1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 17 /* Just an arbitrary number so we can be sure this happened */ 18 #define BACKREF_FOUND_SHARED 6 19 20 struct extent_inode_elem { 21 u64 inum; 22 u64 offset; 23 struct extent_inode_elem *next; 24 }; 25 26 static int check_extent_in_eb(const struct btrfs_key *key, 27 const struct extent_buffer *eb, 28 const struct btrfs_file_extent_item *fi, 29 u64 extent_item_pos, 30 struct extent_inode_elem **eie, 31 bool ignore_offset) 32 { 33 u64 offset = 0; 34 struct extent_inode_elem *e; 35 36 if (!ignore_offset && 37 !btrfs_file_extent_compression(eb, fi) && 38 !btrfs_file_extent_encryption(eb, fi) && 39 !btrfs_file_extent_other_encoding(eb, fi)) { 40 u64 data_offset; 41 u64 data_len; 42 43 data_offset = btrfs_file_extent_offset(eb, fi); 44 data_len = btrfs_file_extent_num_bytes(eb, fi); 45 46 if (extent_item_pos < data_offset || 47 extent_item_pos >= data_offset + data_len) 48 return 1; 49 offset = extent_item_pos - data_offset; 50 } 51 52 e = kmalloc(sizeof(*e), GFP_NOFS); 53 if (!e) 54 return -ENOMEM; 55 56 e->next = *eie; 57 e->inum = key->objectid; 58 e->offset = key->offset + offset; 59 *eie = e; 60 61 return 0; 62 } 63 64 static void free_inode_elem_list(struct extent_inode_elem *eie) 65 { 66 struct extent_inode_elem *eie_next; 67 68 for (; eie; eie = eie_next) { 69 eie_next = eie->next; 70 kfree(eie); 71 } 72 } 73 74 static int find_extent_in_eb(const struct extent_buffer *eb, 75 u64 wanted_disk_byte, u64 extent_item_pos, 76 struct extent_inode_elem **eie, 77 bool ignore_offset) 78 { 79 u64 disk_byte; 80 struct btrfs_key key; 81 struct btrfs_file_extent_item *fi; 82 int slot; 83 int nritems; 84 int extent_type; 85 int ret; 86 87 /* 88 * from the shared data ref, we only have the leaf but we need 89 * the key. thus, we must look into all items and see that we 90 * find one (some) with a reference to our extent item. 91 */ 92 nritems = btrfs_header_nritems(eb); 93 for (slot = 0; slot < nritems; ++slot) { 94 btrfs_item_key_to_cpu(eb, &key, slot); 95 if (key.type != BTRFS_EXTENT_DATA_KEY) 96 continue; 97 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 98 extent_type = btrfs_file_extent_type(eb, fi); 99 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 100 continue; 101 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 102 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 103 if (disk_byte != wanted_disk_byte) 104 continue; 105 106 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 107 if (ret < 0) 108 return ret; 109 } 110 111 return 0; 112 } 113 114 struct preftree { 115 struct rb_root_cached root; 116 unsigned int count; 117 }; 118 119 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 120 121 struct preftrees { 122 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 123 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 124 struct preftree indirect_missing_keys; 125 }; 126 127 /* 128 * Checks for a shared extent during backref search. 129 * 130 * The share_count tracks prelim_refs (direct and indirect) having a 131 * ref->count >0: 132 * - incremented when a ref->count transitions to >0 133 * - decremented when a ref->count transitions to <1 134 */ 135 struct share_check { 136 u64 root_objectid; 137 u64 inum; 138 int share_count; 139 }; 140 141 static inline int extent_is_shared(struct share_check *sc) 142 { 143 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 144 } 145 146 static struct kmem_cache *btrfs_prelim_ref_cache; 147 148 int __init btrfs_prelim_ref_init(void) 149 { 150 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 151 sizeof(struct prelim_ref), 152 0, 153 SLAB_MEM_SPREAD, 154 NULL); 155 if (!btrfs_prelim_ref_cache) 156 return -ENOMEM; 157 return 0; 158 } 159 160 void __cold btrfs_prelim_ref_exit(void) 161 { 162 kmem_cache_destroy(btrfs_prelim_ref_cache); 163 } 164 165 static void free_pref(struct prelim_ref *ref) 166 { 167 kmem_cache_free(btrfs_prelim_ref_cache, ref); 168 } 169 170 /* 171 * Return 0 when both refs are for the same block (and can be merged). 172 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 173 * indicates a 'higher' block. 174 */ 175 static int prelim_ref_compare(struct prelim_ref *ref1, 176 struct prelim_ref *ref2) 177 { 178 if (ref1->level < ref2->level) 179 return -1; 180 if (ref1->level > ref2->level) 181 return 1; 182 if (ref1->root_id < ref2->root_id) 183 return -1; 184 if (ref1->root_id > ref2->root_id) 185 return 1; 186 if (ref1->key_for_search.type < ref2->key_for_search.type) 187 return -1; 188 if (ref1->key_for_search.type > ref2->key_for_search.type) 189 return 1; 190 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 191 return -1; 192 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 193 return 1; 194 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 195 return -1; 196 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 197 return 1; 198 if (ref1->parent < ref2->parent) 199 return -1; 200 if (ref1->parent > ref2->parent) 201 return 1; 202 203 return 0; 204 } 205 206 static void update_share_count(struct share_check *sc, int oldcount, 207 int newcount) 208 { 209 if ((!sc) || (oldcount == 0 && newcount < 1)) 210 return; 211 212 if (oldcount > 0 && newcount < 1) 213 sc->share_count--; 214 else if (oldcount < 1 && newcount > 0) 215 sc->share_count++; 216 } 217 218 /* 219 * Add @newref to the @root rbtree, merging identical refs. 220 * 221 * Callers should assume that newref has been freed after calling. 222 */ 223 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 224 struct preftree *preftree, 225 struct prelim_ref *newref, 226 struct share_check *sc) 227 { 228 struct rb_root_cached *root; 229 struct rb_node **p; 230 struct rb_node *parent = NULL; 231 struct prelim_ref *ref; 232 int result; 233 bool leftmost = true; 234 235 root = &preftree->root; 236 p = &root->rb_root.rb_node; 237 238 while (*p) { 239 parent = *p; 240 ref = rb_entry(parent, struct prelim_ref, rbnode); 241 result = prelim_ref_compare(ref, newref); 242 if (result < 0) { 243 p = &(*p)->rb_left; 244 } else if (result > 0) { 245 p = &(*p)->rb_right; 246 leftmost = false; 247 } else { 248 /* Identical refs, merge them and free @newref */ 249 struct extent_inode_elem *eie = ref->inode_list; 250 251 while (eie && eie->next) 252 eie = eie->next; 253 254 if (!eie) 255 ref->inode_list = newref->inode_list; 256 else 257 eie->next = newref->inode_list; 258 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 259 preftree->count); 260 /* 261 * A delayed ref can have newref->count < 0. 