1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/vmalloc.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "backref.h" 23 #include "ulist.h" 24 #include "transaction.h" 25 #include "delayed-ref.h" 26 #include "locking.h" 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 struct extent_inode_elem *next; 32 }; 33 34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 35 struct btrfs_file_extent_item *fi, 36 u64 extent_item_pos, 37 struct extent_inode_elem **eie) 38 { 39 u64 offset = 0; 40 struct extent_inode_elem *e; 41 42 if (!btrfs_file_extent_compression(eb, fi) && 43 !btrfs_file_extent_encryption(eb, fi) && 44 !btrfs_file_extent_other_encoding(eb, fi)) { 45 u64 data_offset; 46 u64 data_len; 47 48 data_offset = btrfs_file_extent_offset(eb, fi); 49 data_len = btrfs_file_extent_num_bytes(eb, fi); 50 51 if (extent_item_pos < data_offset || 52 extent_item_pos >= data_offset + data_len) 53 return 1; 54 offset = extent_item_pos - data_offset; 55 } 56 57 e = kmalloc(sizeof(*e), GFP_NOFS); 58 if (!e) 59 return -ENOMEM; 60 61 e->next = *eie; 62 e->inum = key->objectid; 63 e->offset = key->offset + offset; 64 *eie = e; 65 66 return 0; 67 } 68 69 static void free_inode_elem_list(struct extent_inode_elem *eie) 70 { 71 struct extent_inode_elem *eie_next; 72 73 for (; eie; eie = eie_next) { 74 eie_next = eie->next; 75 kfree(eie); 76 } 77 } 78 79 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 80 u64 extent_item_pos, 81 struct extent_inode_elem **eie) 82 { 83 u64 disk_byte; 84 struct btrfs_key key; 85 struct btrfs_file_extent_item *fi; 86 int slot; 87 int nritems; 88 int extent_type; 89 int ret; 90 91 /* 92 * from the shared data ref, we only have the leaf but we need 93 * the key. thus, we must look into all items and see that we 94 * find one (some) with a reference to our extent item. 95 */ 96 nritems = btrfs_header_nritems(eb); 97 for (slot = 0; slot < nritems; ++slot) { 98 btrfs_item_key_to_cpu(eb, &key, slot); 99 if (key.type != BTRFS_EXTENT_DATA_KEY) 100 continue; 101 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 102 extent_type = btrfs_file_extent_type(eb, fi); 103 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 104 continue; 105 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 106 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 107 if (disk_byte != wanted_disk_byte) 108 continue; 109 110 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 111 if (ret < 0) 112 return ret; 113 } 114 115 return 0; 116 } 117 118 /* 119 * this structure records all encountered refs on the way up to the root 120 */ 121 struct __prelim_ref { 122 struct list_head list; 123 u64 root_id; 124 struct btrfs_key key_for_search; 125 int level; 126 int count; 127 struct extent_inode_elem *inode_list; 128 u64 parent; 129 u64 wanted_disk_byte; 130 }; 131 132 static struct kmem_cache *btrfs_prelim_ref_cache; 133 134 int __init btrfs_prelim_ref_init(void) 135 { 136 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 137 sizeof(struct __prelim_ref), 138 0, 139 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 140 NULL); 141 if (!btrfs_prelim_ref_cache) 142 return -ENOMEM; 143 return 0; 144 } 145 146 void btrfs_prelim_ref_exit(void) 147 { 148 if (btrfs_prelim_ref_cache) 149 kmem_cache_destroy(btrfs_prelim_ref_cache); 150 } 151 152 /* 153 * the rules for all callers of this function are: 154 * - obtaining the parent is the goal 155 * - if you add a key, you must know that it is a correct key 156 * - if you cannot add the parent or a correct key, then we will look into the 157 * block later to set a correct key 158 * 159 * delayed refs 160 * ============ 161 * backref type | shared | indirect | shared | indirect 162 * information | tree | tree | data | data 163 * --------------------+--------+----------+--------+---------- 164 * parent logical | y | - | - | - 165 * key to resolve | - | y | y | y 166 * tree block logical | - | - | - | - 167 * root for resolving | y | y | y | y 168 * 169 * - column 1: we've the parent -> done 170 * - column 2, 3, 4: we use the key to find the parent 171 * 172 * on disk refs (inline or keyed) 173 * ============================== 174 * backref type | shared | indirect | shared | indirect 175 * information | tree | tree | data | data 176 * --------------------+--------+----------+--------+---------- 177 * parent logical | y | - | y | - 178 * key to resolve | - | - | - | y 179 * tree block logical | y | y | y | y 180 * root for resolving | - | y | y | y 181 * 182 * - column 1, 3: we've the parent -> done 183 * - column 2: we take the first key from the block to find the parent 184 * (see __add_missing_keys) 185 * - column 4: we use the key to find the parent 186 * 187 * additional information that's available but not required to find the parent 188 * block might help in merging entries to gain some speed. 189 */ 190 191 static int __add_prelim_ref(struct list_head *head, u64 root_id, 192 struct btrfs_key *key, int level, 193 u64 parent, u64 wanted_disk_byte, int count, 194 gfp_t gfp_mask) 195 { 196 struct __prelim_ref *ref; 197 198 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 199 return 0; 200 201 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 202 if (!ref) 203 return -ENOMEM; 204 205 ref->root_id = root_id; 206 if (key) 207 ref->key_for_search = *key; 208 else 209 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 210 211 ref->inode_list = NULL; 212 ref->level = level; 213 ref->count = count; 214 ref->parent = parent; 215 ref->wanted_disk_byte = wanted_disk_byte; 216 list_add_tail(&ref->list, head); 217 218 return 0; 219 } 220 221 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 222 struct ulist *parents, struct __prelim_ref *ref, 223 int level, u64 time_seq, const u64 *extent_item_pos, 224 u64 total_refs) 225 { 226 int ret = 0; 227 int slot; 228 struct extent_buffer *eb; 229 struct btrfs_key key; 230 struct btrfs_key *key_for_search = &ref->key_for_search; 231 struct btrfs_file_extent_item *fi; 232 struct extent_inode_elem *eie = NULL, *old = NULL; 233 u64 disk_byte; 234 u64 wanted_disk_byte = ref->wanted_disk_byte; 235 u64 count = 0; 236 237 if (level != 0) { 238 eb = path->nodes[level]; 239 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 240 if (ret < 0) 241 return ret; 242 return 0; 243 } 244 245 /* 246 * We normally enter this function with the path already pointing to 247 * the first item to check. But sometimes, we may enter it with 248 * slot==nritems. In that case, go to the next leaf before we continue. 