root *root;
595 	struct extent_buffer *eb;
596 	int ret = 0;
597 	int root_level;
598 	int level = ref->level;
599 	struct btrfs_key search_key = ref->key_for_search;
600 
601 	/*
602 	 * If we're search_commit_root we could possibly be holding locks on
603 	 * other tree nodes.  This happens when qgroups does backref walks when
604 	 * adding new delayed refs.  To deal with this we need to look in cache
605 	 * for the root, and if we don't find it then we need to search the
606 	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
607 	 * here.
608 	 */
609 	if (path->search_commit_root)
610 		root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
611 	else
612 		root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
613 	if (IS_ERR(root)) {
614 		ret = PTR_ERR(root);
615 		goto out_free;
616 	}
617 
618 	if (!path->search_commit_root &&
619 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
620 		ret = -ENOENT;
621 		goto out;
622 	}
623 
624 	if (btrfs_is_testing(ctx->fs_info)) {
625 		ret = -ENOENT;
626 		goto out;
627 	}
628 
629 	if (path->search_commit_root)
630 		root_level = btrfs_header_level(root->commit_root);
631 	else if (ctx->time_seq == BTRFS_SEQ_LAST)
632 		root_level = btrfs_header_level(root->node);
633 	else
634 		root_level = btrfs_old_root_level(root, ctx->time_seq);
635 
636 	if (root_level + 1 == level)
637 		goto out;
638 
639 	/*
640 	 * We can often find data backrefs with an offset that is too large
641 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
642 	 * subtracting a file's offset with the data offset of its
643 	 * corresponding extent data item. This can happen for example in the
644 	 * clone ioctl.
645 	 *
646 	 * So if we detect such case we set the search key's offset to zero to
647 	 * make sure we will find the matching file extent item at
648 	 * add_all_parents(), otherwise we will miss it because the offset
649 	 * taken form the backref is much larger then the offset of the file
650 	 * extent item. This can make us scan a very large number of file
651 	 * extent items, but at least it will not make us miss any.
652 	 *
653 	 * This is an ugly workaround for a behaviour that should have never
654 	 * existed, but it does and a fix for the clone ioctl would touch a lot
655 	 * of places, cause backwards incompatibility and would not fix the
656 	 * problem for extents cloned with older kernels.
657 	 */
658 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
659 	    search_key.offset >= LLONG_MAX)
660 		search_key.offset = 0;
661 	path->lowest_level = level;
662 	if (ctx->time_seq == BTRFS_SEQ_LAST)
663 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
664 	else
665 		ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
666 
667 	btrfs_debug(ctx->fs_info,
668 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
669 		 ref->root_id, level, ref->count, ret,
670 		 ref->key_for_search.objectid, ref->key_for_search.type,
671 		 ref->key_for_search.offset);
672 	if (ret < 0)
673 		goto out;
674 
675 	eb = path->nodes[level];
676 	while (!eb) {
677 		if (WARN_ON(!level)) {
678 			ret = 1;
679 			goto out;
680 		}
681 		level--;
682 		eb = path->nodes[level];
683 	}
684 
685 	ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
686 out:
687 	btrfs_put_root(root);
688 out_free:
689 	path->lowest_level = 0;
690 	btrfs_release_path(path);
691 	return ret;
692 }
693 
694 static struct extent_inode_elem *
695 unode_aux_to_inode_list(struct ulist_node *node)
696 {
697 	if (!node)
698 		return NULL;
699 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
700 }
701 
702 static void free_leaf_list(struct ulist *ulist)
703 {
704 	struct ulist_node *node;
705 	struct ulist_iterator uiter;
706 
707 	ULIST_ITER_INIT(&uiter);
708 	while ((node = ulist_next(ulist, &uiter)))
709 		free_inode_elem_list(unode_aux_to_inode_list(node));
710 
711 	ulist_free(ulist);
712 }
713 
714 /*
715  * We maintain three separate rbtrees: one for direct refs, one for
716  * indirect refs which have a key, and one for indirect refs which do not
717  * have a key. Each tree does merge on insertion.
718  *
719  * Once all of the references are located, we iterate over the tree of
720  * indirect refs with missing keys. An appropriate key is located and
721  * the ref is moved onto the tree for indirect refs. After all missing
722  * keys are thus located, we iterate over the indirect ref tree, resolve
723  * each reference, and then insert the resolved reference onto the
724  * direct tree (merging there too).
725  *
726  * New backrefs (i.e., for parent nodes) are added to the appropriate
727  * rbtree as they are encountered. The new backrefs are subsequently
728  * resolved as above.
729  */
730 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
731 				 struct btrfs_path *path,
732 				 struct preftrees *preftrees,
733 				 struct share_check *sc)
734 {
735 	int err;
736 	int ret = 0;
737 	struct ulist *parents;
738 	struct ulist_node *node;
739 	struct ulist_iterator uiter;
740 	struct rb_node *rnode;
741 
742 	parents = ulist_alloc(GFP_NOFS);
743 	if (!parents)
744 		return -ENOMEM;
745 
746 	/*
747 	 * We could trade memory usage for performance here by iterating
748 	 * the tree, allocating new refs for each insertion, and then
749 	 * freeing the entire indirect tree when we're done.  In some test
750 	 * cases, the tree can grow quite large (~200k objects).
751 	 */
752 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
753 		struct prelim_ref *ref;
754 
755 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
756 		if (WARN(ref->parent,
757 			 "BUG: direct ref found in indirect tree")) {
758 			ret = -EINVAL;
759 			goto out;
760 		}
761 
762 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
763 		preftrees->indirect.count--;
764 
765 		if (ref->count == 0) {
766 			free_pref(ref);
767 			continue;
768 		}
769 
770 		if (sc && ref->root_id != sc->root->root_key.objectid) {
771 			free_pref(ref);
772 			ret = BACKREF_FOUND_SHARED;
773 			goto out;
774 		}
775 		err = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
776 		/*
777 		 * we can only tolerate ENOENT,otherwise,we should catch error
778 		 * and return directly.
779 		 */
780 		if (err == -ENOENT) {
781 			prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
782 					  NULL);
783 			continue;
784 		} else if (err) {
785 			free_pref(ref);
786 			ret = err;
787 			goto out;
788 		}
789 
790 		/* we put the first parent into the ref at hand */
791 		ULIST_ITER_INIT(&uiter);
792 		node = ulist_next(parents, &uiter);
793 		ref->parent = node ? node->val : 0;
794 		ref->inode_list = unode_aux_to_inode_list(node);
795 
796 		/* Add a prelim_ref(s) for any other parent(s). */
797 		while ((node = ulist_next(parents, &uiter))) {
798 			struct prelim_ref *new_ref;
799 
800 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
801 						   GFP_NOFS);
802 			if (!new_ref) {
803 				free_pref(ref);
804 				ret = -ENOMEM;
805 				goto out;
806 			}
807 			memcpy(new_ref, ref, sizeof(*ref));
808 			new_ref->parent = node->val;
809 			new_ref->inode_list = unode_aux_to_inode_list(node);
810 			prelim_ref_insert(ctx->fs_info, &preftrees->direct,
811 					  new_ref, NULL);
812 		}
813 
814 		/*
815 		 * Now it's a direct ref, put it in the direct tree. We must
816 		 * do this last because the ref could be merged/freed here.
817 		 */
818 		prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
819 
820 		ulist_reinit(parents);
821 		cond_resched();
822 	}
823 out:
824 	/*
825 	 * We may have inode lists attached to refs in the parents ulist, so we
826 	 * must free them before freeing the ulist and its refs.
827 	 */
828 	free_leaf_list(parents);
829 	return ret;
830 }
831 
832 /*
833  * read tree blocks and add keys where required.
834  */
835 static int add_missing_keys(struct btrfs_fs_info *fs_info,
836 			    struct preftrees *preftrees, bool lock)
837 {
838 	struct prelim_ref *ref;
839 	struct extent_buffer *eb;
840 	struct preftree *tree = &preftrees->indirect_missing_keys;
841 	struct rb_node *node;
842 
843 	while ((node = rb_first_cached(&tree->root))) {
844 		struct btrfs_tree_parent_check check = { 0 };
845 
846 		ref = rb_entry(node, struct prelim_ref, rbnode);
847 		rb_erase_cached(node, &tree->root);
848 
849 		BUG_ON(ref->parent);	/* should not be a direct ref */
850 		BUG_ON(ref->key_for_search.type);
851 		BUG_ON(!ref->wanted_disk_byte);
852 
853 		check.level = ref->level - 1;
854 		check.owner_root = ref->root_id;
855 
856 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
857 		if (IS_ERR(eb)) {
858 			free_pref(ref);
859 			return PTR_ERR(eb);
860 		}
861 		if (!extent_buffer_uptodate(eb)) {
862 			free_pref(ref);
863 			free_extent_buffer(eb);
864 			return -EIO;
865 		}
866 
867 		if (lock)
868 			btrfs_tree_read_lock(eb);
869 		if (btrfs_header_level(eb) == 0)
870 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
871 		else
872 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
873 		if (lock)
874 			btrfs_tree_read_unlock(eb);
875 		free_extent_buffer(eb);
876 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
877 		cond_resched();
878 	}
879 	return 0;
880 }
881 
882 /*
883  * add all currently queued delayed refs from this head whose seq nr is
884  * smaller or equal that seq to the list
885  */
886 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
887 			    struct btrfs_delayed_ref_head *head, u64 seq,
888 			    struct preftrees *preftrees, struct share_check *sc)
889 {
890 	struct btrfs_delayed_ref_node *node;
891 	struct btrfs_key key;
892 	struct rb_node *n;
893 	int count;
894 	int ret = 0;
895 
896 	spin_lock(&head->lock);
897 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
898 		node = rb_entry(n, struct btrfs_delayed_ref_node,
899 				ref_node);
900 		if (node->seq > seq)
901 			continue;
902 
903 		switch (node->action) {
904 		case BTRFS_ADD_DELAYED_EXTENT:
905 		case BTRFS_UPDATE_DELAYED_HEAD:
906 			WARN_ON(1);
907 			continue;
908 		case BTRFS_ADD_DELAYED_REF:
909 			count = node->ref_mod;
910 			break;
911 		case BTRFS_DROP_DELAYED_REF:
912 			count = node->ref_mod * -1;
913 			break;
914 		default:
915 			BUG();
916 		}
917 		switch (node->type) {
918 		case BTRFS_TREE_BLOCK_REF_KEY: {
919 			/* NORMAL INDIRECT METADATA backref */
920 			struct btrfs_delayed_tree_ref *ref;
921 			struct btrfs_key *key_ptr = NULL;
922 
923 			if (head->extent_op && head->extent_op->update_key) {
924 				btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
925 				key_ptr = &key;
926 			}
927 
928 			ref = btrfs_delayed_node_to_tree_ref(node);
929 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
930 					       key_ptr, ref->level + 1,
931 					       node->bytenr, count, sc,
932 					       GFP_ATOMIC);
933 			break;
934 		}
935 		case BTRFS_SHARED_BLOCK_REF_KEY: {
936 			/* SHARED DIRECT METADATA backref */
937 			struct btrfs_delayed_tree_ref *ref;
938 
939 			ref = btrfs_delayed_node_to_tree_ref(node);
940 
941 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
942 					     ref->parent, node->bytenr, count,
943 					     sc, GFP_ATOMIC);
944 			break;
945 		}
946 		case BTRFS_EXTENT_DATA_REF_KEY: {
947 			/* NORMAL INDIRECT DATA backref */
948 			struct btrfs_delayed_data_ref *ref;
949 			ref = btrfs_delayed_node_to_data_ref(node);
950 
951 			key.objectid = ref->objectid;
952 			key.type = BTRFS_EXTENT_DATA_KEY;
953 			key.offset = ref->offset;
954 
955 			/*
956 			 * If we have a share check context and a reference for
957 			 * another inode, we can't exit immediately. This is
958 			 * because even if this is a BTRFS_ADD_DELAYED_REF
959 			 * reference we may find next a BTRFS_DROP_DELAYED_REF
960 			 * which cancels out this ADD reference.
961 			 *
962 			 * If this is a DROP reference and there was no previous
963 			 * ADD reference, then we need to signal that when we
964 			 * process references from the extent tree (through
965 			 * add_inline_refs() and add_keyed_refs()), we should
966 			 * not exit early if we find a reference for another
967 			 * inode, because one of the delayed DROP references
968 			 * may cancel that reference in the extent tree.