262 * The ref->count is updated to follow any 263 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 264 */ 265 update_share_count(sc, ref->count, 266 ref->count + newref->count); 267 ref->count += newref->count; 268 free_pref(newref); 269 return; 270 } 271 } 272 273 update_share_count(sc, 0, newref->count); 274 preftree->count++; 275 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 276 rb_link_node(&newref->rbnode, parent, p); 277 rb_insert_color_cached(&newref->rbnode, root, leftmost); 278 } 279 280 /* 281 * Release the entire tree. We don't care about internal consistency so 282 * just free everything and then reset the tree root. 283 */ 284 static void prelim_release(struct preftree *preftree) 285 { 286 struct prelim_ref *ref, *next_ref; 287 288 rbtree_postorder_for_each_entry_safe(ref, next_ref, 289 &preftree->root.rb_root, rbnode) 290 free_pref(ref); 291 292 preftree->root = RB_ROOT_CACHED; 293 preftree->count = 0; 294 } 295 296 /* 297 * the rules for all callers of this function are: 298 * - obtaining the parent is the goal 299 * - if you add a key, you must know that it is a correct key 300 * - if you cannot add the parent or a correct key, then we will look into the 301 * block later to set a correct key 302 * 303 * delayed refs 304 * ============ 305 * backref type | shared | indirect | shared | indirect 306 * information | tree | tree | data | data 307 * --------------------+--------+----------+--------+---------- 308 * parent logical | y | - | - | - 309 * key to resolve | - | y | y | y 310 * tree block logical | - | - | - | - 311 * root for resolving | y | y | y | y 312 * 313 * - column 1: we've the parent -> done 314 * - column 2, 3, 4: we use the key to find the parent 315 * 316 * on disk refs (inline or keyed) 317 * ============================== 318 * backref type | shared | indirect | shared | indirect 319 * information | tree | tree | data | data 320 * --------------------+--------+----------+--------+---------- 321 * parent logical | y | - | y | - 322 * key to resolve | - | - | - | y 323 * tree block logical | y | y | y | y 324 * root for resolving | - | y | y | y 325 * 326 * - column 1, 3: we've the parent -> done 327 * - column 2: we take the first key from the block to find the parent 328 * (see add_missing_keys) 329 * - column 4: we use the key to find the parent 330 * 331 * additional information that's available but not required to find the parent 332 * block might help in merging entries to gain some speed. 333 */ 334 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 335 struct preftree *preftree, u64 root_id, 336 const struct btrfs_key *key, int level, u64 parent, 337 u64 wanted_disk_byte, int count, 338 struct share_check *sc, gfp_t gfp_mask) 339 { 340 struct prelim_ref *ref; 341 342 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 343 return 0; 344 345 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 346 if (!ref) 347 return -ENOMEM; 348 349 ref->root_id = root_id; 350 if (key) 351 ref->key_for_search = *key; 352 else 353 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 354 355 ref->inode_list = NULL; 356 ref->level = level; 357 ref->count = count; 358 ref->parent = parent; 359 ref->wanted_disk_byte = wanted_disk_byte; 360 prelim_ref_insert(fs_info, preftree, ref, sc); 361 return extent_is_shared(sc); 362 } 363 364 /* direct refs use root == 0, key == NULL */ 365 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 366 struct preftrees *preftrees, int level, u64 parent, 367 u64 wanted_disk_byte, int count, 368 struct share_check *sc, gfp_t gfp_mask) 369 { 370 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 371 parent, wanted_disk_byte, count, sc, gfp_mask); 372 } 373 374 /* indirect refs use parent == 0 */ 375 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 376 struct preftrees *preftrees, u64 root_id, 377 const struct btrfs_key *key, int level, 378 u64 wanted_disk_byte, int count, 379 struct share_check *sc, gfp_t gfp_mask) 380 { 381 struct preftree *tree = &preftrees->indirect; 382 383 if (!key) 384 tree = &preftrees->indirect_missing_keys; 385 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 386 wanted_disk_byte, count, sc, gfp_mask); 387 } 388 389 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 390 { 391 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 392 struct rb_node *parent = NULL; 393 struct prelim_ref *ref = NULL; 394 struct prelim_ref target = {0}; 395 int result; 396 397 target.parent = bytenr; 398 399 while (*p) { 400 parent = *p; 401 ref = rb_entry(parent, struct prelim_ref, rbnode); 402 result = prelim_ref_compare(ref, &target); 403 404 if (result < 0) 405 p = &(*p)->rb_left; 406 else if (result > 0) 407 p = &(*p)->rb_right; 408 else 409 return 1; 410 } 411 return 0; 412 } 413 414 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 415 struct ulist *parents, 416 struct preftrees *preftrees, struct prelim_ref *ref, 417 int level, u64 time_seq, const u64 *extent_item_pos, 418 bool ignore_offset) 419 { 420 int ret = 0; 421 int slot; 422 struct extent_buffer *eb; 423 struct btrfs_key key; 424 struct btrfs_key *key_for_search = &ref->key_for_search; 425 struct btrfs_file_extent_item *fi; 426 struct extent_inode_elem *eie = NULL, *old = NULL; 427 u64 disk_byte; 428 u64 wanted_disk_byte = ref->wanted_disk_byte; 429 u64 count = 0; 430 u64 data_offset; 431 432 if (level != 0) { 433 eb = path->nodes[level]; 434 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 435 if (ret < 0) 436 return ret; 437 return 0; 438 } 439 440 /* 441 * 1. We normally enter this function with the path already pointing to 442 * the first item to check. But sometimes, we may enter it with 443 * slot == nritems. 444 * 2. We are searching for normal backref but bytenr of this leaf 445 * matches shared data backref 446 * 3. The leaf owner is not equal to the root we are searching 447 * 448 * For these cases, go to the next leaf before we continue. 449 */ 450 eb = path->nodes[0]; 451 if (path->slots[0] >= btrfs_header_nritems(eb) || 452 is_shared_data_backref(preftrees, eb->start) || 453 ref->root_id != btrfs_header_owner(eb)) { 454 if (time_seq == SEQ_LAST) 455 ret = btrfs_next_leaf(root, path); 456 else 457 ret = btrfs_next_old_leaf(root, path, time_seq); 458 } 459 460 while (!ret && count < ref->count) { 461 eb = path->nodes[0]; 462 slot = path->slots[0]; 463 464 btrfs_item_key_to_cpu(eb, &key, slot); 465 466 if (key.objectid != key_for_search->objectid || 467 key.type != BTRFS_EXTENT_DATA_KEY) 468 break; 469 470 /* 471 * We are searching for normal backref but bytenr of this leaf 472 * matches shared data backref, OR 473 * the leaf owner is not equal to the root we are searching for 474 */ 475 if (slot == 0 && 476 (is_shared_data_backref(preftrees, eb->start) || 477 ref->root_id != btrfs_header_owner(eb))) { 478 if (time_seq == SEQ_LAST) 479 ret = btrfs_next_leaf(root, path); 480 else 481 ret = btrfs_next_old_leaf(root, path, time_seq); 482 continue; 483 } 484 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 485 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 486 data_offset = btrfs_file_extent_offset(eb, fi); 487 488 if (disk_byte == wanted_disk_byte) { 489 eie = NULL; 490 old = NULL; 491 if (ref->key_for_search.offset == key.offset - data_offset) 492 count++; 493 else 494 goto next; 495 if (extent_item_pos) { 496 ret = check_extent_in_eb(&key, eb, fi, 497 *extent_item_pos, 498 &eie, ignore_offset); 499 if (ret < 0) 500 break; 501 } 502 if (ret > 0) 503 goto next; 504 ret = ulist_add_merge_ptr(parents, eb->start, 505 eie, (void **)&old, GFP_NOFS); 506 if (ret < 0) 507 break; 508 if (!ret && extent_item_pos) { 509 while (old->next) 510 old = old->next; 511 old->next = eie; 512 } 513 eie = NULL; 514 } 515 next: 516 if (time_seq == SEQ_LAST) 517 ret = btrfs_next_item(root, path); 518 else 519 ret = btrfs_next_old_item(root, path, time_seq); 520 } 521 522 if (ret > 0) 523 ret = 0; 524 else if (ret < 0) 525 free_inode_elem_list(eie); 526 return ret; 527 } 528 529 /* 530 * resolve an indirect backref in the form (root_id, key, level) 531 * to a logical address 532 */ 533 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 534 struct btrfs_path *path, u64 time_seq, 535 struct preftrees *preftrees, 536 struct prelim_ref *ref, struct ulist *parents, 537 const u64 *extent_item_pos, bool ignore_offset) 538 { 539 struct btrfs_root *root; 540 struct btrfs_key root_key; 541 struct extent_buffer *eb; 542 int ret = 0; 543 int root_level; 544 int level = ref->level; 545 struct btrfs_key search_key = ref->key_for_search; 546 547 root_key.objectid = ref->root_id; 548 root_key.type = BTRFS_ROOT_ITEM_KEY; 549 root_key.offset = (u64)-1; 550 551 root = btrfs_get_fs_root(fs_info, &root_key, false); 552 if (IS_ERR(root)) { 553 ret = PTR_ERR(root); 554 goto out_free; 555 } 556 557 if (!path->search_commit_root && 558 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 559 ret = -ENOENT; 560 goto out; 561 } 562 563 if (btrfs_is_testing(fs_info)) { 564 ret = -ENOENT; 565 goto out; 566 } 567 568 if (path->search_commit_root) 569 root_level = btrfs_header_level(root->commit_root); 570 else if (time_seq == SEQ_LAST) 571 root_level = btrfs_header_level(root->node); 572 else 573 root_level = btrfs_old_root_level(root, time_seq); 574 575 if (root_level + 1 == level) 576 goto out; 577 578 /* 579 * We can often find data backrefs with an offset that is too large 580 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 581 * subtracting a file's offset with the data offset of its 582 * corresponding extent data item. This can happen for example in the 583 * clone ioctl. 