249 */ 250 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) 251 ret = btrfs_next_old_leaf(root, path, time_seq); 252 253 while (!ret && count < total_refs) { 254 eb = path->nodes[0]; 255 slot = path->slots[0]; 256 257 btrfs_item_key_to_cpu(eb, &key, slot); 258 259 if (key.objectid != key_for_search->objectid || 260 key.type != BTRFS_EXTENT_DATA_KEY) 261 break; 262 263 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 264 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 265 266 if (disk_byte == wanted_disk_byte) { 267 eie = NULL; 268 old = NULL; 269 count++; 270 if (extent_item_pos) { 271 ret = check_extent_in_eb(&key, eb, fi, 272 *extent_item_pos, 273 &eie); 274 if (ret < 0) 275 break; 276 } 277 if (ret > 0) 278 goto next; 279 ret = ulist_add_merge_ptr(parents, eb->start, 280 eie, (void **)&old, GFP_NOFS); 281 if (ret < 0) 282 break; 283 if (!ret && extent_item_pos) { 284 while (old->next) 285 old = old->next; 286 old->next = eie; 287 } 288 eie = NULL; 289 } 290 next: 291 ret = btrfs_next_old_item(root, path, time_seq); 292 } 293 294 if (ret > 0) 295 ret = 0; 296 else if (ret < 0) 297 free_inode_elem_list(eie); 298 return ret; 299 } 300 301 /* 302 * resolve an indirect backref in the form (root_id, key, level) 303 * to a logical address 304 */ 305 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 306 struct btrfs_path *path, u64 time_seq, 307 struct __prelim_ref *ref, 308 struct ulist *parents, 309 const u64 *extent_item_pos, u64 total_refs) 310 { 311 struct btrfs_root *root; 312 struct btrfs_key root_key; 313 struct extent_buffer *eb; 314 int ret = 0; 315 int root_level; 316 int level = ref->level; 317 int index; 318 319 root_key.objectid = ref->root_id; 320 root_key.type = BTRFS_ROOT_ITEM_KEY; 321 root_key.offset = (u64)-1; 322 323 index = srcu_read_lock(&fs_info->subvol_srcu); 324 325 root = btrfs_read_fs_root_no_name(fs_info, &root_key); 326 if (IS_ERR(root)) { 327 srcu_read_unlock(&fs_info->subvol_srcu, index); 328 ret = PTR_ERR(root); 329 goto out; 330 } 331 332 if (path->search_commit_root) 333 root_level = btrfs_header_level(root->commit_root); 334 else 335 root_level = btrfs_old_root_level(root, time_seq); 336 337 if (root_level + 1 == level) { 338 srcu_read_unlock(&fs_info->subvol_srcu, index); 339 goto out; 340 } 341 342 path->lowest_level = level; 343 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq); 344 345 /* root node has been locked, we can release @subvol_srcu safely here */ 346 srcu_read_unlock(&fs_info->subvol_srcu, index); 347 348 pr_debug("search slot in root %llu (level %d, ref count %d) returned " 349 "%d for key (%llu %u %llu)\n", 350 ref->root_id, level, ref->count, ret, 351 ref->key_for_search.objectid, ref->key_for_search.type, 352 ref->key_for_search.offset); 353 if (ret < 0) 354 goto out; 355 356 eb = path->nodes[level]; 357 while (!eb) { 358 if (WARN_ON(!level)) { 359 ret = 1; 360 goto out; 361 } 362 level--; 363 eb = path->nodes[level]; 364 } 365 366 ret = add_all_parents(root, path, parents, ref, level, time_seq, 367 extent_item_pos, total_refs); 368 out: 369 path->lowest_level = 0; 370 btrfs_release_path(path); 371 return ret; 372 } 373 374 /* 375 * resolve all indirect backrefs from the list 376 */ 377 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 378 struct btrfs_path *path, u64 time_seq, 379 struct list_head *head, 380 const u64 *extent_item_pos, u64 total_refs) 381 { 382 int err; 383 int ret = 0; 384 struct __prelim_ref *ref; 385 struct __prelim_ref *ref_safe; 386 struct __prelim_ref *new_ref; 387 struct ulist *parents; 388 struct ulist_node *node; 389 struct ulist_iterator uiter; 390 391 parents = ulist_alloc(GFP_NOFS); 392 if (!parents) 393 return -ENOMEM; 394 395 /* 396 * _safe allows us to insert directly after the current item without 397 * iterating over the newly inserted items. 398 * we're also allowed to re-assign ref during iteration. 399 */ 400 list_for_each_entry_safe(ref, ref_safe, head, list) { 401 if (ref->parent) /* already direct */ 402 continue; 403 if (ref->count == 0) 404 continue; 405 err = __resolve_indirect_ref(fs_info, path, time_seq, ref, 406 parents, extent_item_pos, 407 total_refs); 408 /* 409 * we can only tolerate ENOENT,otherwise,we should catch error 410 * and return directly. 411 */ 412 if (err == -ENOENT) { 413 continue; 414 } else if (err) { 415 ret = err; 416 goto out; 417 } 418 419 /* we put the first parent into the ref at hand */ 420 ULIST_ITER_INIT(&uiter); 421 node = ulist_next(parents, &uiter); 422 ref->parent = node ? node->val : 0; 423 ref->inode_list = node ? 424 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL; 425 426 /* additional parents require new refs being added here */ 427 while ((node = ulist_next(parents, &uiter))) { 428 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 429 GFP_NOFS); 430 if (!new_ref) { 431 ret = -ENOMEM; 432 goto out; 433 } 434 memcpy(new_ref, ref, sizeof(*ref)); 435 new_ref->parent = node->val; 436 new_ref->inode_list = (struct extent_inode_elem *) 437 (uintptr_t)node->aux; 438 list_add(&new_ref->list, &ref->list); 439 } 440 ulist_reinit(parents); 441 } 442 out: 443 ulist_free(parents); 444 return ret; 445 } 446 447 static inline int ref_for_same_block(struct __prelim_ref *ref1, 448 struct __prelim_ref *ref2) 449 { 450 if (ref1->level != ref2->level) 451 return 0; 452 if (ref1->root_id != ref2->root_id) 453 return 0; 454 if (ref1->key_for_search.type != ref2->key_for_search.type) 455 return 0; 456 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 457 return 0; 458 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 459 return 0; 460 if (ref1->parent != ref2->parent) 461 return 0; 462 463 return 1; 464 } 465 466 /* 467 * read tree blocks and add keys where required. 468 */ 469 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 470 struct list_head *head) 471 { 472 struct list_head *pos; 473 struct extent_buffer *eb; 474 475 list_for_each(pos, head) { 476 struct __prelim_ref *ref; 477 ref = list_entry(pos, struct __prelim_ref, list); 478 479 if (ref->parent) 480 continue; 481 if (ref->key_for_search.type) 482 continue; 483 BUG_ON(!ref->wanted_disk_byte); 484 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte, 485 fs_info->tree_root->leafsize, 0); 486 if (!eb || !extent_buffer_uptodate(eb)) { 487 free_extent_buffer(eb); 488 return -EIO; 489 } 490 btrfs_tree_read_lock(eb); 491 if (btrfs_header_level(eb) == 0) 492 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 493 else 494 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 495 btrfs_tree_read_unlock(eb); 496 free_extent_buffer(eb); 497 } 498 return 0; 499 } 500 501 /* 502 * merge two lists of backrefs and adjust counts accordingly 503 * 504 * mode = 1: merge identical keys, if key is set 505 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. 