969 			 */
970 			if (sc && count < 0)
971 				sc->have_delayed_delete_refs = true;
972 
973 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
974 					       &key, 0, node->bytenr, count, sc,
975 					       GFP_ATOMIC);
976 			break;
977 		}
978 		case BTRFS_SHARED_DATA_REF_KEY: {
979 			/* SHARED DIRECT FULL backref */
980 			struct btrfs_delayed_data_ref *ref;
981 
982 			ref = btrfs_delayed_node_to_data_ref(node);
983 
984 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
985 					     node->bytenr, count, sc,
986 					     GFP_ATOMIC);
987 			break;
988 		}
989 		default:
990 			WARN_ON(1);
991 		}
992 		/*
993 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
994 		 * refs have been checked.
995 		 */
996 		if (ret && (ret != BACKREF_FOUND_SHARED))
997 			break;
998 	}
999 	if (!ret)
1000 		ret = extent_is_shared(sc);
1001 
1002 	spin_unlock(&head->lock);
1003 	return ret;
1004 }
1005 
1006 /*
1007  * add all inline backrefs for bytenr to the list
1008  *
1009  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1010  */
1011 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1012 			   struct btrfs_path *path,
1013 			   int *info_level, struct preftrees *preftrees,
1014 			   struct share_check *sc)
1015 {
1016 	int ret = 0;
1017 	int slot;
1018 	struct extent_buffer *leaf;
1019 	struct btrfs_key key;
1020 	struct btrfs_key found_key;
1021 	unsigned long ptr;
1022 	unsigned long end;
1023 	struct btrfs_extent_item *ei;
1024 	u64 flags;
1025 	u64 item_size;
1026 
1027 	/*
1028 	 * enumerate all inline refs
1029 	 */
1030 	leaf = path->nodes[0];
1031 	slot = path->slots[0];
1032 
1033 	item_size = btrfs_item_size(leaf, slot);
1034 	BUG_ON(item_size < sizeof(*ei));
1035 
1036 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1037 
1038 	if (ctx->check_extent_item) {
1039 		ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1040 		if (ret)
1041 			return ret;
1042 	}
1043 
1044 	flags = btrfs_extent_flags(leaf, ei);
1045 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
1046 
1047 	ptr = (unsigned long)(ei + 1);
1048 	end = (unsigned long)ei + item_size;
1049 
1050 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1051 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1052 		struct btrfs_tree_block_info *info;
1053 
1054 		info = (struct btrfs_tree_block_info *)ptr;
1055 		*info_level = btrfs_tree_block_level(leaf, info);
1056 		ptr += sizeof(struct btrfs_tree_block_info);
1057 		BUG_ON(ptr > end);
1058 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1059 		*info_level = found_key.offset;
1060 	} else {
1061 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1062 	}
1063 
1064 	while (ptr < end) {
1065 		struct btrfs_extent_inline_ref *iref;
1066 		u64 offset;
1067 		int type;
1068 
1069 		iref = (struct btrfs_extent_inline_ref *)ptr;
1070 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
1071 							BTRFS_REF_TYPE_ANY);
1072 		if (type == BTRFS_REF_TYPE_INVALID)
1073 			return -EUCLEAN;
1074 
1075 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
1076 
1077 		switch (type) {
1078 		case BTRFS_SHARED_BLOCK_REF_KEY:
1079 			ret = add_direct_ref(ctx->fs_info, preftrees,
1080 					     *info_level + 1, offset,
1081 					     ctx->bytenr, 1, NULL, GFP_NOFS);
1082 			break;
1083 		case BTRFS_SHARED_DATA_REF_KEY: {
1084 			struct btrfs_shared_data_ref *sdref;
1085 			int count;
1086 
1087 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1088 			count = btrfs_shared_data_ref_count(leaf, sdref);
1089 
1090 			ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1091 					     ctx->bytenr, count, sc, GFP_NOFS);
1092 			break;
1093 		}
1094 		case BTRFS_TREE_BLOCK_REF_KEY:
1095 			ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
1096 					       NULL, *info_level + 1,
1097 					       ctx->bytenr, 1, NULL, GFP_NOFS);
1098 			break;
1099 		case BTRFS_EXTENT_DATA_REF_KEY: {
1100 			struct btrfs_extent_data_ref *dref;
1101 			int count;
1102 			u64 root;
1103 
1104 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1105 			count = btrfs_extent_data_ref_count(leaf, dref);
1106 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1107 								      dref);
1108 			key.type = BTRFS_EXTENT_DATA_KEY;
1109 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1110 
1111 			if (sc && key.objectid != sc->inum &&
1112 			    !sc->have_delayed_delete_refs) {
1113 				ret = BACKREF_FOUND_SHARED;
1114 				break;
1115 			}
1116 
1117 			root = btrfs_extent_data_ref_root(leaf, dref);
1118 
1119 			if (!ctx->skip_data_ref ||
1120 			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1121 						ctx->user_ctx))
1122 				ret = add_indirect_ref(ctx->fs_info, preftrees,
1123 						       root, &key, 0, ctx->bytenr,
1124 						       count, sc, GFP_NOFS);
1125 			break;
1126 		}
1127 		default:
1128 			WARN_ON(1);
1129 		}
1130 		if (ret)
1131 			return ret;
1132 		ptr += btrfs_extent_inline_ref_size(type);
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 /*
1139  * add all non-inline backrefs for bytenr to the list
1140  *
1141  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1142  */
1143 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1144 			  struct btrfs_root *extent_root,
1145 			  struct btrfs_path *path,
1146 			  int info_level, struct preftrees *preftrees,
1147 			  struct share_check *sc)
1148 {
1149 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1150 	int ret;
1151 	int slot;
1152 	struct extent_buffer *leaf;
1153 	struct btrfs_key key;
1154 
1155 	while (1) {
1156 		ret = btrfs_next_item(extent_root, path);
1157 		if (ret < 0)
1158 			break;
1159 		if (ret) {
1160 			ret = 0;
1161 			break;
1162 		}
1163 
1164 		slot = path->slots[0];
1165 		leaf = path->nodes[0];
1166 		btrfs_item_key_to_cpu(leaf, &key, slot);
1167 
1168 		if (key.objectid != ctx->bytenr)
1169 			break;
1170 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1171 			continue;
1172 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1173 			break;
1174 
1175 		switch (key.type) {
1176 		case BTRFS_SHARED_BLOCK_REF_KEY:
1177 			/* SHARED DIRECT METADATA backref */
1178 			ret = add_direct_ref(fs_info, preftrees,
1179 					     info_level + 1, key.offset,
1180 					     ctx->bytenr, 1, NULL, GFP_NOFS);
1181 			break;
1182 		case BTRFS_SHARED_DATA_REF_KEY: {
1183 			/* SHARED DIRECT FULL backref */
1184 			struct btrfs_shared_data_ref *sdref;
1185 			int count;
1186 
1187 			sdref = btrfs_item_ptr(leaf, slot,
1188 					      struct btrfs_shared_data_ref);
1189 			count = btrfs_shared_data_ref_count(leaf, sdref);
1190 			ret = add_direct_ref(fs_info, preftrees, 0,
1191 					     key.offset, ctx->bytenr, count,
1192 					     sc, GFP_NOFS);
1193 			break;
1194 		}
1195 		case BTRFS_TREE_BLOCK_REF_KEY:
1196 			/* NORMAL INDIRECT METADATA backref */
1197 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1198 					       NULL, info_level + 1, ctx->bytenr,
1199 					       1, NULL, GFP_NOFS);
1200 			break;
1201 		case BTRFS_EXTENT_DATA_REF_KEY: {
1202 			/* NORMAL INDIRECT DATA backref */
1203 			struct btrfs_extent_data_ref *dref;
1204 			int count;
1205 			u64 root;
1206 
1207 			dref = btrfs_item_ptr(leaf, slot,
1208 					      struct btrfs_extent_data_ref);
1209 			count = btrfs_extent_data_ref_count(leaf, dref);
1210 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1211 								      dref);
1212 			key.type = BTRFS_EXTENT_DATA_KEY;
1213 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1214 
1215 			if (sc && key.objectid != sc->inum &&
1216 			    !sc->have_delayed_delete_refs) {
1217 				ret = BACKREF_FOUND_SHARED;
1218 				break;
1219 			}
1220 
1221 			root = btrfs_extent_data_ref_root(leaf, dref);
1222 
1223 			if (!ctx->skip_data_ref ||
1224 			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1225 						ctx->user_ctx))
1226 				ret = add_indirect_ref(fs_info, preftrees, root,
1227 						       &key, 0, ctx->bytenr,
1228 						       count, sc, GFP_NOFS);
1229 			break;
1230 		}
1231 		default:
1232 			WARN_ON(1);
1233 		}
1234 		if (ret)
1235 			return ret;
1236 
1237 	}
1238 
1239 	return ret;
1240 }
1241 
1242 /*
1243  * The caller has joined a transaction or is holding a read lock on the
1244  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1245  * snapshot field changing while updating or checking the cache.
1246  */
1247 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1248 					struct btrfs_root *root,
1249 					u64 bytenr, int level, bool *is_shared)
1250 {
1251 	struct btrfs_backref_shared_cache_entry *entry;
1252 
1253 	if (!ctx->use_path_cache)
1254 		return false;
1255 
1256 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1257 		return false;
1258 
1259 	/*
1260 	 * Level -1 is used for the data extent, which is not reliable to cache
1261 	 * because its reference count can increase or decrease without us
1262 	 * realizing. We cache results only for extent buffers that lead from
1263 	 * the root node down to the leaf with the file extent item.
1264 	 */
1265 	ASSERT(level >= 0);
1266 
1267 	entry = &ctx->path_cache_entries[level];
1268 
1269 	/* Unused cache entry or being used for some other extent buffer. */
1270 	if (entry->bytenr != bytenr)
1271 		return false;
1272 
1273 	/*
1274 	 * We cached a false result, but the last snapshot generation of the
1275 	 * root changed, so we now have a snapshot. Don't trust the result.
1276 	 */
1277 	if (!entry->is_shared &&
1278 	    entry->gen != btrfs_root_last_snapshot(&root->root_item))
1279 		return false;
1280 
1281 	/*
1282 	 * If we cached a true result and the last generation used for dropping
1283 	 * a root changed, we can not trust the result, because the dropped root
1284 	 * could be a snapshot sharing this extent buffer.
1285 	 */
1286 	if (entry->is_shared &&
1287 	    entry->gen != btrfs_get_last_root_drop_gen(root->fs_info))
1288 		return false;
1289 
1290 	*is_shared = entry->is_shared;
1291 	/*
1292 	 * If the node at this level is shared, than all nodes below are also
1293 	 * shared. Currently some of the nodes below may be marked as not shared
1294 	 * because we have just switched from one leaf to another, and switched
1295 	 * also other nodes above the leaf and below the current level, so mark
1296 	 * them as shared.
1297 	 */
1298 	if (*is_shared) {
1299 		for (int i = 0; i < level; i++) {
1300 			ctx->path_cache_entries[i].is_shared = true;
1301 			ctx->path_cache_entries[i].gen = entry->gen;
1302 		}
1303 	}
1304 
1305 	return true;
1306 }
1307 
1308 /*
1309  * The caller has joined a transaction or is holding a read lock on the
1310  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1311  * snapshot field changing while updating or checking the cache.
1312  */
1313 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1314 				       struct btrfs_root *root,
1315 				       u64 bytenr, int level, bool is_shared)
1316 {
1317 	struct btrfs_backref_shared_cache_entry *entry;
1318 	u64 gen;
1319 
1320 	if (!ctx->use_path_cache)
1321 		return;
1322 
1323 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1324 		return;
1325 
1326 	/*
1327 	 * Level -1 is used for the data extent, which is not reliable to cache
1328 	 * because its reference count can increase or decrease without us
1329 	 * realizing. We cache results only for extent buffers that lead from
1330 	 * the root node down to the leaf with the file extent item.
1331 	 */
1332 	ASSERT(level >= 0);
1333 
1334 	if (is_shared)
1335 		gen = btrfs_get_last_root_drop_gen(root->fs_info);
1336 	else
1337 		gen = btrfs_root_last_snapshot(&root->root_item);
1338 
1339 	entry = &ctx->path_cache_entries[level];
1340 	entry->bytenr = bytenr;
1341 	entry->is_shared = is_shared;
1342 	entry->gen = gen;
1343 
1344 	/*
1345 	 * If we found an extent buffer is shared, set the cache result for all
1346 	 * extent buffers below it to true. As nodes in the path are COWed,
1347 	 * their sharedness is moved to their children, and if a leaf is COWed,
1348 	 * then the sharedness of a data extent becomes direct, the refcount of
1349 	 * data extent is increased in the extent item at the extent tree.