584 * 585 * So if we detect such case we set the search key's offset to zero to 586 * make sure we will find the matching file extent item at 587 * add_all_parents(), otherwise we will miss it because the offset 588 * taken form the backref is much larger then the offset of the file 589 * extent item. This can make us scan a very large number of file 590 * extent items, but at least it will not make us miss any. 591 * 592 * This is an ugly workaround for a behaviour that should have never 593 * existed, but it does and a fix for the clone ioctl would touch a lot 594 * of places, cause backwards incompatibility and would not fix the 595 * problem for extents cloned with older kernels. 596 */ 597 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 598 search_key.offset >= LLONG_MAX) 599 search_key.offset = 0; 600 path->lowest_level = level; 601 if (time_seq == SEQ_LAST) 602 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 603 else 604 ret = btrfs_search_old_slot(root, &search_key, path, time_seq); 605 606 btrfs_debug(fs_info, 607 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 608 ref->root_id, level, ref->count, ret, 609 ref->key_for_search.objectid, ref->key_for_search.type, 610 ref->key_for_search.offset); 611 if (ret < 0) 612 goto out; 613 614 eb = path->nodes[level]; 615 while (!eb) { 616 if (WARN_ON(!level)) { 617 ret = 1; 618 goto out; 619 } 620 level--; 621 eb = path->nodes[level]; 622 } 623 624 ret = add_all_parents(root, path, parents, preftrees, ref, level, 625 time_seq, extent_item_pos, ignore_offset); 626 out: 627 btrfs_put_root(root); 628 out_free: 629 path->lowest_level = 0; 630 btrfs_release_path(path); 631 return ret; 632 } 633 634 static struct extent_inode_elem * 635 unode_aux_to_inode_list(struct ulist_node *node) 636 { 637 if (!node) 638 return NULL; 639 return (struct extent_inode_elem *)(uintptr_t)node->aux; 640 } 641 642 /* 643 * We maintain three separate rbtrees: one for direct refs, one for 644 * indirect refs which have a key, and one for indirect refs which do not 645 * have a key. Each tree does merge on insertion. 646 * 647 * Once all of the references are located, we iterate over the tree of 648 * indirect refs with missing keys. An appropriate key is located and 649 * the ref is moved onto the tree for indirect refs. After all missing 650 * keys are thus located, we iterate over the indirect ref tree, resolve 651 * each reference, and then insert the resolved reference onto the 652 * direct tree (merging there too). 653 * 654 * New backrefs (i.e., for parent nodes) are added to the appropriate 655 * rbtree as they are encountered. The new backrefs are subsequently 656 * resolved as above. 657 */ 658 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 659 struct btrfs_path *path, u64 time_seq, 660 struct preftrees *preftrees, 661 const u64 *extent_item_pos, 662 struct share_check *sc, bool ignore_offset) 663 { 664 int err; 665 int ret = 0; 666 struct ulist *parents; 667 struct ulist_node *node; 668 struct ulist_iterator uiter; 669 struct rb_node *rnode; 670 671 parents = ulist_alloc(GFP_NOFS); 672 if (!parents) 673 return -ENOMEM; 674 675 /* 676 * We could trade memory usage for performance here by iterating 677 * the tree, allocating new refs for each insertion, and then 678 * freeing the entire indirect tree when we're done. In some test 679 * cases, the tree can grow quite large (~200k objects). 680 */ 681 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 682 struct prelim_ref *ref; 683 684 ref = rb_entry(rnode, struct prelim_ref, rbnode); 685 if (WARN(ref->parent, 686 "BUG: direct ref found in indirect tree")) { 687 ret = -EINVAL; 688 goto out; 689 } 690 691 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 692 preftrees->indirect.count--; 693 694 if (ref->count == 0) { 695 free_pref(ref); 696 continue; 697 } 698 699 if (sc && sc->root_objectid && 700 ref->root_id != sc->root_objectid) { 701 free_pref(ref); 702 ret = BACKREF_FOUND_SHARED; 703 goto out; 704 } 705 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees, 706 ref, parents, extent_item_pos, 707 ignore_offset); 708 /* 709 * we can only tolerate ENOENT,otherwise,we should catch error 710 * and return directly. 711 */ 712 if (err == -ENOENT) { 713 prelim_ref_insert(fs_info, &preftrees->direct, ref, 714 NULL); 715 continue; 716 } else if (err) { 717 free_pref(ref); 718 ret = err; 719 goto out; 720 } 721 722 /* we put the first parent into the ref at hand */ 723 ULIST_ITER_INIT(&uiter); 724 node = ulist_next(parents, &uiter); 725 ref->parent = node ? node->val : 0; 726 ref->inode_list = unode_aux_to_inode_list(node); 727 728 /* Add a prelim_ref(s) for any other parent(s). */ 729 while ((node = ulist_next(parents, &uiter))) { 730 struct prelim_ref *new_ref; 731 732 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 733 GFP_NOFS); 734 if (!new_ref) { 735 free_pref(ref); 736 ret = -ENOMEM; 737 goto out; 738 } 739 memcpy(new_ref, ref, sizeof(*ref)); 740 new_ref->parent = node->val; 741 new_ref->inode_list = unode_aux_to_inode_list(node); 742 prelim_ref_insert(fs_info, &preftrees->direct, 743 new_ref, NULL); 744 } 745 746 /* 747 * Now it's a direct ref, put it in the direct tree. We must 748 * do this last because the ref could be merged/freed here. 749 */ 750 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 751 752 ulist_reinit(parents); 753 cond_resched(); 754 } 755 out: 756 ulist_free(parents); 757 return ret; 758 } 759 760 /* 761 * read tree blocks and add keys where required. 762 */ 763 static int add_missing_keys(struct btrfs_fs_info *fs_info, 764 struct preftrees *preftrees, bool lock) 765 { 766 struct prelim_ref *ref; 767 struct extent_buffer *eb; 768 struct preftree *tree = &preftrees->indirect_missing_keys; 769 struct rb_node *node; 770 771 while ((node = rb_first_cached(&tree->root))) { 772 ref = rb_entry(node, struct prelim_ref, rbnode); 773 rb_erase_cached(node, &tree->root); 774 775 BUG_ON(ref->parent); /* should not be a direct ref */ 776 BUG_ON(ref->key_for_search.type); 777 BUG_ON(!ref->wanted_disk_byte); 778 779 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0, 780 ref->level - 1, NULL); 781 if (IS_ERR(eb)) { 782 free_pref(ref); 783 return PTR_ERR(eb); 784 } else if (!extent_buffer_uptodate(eb)) { 785 free_pref(ref); 786 free_extent_buffer(eb); 787 return -EIO; 788 } 789 if (lock) 790 btrfs_tree_read_lock(eb); 791 if (btrfs_header_level(eb) == 0) 792 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 793 else 794 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 795 if (lock) 796 btrfs_tree_read_unlock(eb); 797 free_extent_buffer(eb); 798 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 799 cond_resched(); 800 } 801 return 0; 802 } 803 804 /* 805 * add all currently queued delayed refs from this head whose