506 * additionally, we could even add a key range for the blocks we 507 * looked into to merge even more (-> replace unresolved refs by those 508 * having a parent). 509 * mode = 2: merge identical parents 510 */ 511 static void __merge_refs(struct list_head *head, int mode) 512 { 513 struct list_head *pos1; 514 515 list_for_each(pos1, head) { 516 struct list_head *n2; 517 struct list_head *pos2; 518 struct __prelim_ref *ref1; 519 520 ref1 = list_entry(pos1, struct __prelim_ref, list); 521 522 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head; 523 pos2 = n2, n2 = pos2->next) { 524 struct __prelim_ref *ref2; 525 struct __prelim_ref *xchg; 526 struct extent_inode_elem *eie; 527 528 ref2 = list_entry(pos2, struct __prelim_ref, list); 529 530 if (mode == 1) { 531 if (!ref_for_same_block(ref1, ref2)) 532 continue; 533 if (!ref1->parent && ref2->parent) { 534 xchg = ref1; 535 ref1 = ref2; 536 ref2 = xchg; 537 } 538 } else { 539 if (ref1->parent != ref2->parent) 540 continue; 541 } 542 543 eie = ref1->inode_list; 544 while (eie && eie->next) 545 eie = eie->next; 546 if (eie) 547 eie->next = ref2->inode_list; 548 else 549 ref1->inode_list = ref2->inode_list; 550 ref1->count += ref2->count; 551 552 list_del(&ref2->list); 553 kmem_cache_free(btrfs_prelim_ref_cache, ref2); 554 } 555 556 } 557 } 558 559 /* 560 * add all currently queued delayed refs from this head whose seq nr is 561 * smaller or equal that seq to the list 562 */ 563 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 564 struct list_head *prefs, u64 *total_refs) 565 { 566 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 567 struct rb_node *n = &head->node.rb_node; 568 struct btrfs_key key; 569 struct btrfs_key op_key = {0}; 570 int sgn; 571 int ret = 0; 572 573 if (extent_op && extent_op->update_key) 574 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 575 576 spin_lock(&head->lock); 577 n = rb_first(&head->ref_root); 578 while (n) { 579 struct btrfs_delayed_ref_node *node; 580 node = rb_entry(n, struct btrfs_delayed_ref_node, 581 rb_node); 582 n = rb_next(n); 583 if (node->seq > seq) 584 continue; 585 586 switch (node->action) { 587 case BTRFS_ADD_DELAYED_EXTENT: 588 case BTRFS_UPDATE_DELAYED_HEAD: 589 WARN_ON(1); 590 continue; 591 case BTRFS_ADD_DELAYED_REF: 592 sgn = 1; 593 break; 594 case BTRFS_DROP_DELAYED_REF: 595 sgn = -1; 596 break; 597 default: 598 BUG_ON(1); 599 } 600 *total_refs += (node->ref_mod * sgn); 601 switch (node->type) { 602 case BTRFS_TREE_BLOCK_REF_KEY: { 603 struct btrfs_delayed_tree_ref *ref; 604 605 ref = btrfs_delayed_node_to_tree_ref(node); 606 ret = __add_prelim_ref(prefs, ref->root, &op_key, 607 ref->level + 1, 0, node->bytenr, 608 node->ref_mod * sgn, GFP_ATOMIC); 609 break; 610 } 611 case BTRFS_SHARED_BLOCK_REF_KEY: { 612 struct btrfs_delayed_tree_ref *ref; 613 614 ref = btrfs_delayed_node_to_tree_ref(node); 615 ret = __add_prelim_ref(prefs, ref->root, NULL, 616 ref->level + 1, ref->parent, 617 node->bytenr, 618 node->ref_mod * sgn, GFP_ATOMIC); 619 break; 620 } 621 case BTRFS_EXTENT_DATA_REF_KEY: { 622 struct btrfs_delayed_data_ref *ref; 623 ref = btrfs_delayed_node_to_data_ref(node); 624 625 key.objectid = ref->objectid; 626 key.type = BTRFS_EXTENT_DATA_KEY; 627 key.offset = ref->offset; 628 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 629 node->bytenr, 630 node->ref_mod * sgn, GFP_ATOMIC); 631 break; 632 } 633 case BTRFS_SHARED_DATA_REF_KEY: { 634 struct btrfs_delayed_data_ref *ref; 635 636 ref = btrfs_delayed_node_to_data_ref(node); 637 638 key.objectid = ref->objectid; 639 key.type = BTRFS_EXTENT_DATA_KEY; 640 key.offset = ref->offset; 641 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 642 ref->parent, node->bytenr, 643 node->ref_mod * sgn, GFP_ATOMIC); 644 break; 645 } 646 default: 647 WARN_ON(1); 648 } 649 if (ret) 650 break; 651 } 652 spin_unlock(&head->lock); 653 return ret; 654 } 655 656 /* 657 * add all inline backrefs for bytenr to the list 658 */ 659 static int __add_inline_refs(struct btrfs_fs_info *fs_info, 660 struct btrfs_path *path, u64 bytenr, 661 int *info_level, struct list_head *prefs, 662 u64 *total_refs) 663 { 664 int ret = 0; 665 int slot; 666 struct extent_buffer *leaf; 667 struct btrfs_key key; 668 struct btrfs_key found_key; 669 unsigned long ptr; 670 unsigned long end; 671 struct btrfs_extent_item *ei; 672 u64 flags; 673 u64 item_size; 674 675 /* 676 * enumerate all inline refs 677 */ 678 leaf = path->nodes[0]; 679 slot = path->slots[0]; 680 681 item_size = btrfs_item_size_nr(leaf, slot); 682 BUG_ON(item_size < sizeof(*ei)); 683 684 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 685 flags = btrfs_extent_flags(leaf, ei); 686 *total_refs += btrfs_extent_refs(leaf, ei); 687 btrfs_item_key_to_cpu(leaf, &found_key, slot); 688 689 ptr = (unsigned long)(ei + 1); 690 end = (unsigned long)ei + item_size; 691 692 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 693 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 694 struct btrfs_tree_block_info *info; 695 696 info = (struct btrfs_tree_block_info *)ptr; 697 *info_level = btrfs_tree_block_level(leaf, info); 698 ptr += sizeof(struct btrfs_tree_block_info); 699 BUG_ON(ptr > end); 700 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 701 *info_level = found_key.offset; 702 } else { 703 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 704 } 705 706 while (ptr < end) { 707 struct btrfs_extent_inline_ref *iref; 708 u64 offset; 709 int type; 710 711 iref = (struct btrfs_extent_inline_ref *)ptr; 712 type = btrfs_extent_inline_ref_type(leaf, iref); 713 offset = btrfs_extent_inline_ref_offset(leaf, iref); 714 715 switch (type) { 716 case BTRFS_SHARED_BLOCK_REF_KEY: 717 ret = __add_prelim_ref(prefs, 0, NULL, 718 *info_level + 1, offset, 719 bytenr, 1, GFP_NOFS); 720 break; 721 case BTRFS_SHARED_DATA_REF_KEY: { 722 struct btrfs_shared_data_ref *sdref; 723 int count; 724 725 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 726 count = btrfs_shared_data_ref_count(leaf, sdref); 727 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 728 bytenr, count, GFP_NOFS); 729 break; 730 } 731 case BTRFS_TREE_BLOCK_REF_KEY: 732 ret = __add_prelim_ref(prefs, offset, NULL, 733 *info_level + 1, 0, 734 bytenr, 1, GFP_NOFS); 735 break; 736 case BTRFS_EXTENT_DATA_REF_KEY: { 737 struct btrfs_extent_data_ref *dref; 738 int count; 739 u64 