1350 	 */
1351 	if (is_shared) {
1352 		for (int i = 0; i < level; i++) {
1353 			entry = &ctx->path_cache_entries[i];
1354 			entry->is_shared = is_shared;
1355 			entry->gen = gen;
1356 		}
1357 	}
1358 }
1359 
1360 /*
1361  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1362  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1363  * indirect refs to their parent bytenr.
1364  * When roots are found, they're added to the roots list
1365  *
1366  * @ctx:     Backref walking context object, must be not NULL.
1367  * @sc:      If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1368  *           shared extent is detected.
1369  *
1370  * Otherwise this returns 0 for success and <0 for an error.
1371  *
1372  * FIXME some caching might speed things up
1373  */
1374 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
1375 			     struct share_check *sc)
1376 {
1377 	struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
1378 	struct btrfs_key key;
1379 	struct btrfs_path *path;
1380 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1381 	struct btrfs_delayed_ref_head *head;
1382 	int info_level = 0;
1383 	int ret;
1384 	struct prelim_ref *ref;
1385 	struct rb_node *node;
1386 	struct extent_inode_elem *eie = NULL;
1387 	struct preftrees preftrees = {
1388 		.direct = PREFTREE_INIT,
1389 		.indirect = PREFTREE_INIT,
1390 		.indirect_missing_keys = PREFTREE_INIT
1391 	};
1392 
1393 	/* Roots ulist is not needed when using a sharedness check context. */
1394 	if (sc)
1395 		ASSERT(ctx->roots == NULL);
1396 
1397 	key.objectid = ctx->bytenr;
1398 	key.offset = (u64)-1;
1399 	if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
1400 		key.type = BTRFS_METADATA_ITEM_KEY;
1401 	else
1402 		key.type = BTRFS_EXTENT_ITEM_KEY;
1403 
1404 	path = btrfs_alloc_path();
1405 	if (!path)
1406 		return -ENOMEM;
1407 	if (!ctx->trans) {
1408 		path->search_commit_root = 1;
1409 		path->skip_locking = 1;
1410 	}
1411 
1412 	if (ctx->time_seq == BTRFS_SEQ_LAST)
1413 		path->skip_locking = 1;
1414 
1415 again:
1416 	head = NULL;
1417 
1418 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1419 	if (ret < 0)
1420 		goto out;
1421 	if (ret == 0) {
1422 		/* This shouldn't happen, indicates a bug or fs corruption. */
1423 		ASSERT(ret != 0);
1424 		ret = -EUCLEAN;
1425 		goto out;
1426 	}
1427 
1428 	if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1429 	    ctx->time_seq != BTRFS_SEQ_LAST) {
1430 		/*
1431 		 * We have a specific time_seq we care about and trans which
1432 		 * means we have the path lock, we need to grab the ref head and
1433 		 * lock it so we have a consistent view of the refs at the given
1434 		 * time.
1435 		 */
1436 		delayed_refs = &ctx->trans->transaction->delayed_refs;
1437 		spin_lock(&delayed_refs->lock);
1438 		head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr);
1439 		if (head) {
1440 			if (!mutex_trylock(&head->mutex)) {
1441 				refcount_inc(&head->refs);
1442 				spin_unlock(&delayed_refs->lock);
1443 
1444 				btrfs_release_path(path);
1445 
1446 				/*
1447 				 * Mutex was contended, block until it's
1448 				 * released and try again
1449 				 */
1450 				mutex_lock(&head->mutex);
1451 				mutex_unlock(&head->mutex);
1452 				btrfs_put_delayed_ref_head(head);
1453 				goto again;
1454 			}
1455 			spin_unlock(&delayed_refs->lock);
1456 			ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
1457 					       &preftrees, sc);
1458 			mutex_unlock(&head->mutex);
1459 			if (ret)
1460 				goto out;
1461 		} else {
1462 			spin_unlock(&delayed_refs->lock);
1463 		}
1464 	}
1465 
1466 	if (path->slots[0]) {
1467 		struct extent_buffer *leaf;
1468 		int slot;
1469 
1470 		path->slots[0]--;
1471 		leaf = path->nodes[0];
1472 		slot = path->slots[0];
1473 		btrfs_item_key_to_cpu(leaf, &key, slot);
1474 		if (key.objectid == ctx->bytenr &&
1475 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1476 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1477 			ret = add_inline_refs(ctx, path, &info_level,
1478 					      &preftrees, sc);
1479 			if (ret)
1480 				goto out;
1481 			ret = add_keyed_refs(ctx, root, path, info_level,
1482 					     &preftrees, sc);
1483 			if (ret)
1484 				goto out;
1485 		}
1486 	}
1487 
1488 	/*
1489 	 * If we have a share context and we reached here, it means the extent
1490 	 * is not directly shared (no multiple reference items for it),
1491 	 * otherwise we would have exited earlier with a return value of
1492 	 * BACKREF_FOUND_SHARED after processing delayed references or while
1493 	 * processing inline or keyed references from the extent tree.
1494 	 * The extent may however be indirectly shared through shared subtrees
1495 	 * as a result from creating snapshots, so we determine below what is
1496 	 * its parent node, in case we are dealing with a metadata extent, or
1497 	 * what's the leaf (or leaves), from a fs tree, that has a file extent
1498 	 * item pointing to it in case we are dealing with a data extent.
1499 	 */
1500 	ASSERT(extent_is_shared(sc) == 0);
1501 
1502 	/*
1503 	 * If we are here for a data extent and we have a share_check structure
1504 	 * it means the data extent is not directly shared (does not have
1505 	 * multiple reference items), so we have to check if a path in the fs
1506 	 * tree (going from the root node down to the leaf that has the file
1507 	 * extent item pointing to the data extent) is shared, that is, if any
1508 	 * of the extent buffers in the path is referenced by other trees.
1509 	 */
1510 	if (sc && ctx->bytenr == sc->data_bytenr) {
1511 		/*
1512 		 * If our data extent is from a generation more recent than the
1513 		 * last generation used to snapshot the root, then we know that
1514 		 * it can not be shared through subtrees, so we can skip
1515 		 * resolving indirect references, there's no point in
1516 		 * determining the extent buffers for the path from the fs tree
1517 		 * root node down to the leaf that has the file extent item that
1518 		 * points to the data extent.
1519 		 */
1520 		if (sc->data_extent_gen >
1521 		    btrfs_root_last_snapshot(&sc->root->root_item)) {
1522 			ret = BACKREF_FOUND_NOT_SHARED;
1523 			goto out;
1524 		}
1525 
1526 		/*
1527 		 * If we are only determining if a data extent is shared or not
1528 		 * and the corresponding file extent item is located in the same
1529 		 * leaf as the previous file extent item, we can skip resolving
1530 		 * indirect references for a data extent, since the fs tree path
1531 		 * is the same (same leaf, so same path). We skip as long as the
1532 		 * cached result for the leaf is valid and only if there's only
1533 		 * one file extent item pointing to the data extent, because in
1534 		 * the case of multiple file extent items, they may be located
1535 		 * in different leaves and therefore we have multiple paths.
1536 		 */
1537 		if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1538 		    sc->self_ref_count == 1) {
1539 			bool cached;
1540 			bool is_shared;
1541 
1542 			cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1543 						     sc->ctx->curr_leaf_bytenr,
1544 						     0, &is_shared);
1545 			if (cached) {
1546 				if (is_shared)
1547 					ret = BACKREF_FOUND_SHARED;
1548 				else
1549 					ret = BACKREF_FOUND_NOT_SHARED;
1550 				goto out;
1551 			}
1552 		}
1553 	}
1554 
1555 	btrfs_release_path(path);
1556 
1557 	ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0);
1558 	if (ret)
1559 		goto out;
1560 
1561 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1562 
1563 	ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
1564 	if (ret)
1565 		goto out;
1566 
1567 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1568 
1569 	/*
1570 	 * This walks the tree of merged and resolved refs. Tree blocks are
1571 	 * read in as needed. Unique entries are added to the ulist, and
1572 	 * the list of found roots is updated.
1573 	 *
1574 	 * We release the entire tree in one go before returning.
1575 	 */
1576 	node = rb_first_cached(&preftrees.direct.root);
1577 	while (node) {
1578 		ref = rb_entry(node, struct prelim_ref, rbnode);
1579 		node = rb_next(&ref->rbnode);
1580 		/*
1581 		 * ref->count < 0 can happen here if there are delayed
1582 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1583 		 * prelim_ref_insert() relies on this when merging
1584 		 * identical refs to keep the overall count correct.
1585 		 * prelim_ref_insert() will merge only those refs
1586 		 * which compare identically.  Any refs having
1587 		 * e.g. different offsets would not be merged,
1588 		 * and would retain their original ref->count < 0.
1589 		 */
1590 		if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
1591 			/* no parent == root of tree */
1592 			ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
1593 			if (ret < 0)
1594 				goto out;
1595 		}
1596 		if (ref->count && ref->parent) {
1597 			if (!ctx->ignore_extent_item_pos && !ref->inode_list &&
1598 			    ref->level == 0) {
1599 				struct btrfs_tree_parent_check check = { 0 };
1600 				struct extent_buffer *eb;
1601 
1602 				check.level = ref->level;
1603 
1604 				eb = read_tree_block(ctx->fs_info, ref->parent,
1605 						     &check);
1606 				if (IS_ERR(eb)) {
1607 					ret = PTR_ERR(eb);
1608 					goto out;
1609 				}
1610 				if (!extent_buffer_uptodate(eb)) {
1611 					free_extent_buffer(eb);
1612 					ret = -EIO;
1613 					goto out;
1614 				}
1615 
1616 				if (!path->skip_locking)
1617 					btrfs_tree_read_lock(eb);
1618 				ret = find_extent_in_eb(ctx, eb, &eie);
1619 				if (!path->skip_locking)
1620 					btrfs_tree_read_unlock(eb);
1621 				free_extent_buffer(eb);
1622 				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1623 				    ret < 0)
1624 					goto out;
1625 				ref->inode_list = eie;
1626 				/*
1627 				 * We transferred the list ownership to the ref,
1628 				 * so set to NULL to avoid a double free in case
1629 				 * an error happens after this.
1630 				 */
1631 				eie = NULL;
1632 			}
1633 			ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
1634 						  ref->inode_list,
1635 						  (void **)&eie, GFP_NOFS);
1636 			if (ret < 0)
1637 				goto out;
1638 			if (!ret && !ctx->ignore_extent_item_pos) {
1639 				/*
1640 				 * We've recorded that parent, so we must extend
1641 				 * its inode list here.
1642 				 *
1643 				 * However if there was corruption we may not
1644 				 * have found an eie, return an error in this
1645 				 * case.
1646 				 */
1647 				ASSERT(eie);
1648 				if (!eie) {
1649 					ret = -EUCLEAN;
1650 					goto out;
1651 				}
1652 				while (eie->next)
1653 					eie = eie->next;
1654 				eie->next = ref->inode_list;
1655 			}
1656 			eie = NULL;
1657 			/*
1658 			 * We have transferred the inode list ownership from
1659 			 * this ref to the ref we added to the 'refs' ulist.
1660 			 * So set this ref's inode list to NULL to avoid
1661 			 * use-after-free when our caller uses it or double
1662 			 * frees in case an error happens before we return.
1663 			 */
1664 			ref->inode_list = NULL;
1665 		}
1666 		cond_resched();
1667 	}
1668 
1669 out:
1670 	btrfs_free_path(path);
1671 
1672 	prelim_release(&preftrees.direct);
1673 	prelim_release(&preftrees.indirect);
1674 	prelim_release(&preftrees.indirect_missing_keys);
1675 
1676 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
1677 		free_inode_elem_list(eie);
1678 	return ret;
1679 }
1680 
1681 /*
1682  * Finds all leaves with a reference to the specified combination of
1683  * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1684  * added to the ulist at @ctx->refs, and that ulist is allocated by this
1685  * function. The caller should free the ulist with free_leaf_list() if
1686  * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is
1687  * enough.