seq nr is 806 * smaller or equal that seq to the list 807 */ 808 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 809 struct btrfs_delayed_ref_head *head, u64 seq, 810 struct preftrees *preftrees, struct share_check *sc) 811 { 812 struct btrfs_delayed_ref_node *node; 813 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 814 struct btrfs_key key; 815 struct btrfs_key tmp_op_key; 816 struct rb_node *n; 817 int count; 818 int ret = 0; 819 820 if (extent_op && extent_op->update_key) 821 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); 822 823 spin_lock(&head->lock); 824 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 825 node = rb_entry(n, struct btrfs_delayed_ref_node, 826 ref_node); 827 if (node->seq > seq) 828 continue; 829 830 switch (node->action) { 831 case BTRFS_ADD_DELAYED_EXTENT: 832 case BTRFS_UPDATE_DELAYED_HEAD: 833 WARN_ON(1); 834 continue; 835 case BTRFS_ADD_DELAYED_REF: 836 count = node->ref_mod; 837 break; 838 case BTRFS_DROP_DELAYED_REF: 839 count = node->ref_mod * -1; 840 break; 841 default: 842 BUG(); 843 } 844 switch (node->type) { 845 case BTRFS_TREE_BLOCK_REF_KEY: { 846 /* NORMAL INDIRECT METADATA backref */ 847 struct btrfs_delayed_tree_ref *ref; 848 849 ref = btrfs_delayed_node_to_tree_ref(node); 850 ret = add_indirect_ref(fs_info, preftrees, ref->root, 851 &tmp_op_key, ref->level + 1, 852 node->bytenr, count, sc, 853 GFP_ATOMIC); 854 break; 855 } 856 case BTRFS_SHARED_BLOCK_REF_KEY: { 857 /* SHARED DIRECT METADATA backref */ 858 struct btrfs_delayed_tree_ref *ref; 859 860 ref = btrfs_delayed_node_to_tree_ref(node); 861 862 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 863 ref->parent, node->bytenr, count, 864 sc, GFP_ATOMIC); 865 break; 866 } 867 case BTRFS_EXTENT_DATA_REF_KEY: { 868 /* NORMAL INDIRECT DATA backref */ 869 struct btrfs_delayed_data_ref *ref; 870 ref = btrfs_delayed_node_to_data_ref(node); 871 872 key.objectid = ref->objectid; 873 key.type = BTRFS_EXTENT_DATA_KEY; 874 key.offset = ref->offset; 875 876 /* 877 * Found a inum that doesn't match our known inum, we 878 * know it's shared. 879 */ 880 if (sc && sc->inum && ref->objectid != sc->inum) { 881 ret = BACKREF_FOUND_SHARED; 882 goto out; 883 } 884 885 ret = add_indirect_ref(fs_info, preftrees, ref->root, 886 &key, 0, node->bytenr, count, sc, 887 GFP_ATOMIC); 888 break; 889 } 890 case BTRFS_SHARED_DATA_REF_KEY: { 891 /* SHARED DIRECT FULL backref */ 892 struct btrfs_delayed_data_ref *ref; 893 894 ref = btrfs_delayed_node_to_data_ref(node); 895 896 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 897 node->bytenr, count, sc, 898 GFP_ATOMIC); 899 break; 900 } 901 default: 902 WARN_ON(1); 903 } 904 /* 905 * We must ignore BACKREF_FOUND_SHARED until all delayed 906 * refs have been checked. 907 */ 908 if (ret && (ret != BACKREF_FOUND_SHARED)) 909 break; 910 } 911 if (!ret) 912 ret = extent_is_shared(sc); 913 out: 914 spin_unlock(&head->lock); 915 return ret; 916 } 917 918 /* 919 * add all inline backrefs for bytenr to the list 920 * 921 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 922 */ 923 static int add_inline_refs(const struct btrfs_fs_info *fs_info, 924 struct btrfs_path *path, u64 bytenr, 925 int *info_level, struct preftrees *preftrees, 926 struct share_check *sc) 927 { 928 int ret = 0; 929 int slot; 930 struct extent_buffer *leaf; 931 struct btrfs_key key; 932 struct btrfs_key found_key; 933 unsigned long ptr; 934 unsigned long end; 935 struct btrfs_extent_item *ei; 936 u64 flags; 937 u64 item_size; 938 939 /* 940 * enumerate all inline refs 941 */ 942 leaf = path->nodes[0]; 943 slot = path->slots[0]; 944 945 item_size = btrfs_item_size_nr(leaf, slot); 946 BUG_ON(item_size < sizeof(*ei)); 947 948 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 949 flags = btrfs_extent_flags(leaf, ei); 950 btrfs_item_key_to_cpu(leaf, &found_key, slot); 951 952 ptr = (unsigned long)(ei + 1); 953 end = (unsigned long)ei + item_size; 954 955 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 956 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 957 struct btrfs_tree_block_info *info; 958 959 info = (struct btrfs_tree_block_info *)ptr; 960 *info_level = btrfs_tree_block_level(leaf, info); 961 ptr += sizeof(struct btrfs_tree_block_info); 962 BUG_ON(ptr > end); 963 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 964 *info_level = found_key.offset; 965 } else { 966 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 967 } 968 969 while (ptr < end) { 970 struct btrfs_extent_inline_ref *iref; 971 u64 offset; 972 int type; 973 974 iref = (struct btrfs_extent_inline_ref *)ptr; 975 type = btrfs_get_extent_inline_ref_type(leaf, iref, 976 BTRFS_REF_TYPE_ANY); 977 if (type == BTRFS_REF_TYPE_INVALID) 978 return -EUCLEAN; 979 980 offset = btrfs_extent_inline_ref_offset(leaf, iref); 981 982 switch (type) { 983 case BTRFS_SHARED_BLOCK_REF_KEY: 984 ret = add_direct_ref(fs_info, preftrees, 985 *info_level + 1, offset, 986 bytenr, 1, NULL, GFP_NOFS); 987 break; 988 case BTRFS_SHARED_DATA_REF_KEY: { 989 struct btrfs_shared_data_ref *sdref; 990 int count; 991 992 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 993 count = btrfs_shared_data_ref_count(leaf, sdref); 994 995 ret = add_direct_ref(fs_info, preftrees, 0, offset, 996 bytenr, count, sc, GFP_NOFS); 997 break; 998 } 999 case BTRFS_TREE_BLOCK_REF_KEY: 1000 ret = add_indirect_ref(fs_info, preftrees, offset, 1001 NULL, *info_level + 1, 1002 bytenr, 1, NULL, GFP_NOFS); 1003 break; 1004 case BTRFS_EXTENT_DATA_REF_KEY: { 1005 struct btrfs_extent_data_ref *dref; 1006 int count; 1007 u64 root; 1008 1009 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1010 count = btrfs_extent_data_ref_count(leaf, dref); 1011 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1012 dref); 1013 key.type = BTRFS_EXTENT_DATA_KEY; 1014 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1015 1016 if (sc && sc->inum && key.objectid != sc->inum) { 1017 ret = BACKREF_FOUND_SHARED; 1018 break; 1019 } 1020 1021 root = btrfs_extent_data_ref_root(leaf, dref); 1022 1023 ret = add_indirect_ref(fs_info, preftrees, root, 1024 &key, 0, bytenr, count, 1025 sc, GFP_NOFS); 1026 break; 1027 } 1028 default: 1029 WARN_ON(1); 1030 } 1031 if (ret) 1032 return ret; 1033 ptr += btrfs_extent_inline_ref_size(type); 1034 } 1035 1036 return 0; 1037 } 1038 1039 /* 1040 * add all non-inline backrefs for bytenr to the list 1041 * 1042 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1043 */ 1044 static int add_keyed_refs(struct btrfs_fs_info *fs_info, 1045 struct btrfs_path *path, u64 bytenr, 1046 int info_level, struct preftrees *preftrees, 1047 struct share_check *sc) 1048 { 1049 struct btrfs_root *extent_root = fs_info->extent_root; 1050 int ret; 1051 int slot; 1052 struct extent_buffer *leaf; 1053 struct btrfs_key key; 1054 1055 while (1) { 1056 ret = btrfs_next_item(extent_root, path); 1057 if (ret < 0) 1058 break; 1059 if (ret) { 1060 ret = 0; 1061 break; 1062 } 1063 1064 slot = path->slots[0]; 1065 leaf = path->nodes[0]; 1066 btrfs_item_key_to_cpu(leaf, &key, slot); 1067 1068 if (key.objectid != bytenr) 1069 break; 1070 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1071 continue; 1072 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1073 break; 1074 1075 switch (key.type) { 1076 case BTRFS_SHARED_BLOCK_REF_KEY: 1077 /* SHARED DIRECT METADATA backref */ 1078 ret = add_direct_ref(fs_info, preftrees, 1079 info_level + 1, key.offset, 1080 bytenr, 1, NULL, GFP_NOFS); 1081 break; 1082 case BTRFS_SHARED_DATA_REF_KEY: { 1083 /* SHARED DIRECT FULL backref */ 1084 struct btrfs_shared_data_ref *sdref; 1085 int count; 1086 1087 sdref = btrfs_item_ptr(leaf, slot, 