root; 740 741 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 742 count = btrfs_extent_data_ref_count(leaf, dref); 743 key.objectid = btrfs_extent_data_ref_objectid(leaf, 744 dref); 745 key.type = BTRFS_EXTENT_DATA_KEY; 746 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 747 root = btrfs_extent_data_ref_root(leaf, dref); 748 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 749 bytenr, count, GFP_NOFS); 750 break; 751 } 752 default: 753 WARN_ON(1); 754 } 755 if (ret) 756 return ret; 757 ptr += btrfs_extent_inline_ref_size(type); 758 } 759 760 return 0; 761 } 762 763 /* 764 * add all non-inline backrefs for bytenr to the list 765 */ 766 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 767 struct btrfs_path *path, u64 bytenr, 768 int info_level, struct list_head *prefs) 769 { 770 struct btrfs_root *extent_root = fs_info->extent_root; 771 int ret; 772 int slot; 773 struct extent_buffer *leaf; 774 struct btrfs_key key; 775 776 while (1) { 777 ret = btrfs_next_item(extent_root, path); 778 if (ret < 0) 779 break; 780 if (ret) { 781 ret = 0; 782 break; 783 } 784 785 slot = path->slots[0]; 786 leaf = path->nodes[0]; 787 btrfs_item_key_to_cpu(leaf, &key, slot); 788 789 if (key.objectid != bytenr) 790 break; 791 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 792 continue; 793 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 794 break; 795 796 switch (key.type) { 797 case BTRFS_SHARED_BLOCK_REF_KEY: 798 ret = __add_prelim_ref(prefs, 0, NULL, 799 info_level + 1, key.offset, 800 bytenr, 1, GFP_NOFS); 801 break; 802 case BTRFS_SHARED_DATA_REF_KEY: { 803 struct btrfs_shared_data_ref *sdref; 804 int count; 805 806 sdref = btrfs_item_ptr(leaf, slot, 807 struct btrfs_shared_data_ref); 808 count = btrfs_shared_data_ref_count(leaf, sdref); 809 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 810 bytenr, count, GFP_NOFS); 811 break; 812 } 813 case BTRFS_TREE_BLOCK_REF_KEY: 814 ret = __add_prelim_ref(prefs, key.offset, NULL, 815 info_level + 1, 0, 816 bytenr, 1, GFP_NOFS); 817 break; 818 case BTRFS_EXTENT_DATA_REF_KEY: { 819 struct btrfs_extent_data_ref *dref; 820 int count; 821 u64 root; 822 823 dref = btrfs_item_ptr(leaf, slot, 824 struct btrfs_extent_data_ref); 825 count = btrfs_extent_data_ref_count(leaf, dref); 826 key.objectid = btrfs_extent_data_ref_objectid(leaf, 827 dref); 828 key.type = BTRFS_EXTENT_DATA_KEY; 829 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 830 root = btrfs_extent_data_ref_root(leaf, dref); 831 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 832 bytenr, count, GFP_NOFS); 833 break; 834 } 835 default: 836 WARN_ON(1); 837 } 838 if (ret) 839 return ret; 840 841 } 842 843 return ret; 844 } 845 846 /* 847 * this adds all existing backrefs (inline backrefs, backrefs and delayed 848 * refs) for the given bytenr to the refs list, merges duplicates and resolves 849 * indirect refs to their parent bytenr. 850 * When roots are found, they're added to the roots list 851 * 852 * FIXME some caching might speed things up 853 */ 854 static int find_parent_nodes(struct btrfs_trans_handle *trans, 855 struct btrfs_fs_info *fs_info, u64 bytenr, 856 u64 time_seq, struct ulist *refs, 857 struct ulist *roots, const u64 *extent_item_pos) 858 { 859 struct btrfs_key key; 860 struct btrfs_path *path; 861 struct btrfs_delayed_ref_root *delayed_refs = NULL; 862 struct btrfs_delayed_ref_head *head; 863 int info_level = 0; 864 int ret; 865 struct list_head prefs_delayed; 866 struct list_head prefs; 867 struct __prelim_ref *ref; 868 struct extent_inode_elem *eie = NULL; 869 u64 total_refs = 0; 870 871 INIT_LIST_HEAD(&prefs); 872 INIT_LIST_HEAD(&prefs_delayed); 873 874 key.objectid = bytenr; 875 key.offset = (u64)-1; 876 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 877 key.type = BTRFS_METADATA_ITEM_KEY; 878 else 879 key.type = BTRFS_EXTENT_ITEM_KEY; 880 881 path = btrfs_alloc_path(); 882 if (!path) 883 return -ENOMEM; 884 if (!trans) { 885 path->search_commit_root = 1; 886 path->skip_locking = 1; 887 } 888 889 /* 890 * grab both a lock on the path and a lock on the delayed ref head. 891 * We need both to get a consistent picture of how the refs look 892 * at a specified point in time 893 */ 894 again: 895 head = NULL; 896 897 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 898 if (ret < 0) 899 goto out; 900 BUG_ON(ret == 0); 901 902 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 903 if (trans && likely(trans->type != __TRANS_DUMMY)) { 904 #else 905 if (trans) { 906 #endif 907 /* 908 * look if there are updates for this ref queued and lock the 909 * head 910 */ 911 delayed_refs = &trans->transaction->delayed_refs; 912 spin_lock(&delayed_refs->lock); 913 head = btrfs_find_delayed_ref_head(trans, bytenr); 914 if (head) { 915 if (!mutex_trylock(&head->mutex)) { 916 atomic_inc(&head->node.refs); 917 spin_unlock(&delayed_refs->lock); 918 919 btrfs_release_path(path); 920 921 /* 922 * Mutex was contended, block until it's 923 * released and try again 924 */ 925 mutex_lock(&head->mutex); 926 mutex_unlock(&head->mutex); 927 btrfs_put_delayed_ref(&head->node); 928 goto again; 929 } 930 spin_unlock(&delayed_refs->lock); 931 ret = __add_delayed_refs(head, time_seq, 932 &prefs_delayed, &total_refs); 933 mutex_unlock(&head->mutex); 934 if (ret) 935 goto out; 936 } else { 937 spin_unlock(&delayed_refs->lock); 938 } 939 } 940 941 if (path->slots[0]) { 942 struct extent_buffer *leaf; 943 int slot; 944 945 path->slots[0]--; 946 leaf = path->nodes[0]; 947 slot = path->slots[0]; 948 btrfs_item_key_to_cpu(leaf, &key, slot); 949 if (key.objectid == bytenr && 950 (key.type == BTRFS_EXTENT_ITEM_KEY || 951 key.type == BTRFS_METADATA_ITEM_KEY)) { 952 ret = __add_inline_refs(fs_info, path, bytenr, 953 &info_level, &prefs, 954 &total_refs); 955 if (ret) 956 goto out; 957 ret = __add_keyed_refs(fs_info, path, bytenr, 958 info_level, &prefs); 959 if (ret) 960 goto out; 961 } 962 } 963 btrfs_release_path(path); 964 965 list_splice_init(&prefs_delayed, &prefs); 966 967 ret = __add_missing_keys(fs_info, &prefs); 968 if (ret) 969 goto out; 970 971 __merge_refs(&prefs, 1); 972 973 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs, 974 extent_item_pos, total_refs); 975 if (ret) 976 goto out; 977 978 __merge_refs(&prefs, 2); 979 980 while (!list_empty(&prefs)) { 981 ref = list_first_entry(&prefs, struct __prelim_ref, list); 982 WARN_ON(ref->count < 0); 983 if (roots && ref->count && ref->root_id && ref->parent == 0) { 984 /* no parent == root of tree */ 985 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 