1688  *
1689  * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
1690  */
1691 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
1692 {
1693 	int ret;
1694 
1695 	ASSERT(ctx->refs == NULL);
1696 
1697 	ctx->refs = ulist_alloc(GFP_NOFS);
1698 	if (!ctx->refs)
1699 		return -ENOMEM;
1700 
1701 	ret = find_parent_nodes(ctx, NULL);
1702 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1703 	    (ret < 0 && ret != -ENOENT)) {
1704 		free_leaf_list(ctx->refs);
1705 		ctx->refs = NULL;
1706 		return ret;
1707 	}
1708 
1709 	return 0;
1710 }
1711 
1712 /*
1713  * Walk all backrefs for a given extent to find all roots that reference this
1714  * extent. Walking a backref means finding all extents that reference this
1715  * extent and in turn walk the backrefs of those, too. Naturally this is a
1716  * recursive process, but here it is implemented in an iterative fashion: We
1717  * find all referencing extents for the extent in question and put them on a
1718  * list. In turn, we find all referencing extents for those, further appending
1719  * to the list. The way we iterate the list allows adding more elements after
1720  * the current while iterating. The process stops when we reach the end of the
1721  * list.
1722  *
1723  * Found roots are added to @ctx->roots, which is allocated by this function if
1724  * it points to NULL, in which case the caller is responsible for freeing it
1725  * after it's not needed anymore.
1726  * This function requires @ctx->refs to be NULL, as it uses it for allocating a
1727  * ulist to do temporary work, and frees it before returning.
1728  *
1729  * Returns 0 on success, < 0 on error.
1730  */
1731 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
1732 {
1733 	const u64 orig_bytenr = ctx->bytenr;
1734 	const bool orig_ignore_extent_item_pos = ctx->ignore_extent_item_pos;
1735 	bool roots_ulist_allocated = false;
1736 	struct ulist_iterator uiter;
1737 	int ret = 0;
1738 
1739 	ASSERT(ctx->refs == NULL);
1740 
1741 	ctx->refs = ulist_alloc(GFP_NOFS);
1742 	if (!ctx->refs)
1743 		return -ENOMEM;
1744 
1745 	if (!ctx->roots) {
1746 		ctx->roots = ulist_alloc(GFP_NOFS);
1747 		if (!ctx->roots) {
1748 			ulist_free(ctx->refs);
1749 			ctx->refs = NULL;
1750 			return -ENOMEM;
1751 		}
1752 		roots_ulist_allocated = true;
1753 	}
1754 
1755 	ctx->ignore_extent_item_pos = true;
1756 
1757 	ULIST_ITER_INIT(&uiter);
1758 	while (1) {
1759 		struct ulist_node *node;
1760 
1761 		ret = find_parent_nodes(ctx, NULL);
1762 		if (ret < 0 && ret != -ENOENT) {
1763 			if (roots_ulist_allocated) {
1764 				ulist_free(ctx->roots);
1765 				ctx->roots = NULL;
1766 			}
1767 			break;
1768 		}
1769 		ret = 0;
1770 		node = ulist_next(ctx->refs, &uiter);
1771 		if (!node)
1772 			break;
1773 		ctx->bytenr = node->val;
1774 		cond_resched();
1775 	}
1776 
1777 	ulist_free(ctx->refs);
1778 	ctx->refs = NULL;
1779 	ctx->bytenr = orig_bytenr;
1780 	ctx->ignore_extent_item_pos = orig_ignore_extent_item_pos;
1781 
1782 	return ret;
1783 }
1784 
1785 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
1786 			 bool skip_commit_root_sem)
1787 {
1788 	int ret;
1789 
1790 	if (!ctx->trans && !skip_commit_root_sem)
1791 		down_read(&ctx->fs_info->commit_root_sem);
1792 	ret = btrfs_find_all_roots_safe(ctx);
1793 	if (!ctx->trans && !skip_commit_root_sem)
1794 		up_read(&ctx->fs_info->commit_root_sem);
1795 	return ret;
1796 }
1797 
1798 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1799 {
1800 	struct btrfs_backref_share_check_ctx *ctx;
1801 
1802 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1803 	if (!ctx)
1804 		return NULL;
1805 
1806 	ulist_init(&ctx->refs);
1807 
1808 	return ctx;
1809 }
1810 
1811 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1812 {
1813 	if (!ctx)
1814 		return;
1815 
1816 	ulist_release(&ctx->refs);
1817 	kfree(ctx);
1818 }
1819 
1820 /*
1821  * Check if a data extent is shared or not.
1822  *
1823  * @inode:       The inode whose extent we are checking.
1824  * @bytenr:      Logical bytenr of the extent we are checking.
1825  * @extent_gen:  Generation of the extent (file extent item) or 0 if it is
1826  *               not known.
1827  * @ctx:         A backref sharedness check context.
1828  *
1829  * btrfs_is_data_extent_shared uses the backref walking code but will short
1830  * circuit as soon as it finds a root or inode that doesn't match the
1831  * one passed in. This provides a significant performance benefit for
1832  * callers (such as fiemap) which want to know whether the extent is
1833  * shared but do not need a ref count.
1834  *
1835  * This attempts to attach to the running transaction in order to account for
1836  * delayed refs, but continues on even when no running transaction exists.
1837  *
1838  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1839  */
1840 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
1841 				u64 extent_gen,
1842 				struct btrfs_backref_share_check_ctx *ctx)
1843 {
1844 	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
1845 	struct btrfs_root *root = inode->root;
1846 	struct btrfs_fs_info *fs_info = root->fs_info;
1847 	struct btrfs_trans_handle *trans;
1848 	struct ulist_iterator uiter;
1849 	struct ulist_node *node;
1850 	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1851 	int ret = 0;
1852 	struct share_check shared = {
1853 		.ctx = ctx,
1854 		.root = root,
1855 		.inum = btrfs_ino(inode),
1856 		.data_bytenr = bytenr,
1857 		.data_extent_gen = extent_gen,
1858 		.share_count = 0,
1859 		.self_ref_count = 0,
1860 		.have_delayed_delete_refs = false,
1861 	};
1862 	int level;
1863 
1864 	for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1865 		if (ctx->prev_extents_cache[i].bytenr == bytenr)
1866 			return ctx->prev_extents_cache[i].is_shared;
1867 	}
1868 
1869 	ulist_init(&ctx->refs);
1870 
1871 	trans = btrfs_join_transaction_nostart(root);
1872 	if (IS_ERR(trans)) {
1873 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1874 			ret = PTR_ERR(trans);
1875 			goto out;
1876 		}
1877 		trans = NULL;
1878 		down_read(&fs_info->commit_root_sem);
1879 	} else {
1880 		btrfs_get_tree_mod_seq(fs_info, &elem);
1881 		walk_ctx.time_seq = elem.seq;
1882 	}
1883 
1884 	walk_ctx.ignore_extent_item_pos = true;
1885 	walk_ctx.trans = trans;
1886 	walk_ctx.fs_info = fs_info;
1887 	walk_ctx.refs = &ctx->refs;
1888 
1889 	/* -1 means we are in the bytenr of the data extent. */
1890 	level = -1;
1891 	ULIST_ITER_INIT(&uiter);
1892 	ctx->use_path_cache = true;
1893 	while (1) {
1894 		bool is_shared;
1895 		bool cached;
1896 
1897 		walk_ctx.bytenr = bytenr;
1898 		ret = find_parent_nodes(&walk_ctx, &shared);
1899 		if (ret == BACKREF_FOUND_SHARED ||
1900 		    ret == BACKREF_FOUND_NOT_SHARED) {
1901 			/* If shared must return 1, otherwise return 0. */
1902 			ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
1903 			if (level >= 0)
1904 				store_backref_shared_cache(ctx, root, bytenr,
1905 							   level, ret == 1);
1906 			break;
1907 		}
1908 		if (ret < 0 && ret != -ENOENT)
1909 			break;
1910 		ret = 0;
1911 
1912 		/*
1913 		 * If our data extent was not directly shared (without multiple
1914 		 * reference items), than it might have a single reference item
1915 		 * with a count > 1 for the same offset, which means there are 2
1916 		 * (or more) file extent items that point to the data extent -
1917 		 * this happens when a file extent item needs to be split and
1918 		 * then one item gets moved to another leaf due to a b+tree leaf
1919 		 * split when inserting some item. In this case the file extent
1920 		 * items may be located in different leaves and therefore some
1921 		 * of the leaves may be referenced through shared subtrees while
1922 		 * others are not. Since our extent buffer cache only works for
1923 		 * a single path (by far the most common case and simpler to
1924 		 * deal with), we can not use it if we have multiple leaves
1925 		 * (which implies multiple paths).
1926 		 */
1927 		if (level == -1 && ctx->refs.nnodes > 1)
1928 			ctx->use_path_cache = false;
1929 
1930 		if (level >= 0)
1931 			store_backref_shared_cache(ctx, root, bytenr,
1932 						   level, false);
1933 		node = ulist_next(&ctx->refs, &uiter);
1934 		if (!node)
1935 			break;
1936 		bytenr = node->val;
1937 		level++;
1938 		cached = lookup_backref_shared_cache(ctx, root, bytenr, level,
1939 						     &is_shared);
1940 		if (cached) {
1941 			ret = (is_shared ? 1 : 0);
1942 			break;
1943 		}
1944 		shared.share_count = 0;
1945 		shared.have_delayed_delete_refs = false;
1946 		cond_resched();
1947 	}
1948 
1949 	/*
1950 	 * Cache the sharedness result for the data extent if we know our inode
1951 	 * has more than 1 file extent item that refers to the data extent.
1952 	 */
1953 	if (ret >= 0 && shared.self_ref_count > 1) {
1954 		int slot = ctx->prev_extents_cache_slot;
1955 
1956 		ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
1957 		ctx->prev_extents_cache[slot].is_shared = (ret == 1);
1958 
1959 		slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
1960 		ctx->prev_extents_cache_slot = slot;
1961 	}
1962 
1963 	if (trans) {
1964 		btrfs_put_tree_mod_seq(fs_info, &elem);
1965 		btrfs_end_transaction(trans);
1966 	} else {
1967 		up_read(&fs_info->commit_root_sem);
1968 	}
1969 out:
1970 	ulist_release(&ctx->refs);
1971 	ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
1972 
1973 	return ret;
1974 }
1975 
1976 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1977 			  u64 start_off, struct btrfs_path *path,
1978 			  struct btrfs_inode_extref **ret_extref,
1979 			  u64 *found_off)
1980 {
1981 	int ret, slot;
1982 	struct btrfs_key key;
1983 	struct btrfs_key found_key;
1984 	struct btrfs_inode_extref *extref;
1985 	const struct extent_buffer *leaf;
1986 	unsigned long ptr;
1987 
1988 	key.objectid = inode_objectid;
1989 	key.type = BTRFS_INODE_EXTREF_KEY;
1990 	key.offset = start_off;
1991 
1992 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1993 	if (ret < 0)
1994 		return ret;
1995 
1996 	while (1) {
1997 		leaf = path->nodes[0];
1998 		slot = path->slots[0];
1999 		if (slot >= btrfs_header_nritems(leaf)) {
2000 			/*
2001 			 * If the item at offset is not found,
2002 			 * btrfs_search_slot will point us to the slot
2003 			 * where it should be inserted. In our case
2004 			 * that will be the slot directly before the
2005 			 * next INODE_REF_KEY_V2 item. In the case
2006 			 * that we're pointing to the last slot in a
2007 			 * leaf, we must move one leaf over.
2008 			 */
2009 			ret = btrfs_next_leaf(root, path);
2010 			if (ret) {
2011 				if (ret >= 1)
2012 					ret = -ENOENT;
2013 				break;
2014 			}
2015 			continue;
2016 		}
2017 
2018 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2019 
2020 		/*
2021 		 * Check that we're still looking at an extended ref key for
2022 		 * this particular objectid. If we have different
2023 		 * objectid or type then there are no more to be found
2024 		 * in the tree and we can exit.
2025 		 */
2026 		ret = -ENOENT;
2027 		if (found_key.objectid != inode_objectid)
2028 			break;
2029 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
2030 			break;
2031 
2032 		ret = 0;
2033 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2034 		extref = (struct btrfs_inode_extref *)ptr;
2035 		*ret_extref = extref;
2036 		if (found_off)
2037 			*found_off = found_key.offset;
2038 		break;
2039 	}
2040 
2041 	return ret;
2042 }
2043 
2044 /*
2045  * this iterates to turn a name (from iref/extref) into a full filesystem path.