1088 struct btrfs_shared_data_ref); 1089 count = btrfs_shared_data_ref_count(leaf, sdref); 1090 ret = add_direct_ref(fs_info, preftrees, 0, 1091 key.offset, bytenr, count, 1092 sc, GFP_NOFS); 1093 break; 1094 } 1095 case BTRFS_TREE_BLOCK_REF_KEY: 1096 /* NORMAL INDIRECT METADATA backref */ 1097 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1098 NULL, info_level + 1, bytenr, 1099 1, NULL, GFP_NOFS); 1100 break; 1101 case BTRFS_EXTENT_DATA_REF_KEY: { 1102 /* NORMAL INDIRECT DATA backref */ 1103 struct btrfs_extent_data_ref *dref; 1104 int count; 1105 u64 root; 1106 1107 dref = btrfs_item_ptr(leaf, slot, 1108 struct btrfs_extent_data_ref); 1109 count = btrfs_extent_data_ref_count(leaf, dref); 1110 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1111 dref); 1112 key.type = BTRFS_EXTENT_DATA_KEY; 1113 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1114 1115 if (sc && sc->inum && key.objectid != sc->inum) { 1116 ret = BACKREF_FOUND_SHARED; 1117 break; 1118 } 1119 1120 root = btrfs_extent_data_ref_root(leaf, dref); 1121 ret = add_indirect_ref(fs_info, preftrees, root, 1122 &key, 0, bytenr, count, 1123 sc, GFP_NOFS); 1124 break; 1125 } 1126 default: 1127 WARN_ON(1); 1128 } 1129 if (ret) 1130 return ret; 1131 1132 } 1133 1134 return ret; 1135 } 1136 1137 /* 1138 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1139 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1140 * indirect refs to their parent bytenr. 1141 * When roots are found, they're added to the roots list 1142 * 1143 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave 1144 * much like trans == NULL case, the difference only lies in it will not 1145 * commit root. 1146 * The special case is for qgroup to search roots in commit_transaction(). 1147 * 1148 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1149 * shared extent is detected. 1150 * 1151 * Otherwise this returns 0 for success and <0 for an error. 1152 * 1153 * If ignore_offset is set to false, only extent refs whose offsets match 1154 * extent_item_pos are returned. If true, every extent ref is returned 1155 * and extent_item_pos is ignored. 1156 * 1157 * FIXME some caching might speed things up 1158 */ 1159 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1160 struct btrfs_fs_info *fs_info, u64 bytenr, 1161 u64 time_seq, struct ulist *refs, 1162 struct ulist *roots, const u64 *extent_item_pos, 1163 struct share_check *sc, bool ignore_offset) 1164 { 1165 struct btrfs_key key; 1166 struct btrfs_path *path; 1167 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1168 struct btrfs_delayed_ref_head *head; 1169 int info_level = 0; 1170 int ret; 1171 struct prelim_ref *ref; 1172 struct rb_node *node; 1173 struct extent_inode_elem *eie = NULL; 1174 struct preftrees preftrees = { 1175 .direct = PREFTREE_INIT, 1176 .indirect = PREFTREE_INIT, 1177 .indirect_missing_keys = PREFTREE_INIT 1178 }; 1179 1180 key.objectid = bytenr; 1181 key.offset = (u64)-1; 1182 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1183 key.type = BTRFS_METADATA_ITEM_KEY; 1184 else 1185 key.type = BTRFS_EXTENT_ITEM_KEY; 1186 1187 path = btrfs_alloc_path(); 1188 if (!path) 1189 return -ENOMEM; 1190 if (!trans) { 1191 path->search_commit_root = 1; 1192 path->skip_locking = 1; 1193 } 1194 1195 if (time_seq == SEQ_LAST) 1196 path->skip_locking = 1; 1197 1198 /* 1199 * grab both a lock on the path and a lock on the delayed ref head. 1200 * We need both to get a consistent picture of how the refs look 1201 * at a specified point in time 1202 */ 1203 again: 1204 head = NULL; 1205 1206 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 1207 if (ret < 0) 1208 goto out; 1209 BUG_ON(ret == 0); 1210 1211 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1212 if (trans && likely(trans->type != __TRANS_DUMMY) && 1213 time_seq != SEQ_LAST) { 1214 #else 1215 if (trans && time_seq != SEQ_LAST) { 1216 #endif 1217 /* 1218 * look if there are updates for this ref queued and lock the 1219 * head 1220 */ 1221 delayed_refs = &trans->transaction->delayed_refs; 1222 spin_lock(&delayed_refs->lock); 1223 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1224 if (head) { 1225 if (!mutex_trylock(&head->mutex)) { 1226 refcount_inc(&head->refs); 1227 spin_unlock(&delayed_refs->lock); 1228 1229 btrfs_release_path(path); 1230 1231 /* 1232 * Mutex was contended, block until it's 1233 * released and try again 1234 */ 1235 mutex_lock(&head->mutex); 1236 mutex_unlock(&head->mutex); 1237 btrfs_put_delayed_ref_head(head); 1238 goto again; 1239 } 1240 spin_unlock(&delayed_refs->lock); 1241 ret = add_delayed_refs(fs_info, head, time_seq, 1242 &preftrees, sc); 1243 mutex_unlock(&head->mutex); 1244 if (ret) 1245 goto out; 1246 } else { 1247 spin_unlock(&delayed_refs->lock); 1248 } 1249 } 1250 1251 if (path->slots[0]) { 1252 struct extent_buffer *leaf; 1253 int slot; 1254 1255 path->slots[0]--; 1256 leaf = path->nodes[0]; 1257 slot = path->slots[0]; 1258 btrfs_item_key_to_cpu(leaf, &key, slot); 1259 if (key.objectid == bytenr && 1260 (key.type == BTRFS_EXTENT_ITEM_KEY || 1261 key.type == BTRFS_METADATA_ITEM_KEY)) { 1262 ret = add_inline_refs(fs_info, path, bytenr, 1263 &info_level, &preftrees, sc); 1264 if (ret) 1265 goto out; 1266 ret = add_keyed_refs(fs_info, path, bytenr, info_level, 1267 &preftrees, sc); 1268 if (ret) 1269 goto out; 1270 } 1271 } 1272 1273 btrfs_release_path(path); 1274 1275 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0); 1276 if (ret) 1277 goto out; 1278 1279 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1280 1281 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1282 extent_item_pos, sc, ignore_offset); 1283 if (ret) 1284 goto out; 1285 1286 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1287 1288 /* 1289 * This walks the tree of merged and resolved refs. Tree blocks are 1290 * read in as needed. Unique entries are added to the ulist, and 1291 * the list of found roots is updated. 1292 * 1293 * We release the entire tree in one go before returning. 1294 */ 1295 node = rb_first_cached(&preftrees.direct.root); 1296 while (node) { 1297 ref = rb_entry(node, struct prelim_ref, rbnode); 1298 node = rb_next(&ref->rbnode); 1299 /* 1300 * ref->count < 0 can happen here if there are delayed 1301 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1302 * prelim_ref_insert() relies on this when merging 1303 * identical refs to keep the overall count correct. 1304 * prelim_ref_insert() will merge only those refs 1305 * which compare identically. Any refs having 1306 * e.g. different offsets would not be merged, 1307 * and would retain their original ref->count < 0. 