986 if (ret < 0) 987 goto out; 988 } 989 if (ref->count && ref->parent) { 990 if (extent_item_pos && !ref->inode_list && 991 ref->level == 0) { 992 u32 bsz; 993 struct extent_buffer *eb; 994 bsz = btrfs_level_size(fs_info->extent_root, 995 ref->level); 996 eb = read_tree_block(fs_info->extent_root, 997 ref->parent, bsz, 0); 998 if (!eb || !extent_buffer_uptodate(eb)) { 999 free_extent_buffer(eb); 1000 ret = -EIO; 1001 goto out; 1002 } 1003 btrfs_tree_read_lock(eb); 1004 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1005 ret = find_extent_in_eb(eb, bytenr, 1006 *extent_item_pos, &eie); 1007 btrfs_tree_read_unlock_blocking(eb); 1008 free_extent_buffer(eb); 1009 if (ret < 0) 1010 goto out; 1011 ref->inode_list = eie; 1012 } 1013 ret = ulist_add_merge_ptr(refs, ref->parent, 1014 ref->inode_list, 1015 (void **)&eie, GFP_NOFS); 1016 if (ret < 0) 1017 goto out; 1018 if (!ret && extent_item_pos) { 1019 /* 1020 * we've recorded that parent, so we must extend 1021 * its inode list here 1022 */ 1023 BUG_ON(!eie); 1024 while (eie->next) 1025 eie = eie->next; 1026 eie->next = ref->inode_list; 1027 } 1028 eie = NULL; 1029 } 1030 list_del(&ref->list); 1031 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1032 } 1033 1034 out: 1035 btrfs_free_path(path); 1036 while (!list_empty(&prefs)) { 1037 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1038 list_del(&ref->list); 1039 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1040 } 1041 while (!list_empty(&prefs_delayed)) { 1042 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 1043 list); 1044 list_del(&ref->list); 1045 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1046 } 1047 if (ret < 0) 1048 free_inode_elem_list(eie); 1049 return ret; 1050 } 1051 1052 static void free_leaf_list(struct ulist *blocks) 1053 { 1054 struct ulist_node *node = NULL; 1055 struct extent_inode_elem *eie; 1056 struct ulist_iterator uiter; 1057 1058 ULIST_ITER_INIT(&uiter); 1059 while ((node = ulist_next(blocks, &uiter))) { 1060 if (!node->aux) 1061 continue; 1062 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 1063 free_inode_elem_list(eie); 1064 node->aux = 0; 1065 } 1066 1067 ulist_free(blocks); 1068 } 1069 1070 /* 1071 * Finds all leafs with a reference to the specified combination of bytenr and 1072 * offset. key_list_head will point to a list of corresponding keys (caller must 1073 * free each list element). The leafs will be stored in the leafs ulist, which 1074 * must be freed with ulist_free. 1075 * 1076 * returns 0 on success, <0 on error 1077 */ 1078 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1079 struct btrfs_fs_info *fs_info, u64 bytenr, 1080 u64 time_seq, struct ulist **leafs, 1081 const u64 *extent_item_pos) 1082 { 1083 int ret; 1084 1085 *leafs = ulist_alloc(GFP_NOFS); 1086 if (!*leafs) 1087 return -ENOMEM; 1088 1089 ret = find_parent_nodes(trans, fs_info, bytenr, 1090 time_seq, *leafs, NULL, extent_item_pos); 1091 if (ret < 0 && ret != -ENOENT) { 1092 free_leaf_list(*leafs); 1093 return ret; 1094 } 1095 1096 return 0; 1097 } 1098 1099 /* 1100 * walk all backrefs for a given extent to find all roots that reference this 1101 * extent. Walking a backref means finding all extents that reference this 1102 * extent and in turn walk the backrefs of those, too. Naturally this is a 1103 * recursive process, but here it is implemented in an iterative fashion: We 1104 * find all referencing extents for the extent in question and put them on a 1105 * list. In turn, we find all referencing extents for those, further appending 1106 * to the list. The way we iterate the list allows adding more elements after 1107 * the current while iterating. The process stops when we reach the end of the 1108 * list. Found roots are added to the roots list. 1109 * 1110 * returns 0 on success, < 0 on error. 1111 */ 1112 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1113 struct btrfs_fs_info *fs_info, u64 bytenr, 1114 u64 time_seq, struct ulist **roots) 1115 { 1116 struct ulist *tmp; 1117 struct ulist_node *node = NULL; 1118 struct ulist_iterator uiter; 1119 int ret; 1120 1121 tmp = ulist_alloc(GFP_NOFS); 1122 if (!tmp) 1123 return -ENOMEM; 1124 *roots = ulist_alloc(GFP_NOFS); 1125 if (!*roots) { 1126 ulist_free(tmp); 1127 return -ENOMEM; 1128 } 1129 1130 ULIST_ITER_INIT(&uiter); 1131 while (1) { 1132 ret = find_parent_nodes(trans, fs_info, bytenr, 1133 time_seq, tmp, *roots, NULL); 1134 if (ret < 0 && ret != -ENOENT) { 1135 ulist_free(tmp); 1136 ulist_free(*roots); 1137 return ret; 1138 } 1139 node = ulist_next(tmp, &uiter); 1140 if (!node) 1141 break; 1142 bytenr = node->val; 1143 cond_resched(); 1144 } 1145 1146 ulist_free(tmp); 1147 return 0; 1148 } 1149 1150 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1151 struct btrfs_fs_info *fs_info, u64 bytenr, 1152 u64 time_seq, struct ulist **roots) 1153 { 1154 int ret; 1155 1156 if (!trans) 1157 down_read(&fs_info->commit_root_sem); 1158 ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots); 1159 if (!trans) 1160 up_read(&fs_info->commit_root_sem); 1161 return ret; 1162 } 1163 1164 /* 1165 * this makes the path point to (inum INODE_ITEM ioff) 1166 */ 1167 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1168 struct btrfs_path *path) 1169 { 1170 struct btrfs_key key; 1171 return btrfs_find_item(fs_root, path, inum, ioff, 1172 BTRFS_INODE_ITEM_KEY, &key); 1173 } 1174 1175 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1176 struct btrfs_path *path, 1177 struct btrfs_key *found_key) 1178 { 1179 return btrfs_find_item(fs_root, path, inum, ioff, 1180 BTRFS_INODE_REF_KEY, found_key); 1181 } 1182 1183 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1184 u64 start_off, struct btrfs_path *path, 1185 struct btrfs_inode_extref **ret_extref, 1186 u64 *found_off) 1187 { 1188 int ret, slot; 1189 struct btrfs_key key; 1190 struct btrfs_key found_key; 1191 struct btrfs_inode_extref *extref; 1192 struct extent_buffer *leaf; 1193 unsigned long ptr; 1194 1195 key.objectid = inode_objectid; 1196 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY); 1197 key.offset = start_off; 1198 1199 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1200 if (ret < 0) 1201 return ret; 1202 1203 while (1) { 1204 leaf = path->nodes[0]; 1205 slot = path->slots[0]; 1206 if (slot >= btrfs_header_nritems(leaf)) { 1207 /* 1208 * If the item at offset is not found, 1209 * btrfs_search_slot will point us to the slot 1210 * where it should be inserted. In our case 1211 * that will be the slot directly before the 1212 * next INODE_REF_KEY_V2 