2046  * Elements of the path are separated by '/' and the path is guaranteed to be
2047  * 0-terminated. the path is only given within the current file system.
2048  * Therefore, it never starts with a '/'. the caller is responsible to provide
2049  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2050  * the start point of the resulting string is returned. this pointer is within
2051  * dest, normally.
2052  * in case the path buffer would overflow, the pointer is decremented further
2053  * as if output was written to the buffer, though no more output is actually
2054  * generated. that way, the caller can determine how much space would be
2055  * required for the path to fit into the buffer. in that case, the returned
2056  * value will be smaller than dest. callers must check this!
2057  */
2058 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2059 			u32 name_len, unsigned long name_off,
2060 			struct extent_buffer *eb_in, u64 parent,
2061 			char *dest, u32 size)
2062 {
2063 	int slot;
2064 	u64 next_inum;
2065 	int ret;
2066 	s64 bytes_left = ((s64)size) - 1;
2067 	struct extent_buffer *eb = eb_in;
2068 	struct btrfs_key found_key;
2069 	struct btrfs_inode_ref *iref;
2070 
2071 	if (bytes_left >= 0)
2072 		dest[bytes_left] = '\0';
2073 
2074 	while (1) {
2075 		bytes_left -= name_len;
2076 		if (bytes_left >= 0)
2077 			read_extent_buffer(eb, dest + bytes_left,
2078 					   name_off, name_len);
2079 		if (eb != eb_in) {
2080 			if (!path->skip_locking)
2081 				btrfs_tree_read_unlock(eb);
2082 			free_extent_buffer(eb);
2083 		}
2084 		ret = btrfs_find_item(fs_root, path, parent, 0,
2085 				BTRFS_INODE_REF_KEY, &found_key);
2086 		if (ret > 0)
2087 			ret = -ENOENT;
2088 		if (ret)
2089 			break;
2090 
2091 		next_inum = found_key.offset;
2092 
2093 		/* regular exit ahead */
2094 		if (parent == next_inum)
2095 			break;
2096 
2097 		slot = path->slots[0];
2098 		eb = path->nodes[0];
2099 		/* make sure we can use eb after releasing the path */
2100 		if (eb != eb_in) {
2101 			path->nodes[0] = NULL;
2102 			path->locks[0] = 0;
2103 		}
2104 		btrfs_release_path(path);
2105 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2106 
2107 		name_len = btrfs_inode_ref_name_len(eb, iref);
2108 		name_off = (unsigned long)(iref + 1);
2109 
2110 		parent = next_inum;
2111 		--bytes_left;
2112 		if (bytes_left >= 0)
2113 			dest[bytes_left] = '/';
2114 	}
2115 
2116 	btrfs_release_path(path);
2117 
2118 	if (ret)
2119 		return ERR_PTR(ret);
2120 
2121 	return dest + bytes_left;
2122 }
2123 
2124 /*
2125  * this makes the path point to (logical EXTENT_ITEM *)
2126  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2127  * tree blocks and <0 on error.
2128  */
2129 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
2130 			struct btrfs_path *path, struct btrfs_key *found_key,
2131 			u64 *flags_ret)
2132 {
2133 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
2134 	int ret;
2135 	u64 flags;
2136 	u64 size = 0;
2137 	u32 item_size;
2138 	const struct extent_buffer *eb;
2139 	struct btrfs_extent_item *ei;
2140 	struct btrfs_key key;
2141 
2142 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2143 		key.type = BTRFS_METADATA_ITEM_KEY;
2144 	else
2145 		key.type = BTRFS_EXTENT_ITEM_KEY;
2146 	key.objectid = logical;
2147 	key.offset = (u64)-1;
2148 
2149 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2150 	if (ret < 0)
2151 		return ret;
2152 
2153 	ret = btrfs_previous_extent_item(extent_root, path, 0);
2154 	if (ret) {
2155 		if (ret > 0)
2156 			ret = -ENOENT;
2157 		return ret;
2158 	}
2159 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
2160 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
2161 		size = fs_info->nodesize;
2162 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2163 		size = found_key->offset;
2164 
2165 	if (found_key->objectid > logical ||
2166 	    found_key->objectid + size <= logical) {
2167 		btrfs_debug(fs_info,
2168 			"logical %llu is not within any extent", logical);
2169 		return -ENOENT;
2170 	}
2171 
2172 	eb = path->nodes[0];
2173 	item_size = btrfs_item_size(eb, path->slots[0]);
2174 	BUG_ON(item_size < sizeof(*ei));
2175 
2176 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2177 	flags = btrfs_extent_flags(eb, ei);
2178 
2179 	btrfs_debug(fs_info,
2180 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2181 		 logical, logical - found_key->objectid, found_key->objectid,
2182 		 found_key->offset, flags, item_size);
2183 
2184 	WARN_ON(!flags_ret);
2185 	if (flags_ret) {
2186 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2187 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2188 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
2189 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
2190 		else
2191 			BUG();
2192 		return 0;
2193 	}
2194 
2195 	return -EIO;
2196 }
2197 
2198 /*
2199  * helper function to iterate extent inline refs. ptr must point to a 0 value
2200  * for the first call and may be modified. it is used to track state.
2201  * if more refs exist, 0 is returned and the next call to
2202  * get_extent_inline_ref must pass the modified ptr parameter to get the
2203  * next ref. after the last ref was processed, 1 is returned.
2204  * returns <0 on error
2205  */
2206 static int get_extent_inline_ref(unsigned long *ptr,
2207 				 const struct extent_buffer *eb,
2208 				 const struct btrfs_key *key,
2209 				 const struct btrfs_extent_item *ei,
2210 				 u32 item_size,
2211 				 struct btrfs_extent_inline_ref **out_eiref,
2212 				 int *out_type)
2213 {
2214 	unsigned long end;
2215 	u64 flags;
2216 	struct btrfs_tree_block_info *info;
2217 
2218 	if (!*ptr) {
2219 		/* first call */
2220 		flags = btrfs_extent_flags(eb, ei);
2221 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2222 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
2223 				/* a skinny metadata extent */
2224 				*out_eiref =
2225 				     (struct btrfs_extent_inline_ref *)(ei + 1);
2226 			} else {
2227 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2228 				info = (struct btrfs_tree_block_info *)(ei + 1);
2229 				*out_eiref =
2230 				   (struct btrfs_extent_inline_ref *)(info + 1);
2231 			}
2232 		} else {
2233 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2234 		}
2235 		*ptr = (unsigned long)*out_eiref;
2236 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2237 			return -ENOENT;
2238 	}
2239 
2240 	end = (unsigned long)ei + item_size;
2241 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2242 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2243 						     BTRFS_REF_TYPE_ANY);
2244 	if (*out_type == BTRFS_REF_TYPE_INVALID)
2245 		return -EUCLEAN;
2246 
2247 	*ptr += btrfs_extent_inline_ref_size(*out_type);
2248 	WARN_ON(*ptr > end);
2249 	if (*ptr == end)
2250 		return 1; /* last */
2251 
2252 	return 0;
2253 }
2254 
2255 /*
2256  * reads the tree block backref for an extent. tree level and root are returned
2257  * through out_level and out_root. ptr must point to a 0 value for the first
2258  * call and may be modified (see get_extent_inline_ref comment).
2259  * returns 0 if data was provided, 1 if there was no more data to provide or
2260  * <0 on error.
2261  */
2262 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2263 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
2264 			    u32 item_size, u64 *out_root, u8 *out_level)
2265 {
2266 	int ret;
2267 	int type;
2268 	struct btrfs_extent_inline_ref *eiref;
2269 
2270 	if (*ptr == (unsigned long)-1)
2271 		return 1;
2272 
2273 	while (1) {
2274 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2275 					      &eiref, &type);
2276 		if (ret < 0)
2277 			return ret;
2278 
2279 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2280 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
2281 			break;
2282 
2283 		if (ret == 1)
2284 			return 1;
2285 	}
2286 
2287 	/* we can treat both ref types equally here */
2288 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2289 
2290 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2291 		struct btrfs_tree_block_info *info;
2292 
2293 		info = (struct btrfs_tree_block_info *)(ei + 1);
2294 		*out_level = btrfs_tree_block_level(eb, info);
2295 	} else {
2296 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2297 		*out_level = (u8)key->offset;
2298 	}
2299 
2300 	if (ret == 1)
2301 		*ptr = (unsigned long)-1;
2302 
2303 	return 0;
2304 }
2305 
2306 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2307 			     struct extent_inode_elem *inode_list,
2308 			     u64 root, u64 extent_item_objectid,
2309 			     iterate_extent_inodes_t *iterate, void *ctx)
2310 {
2311 	struct extent_inode_elem *eie;
2312 	int ret = 0;
2313 
2314 	for (eie = inode_list; eie; eie = eie->next) {
2315 		btrfs_debug(fs_info,
2316 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2317 			    extent_item_objectid, eie->inum,
2318 			    eie->offset, root);
2319 		ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
2320 		if (ret) {
2321 			btrfs_debug(fs_info,
2322 				    "stopping iteration for %llu due to ret=%d",
2323 				    extent_item_objectid, ret);
2324 			break;
2325 		}
2326 	}
2327 
2328 	return ret;
2329 }
2330 
2331 /*
2332  * calls iterate() for every inode that references the extent identified by
2333  * the given parameters.
2334  * when the iterator function returns a non-zero value, iteration stops.