1308 */ 1309 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1310 if (sc && sc->root_objectid && 1311 ref->root_id != sc->root_objectid) { 1312 ret = BACKREF_FOUND_SHARED; 1313 goto out; 1314 } 1315 1316 /* no parent == root of tree */ 1317 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1318 if (ret < 0) 1319 goto out; 1320 } 1321 if (ref->count && ref->parent) { 1322 if (extent_item_pos && !ref->inode_list && 1323 ref->level == 0) { 1324 struct extent_buffer *eb; 1325 1326 eb = read_tree_block(fs_info, ref->parent, 0, 1327 ref->level, NULL); 1328 if (IS_ERR(eb)) { 1329 ret = PTR_ERR(eb); 1330 goto out; 1331 } else if (!extent_buffer_uptodate(eb)) { 1332 free_extent_buffer(eb); 1333 ret = -EIO; 1334 goto out; 1335 } 1336 1337 if (!path->skip_locking) { 1338 btrfs_tree_read_lock(eb); 1339 btrfs_set_lock_blocking_read(eb); 1340 } 1341 ret = find_extent_in_eb(eb, bytenr, 1342 *extent_item_pos, &eie, ignore_offset); 1343 if (!path->skip_locking) 1344 btrfs_tree_read_unlock_blocking(eb); 1345 free_extent_buffer(eb); 1346 if (ret < 0) 1347 goto out; 1348 ref->inode_list = eie; 1349 } 1350 ret = ulist_add_merge_ptr(refs, ref->parent, 1351 ref->inode_list, 1352 (void **)&eie, GFP_NOFS); 1353 if (ret < 0) 1354 goto out; 1355 if (!ret && extent_item_pos) { 1356 /* 1357 * we've recorded that parent, so we must extend 1358 * its inode list here 1359 */ 1360 BUG_ON(!eie); 1361 while (eie->next) 1362 eie = eie->next; 1363 eie->next = ref->inode_list; 1364 } 1365 eie = NULL; 1366 } 1367 cond_resched(); 1368 } 1369 1370 out: 1371 btrfs_free_path(path); 1372 1373 prelim_release(&preftrees.direct); 1374 prelim_release(&preftrees.indirect); 1375 prelim_release(&preftrees.indirect_missing_keys); 1376 1377 if (ret < 0) 1378 free_inode_elem_list(eie); 1379 return ret; 1380 } 1381 1382 static void free_leaf_list(struct ulist *blocks) 1383 { 1384 struct ulist_node *node = NULL; 1385 struct extent_inode_elem *eie; 1386 struct ulist_iterator uiter; 1387 1388 ULIST_ITER_INIT(&uiter); 1389 while ((node = ulist_next(blocks, &uiter))) { 1390 if (!node->aux) 1391 continue; 1392 eie = unode_aux_to_inode_list(node); 1393 free_inode_elem_list(eie); 1394 node->aux = 0; 1395 } 1396 1397 ulist_free(blocks); 1398 } 1399 1400 /* 1401 * Finds all leafs with a reference to the specified combination of bytenr and 1402 * offset. key_list_head will point to a list of corresponding keys (caller must 1403 * free each list element). The leafs will be stored in the leafs ulist, which 1404 * must be freed with ulist_free. 1405 * 1406 * returns 0 on success, <0 on error 1407 */ 1408 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1409 struct btrfs_fs_info *fs_info, u64 bytenr, 1410 u64 time_seq, struct ulist **leafs, 1411 const u64 *extent_item_pos, bool ignore_offset) 1412 { 1413 int ret; 1414 1415 *leafs = ulist_alloc(GFP_NOFS); 1416 if (!*leafs) 1417 return -ENOMEM; 1418 1419 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1420 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1421 if (ret < 0 && ret != -ENOENT) { 1422 free_leaf_list(*leafs); 1423 return ret; 1424 } 1425 1426 return 0; 1427 } 1428 1429 /* 1430 * walk all backrefs for a given extent to find all roots that reference this 1431 * extent. Walking a backref means finding all extents that reference this 1432 * extent and in turn walk the backrefs of those, too. Naturally this is a 1433 * recursive process, but here it is implemented in an iterative fashion: We 1434 * find all referencing extents for the extent in question and put them on a 1435 * list. In turn, we find all referencing extents for those, further appending 1436 * to the list. The way we iterate the list allows adding more elements after 1437 * the current while iterating. The process stops when we reach the end of the 1438 * list. Found roots are added to the roots list. 1439 * 1440 * returns 0 on success, < 0 on error. 1441 */ 1442 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1443 struct btrfs_fs_info *fs_info, u64 bytenr, 1444 u64 time_seq, struct ulist **roots, 1445 bool ignore_offset) 1446 { 1447 struct ulist *tmp; 1448 struct ulist_node *node = NULL; 1449 struct ulist_iterator uiter; 1450 int ret; 1451 1452 tmp = ulist_alloc(GFP_NOFS); 1453 if (!tmp) 1454 return -ENOMEM; 1455 *roots = ulist_alloc(GFP_NOFS); 1456 if (!*roots) { 1457 ulist_free(tmp); 1458 return -ENOMEM; 1459 } 1460 1461 ULIST_ITER_INIT(&uiter); 1462 while (1) { 1463 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1464 tmp, *roots, NULL, NULL, ignore_offset); 1465 if (ret < 0 && ret != -ENOENT) { 1466 ulist_free(tmp); 1467 ulist_free(*roots); 1468 return ret; 1469 } 1470 node = ulist_next(tmp, &uiter); 1471 if (!node) 1472 break; 1473 bytenr = node->val; 1474 cond_resched(); 1475 } 1476 1477 ulist_free(tmp); 1478 return 0; 1479 } 1480 1481 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1482 struct btrfs_fs_info *fs_info, u64 bytenr, 1483 u64 time_seq, struct ulist **roots, 1484 bool ignore_offset) 1485 { 1486 int ret; 1487 1488 if (!trans) 1489 down_read(&fs_info->commit_root_sem); 1490 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1491 time_seq, roots, ignore_offset); 1492 if (!trans) 1493 up_read(&fs_info->commit_root_sem); 1494 return ret; 1495 } 1496 1497 /** 1498 * btrfs_check_shared - tell us whether an extent is shared 1499 * 1500 * btrfs_check_shared uses the backref walking code but will short 1501 * circuit as soon as it finds a root or inode that doesn't match the 1502 * one passed in. This provides a significant performance benefit for 1503 * callers (such as fiemap) which want to know whether the extent is 1504 * shared but do not need a ref count. 1505 * 1506 * This attempts to attach to the running transaction in order to account for 1507 * delayed refs, but continues on even when no running transaction exists. 1508 * 1509 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1510 */ 1511 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr, 1512 struct ulist *roots, struct ulist *tmp) 1513 { 1514 struct btrfs_fs_info *fs_info = root->fs_info; 1515 struct btrfs_trans_handle *trans; 1516 struct ulist_iterator uiter; 1517 struct ulist_node *node; 1518 struct seq_list elem = SEQ_LIST_INIT(elem); 1519 int ret = 0; 1520 struct share_check shared = { 1521 .root_objectid = root->root_key.objectid, 1522 .inum = inum, 1523 .share_count = 0, 1524 }; 1525 1526 ulist_init(roots); 1527 ulist_init(tmp); 1528 1529 trans = btrfs_join_transaction_nostart(root); 1530 if (IS_ERR(trans)) { 1531 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1532 ret = PTR_ERR(trans); 1533 goto out; 1534 } 1535 trans = NULL; 1536 down_read(&fs_info->commit_root_sem); 1537 } else { 1538 btrfs_get_tree_mod_seq(fs_info, &elem); 1539 } 1540 1541 ULIST_ITER_INIT(&uiter); 1542 while (1) { 1543 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1544 roots, NULL, &shared, false); 1545 if (ret == BACKREF_FOUND_SHARED) { 1546 /* this is the only condition under which we return 1 */ 1547 ret = 1; 1548 break; 1549 } 1550 if (ret < 0 && ret != -ENOENT) 1551 break; 1552 ret = 0; 1553 node = ulist_next(tmp, &uiter); 1554 if (!node) 1555 break; 1556 bytenr = node->val; 1557 shared.share_count = 0; 1558 cond_resched(); 1559 } 1560 1561 if (trans) { 1562 btrfs_put_tree_mod_seq(fs_info, &elem); 1563 btrfs_end_transaction(trans); 1564 } else { 1565 up_read(&fs_info->commit_root_sem); 1566 } 1567 out: 1568 ulist_release(roots); 1569 ulist_release(tmp); 1570 return ret; 1571 } 1572 1573 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1574 u64 start_off, struct btrfs_path *path, 1575 struct btrfs_inode_extref **ret_extref, 1576 u64 *found_off) 1577 { 1578 int ret, slot; 1579 struct btrfs_key key; 1580 struct btrfs_key found_key; 1581 struct btrfs_inode_extref *extref; 1582 const struct extent_buffer *leaf; 1583 unsigned long ptr; 1584 1585 key.objectid = inode_objectid; 1586 key.type = BTRFS_INODE_EXTREF_KEY; 1587 key.offset = start_off; 1588 1589 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1590 if (ret < 0) 1591 return ret; 1592 1593 while (1) { 1594 leaf = path->nodes[0]; 1595 slot = path->slots[0]; 1596 if (slot >= btrfs_header_nritems(leaf)) { 1597 /* 1598 * If the item at offset is not found, 1599 * btrfs_search_slot will point us to the slot 1600 * where it should be inserted. In our case 1601 * that will be the slot directly before the 1602 * next INODE_REF_KEY_V2 item. In the case 1603 * that we're pointing to the last slot in a 1604 * leaf, we must move one leaf over. 1605 */ 1606 ret = btrfs_next_leaf(root, path); 1607 if (ret) { 1608 if (ret >= 1) 1609 ret = -ENOENT; 1610 break; 1611 } 1612 continue; 1613 } 1614 1615 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1616 1617 /* 1618 * Check that we're still looking at an extended ref key for 1619 * this particular objectid. If we have different 1620 * objectid or type then there are no more to be found 1621 * in the tree and we can exit. 1622 */ 1623 ret = -ENOENT; 1624 if (found_key.objectid != inode_objectid) 1625 break; 1626 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1627 break; 1628 1629 ret = 0; 1630 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1631 extref = (struct btrfs_inode_extref *)ptr; 1632 *ret_extref = extref; 1633 if (found_off) 1634 *found_off = found_key.offset; 1635 break; 1636 } 1637 1638 return ret; 1639 } 1640 1641 /* 1642 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1643 * Elements of the path are separated by '/' and the path is guaranteed to be 1644 * 0-terminated. the path is only given within the current file system. 