item. In the case 1213 * that we're pointing to the last slot in a 1214 * leaf, we must move one leaf over. 1215 */ 1216 ret = btrfs_next_leaf(root, path); 1217 if (ret) { 1218 if (ret >= 1) 1219 ret = -ENOENT; 1220 break; 1221 } 1222 continue; 1223 } 1224 1225 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1226 1227 /* 1228 * Check that we're still looking at an extended ref key for 1229 * this particular objectid. If we have different 1230 * objectid or type then there are no more to be found 1231 * in the tree and we can exit. 1232 */ 1233 ret = -ENOENT; 1234 if (found_key.objectid != inode_objectid) 1235 break; 1236 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY) 1237 break; 1238 1239 ret = 0; 1240 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1241 extref = (struct btrfs_inode_extref *)ptr; 1242 *ret_extref = extref; 1243 if (found_off) 1244 *found_off = found_key.offset; 1245 break; 1246 } 1247 1248 return ret; 1249 } 1250 1251 /* 1252 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1253 * Elements of the path are separated by '/' and the path is guaranteed to be 1254 * 0-terminated. the path is only given within the current file system. 1255 * Therefore, it never starts with a '/'. the caller is responsible to provide 1256 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1257 * the start point of the resulting string is returned. this pointer is within 1258 * dest, normally. 1259 * in case the path buffer would overflow, the pointer is decremented further 1260 * as if output was written to the buffer, though no more output is actually 1261 * generated. that way, the caller can determine how much space would be 1262 * required for the path to fit into the buffer. in that case, the returned 1263 * value will be smaller than dest. callers must check this! 1264 */ 1265 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1266 u32 name_len, unsigned long name_off, 1267 struct extent_buffer *eb_in, u64 parent, 1268 char *dest, u32 size) 1269 { 1270 int slot; 1271 u64 next_inum; 1272 int ret; 1273 s64 bytes_left = ((s64)size) - 1; 1274 struct extent_buffer *eb = eb_in; 1275 struct btrfs_key found_key; 1276 int leave_spinning = path->leave_spinning; 1277 struct btrfs_inode_ref *iref; 1278 1279 if (bytes_left >= 0) 1280 dest[bytes_left] = '\0'; 1281 1282 path->leave_spinning = 1; 1283 while (1) { 1284 bytes_left -= name_len; 1285 if (bytes_left >= 0) 1286 read_extent_buffer(eb, dest + bytes_left, 1287 name_off, name_len); 1288 if (eb != eb_in) { 1289 btrfs_tree_read_unlock_blocking(eb); 1290 free_extent_buffer(eb); 1291 } 1292 ret = inode_ref_info(parent, 0, fs_root, path, &found_key); 1293 if (ret > 0) 1294 ret = -ENOENT; 1295 if (ret) 1296 break; 1297 1298 next_inum = found_key.offset; 1299 1300 /* regular exit ahead */ 1301 if (parent == next_inum) 1302 break; 1303 1304 slot = path->slots[0]; 1305 eb = path->nodes[0]; 1306 /* make sure we can use eb after releasing the path */ 1307 if (eb != eb_in) { 1308 atomic_inc(&eb->refs); 1309 btrfs_tree_read_lock(eb); 1310 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1311 } 1312 btrfs_release_path(path); 1313 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1314 1315 name_len = btrfs_inode_ref_name_len(eb, iref); 1316 name_off = (unsigned long)(iref + 1); 1317 1318 parent = next_inum; 1319 --bytes_left; 1320 if (bytes_left >= 0) 1321 dest[bytes_left] = '/'; 1322 } 1323 1324 btrfs_release_path(path); 1325 path->leave_spinning = leave_spinning; 1326 1327 if (ret) 1328 return ERR_PTR(ret); 1329 1330 return dest + bytes_left; 1331 } 1332 1333 /* 1334 * this makes the path point to (logical EXTENT_ITEM *) 1335 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1336 * tree blocks and <0 on error. 1337 */ 1338 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1339 struct btrfs_path *path, struct btrfs_key *found_key, 1340 u64 *flags_ret) 1341 { 1342 int ret; 1343 u64 flags; 1344 u64 size = 0; 1345 u32 item_size; 1346 struct extent_buffer *eb; 1347 struct btrfs_extent_item *ei; 1348 struct btrfs_key key; 1349 1350 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1351 key.type = BTRFS_METADATA_ITEM_KEY; 1352 else 1353 key.type = BTRFS_EXTENT_ITEM_KEY; 1354 key.objectid = logical; 1355 key.offset = (u64)-1; 1356 1357 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1358 if (ret < 0) 1359 return ret; 1360 1361 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1362 if (ret) { 1363 if (ret > 0) 1364 ret = -ENOENT; 1365 return ret; 1366 } 1367 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1368 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1369 size = fs_info->extent_root->leafsize; 1370 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1371 size = found_key->offset; 1372 1373 if (found_key->objectid > logical || 1374 found_key->objectid + size <= logical) { 1375 pr_debug("logical %llu is not within any extent\n", logical); 1376 return -ENOENT; 1377 } 1378 1379 eb = path->nodes[0]; 1380 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1381 BUG_ON(item_size < sizeof(*ei)); 1382 1383 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1384 flags = btrfs_extent_flags(eb, ei); 1385 1386 pr_debug("logical %llu is at position %llu within the extent (%llu " 1387 "EXTENT_ITEM %llu) flags %#llx size %u\n", 1388 logical, logical - found_key->objectid, found_key->objectid, 1389 found_key->offset, flags, item_size); 1390 1391 WARN_ON(!flags_ret); 1392 if (flags_ret) { 1393 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1394 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1395 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1396 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1397 else 1398 BUG_ON(1); 1399 return 0; 1400 } 1401 1402 return -EIO; 1403 } 1404 1405 /* 1406 * helper function to iterate extent inline refs. ptr must point to a 0 value 1407 * for the first call and may be modified. it is used to track state. 1408 * if more refs exist, 0 is returned and the next call to 1409 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1410 * next ref. after the last ref was processed, 1 is returned. 1411 * returns <0 on error 1412 */ 1413 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1414 struct btrfs_key *key, 1415 struct btrfs_extent_item *ei, u32 item_size, 1416 struct btrfs_extent_inline_ref **out_eiref, 1417 int *out_type) 1418 { 1419 unsigned long end; 1420 u64 flags; 1421 struct btrfs_tree_block_info *info; 1422 1423 if (!