2335  */
2336 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2337 			  bool search_commit_root,
2338 			  iterate_extent_inodes_t *iterate, void *user_ctx)
2339 {
2340 	int ret;
2341 	struct ulist *refs;
2342 	struct ulist_node *ref_node;
2343 	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2344 	struct ulist_iterator ref_uiter;
2345 
2346 	btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2347 		    ctx->bytenr);
2348 
2349 	ASSERT(ctx->trans == NULL);
2350 	ASSERT(ctx->roots == NULL);
2351 
2352 	if (!search_commit_root) {
2353 		struct btrfs_trans_handle *trans;
2354 
2355 		trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
2356 		if (IS_ERR(trans)) {
2357 			if (PTR_ERR(trans) != -ENOENT &&
2358 			    PTR_ERR(trans) != -EROFS)
2359 				return PTR_ERR(trans);
2360 			trans = NULL;
2361 		}
2362 		ctx->trans = trans;
2363 	}
2364 
2365 	if (ctx->trans) {
2366 		btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2367 		ctx->time_seq = seq_elem.seq;
2368 	} else {
2369 		down_read(&ctx->fs_info->commit_root_sem);
2370 	}
2371 
2372 	ret = btrfs_find_all_leafs(ctx);
2373 	if (ret)
2374 		goto out;
2375 	refs = ctx->refs;
2376 	ctx->refs = NULL;
2377 
2378 	ULIST_ITER_INIT(&ref_uiter);
2379 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2380 		const u64 leaf_bytenr = ref_node->val;
2381 		struct ulist_node *root_node;
2382 		struct ulist_iterator root_uiter;
2383 		struct extent_inode_elem *inode_list;
2384 
2385 		inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2386 
2387 		if (ctx->cache_lookup) {
2388 			const u64 *root_ids;
2389 			int root_count;
2390 			bool cached;
2391 
2392 			cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2393 						   &root_ids, &root_count);
2394 			if (cached) {
2395 				for (int i = 0; i < root_count; i++) {
2396 					ret = iterate_leaf_refs(ctx->fs_info,
2397 								inode_list,
2398 								root_ids[i],
2399 								leaf_bytenr,
2400 								iterate,
2401 								user_ctx);
2402 					if (ret)
2403 						break;
2404 				}
2405 				continue;
2406 			}
2407 		}
2408 
2409 		if (!ctx->roots) {
2410 			ctx->roots = ulist_alloc(GFP_NOFS);
2411 			if (!ctx->roots) {
2412 				ret = -ENOMEM;
2413 				break;
2414 			}
2415 		}
2416 
2417 		ctx->bytenr = leaf_bytenr;
2418 		ret = btrfs_find_all_roots_safe(ctx);
2419 		if (ret)
2420 			break;
2421 
2422 		if (ctx->cache_store)
2423 			ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2424 
2425 		ULIST_ITER_INIT(&root_uiter);
2426 		while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2427 			btrfs_debug(ctx->fs_info,
2428 				    "root %llu references leaf %llu, data list %#llx",
2429 				    root_node->val, ref_node->val,
2430 				    ref_node->aux);
2431 			ret = iterate_leaf_refs(ctx->fs_info, inode_list,
2432 						root_node->val, ctx->bytenr,
2433 						iterate, user_ctx);
2434 		}
2435 		ulist_reinit(ctx->roots);
2436 	}
2437 
2438 	free_leaf_list(refs);
2439 out:
2440 	if (ctx->trans) {
2441 		btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2442 		btrfs_end_transaction(ctx->trans);
2443 		ctx->trans = NULL;
2444 	} else {
2445 		up_read(&ctx->fs_info->commit_root_sem);
2446 	}
2447 
2448 	ulist_free(ctx->roots);
2449 	ctx->roots = NULL;
2450 
2451 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2452 		ret = 0;
2453 
2454 	return ret;
2455 }
2456 
2457 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
2458 {
2459 	struct btrfs_data_container *inodes = ctx;
2460 	const size_t c = 3 * sizeof(u64);
2461 
2462 	if (inodes->bytes_left >= c) {
2463 		inodes->bytes_left -= c;
2464 		inodes->val[inodes->elem_cnt] = inum;
2465 		inodes->val[inodes->elem_cnt + 1] = offset;
2466 		inodes->val[inodes->elem_cnt + 2] = root;
2467 		inodes->elem_cnt += 3;
2468 	} else {
2469 		inodes->bytes_missing += c - inodes->bytes_left;
2470 		inodes->bytes_left = 0;
2471 		inodes->elem_missed += 3;
2472 	}
2473 
2474 	return 0;
2475 }
2476 
2477 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2478 				struct btrfs_path *path,
2479 				void *ctx, bool ignore_offset)
2480 {
2481 	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
2482 	int ret;
2483 	u64 flags = 0;
2484 	struct btrfs_key found_key;
2485 	int search_commit_root = path->search_commit_root;
2486 
2487 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2488 	btrfs_release_path(path);
2489 	if (ret < 0)
2490 		return ret;
2491 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2492 		return -EINVAL;
2493 
2494 	walk_ctx.bytenr = found_key.objectid;
2495 	if (ignore_offset)
2496 		walk_ctx.ignore_extent_item_pos = true;
2497 	else
2498 		walk_ctx.extent_item_pos = logical - found_key.objectid;
2499 	walk_ctx.fs_info = fs_info;
2500 
2501 	return iterate_extent_inodes(&walk_ctx, search_commit_root,
2502 				     build_ino_list, ctx);
2503 }
2504 
2505 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2506 			 struct extent_buffer *eb, struct inode_fs_paths *ipath);
2507 
2508 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2509 {
2510 	int ret = 0;
2511 	int slot;
2512 	u32 cur;
2513 	u32 len;
2514 	u32 name_len;
2515 	u64 parent = 0;
2516 	int found = 0;
2517 	struct btrfs_root *fs_root = ipath->fs_root;
2518 	struct btrfs_path *path = ipath->btrfs_path;
2519 	struct extent_buffer *eb;
2520 	struct btrfs_inode_ref *iref;
2521 	struct btrfs_key found_key;
2522 
2523 	while (!ret) {
2524 		ret = btrfs_find_item(fs_root, path, inum,
2525 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2526 				&found_key);
2527 
2528 		if (ret < 0)
2529 			break;
2530 		if (ret) {
2531 			ret = found ? 0 : -ENOENT;
2532 			break;
2533 		}
2534 		++found;
2535 
2536 		parent = found_key.offset;
2537 		slot = path->slots[0];
2538 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2539 		if (!eb) {
2540 			ret = -ENOMEM;
2541 			break;
2542 		}
2543 		btrfs_release_path(path);
2544 
2545 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2546 
2547 		for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2548 			name_len = btrfs_inode_ref_name_len(eb, iref);
2549 			/* path must be released before calling iterate()! */
2550 			btrfs_debug(fs_root->fs_info,
2551 				"following ref at offset %u for inode %llu in tree %llu",
2552 				cur, found_key.objectid,
2553 				fs_root->root_key.objectid);
2554 			ret = inode_to_path(parent, name_len,
2555 				      (unsigned long)(iref + 1), eb, ipath);
2556 			if (ret)
2557 				break;
2558 			len = sizeof(*iref) + name_len;
2559 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2560 		}
2561 		free_extent_buffer(eb);
2562 	}
2563 
2564 	btrfs_release_path(path);
2565 
2566 	return ret;
2567 }
2568 
2569 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2570 {
2571 	int ret;
2572 	int slot;
2573 	u64 offset = 0;
2574 	u64 parent;
2575 	int found = 0;
2576 	struct btrfs_root *fs_root = ipath->fs_root;
2577 	struct btrfs_path *path = ipath->btrfs_path;
2578 	struct extent_buffer *eb;
2579 	struct btrfs_inode_extref *extref;
2580 	u32 item_size;
2581 	u32 cur_offset;
2582 	unsigned long ptr;
2583 
2584 	while (1) {
2585 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2586 					    &offset);
2587 		if (ret < 0)
2588 			break;
2589 		if (ret) {
2590 			ret = found ? 0 : -ENOENT;
2591 			break;
2592 		}
2593 		++found;
2594 
2595 		slot = path->slots[0];
2596 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2597 		if (!eb) {
2598 			ret = -ENOMEM;
2599 			break;
2600 		}
2601 		btrfs_release_path(path);
2602 
2603 		item_size = btrfs_item_size(eb, slot);
2604 		ptr = btrfs_item_ptr_offset(eb, slot);
2605 		cur_offset = 0;
2606 
2607 		while (cur_offset < item_size) {
2608 			u32 name_len;
2609 
2610 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2611 			parent = btrfs_inode_extref_parent(eb, extref);
2612 			name_len = btrfs_inode_extref_name_len(eb, extref);
2613 			ret = inode_to_path(parent, name_len,
2614 				      (unsigned long)&extref->name, eb, ipath);
2615 			if (ret)
2616 				break;
2617 
2618 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2619 			cur_offset += sizeof(*extref);
2620 		}
2621 		free_extent_buffer(eb);
2622 
2623 		offset++;
2624 	}
2625 
2626 	btrfs_release_path(path);
2627 
2628 	return ret;
2629 }
2630 
2631 /*
2632  * returns 0 if the path could be dumped (probably truncated)
2633  * returns <0 in case of an error
2634  */
2635 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2636 			 struct extent_buffer *eb, struct inode_fs_paths *ipath)
2637 {
2638 	char *fspath;
2639 	char *fspath_min;
2640 	int i = ipath->fspath->elem_cnt;
2641 	const int s_ptr = sizeof(char *);
2642 	u32 bytes_left;
2643 
2644 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2645 					ipath->fspath->bytes_left - s_ptr : 0;
2646 
2647 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2648 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2649 				   name_off, eb, inum, fspath_min, bytes_left);
2650 	if (IS_ERR(fspath))
2651 		return PTR_ERR(fspath);
2652 
2653 	if (fspath > fspath_min) {
2654 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2655 		++ipath->fspath->elem_cnt;
2656 		ipath->fspath->bytes_left = fspath - fspath_min;
2657 	} else {
2658 		++ipath->fspath->elem_missed;
2659 		ipath->fspath->bytes_missing += fspath_min - fspath;
2660 		ipath->fspath->bytes_left = 0;
2661 	}
2662 
2663 	return 0;
2664 }
2665 
2666 /*
2667  * this dumps all file system paths to the inode into the ipath struct, provided
2668  * is has been created large enough. each path is zero-terminated and accessed
2669  * from ipath->fspath->val[i].
2670  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2671  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2672  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2673  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2674  * have been needed to return all paths.
2675  */
2676 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2677 {
2678 	int ret;
2679 	int found_refs = 0;
2680 
2681 	ret = iterate_inode_refs(inum, ipath);
2682 	if (!ret)
2683 		++found_refs;
2684 	else if (ret != -ENOENT)
2685 		return ret;
2686 
2687 	ret = iterate_inode_extrefs(inum, ipath);
2688 	if (ret == -ENOENT && found_refs)
2689 		return 0;
2690 
2691 	return ret;
2692 }
2693 
2694 struct btrfs_data_container *init_data_container(u32 total_bytes)
2695 {
2696 	struct btrfs_data_container *data;
2697 	size_t alloc_bytes;
2698 
2699 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2700 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2701 	if (!data)
2702 		return ERR_PTR(-ENOMEM);
2703 
2704 	if (total_bytes >= sizeof(*data)) {
2705 		data->bytes_left = total_bytes - sizeof(*data);
2706 		data->bytes_missing = 0;
2707 	} else {
2708 		data->bytes_missing = sizeof(*data) - total_bytes;
2709 		data->bytes_left = 0;
2710 	}
2711 
2712 	data->elem_cnt = 0;
2713 	data->elem_missed = 0;
2714 
2715 	return data;
2716 }
2717 
2718 /*
2719  * allocates space to return multiple file system paths for an inode.
2720  * total_bytes to allocate are passed, note that space usable for actual path
2721  * information will be total_bytes - sizeof(struct inode_fs_paths).
2722  * the returned pointer must be freed with free_ipath() in the end.
2723  */
2724 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2725 					struct btrfs_path *path)
2726 {
2727 	struct inode_fs_paths *ifp;
2728 	struct btrfs_data_container *fspath;
2729 
2730 	fspath = init_data_container(total_bytes);
2731 	if (IS_ERR(fspath))
2732 		return ERR_CAST(fspath);
2733 
2734 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2735 	if (!ifp) {
2736 		kvfree(fspath);
2737 		return ERR_PTR(-ENOMEM);
2738 	}
2739 
2740 	ifp->btrfs_path = path;
2741 	ifp->fspath = fspath;
2742 	ifp->fs_root = fs_root;
2743 
2744 	return ifp;
2745 }
2746 
2747 void free_ipath(struct inode_fs_paths *ipath)
2748 {
2749 	if (!ipath)
2750 		return;
2751 	kvfree(ipath->fspath);
2752 	kfree(ipath);
2753 }
2754 
2755 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
2756 {
2757 	struct btrfs_backref_iter *ret;
2758 
2759 	ret = kzalloc(sizeof(*ret), GFP_NOFS);
2760 	if (!ret)
2761 		return NULL;
2762 
2763 	ret->path = btrfs_alloc_path();
2764 	if (!ret->path) {
2765 		kfree(ret);
2766 		return NULL;
2767 	}
2768 
2769 	/* Current backref iterator only supports iteration in commit root */
2770 	ret->path->search_commit_root = 1;
2771 	ret->path->skip_locking = 1;
2772 	ret->fs_info = fs_info;
2773 
2774 	return ret;
2775 }
2776 
2777 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2778 {
2779 	struct btrfs_fs_info *fs_info = iter->fs_info;
2780 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2781 	struct btrfs_path *path = iter->path;
2782 	struct btrfs_extent_item *ei;
2783 	struct btrfs_key key;
2784 	int ret;
2785 
2786 	key.objectid = bytenr;
2787 	key.type = BTRFS_METADATA_ITEM_KEY;
2788 	key.offset = (u64)-1;
2789 	iter->bytenr = bytenr;
2790 
2791 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2792 	if (ret < 0)
2793 		return ret;
2794 	if (ret == 0) {
2795 		ret = -EUCLEAN;
2796 		goto release;
2797 	}
2798 	if (path->slots[0] == 0) {
2799 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2800 		ret = -EUCLEAN;
2801 		goto release;
2802 	}
2803 	path->slots[0]--;
2804 
2805 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2806 	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2807 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2808 		ret = -ENOENT;
2809 		goto release;
2810 	}
2811 	memcpy(&iter->cur_key, &key, sizeof(key));
2812 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2813 						    path->slots[0]);
2814 	iter->end_ptr = (u32)(iter->item_ptr +
2815 			btrfs_item_size(path->nodes[0], path->slots[0]));
2816 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2817 			    struct btrfs_extent_item);
2818 
2819 	/*
2820 	 * Only support iteration on tree backref yet.
2821 	 *
2822 	 * This is an extra precaution for non skinny-metadata, where
2823 	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2824 	 * extent flags to determine if it's a tree block.