1645 * Therefore, it never starts with a '/'. the caller is responsible to provide 1646 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1647 * the start point of the resulting string is returned. this pointer is within 1648 * dest, normally. 1649 * in case the path buffer would overflow, the pointer is decremented further 1650 * as if output was written to the buffer, though no more output is actually 1651 * generated. that way, the caller can determine how much space would be 1652 * required for the path to fit into the buffer. in that case, the returned 1653 * value will be smaller than dest. callers must check this! 1654 */ 1655 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1656 u32 name_len, unsigned long name_off, 1657 struct extent_buffer *eb_in, u64 parent, 1658 char *dest, u32 size) 1659 { 1660 int slot; 1661 u64 next_inum; 1662 int ret; 1663 s64 bytes_left = ((s64)size) - 1; 1664 struct extent_buffer *eb = eb_in; 1665 struct btrfs_key found_key; 1666 int leave_spinning = path->leave_spinning; 1667 struct btrfs_inode_ref *iref; 1668 1669 if (bytes_left >= 0) 1670 dest[bytes_left] = '\0'; 1671 1672 path->leave_spinning = 1; 1673 while (1) { 1674 bytes_left -= name_len; 1675 if (bytes_left >= 0) 1676 read_extent_buffer(eb, dest + bytes_left, 1677 name_off, name_len); 1678 if (eb != eb_in) { 1679 if (!path->skip_locking) 1680 btrfs_tree_read_unlock_blocking(eb); 1681 free_extent_buffer(eb); 1682 } 1683 ret = btrfs_find_item(fs_root, path, parent, 0, 1684 BTRFS_INODE_REF_KEY, &found_key); 1685 if (ret > 0) 1686 ret = -ENOENT; 1687 if (ret) 1688 break; 1689 1690 next_inum = found_key.offset; 1691 1692 /* regular exit ahead */ 1693 if (parent == next_inum) 1694 break; 1695 1696 slot = path->slots[0]; 1697 eb = path->nodes[0]; 1698 /* make sure we can use eb after releasing the path */ 1699 if (eb != eb_in) { 1700 if (!path->skip_locking) 1701 btrfs_set_lock_blocking_read(eb); 1702 path->nodes[0] = NULL; 1703 path->locks[0] = 0; 1704 } 1705 btrfs_release_path(path); 1706 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1707 1708 name_len = btrfs_inode_ref_name_len(eb, iref); 1709 name_off = (unsigned long)(iref + 1); 1710 1711 parent = next_inum; 1712 --bytes_left; 1713 if (bytes_left >= 0) 1714 dest[bytes_left] = '/'; 1715 } 1716 1717 btrfs_release_path(path); 1718 path->leave_spinning = leave_spinning; 1719 1720 if (ret) 1721 return ERR_PTR(ret); 1722 1723 return dest + bytes_left; 1724 } 1725 1726 /* 1727 * this makes the path point to (logical EXTENT_ITEM *) 1728 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1729 * tree blocks and <0 on error. 1730 */ 1731 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1732 struct btrfs_path *path, struct btrfs_key *found_key, 1733 u64 *flags_ret) 1734 { 1735 int ret; 1736 u64 flags; 1737 u64 size = 0; 1738 u32 item_size; 1739 const struct extent_buffer *eb; 1740 struct btrfs_extent_item *ei; 1741 struct btrfs_key key; 1742 1743 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1744 key.type = BTRFS_METADATA_ITEM_KEY; 1745 else 1746 key.type = BTRFS_EXTENT_ITEM_KEY; 1747 key.objectid = logical; 1748 key.offset = (u64)-1; 1749 1750 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1751 if (ret < 0) 1752 return ret; 1753 1754 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1755 if (ret) { 1756 if (ret > 0) 1757 ret = -ENOENT; 1758 return ret; 1759 } 1760 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1761 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1762 size = fs_info->nodesize; 1763 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1764 size = found_key->offset; 1765 1766 if (found_key->objectid > logical || 1767 found_key->objectid + size <= logical) { 1768 btrfs_debug(fs_info, 1769 "logical %llu is not within any extent", logical); 1770 return -ENOENT; 1771 } 1772 1773 eb = path->nodes[0]; 1774 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1775 BUG_ON(item_size < sizeof(*ei)); 1776 1777 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1778 flags = btrfs_extent_flags(eb, ei); 1779 1780 btrfs_debug(fs_info, 1781 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1782 logical, logical - found_key->objectid, found_key->objectid, 1783 found_key->offset, flags, item_size); 1784 1785 WARN_ON(!flags_ret); 1786 if (flags_ret) { 1787 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1788 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1789 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1790 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1791 else 1792 BUG(); 1793 return 0; 1794 } 1795 1796 return -EIO; 1797 } 1798 1799 /* 1800 * helper function to iterate extent inline refs. ptr must point to a 0 value 1801 * for the first call and may be modified. it is used to track state. 1802 * if more refs exist, 0 is returned and the next call to 1803 * get_extent_inline_ref must pass the modified ptr parameter to get the 1804 * next ref. after the last ref was processed, 1 is returned. 1805 * returns <0 on error 1806 */ 1807 static int get_extent_inline_ref(unsigned long *ptr, 1808 const struct extent_buffer *eb, 1809 const struct btrfs_key *key, 1810 const struct btrfs_extent_item *ei, 1811 u32 item_size, 1812 struct btrfs_extent_inline_ref **out_eiref, 1813 int *out_type) 1814 { 1815 unsigned long end; 1816 u64 flags; 1817 struct btrfs_tree_block_info *info; 1818 1819 if (!*ptr) { 1820 /* first call */ 1821 flags = btrfs_extent_flags(eb, ei); 1822 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1823 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1824 /* a skinny metadata extent */ 1825 *out_eiref = 1826 (struct btrfs_extent_inline_ref *)(ei + 1); 1827 } else { 1828 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1829 info = (struct btrfs_tree_block_info *)(ei + 1); 1830 *out_eiref = 1831 (struct btrfs_extent_inline_ref *)(info + 1); 1832 } 1833 } else { 1834 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1835 } 1836 *ptr = (unsigned long)*out_eiref; 1837 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1838 return -ENOENT; 1839 } 1840 1841 end = (unsigned long)ei + item_size; 1842 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1843 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1844 BTRFS_REF_TYPE_ANY); 1845 if (*out_type == BTRFS_REF_TYPE_INVALID) 1846 return -EUCLEAN; 1847 1848 *ptr += btrfs_extent_inline_ref_size(*out_type); 1849 WARN_ON(*ptr > end); 1850 if (*ptr == end) 1851 return 1; /* last */ 1852 1853 return 0; 1854 } 1855 1856 /* 1857 * reads the tree block backref for an extent. tree level and root are returned 1858 * through out_level and out_root. ptr must point to a 0 value for the first 1859 * call and may be modified (see get_extent_inline_ref comment). 