*ptr) { 1424 /* first call */ 1425 flags = btrfs_extent_flags(eb, ei); 1426 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1427 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1428 /* a skinny metadata extent */ 1429 *out_eiref = 1430 (struct btrfs_extent_inline_ref *)(ei + 1); 1431 } else { 1432 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1433 info = (struct btrfs_tree_block_info *)(ei + 1); 1434 *out_eiref = 1435 (struct btrfs_extent_inline_ref *)(info + 1); 1436 } 1437 } else { 1438 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1439 } 1440 *ptr = (unsigned long)*out_eiref; 1441 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1442 return -ENOENT; 1443 } 1444 1445 end = (unsigned long)ei + item_size; 1446 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1447 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1448 1449 *ptr += btrfs_extent_inline_ref_size(*out_type); 1450 WARN_ON(*ptr > end); 1451 if (*ptr == end) 1452 return 1; /* last */ 1453 1454 return 0; 1455 } 1456 1457 /* 1458 * reads the tree block backref for an extent. tree level and root are returned 1459 * through out_level and out_root. ptr must point to a 0 value for the first 1460 * call and may be modified (see __get_extent_inline_ref comment). 1461 * returns 0 if data was provided, 1 if there was no more data to provide or 1462 * <0 on error. 1463 */ 1464 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1465 struct btrfs_key *key, struct btrfs_extent_item *ei, 1466 u32 item_size, u64 *out_root, u8 *out_level) 1467 { 1468 int ret; 1469 int type; 1470 struct btrfs_tree_block_info *info; 1471 struct btrfs_extent_inline_ref *eiref; 1472 1473 if (*ptr == (unsigned long)-1) 1474 return 1; 1475 1476 while (1) { 1477 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size, 1478 &eiref, &type); 1479 if (ret < 0) 1480 return ret; 1481 1482 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1483 type == BTRFS_SHARED_BLOCK_REF_KEY) 1484 break; 1485 1486 if (ret == 1) 1487 return 1; 1488 } 1489 1490 /* we can treat both ref types equally here */ 1491 info = (struct btrfs_tree_block_info *)(ei + 1); 1492 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1493 *out_level = btrfs_tree_block_level(eb, info); 1494 1495 if (ret == 1) 1496 *ptr = (unsigned long)-1; 1497 1498 return 0; 1499 } 1500 1501 static int iterate_leaf_refs(struct extent_inode_elem *inode_list, 1502 u64 root, u64 extent_item_objectid, 1503 iterate_extent_inodes_t *iterate, void *ctx) 1504 { 1505 struct extent_inode_elem *eie; 1506 int ret = 0; 1507 1508 for (eie = inode_list; eie; eie = eie->next) { 1509 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), " 1510 "root %llu\n", extent_item_objectid, 1511 eie->inum, eie->offset, root); 1512 ret = iterate(eie->inum, eie->offset, root, ctx); 1513 if (ret) { 1514 pr_debug("stopping iteration for %llu due to ret=%d\n", 1515 extent_item_objectid, ret); 1516 break; 1517 } 1518 } 1519 1520 return ret; 1521 } 1522 1523 /* 1524 * calls iterate() for every inode that references the extent identified by 1525 * the given parameters. 1526 * when the iterator function returns a non-zero value, iteration stops. 1527 */ 1528 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1529 u64 extent_item_objectid, u64 extent_item_pos, 1530 int search_commit_root, 1531 iterate_extent_inodes_t *iterate, void *ctx) 1532 { 1533 int ret; 1534 struct btrfs_trans_handle *trans = NULL; 1535 struct ulist *refs = NULL; 1536 struct ulist *roots = NULL; 1537 struct ulist_node *ref_node = NULL; 1538 struct ulist_node *root_node = NULL; 1539 struct seq_list tree_mod_seq_elem = {}; 1540 struct ulist_iterator ref_uiter; 1541 struct ulist_iterator root_uiter; 1542 1543 pr_debug("resolving all inodes for extent %llu\n", 1544 extent_item_objectid); 1545 1546 if (!search_commit_root) { 1547 trans = btrfs_join_transaction(fs_info->extent_root); 1548 if (IS_ERR(trans)) 1549 return PTR_ERR(trans); 1550 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1551 } else { 1552 down_read(&fs_info->commit_root_sem); 1553 } 1554 1555 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1556 tree_mod_seq_elem.seq, &refs, 1557 &extent_item_pos); 1558 if (ret) 1559 goto out; 1560 1561 ULIST_ITER_INIT(&ref_uiter); 1562 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1563 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val, 1564 tree_mod_seq_elem.seq, &roots); 1565 if (ret) 1566 break; 1567 ULIST_ITER_INIT(&root_uiter); 1568 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1569 pr_debug("root %llu references leaf %llu, data list " 1570 "%#llx\n", root_node->val, ref_node->val, 1571 ref_node->aux); 1572 ret = iterate_leaf_refs((struct extent_inode_elem *) 1573 (uintptr_t)ref_node->aux, 1574 root_node->val, 1575 extent_item_objectid, 1576 iterate, ctx); 1577 } 1578 ulist_free(roots); 1579 } 1580 1581 free_leaf_list(refs); 1582 out: 1583 if (!search_commit_root) { 1584 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1585 btrfs_end_transaction(trans, fs_info->extent_root); 1586 } else { 1587 up_read(&fs_info->commit_root_sem); 1588 } 1589 1590 return ret; 1591 } 1592 1593 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1594 struct btrfs_path *path, 1595 iterate_extent_inodes_t *iterate, void *ctx) 1596 { 1597 int ret; 1598 u64 extent_item_pos; 1599 u64 flags = 0; 1600 struct btrfs_key found_key; 1601 int search_commit_root = path->search_commit_root; 1602 1603 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1604 btrfs_release_path(path); 1605 if (ret < 0) 1606 return ret; 1607 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1608 return -EINVAL; 1609 1610 extent_item_pos = logical - found_key.objectid; 1611 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1612 extent_item_pos, search_commit_root, 1613 iterate, ctx); 1614 1615 return ret; 1616 } 1617 1618 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1619 struct extent_buffer *eb, void *ctx); 1620 1621 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1622 struct btrfs_path *path, 1623 iterate_irefs_t *iterate, void *ctx) 1624 { 1625 int ret = 0; 1626 int slot; 1627 u32 cur; 1628 u32 len; 1629 u32 name_len; 1630 u64 parent = 0; 1631 int found = 0; 1632 struct extent_buffer *eb; 1633 struct btrfs_item *item; 1634 struct btrfs_inode_ref *iref; 1635 struct btrfs_key found_key; 1636 1637 while (!ret) { 1638 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, 1639 &found_key); 1640 if (ret < 0) 1641 break; 1642 if (ret) { 1643 ret = found ? 