2825 	 */
2826 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2827 		ret = -ENOTSUPP;
2828 		goto release;
2829 	}
2830 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2831 
2832 	/* If there is no inline backref, go search for keyed backref */
2833 	if (iter->cur_ptr >= iter->end_ptr) {
2834 		ret = btrfs_next_item(extent_root, path);
2835 
2836 		/* No inline nor keyed ref */
2837 		if (ret > 0) {
2838 			ret = -ENOENT;
2839 			goto release;
2840 		}
2841 		if (ret < 0)
2842 			goto release;
2843 
2844 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2845 				path->slots[0]);
2846 		if (iter->cur_key.objectid != bytenr ||
2847 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2848 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2849 			ret = -ENOENT;
2850 			goto release;
2851 		}
2852 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2853 							   path->slots[0]);
2854 		iter->item_ptr = iter->cur_ptr;
2855 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2856 				      path->nodes[0], path->slots[0]));
2857 	}
2858 
2859 	return 0;
2860 release:
2861 	btrfs_backref_iter_release(iter);
2862 	return ret;
2863 }
2864 
2865 /*
2866  * Go to the next backref item of current bytenr, can be either inlined or
2867  * keyed.
2868  *
2869  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2870  *
2871  * Return 0 if we get next backref without problem.
2872  * Return >0 if there is no extra backref for this bytenr.
2873  * Return <0 if there is something wrong happened.
2874  */
2875 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2876 {
2877 	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2878 	struct btrfs_root *extent_root;
2879 	struct btrfs_path *path = iter->path;
2880 	struct btrfs_extent_inline_ref *iref;
2881 	int ret;
2882 	u32 size;
2883 
2884 	if (btrfs_backref_iter_is_inline_ref(iter)) {
2885 		/* We're still inside the inline refs */
2886 		ASSERT(iter->cur_ptr < iter->end_ptr);
2887 
2888 		if (btrfs_backref_has_tree_block_info(iter)) {
2889 			/* First tree block info */
2890 			size = sizeof(struct btrfs_tree_block_info);
2891 		} else {
2892 			/* Use inline ref type to determine the size */
2893 			int type;
2894 
2895 			iref = (struct btrfs_extent_inline_ref *)
2896 				((unsigned long)iter->cur_ptr);
2897 			type = btrfs_extent_inline_ref_type(eb, iref);
2898 
2899 			size = btrfs_extent_inline_ref_size(type);
2900 		}
2901 		iter->cur_ptr += size;
2902 		if (iter->cur_ptr < iter->end_ptr)
2903 			return 0;
2904 
2905 		/* All inline items iterated, fall through */
2906 	}
2907 
2908 	/* We're at keyed items, there is no inline item, go to the next one */
2909 	extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2910 	ret = btrfs_next_item(extent_root, iter->path);
2911 	if (ret)
2912 		return ret;
2913 
2914 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2915 	if (iter->cur_key.objectid != iter->bytenr ||
2916 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2917 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2918 		return 1;
2919 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2920 					path->slots[0]);
2921 	iter->cur_ptr = iter->item_ptr;
2922 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
2923 						path->slots[0]);
2924 	return 0;
2925 }
2926 
2927 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2928 			      struct btrfs_backref_cache *cache, int is_reloc)
2929 {
2930 	int i;
2931 
2932 	cache->rb_root = RB_ROOT;
2933 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2934 		INIT_LIST_HEAD(&cache->pending[i]);
2935 	INIT_LIST_HEAD(&cache->changed);
2936 	INIT_LIST_HEAD(&cache->detached);
2937 	INIT_LIST_HEAD(&cache->leaves);
2938 	INIT_LIST_HEAD(&cache->pending_edge);
2939 	INIT_LIST_HEAD(&cache->useless_node);
2940 	cache->fs_info = fs_info;
2941 	cache->is_reloc = is_reloc;
2942 }
2943 
2944 struct btrfs_backref_node *btrfs_backref_alloc_node(
2945 		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2946 {
2947 	struct btrfs_backref_node *node;
2948 
2949 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2950 	node = kzalloc(sizeof(*node), GFP_NOFS);
2951 	if (!node)
2952 		return node;
2953 
2954 	INIT_LIST_HEAD(&node->list);
2955 	INIT_LIST_HEAD(&node->upper);
2956 	INIT_LIST_HEAD(&node->lower);
2957 	RB_CLEAR_NODE(&node->rb_node);
2958 	cache->nr_nodes++;
2959 	node->level = level;
2960 	node->bytenr = bytenr;
2961 
2962 	return node;
2963 }
2964 
2965 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2966 		struct btrfs_backref_cache *cache)
2967 {
2968 	struct btrfs_backref_edge *edge;
2969 
2970 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2971 	if (edge)
2972 		cache->nr_edges++;
2973 	return edge;
2974 }
2975 
2976 /*
2977  * Drop the backref node from cache, also cleaning up all its
2978  * upper edges and any uncached nodes in the path.
2979  *
2980  * This cleanup happens bottom up, thus the node should either
2981  * be the lowest node in the cache or a detached node.
2982  */
2983 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2984 				struct btrfs_backref_node *node)
2985 {
2986 	struct btrfs_backref_node *upper;
2987 	struct btrfs_backref_edge *edge;
2988 
2989 	if (!node)
2990 		return;
2991 
2992 	BUG_ON(!node->lowest && !node->detached);
2993 	while (!list_empty(&node->upper)) {
2994 		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2995 				  list[LOWER]);
2996 		upper = edge->node[UPPER];
2997 		list_del(&edge->list[LOWER]);
2998 		list_del(&edge->list[UPPER]);
2999 		btrfs_backref_free_edge(cache, edge);
3000 
3001 		/*
3002 		 * Add the node to leaf node list if no other child block
3003 		 * cached.
3004 		 */
3005 		if (list_empty(&upper->lower)) {
3006 			list_add_tail(&upper->lower, &cache->leaves);
3007 			upper->lowest = 1;
3008 		}
3009 	}
3010 
3011 	btrfs_backref_drop_node(cache, node);
3012 }
3013 
3014 /*
3015  * Release all nodes/edges from current cache
3016  */
3017 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3018 {
3019 	struct btrfs_backref_node *node;
3020 	int i;
3021 
3022 	while (!list_empty(&cache->detached)) {
3023 		node = list_entry(cache->detached.next,
3024 				  struct btrfs_backref_node, list);
3025 		btrfs_backref_cleanup_node(cache, node);
3026 	}
3027 
3028 	while (!list_empty(&cache->leaves)) {
3029 		node = list_entry(cache->leaves.next,
3030 				  struct btrfs_backref_node, lower);
3031 		btrfs_backref_cleanup_node(cache, node);
3032 	}
3033 
3034 	cache->last_trans = 0;
3035 
3036 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3037 		ASSERT(list_empty(&cache->pending[i]));
3038 	ASSERT(list_empty(&cache->pending_edge));
3039 	ASSERT(list_empty(&cache->useless_node));
3040 	ASSERT(list_empty(&cache->changed));
3041 	ASSERT(list_empty(&cache->detached));
3042 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
3043 	ASSERT(!cache->nr_nodes);
3044 	ASSERT(!cache->nr_edges);
3045 }
3046 
3047 /*
3048  * Handle direct tree backref
3049  *
3050  * Direct tree backref means, the backref item shows its parent bytenr
3051  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3052  *
3053  * @ref_key:	The converted backref key.
3054  *		For keyed backref, it's the item key.
3055  *		For inlined backref, objectid is the bytenr,
3056  *		type is btrfs_inline_ref_type, offset is
3057  *		btrfs_inline_ref_offset.
3058  */
3059 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3060 				      struct btrfs_key *ref_key,
3061 				      struct btrfs_backref_node *cur)
3062 {
3063 	struct btrfs_backref_edge *edge;
3064 	struct btrfs_backref_node *upper;
3065 	struct rb_node *rb_node;
3066 
3067 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3068 
3069 	/* Only reloc root uses backref pointing to itself */
3070 	if (ref_key->objectid == ref_key->offset) {
3071 		struct btrfs_root *root;
3072 
3073 		cur->is_reloc_root = 1;
3074 		/* Only reloc backref cache cares about a specific root */
3075 		if (cache->is_reloc) {
3076 			root = find_reloc_root(cache->fs_info, cur->bytenr);
3077 			if (!root)
3078 				return -ENOENT;
3079 			cur->root = root;
3080 		} else {
3081 			/*
3082 			 * For generic purpose backref cache, reloc root node
3083 			 * is useless.
3084 			 */
3085 			list_add(&cur->list, &cache->useless_node);
3086 		}
3087 		return 0;
3088 	}
3089 
3090 	edge = btrfs_backref_alloc_edge(cache);
3091 	if (!edge)
3092 		return -ENOMEM;
3093 
3094 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3095 	if (!rb_node) {
3096 		/* Parent node not yet cached */
3097 		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3098 					   cur->level + 1);
3099 		if (!upper) {
3100 			btrfs_backref_free_edge(cache, edge);
3101 			return -ENOMEM;
3102 		}
3103 
3104 		/*
3105 		 *  Backrefs for the upper level block isn't cached, add the
3106 		 *  block to pending list
3107 		 */
3108 		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3109 	} else {
3110 		/* Parent node already cached */
3111 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3112 		ASSERT(upper->checked);
3113 		INIT_LIST_HEAD(&edge->list[UPPER]);
3114 	}
3115 	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
3116 	return 0;
3117 }
3118 
3119 /*
3120  * Handle indirect tree backref
3121  *
3122  * Indirect tree backref means, we only know which tree the node belongs to.
3123  * We still need to do a tree search to find out the parents. This is for
3124  * TREE_BLOCK_REF backref (keyed or inlined).
3125  *
3126  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
3127  * @tree_key:	The first key of this tree block.
3128  * @path:	A clean (released) path, to avoid allocating path every time
3129  *		the function get called.
3130  */
3131 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
3132 					struct btrfs_path *path,
3133 					struct btrfs_key *ref_key,
3134 					struct btrfs_key *tree_key,
3135 					struct btrfs_backref_node *cur)
3136 {
3137 	struct btrfs_fs_info *fs_info = cache->fs_info;
3138 	struct btrfs_backref_node *upper;
3139 	struct btrfs_backref_node *lower;
3140 	struct btrfs_backref_edge *edge;
3141 	struct extent_buffer *eb;
3142 	struct btrfs_root *root;
3143 	struct rb_node *rb_node;
3144 	int level;
3145 	bool need_check = true;
3146 	int ret;
3147 
3148 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
3149 	if (IS_ERR(root))
3150 		return PTR_ERR(root);
3151 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3152 		cur->cowonly = 1;
3153 
3154 	if (btrfs_root_level(&root->root_item) == cur->level) {
3155 		/* Tree root */
3156 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
3157 		/*
3158 		 * For reloc backref cache, we may ignore reloc root.  But for
3159 		 * general purpose backref cache, we can't rely on
3160 		 * btrfs_should_ignore_reloc_root() as it may conflict with
3161 		 * current running relocation and lead to missing root.
3162 		 *
3163 		 * For general purpose backref cache, reloc root detection is
3164 		 * completely relying on direct backref (key->offset is parent
3165 		 * bytenr), thus only do such check for reloc cache.
3166 		 */
3167 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
3168 			btrfs_put_root(root);
3169 			list_add(&cur->list, &cache->useless_node);
3170 		} else {
3171 			cur->root = root;
3172 		}
3173 		return 0;
3174 	}
3175 
3176 	level = cur->level + 1;
3177 
3178 	/* Search the tree to find parent blocks referring to the block */
3179 	path->search_commit_root = 1;
3180 	path->skip_locking = 1;
3181 	path->lowest_level = level;
3182 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3183 	path->lowest_level = 0;
3184 	if (ret < 0) {
3185 		btrfs_put_root(root);
3186 		return ret;
3187 	}
3188 	if (ret > 0 && path->slots[level] > 0)
3189 		path->slots[level]--;
3190 
3191 	eb = path->nodes[level];
3192 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3193 		btrfs_err(fs_info,
3194 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
3195 			  cur->bytenr, level - 1, root->root_key.objectid,
3196 			  tree_key->objectid, tree_key->type, tree_key->offset);
3197 		btrfs_put_root(root);
3198 		ret = -ENOENT;
3199 		goto out;
3200 	}
3201 	lower = cur;
3202 
3203 	/* Add all nodes and edges in the path */
3204 	for (; level < BTRFS_MAX_LEVEL; level++) {
3205 		if (!path->nodes[level]) {
3206 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
3207 			       lower->bytenr);
3208 			/* Same as previous should_ignore_reloc_root() call */
3209 			if (btrfs_should_ignore_reloc_root(root) &&
3210 			    cache->is_reloc) {
3211 				btrfs_put_root(root);
3212 				list_add(&lower->list, &cache->useless_node);
3213 			} else {
3214 				lower->root = root;
3215 			}
3216 			break;
3217 		}
3218 
3219 		edge = btrfs_backref_alloc_edge(cache);
3220 		if (!edge) {
3221 			btrfs_put_root(root);
3222 			ret = -ENOMEM;
3223 			goto out;
3224 		}
3225 
3226 		eb = path->nodes[level];
3227 		rb_node = rb_simple_search(&cache->rb_root, eb->start);
3228 		if (!rb_node) {
3229 			upper = btrfs_backref_alloc_node(cache, eb->start,
3230 							 lower->level + 1);
3231 			if (!upper) {
3232 				btrfs_put_root(root);
3233 				btrfs_backref_free_edge(cache, edge);
3234 				ret = -ENOMEM;
3235 				goto out;
3236 			}
3237 			upper->owner = btrfs_header_owner(eb);
3238 			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3239 				upper->cowonly = 1;
3240 
3241 			/*
3242 			 * If we know the block isn't shared we can avoid
3243 			 * checking its backrefs.
3244 			 */
3245 			if (btrfs_block_can_be_shared(root, eb))
3246 				upper->checked = 0;
3247 			else
3248 				upper->checked = 1;
3249 
3250 			/*
3251 			 * Add the block to pending list if we need to check its
3252 			 * backrefs, we only do this once while walking up a
3253 			 * tree as we will catch anything else later on.
3254 			 */
3255 			if (!upper->checked && need_check) {
3256 				need_check = false;
3257 				list_add_tail(&edge->list[UPPER],
3258 					      &cache->pending_edge);
3259 			} else {
3260 				if (upper->checked)
3261 					need_check = true;
3262 				INIT_LIST_HEAD(&edge->list[UPPER]);
3263 			}
3264 		} else {
3265 			upper = rb_entry(rb_node, struct btrfs_backref_node,
3266 					 rb_node);
3267 			ASSERT(upper->checked);
3268 			INIT_LIST_HEAD(&edge->list[UPPER]);
3269 			if (!upper->owner)
3270 				upper->owner = btrfs_header_owner(eb);
3271 		}
3272 		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3273 
3274 		if (rb_node) {
3275 			btrfs_put_root(root);
3276 			break;
3277 		}
3278 		lower = upper;
3279 		upper = NULL;
3280 	}
3281 out:
3282 	btrfs_release_path(path);
3283 	return ret;
3284 }
3285 
3286 /*
3287  * Add backref node @cur into @cache.
3288  *
3289  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3290  *	 links aren't yet bi-directional. Needs to finish such links.
3291  *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
3292  *
3293  * @path:	Released path for indirect tree backref lookup
3294  * @iter:	Released backref iter for extent tree search
3295  * @node_key:	The first key of the tree block
3296  */
3297 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
3298 				struct btrfs_path *path,
3299 				struct btrfs_backref_iter *iter,
3300 				struct btrfs_key *node_key,
3301 				struct btrfs_backref_node *cur)
3302 {
3303 	struct btrfs_fs_info *fs_info = cache->fs_info;
3304 	struct btrfs_backref_edge *edge;
3305 	struct btrfs_backref_node *exist;
3306 	int ret;
3307 
3308 	ret = btrfs_backref_iter_start(iter, cur->bytenr);
3309 	if (ret < 0)
3310 		return ret;
3311 	/*
3312 	 * We skip the first btrfs_tree_block_info, as we don't use the key
3313 	 * stored in it, but fetch it from the tree block
3314 	 */
3315 	if (btrfs_backref_has_tree_block_info(iter)) {
3316 		ret = btrfs_backref_iter_next(iter);
3317 		if (ret < 0)
3318 			goto out;
3319 		/* No extra backref? This means the tree block is corrupted */
3320 		if (ret > 0) {
3321 			ret = -EUCLEAN;
3322 			goto out;
3323 		}
3324 	}
3325 	WARN_ON(cur->checked);
3326 	if (!list_empty(&cur->upper)) {
3327 		/*
3328 		 * The backref was added previously when processing backref of
3329 		 * type BTRFS_TREE_BLOCK_REF_KEY
3330 		 */
3331 		ASSERT(list_is_singular(&cur->upper));
3332 		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3333 				  list[LOWER]);
3334 		ASSERT(list_empty(&edge->list[UPPER]));
3335 		exist = edge->node[UPPER];
3336 		/*
3337 		 * Add the upper level block to pending list if we need check
3338 		 * its backrefs
3339 		 */
3340 		if (!exist->checked)
3341 			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3342 	} else {
3343 		exist = NULL;
3344 	}
3345 
3346 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3347 		struct extent_buffer *eb;
3348 		struct btrfs_key key;
3349 		int type;
3350 
3351 		cond_resched();
3352 		eb = btrfs_backref_get_eb(iter);
3353 
3354 		key.objectid = iter->bytenr;
3355 		if (btrfs_backref_iter_is_inline_ref(iter)) {
3356 			struct btrfs_extent_inline_ref *iref;
3357 
3358 			/* Update key for inline backref */
3359 			iref = (struct btrfs_extent_inline_ref *)
3360 				((unsigned long)iter->cur_ptr);
3361 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3362 							BTRFS_REF_TYPE_BLOCK);
3363 			if (type == BTRFS_REF_TYPE_INVALID) {
3364 				ret = -EUCLEAN;
3365 				goto out;
3366 			}
3367 			key.type = type;
3368 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3369 		} else {
3370 			key.type = iter->cur_key.type;
3371 			key.offset = iter->cur_key.offset;
3372 		}
3373 
3374 		/*
3375 		 * Parent node found and matches current inline ref, no need to
3376 		 * rebuild this node for this inline ref
3377 		 */
3378 		if (exist &&
3379 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3380 		      exist->owner == key.offset) ||
3381 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3382 		      exist->bytenr == key.offset))) {
3383 			exist = NULL;
3384 			continue;
3385 		}
3386 
3387 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3388 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3389 			ret = handle_direct_tree_backref(cache, &key, cur);
3390 			if (ret < 0)
3391 				goto out;
3392 			continue;
3393 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3394 			ret = -EINVAL;
3395 			btrfs_print_v0_err(fs_info);
3396 			btrfs_handle_fs_error(fs_info, ret, NULL);
3397 			goto out;
3398 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
3399 			continue;
3400 		}
3401 
3402 		/*
3403 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
3404 		 * means the root objectid. We need to search the tree to get
3405 		 * its parent bytenr.
3406 		 */
3407 		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
3408 						   cur);
3409 		if (ret < 0)
3410 			goto out;
3411 	}
3412 	ret = 0;
3413 	cur->checked = 1;
3414 	WARN_ON(exist);
3415 out:
3416 	btrfs_backref_iter_release(iter);
3417 	return ret;
3418 }
3419 
3420 /*
3421  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3422  */
3423 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3424 				     struct btrfs_backref_node *start)
3425 {
3426 	struct list_head *useless_node = &cache->useless_node;
3427 	struct btrfs_backref_edge *edge;
3428 	struct rb_node *rb_node;
3429 	LIST_HEAD(pending_edge);
3430 
3431 	ASSERT(start->checked);
3432 
3433 	/* Insert this node to cache if it's not COW-only */
3434 	if (!start->cowonly) {
3435 		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3436 					   &start->rb_node);
3437 		if (rb_node)
3438 			btrfs_backref_panic(cache->fs_info, start->bytenr,
3439 					    -EEXIST);
3440 		list_add_tail(&start->lower, &cache->leaves);
3441 	}
3442 
3443 	/*
3444 	 * Use breadth first search to iterate all related edges.
3445 	 *
3446 	 * The starting points are all the edges of this node
3447 	 */
3448 	list_for_each_entry(edge, &start->upper, list[LOWER])
3449 		list_add_tail(&edge->list[UPPER], &pending_edge);
3450 
3451 	while (!list_empty(&pending_edge)) {
3452 		struct btrfs_backref_node *upper;
3453 		struct btrfs_backref_node *lower;
3454 
3455 		edge = list_first_entry(&pending_edge,
3456 				struct btrfs_backref_edge, list[UPPER]);
3457 		list_del_init(&edge->list[UPPER]);
3458 		upper = edge->node[UPPER];
3459 		lower = edge->node[LOWER];
3460 
3461 		/* Parent is detached, no need to keep any edges */
3462 		if (upper->detached) {
3463 			list_del(&edge->list[LOWER]);
3464 			btrfs_backref_free_edge(cache, edge);
3465 
3466 			/* Lower node is orphan, queue for cleanup */
3467 			if (list_empty(&lower->upper))
3468 				list_add(&lower->list, useless_node);
3469 			continue;
3470 		}
3471 
3472 		/*
3473 		 * All new nodes added in current build_backref_tree() haven't
3474 		 * been linked to the cache rb tree.
3475 		 * So if we have upper->rb_node populated, this means a cache
3476 		 * hit. We only need to link the edge, as @upper and all its
3477 		 * parents have already been linked.
3478 		 */
3479 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3480 			if (upper->lowest) {
3481 				list_del_init(&upper->lower);
3482 				upper->lowest = 0;
3483 			}
3484 
3485 			list_add_tail(&edge->list[UPPER], &upper->lower);
3486 			continue;
3487 		}
3488 
3489 		/* Sanity check, we shouldn't have any unchecked nodes */
3490 		if (!upper->checked) {
3491 			ASSERT(0);
3492 			return -EUCLEAN;
3493 		}
3494 
3495 		/* Sanity check, COW-only node has non-COW-only parent */
3496 		if (start->cowonly != upper->cowonly) {
3497 			ASSERT(0);
3498 			return -EUCLEAN;
3499 		}
3500 
3501 		/* Only cache non-COW-only (subvolume trees) tree blocks */
3502 		if (!upper->cowonly) {
3503 			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3504 						   &upper->rb_node);
3505 			if (rb_node) {
3506 				btrfs_backref_panic(cache->fs_info,
3507 						upper->bytenr, -EEXIST);
3508 				return -EUCLEAN;
3509 			}
3510 		}
3511 
3512 		list_add_tail(&edge->list[UPPER], &upper->lower);
3513 
3514 		/*
3515 		 * Also queue all the parent edges of this uncached node
3516 		 * to finish the upper linkage
3517 		 */
3518 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3519 			list_add_tail(&edge->list[UPPER], &pending_edge);
3520 	}
3521 	return 0;
3522 }
3523 
3524 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3525 				 struct btrfs_backref_node *node)
3526 {
3527 	struct btrfs_backref_node *lower;
3528 	struct btrfs_backref_node *upper;
3529 	struct btrfs_backref_edge *edge;
3530 
3531 	while (!list_empty(&cache->useless_node)) {
3532 		lower = list_first_entry(&cache->useless_node,
3533 				   struct btrfs_backref_node, list);
3534 		list_del_init(&lower->list);
3535 	}
3536 	while (!list_empty(&cache->pending_edge)) {
3537 		edge = list_first_entry(&cache->pending_edge,
3538 				struct btrfs_backref_edge, list[UPPER]);
3539 		list_del(&edge->list[UPPER]);
3540 		list_del(&edge->list[LOWER]);
3541 		lower = edge->node[LOWER];
3542 		upper = edge->node[UPPER];
3543 		btrfs_backref_free_edge(cache, edge);
3544 
3545 		/*
3546 		 * Lower is no longer linked to any upper backref nodes and
3547 		 * isn't in the cache, we can free it ourselves.
3548 		 */
3549 		if (list_empty(&lower->upper) &&
3550 		    RB_EMPTY_NODE(&lower->rb_node))
3551 			list_add(&lower->list, &cache->useless_node);
3552 
3553 		if (!RB_EMPTY_NODE(&upper->rb_node))
3554 			continue;
3555 
3556 		/* Add this guy's upper edges to the list to process */
3557 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3558 			list_add_tail(&edge->list[UPPER],
3559 				      &cache->pending_edge);
3560 		if (list_empty(&upper->upper))
3561 			list_add(&upper->list, &cache->useless_node);
3562 	}
3563 
3564 	while (!list_empty(&cache->useless_node)) {
3565 		lower = list_first_entry(&cache->useless_node,
3566 				   struct btrfs_backref_node, list);
3567 		list_del_init(&lower->list);
3568 		if (lower == node)
3569 			node = NULL;
3570 		btrfs_backref_drop_node(cache, lower);
3571 	}
3572 
3573 	btrfs_backref_cleanup_node(cache, node);
3574 	ASSERT(list_empty(&cache->useless_node) &&
3575 	       list_empty(&cache->pending_edge));
3576 }
3577