0 : -ENOENT; 1644 break; 1645 } 1646 ++found; 1647 1648 parent = found_key.offset; 1649 slot = path->slots[0]; 1650 eb = btrfs_clone_extent_buffer(path->nodes[0]); 1651 if (!eb) { 1652 ret = -ENOMEM; 1653 break; 1654 } 1655 extent_buffer_get(eb); 1656 btrfs_tree_read_lock(eb); 1657 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1658 btrfs_release_path(path); 1659 1660 item = btrfs_item_nr(slot); 1661 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1662 1663 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 1664 name_len = btrfs_inode_ref_name_len(eb, iref); 1665 /* path must be released before calling iterate()! */ 1666 pr_debug("following ref at offset %u for inode %llu in " 1667 "tree %llu\n", cur, found_key.objectid, 1668 fs_root->objectid); 1669 ret = iterate(parent, name_len, 1670 (unsigned long)(iref + 1), eb, ctx); 1671 if (ret) 1672 break; 1673 len = sizeof(*iref) + name_len; 1674 iref = (struct btrfs_inode_ref *)((char *)iref + len); 1675 } 1676 btrfs_tree_read_unlock_blocking(eb); 1677 free_extent_buffer(eb); 1678 } 1679 1680 btrfs_release_path(path); 1681 1682 return ret; 1683 } 1684 1685 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 1686 struct btrfs_path *path, 1687 iterate_irefs_t *iterate, void *ctx) 1688 { 1689 int ret; 1690 int slot; 1691 u64 offset = 0; 1692 u64 parent; 1693 int found = 0; 1694 struct extent_buffer *eb; 1695 struct btrfs_inode_extref *extref; 1696 struct extent_buffer *leaf; 1697 u32 item_size; 1698 u32 cur_offset; 1699 unsigned long ptr; 1700 1701 while (1) { 1702 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 1703 &offset); 1704 if (ret < 0) 1705 break; 1706 if (ret) { 1707 ret = found ? 0 : -ENOENT; 1708 break; 1709 } 1710 ++found; 1711 1712 slot = path->slots[0]; 1713 eb = btrfs_clone_extent_buffer(path->nodes[0]); 1714 if (!eb) { 1715 ret = -ENOMEM; 1716 break; 1717 } 1718 extent_buffer_get(eb); 1719 1720 btrfs_tree_read_lock(eb); 1721 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1722 btrfs_release_path(path); 1723 1724 leaf = path->nodes[0]; 1725 item_size = btrfs_item_size_nr(leaf, slot); 1726 ptr = btrfs_item_ptr_offset(leaf, slot); 1727 cur_offset = 0; 1728 1729 while (cur_offset < item_size) { 1730 u32 name_len; 1731 1732 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 1733 parent = btrfs_inode_extref_parent(eb, extref); 1734 name_len = btrfs_inode_extref_name_len(eb, extref); 1735 ret = iterate(parent, name_len, 1736 (unsigned long)&extref->name, eb, ctx); 1737 if (ret) 1738 break; 1739 1740 cur_offset += btrfs_inode_extref_name_len(leaf, extref); 1741 cur_offset += sizeof(*extref); 1742 } 1743 btrfs_tree_read_unlock_blocking(eb); 1744 free_extent_buffer(eb); 1745 1746 offset++; 1747 } 1748 1749 btrfs_release_path(path); 1750 1751 return ret; 1752 } 1753 1754 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 1755 struct btrfs_path *path, iterate_irefs_t *iterate, 1756 void *ctx) 1757 { 1758 int ret; 1759 int found_refs = 0; 1760 1761 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 1762 if (!ret) 1763 ++found_refs; 1764 else if (ret != -ENOENT) 1765 return ret; 1766 1767 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 1768 if (ret == -ENOENT && found_refs) 1769 return 0; 1770 1771 return ret; 1772 } 1773 1774 /* 1775 * returns 0 if the path could be dumped (probably truncated) 1776 * returns <0 in case of an error 1777 */ 1778 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 1779 struct extent_buffer *eb, void *ctx) 1780 { 1781 struct inode_fs_paths *ipath = ctx; 1782 char *fspath; 1783 char *fspath_min; 1784 int i = ipath->fspath->elem_cnt; 1785 const int s_ptr = sizeof(char *); 1786 u32 bytes_left; 1787 1788 bytes_left = ipath->fspath->bytes_left > s_ptr ? 1789 ipath->fspath->bytes_left - s_ptr : 0; 1790 1791 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 1792 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 1793 name_off, eb, inum, fspath_min, bytes_left); 1794 if (IS_ERR(fspath)) 1795 return PTR_ERR(fspath); 1796 1797 if (fspath > fspath_min) { 1798 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 1799 ++ipath->fspath->elem_cnt; 1800 ipath->fspath->bytes_left = fspath - fspath_min; 1801 } else { 1802 ++ipath->fspath->elem_missed; 1803 ipath->fspath->bytes_missing += fspath_min - fspath; 1804 ipath->fspath->bytes_left = 0; 1805 } 1806 1807 return 0; 1808 } 1809 1810 /* 1811 * this dumps all file system paths to the inode into the ipath struct, provided 1812 * is has been created large enough. each path is zero-terminated and accessed 1813 * from ipath->fspath->val[i]. 1814 * when it returns, there are ipath->fspath->elem_cnt number of paths available 1815 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 1816 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, 1817 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 1818 * have been needed to return all paths. 1819 */ 1820 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 1821 { 1822 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 1823 inode_to_path, ipath); 1824 } 1825 1826 struct btrfs_data_container *init_data_container(u32 total_bytes) 1827 { 1828 struct btrfs_data_container *data; 1829 size_t alloc_bytes; 1830 1831 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 1832 data = vmalloc(alloc_bytes); 1833 if (!data) 1834 return ERR_PTR(-ENOMEM); 1835 1836 if (total_bytes >= sizeof(*data)) { 1837 data->bytes_left = total_bytes - sizeof(*data); 1838 data->bytes_missing = 0; 1839 } else { 1840 data->bytes_missing = sizeof(*data) - total_bytes; 1841 data->bytes_left = 0; 1842 } 1843 1844 data->elem_cnt = 0; 1845 data->elem_missed = 0; 1846 1847 return data; 1848 } 1849 1850 /* 1851 * allocates space to return multiple file system paths for an inode. 1852 * total_bytes to allocate are passed, note that space usable for actual path 1853 * information will be total_bytes - sizeof(struct inode_fs_paths). 1854 * the returned pointer must be freed with free_ipath() in the end. 1855 */ 1856 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 1857 struct btrfs_path *path) 1858 { 1859 struct inode_fs_paths *ifp; 1860 struct btrfs_data_container *fspath; 1861 1862 fspath = init_data_container(total_bytes); 1863 if (IS_ERR(fspath)) 1864 return (void *)fspath; 1865 1866 ifp = kmalloc(sizeof(*ifp), GFP_NOFS); 1867 if (!ifp) { 1868 kfree(fspath); 1869 return ERR_PTR(-ENOMEM); 1870 } 1871 1872 ifp->btrfs_path = path; 1873 ifp->fspath = fspath; 1874 ifp->fs_root = fs_root; 1875 1876 return ifp; 1877 } 1878 1879 void free_ipath(struct inode_fs_paths *ipath) 1880 { 1881 if (!ipath) 1882 return; 1883 vfree(ipath->fspath); 1884 kfree(ipath); 1885 } 1886