1860 * returns 0 if data was provided, 1 if there was no more data to provide or 1861 * <0 on error. 1862 */ 1863 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1864 struct btrfs_key *key, struct btrfs_extent_item *ei, 1865 u32 item_size, u64 *out_root, u8 *out_level) 1866 { 1867 int ret; 1868 int type; 1869 struct btrfs_extent_inline_ref *eiref; 1870 1871 if (*ptr == (unsigned long)-1) 1872 return 1; 1873 1874 while (1) { 1875 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1876 &eiref, &type); 1877 if (ret < 0) 1878 return ret; 1879 1880 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1881 type == BTRFS_SHARED_BLOCK_REF_KEY) 1882 break; 1883 1884 if (ret == 1) 1885 return 1; 1886 } 1887 1888 /* we can treat both ref types equally here */ 1889 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1890 1891 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1892 struct btrfs_tree_block_info *info; 1893 1894 info = (struct btrfs_tree_block_info *)(ei + 1); 1895 *out_level = btrfs_tree_block_level(eb, info); 1896 } else { 1897 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1898 *out_level = (u8)key->offset; 1899 } 1900 1901 if (ret == 1) 1902 *ptr = (unsigned long)-1; 1903 1904 return 0; 1905 } 1906 1907 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1908 struct extent_inode_elem *inode_list, 1909 u64 root, u64 extent_item_objectid, 1910 iterate_extent_inodes_t *iterate, void *ctx) 1911 { 1912 struct extent_inode_elem *eie; 1913 int ret = 0; 1914 1915 for (eie = inode_list; eie; eie = eie->next) { 1916 btrfs_debug(fs_info, 1917 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1918 extent_item_objectid, eie->inum, 1919 eie->offset, root); 1920 ret = iterate(eie->inum, eie->offset, root, ctx); 1921 if (ret) { 1922 btrfs_debug(fs_info, 1923 "stopping iteration for %llu due to ret=%d", 1924 extent_item_objectid, ret); 1925 break; 1926 } 1927 } 1928 1929 return ret; 1930 } 1931 1932 /* 1933 * calls iterate() for every inode that references the extent identified by 1934 * the given parameters. 1935 * when the iterator function returns a non-zero value, iteration stops. 1936 */ 1937 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1938 u64 extent_item_objectid, u64 extent_item_pos, 1939 int search_commit_root, 1940 iterate_extent_inodes_t *iterate, void *ctx, 1941 bool ignore_offset) 1942 { 1943 int ret; 1944 struct btrfs_trans_handle *trans = NULL; 1945 struct ulist *refs = NULL; 1946 struct ulist *roots = NULL; 1947 struct ulist_node *ref_node = NULL; 1948 struct ulist_node *root_node = NULL; 1949 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 1950 struct ulist_iterator ref_uiter; 1951 struct ulist_iterator root_uiter; 1952 1953 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 1954 extent_item_objectid); 1955 1956 if (!search_commit_root) { 1957 trans = btrfs_attach_transaction(fs_info->extent_root); 1958 if (IS_ERR(trans)) { 1959 if (PTR_ERR(trans) != -ENOENT && 1960 PTR_ERR(trans) != -EROFS) 1961 return PTR_ERR(trans); 1962 trans = NULL; 1963 } 1964 } 1965 1966 if (trans) 1967 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1968 else 1969 down_read(&fs_info->commit_root_sem); 1970 1971 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1972 tree_mod_seq_elem.seq, &refs, 1973 &extent_item_pos, ignore_offset); 1974 if (ret) 1975 goto out; 1976 1977 ULIST_ITER_INIT(&ref_uiter); 1978 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1979 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 1980 tree_mod_seq_elem.seq, &roots, 1981 ignore_offset); 1982 if (ret) 1983 break; 1984 ULIST_ITER_INIT(&root_uiter); 1985 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1986 btrfs_debug(fs_info, 1987 "root %llu references leaf %llu, data list %#llx", 1988 root_node->val, ref_node->val, 1989 ref_node->aux); 1990 ret = iterate_leaf_refs(fs_info, 1991 (struct extent_inode_elem *) 1992 (uintptr_t)ref_node->aux, 1993 root_node->val, 1994 extent_item_objectid, 1995 iterate, ctx); 1996 } 1997 ulist_free(roots); 1998 } 1999 2000 free_leaf_list(refs); 2001 out: 2002 if (trans) { 2003 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 2004 btrfs_end_transaction(trans); 2005 } else { 2006 up_read(&fs_info->commit_root_sem); 2007 } 2008 2009 return ret; 2010 } 2011 2012 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2013 struct btrfs_path *path, 2014 iterate_extent_inodes_t *iterate, void *ctx, 2015 bool ignore_offset) 2016 { 2017 int ret; 2018 u64 extent_item_pos; 2019 u64 flags = 0; 2020 struct btrfs_key found_key; 2021 int search_commit_root = path->search_commit_root; 2022 2023 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2024 btrfs_release_path(path); 2025 if (ret < 0) 2026 return ret; 2027 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2028 return -EINVAL; 2029 2030 extent_item_pos = logical - found_key.objectid; 2031 ret = iterate_extent_inodes(fs_info, found_key.objectid, 2032 extent_item_pos, search_commit_root, 2033 iterate, ctx, ignore_offset); 2034 2035 return ret; 2036 } 2037 2038 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 2039 struct extent_buffer *eb, void *ctx); 2040 2041 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 2042 struct btrfs_path *path, 2043 iterate_irefs_t *iterate, void *ctx) 2044 { 2045 int ret = 0; 2046 int slot; 2047 u32 cur; 2048 u32 len; 2049 u32 name_len; 2050 u64 parent = 0; 2051 int found = 0; 2052 struct extent_buffer *eb; 2053 struct btrfs_item *item; 2054 struct btrfs_inode_ref *iref; 2055 struct btrfs_key found_key; 2056 2057 while (!ret) { 2058 ret = btrfs_find_item(fs_root, path, inum, 2059 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2060 &found_key); 2061 2062 if (ret < 0) 2063 break; 2064 if (ret) { 2065 ret = found ? 0 : -ENOENT; 2066 break; 2067 } 2068 ++found; 2069 2070 parent = found_key.offset; 2071 slot = path->slots[0]; 2072 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2073 if (!eb) { 2074 ret = -ENOMEM; 2075 break; 2076 } 2077 btrfs_release_path(path); 2078 2079 item = btrfs_item_nr(slot); 2080 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2081 2082 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 2083 name_len = btrfs_inode_ref_name_len(eb, iref); 2084 /* path must be released before calling iterate()! */ 2085 btrfs_debug(fs_root->fs_info, 2086 "following ref at offset %u for inode %llu in tree %llu", 2087 cur, found_key.objectid, 2088 fs_root->root_key.objectid); 2089 ret = iterate(parent, name_len, 2090 (unsigned long)(iref + 1), eb, ctx); 2091 if (ret) 2092 break; 2093 len = sizeof(*iref) + name_len; 2094 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2095 } 2096 free_extent_buffer(eb); 2097 } 2098 2099 btrfs_release_path(path); 2100 2101 return ret; 2102 } 2103 2104 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2105 struct btrfs_path *path, 2106 iterate_irefs_t *iterate, void *ctx) 2107 { 2108 int ret; 2109 int slot; 2110 u64 offset = 0; 2111 u64 parent; 2112 int found = 0; 2113 struct extent_buffer *eb; 2114 struct btrfs_inode_extref *extref; 2115 u32 item_size; 2116 u32 cur_offset; 2117 unsigned long ptr; 2118 2119 while (1) { 2120 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2121 &offset); 2122 if (ret < 0) 2123 break; 2124 if (ret) { 2125 ret = found ? 0 : -ENOENT; 2126 break; 2127 } 2128 ++found; 2129 2130 slot = path->slots[0]; 2131 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2132 if (!eb) { 2133 ret = -ENOMEM; 2134 break; 2135 } 2136 btrfs_release_path(path); 2137 2138 item_size = btrfs_item_size_nr(eb, slot); 2139 ptr = btrfs_item_ptr_offset(eb, slot); 2140 cur_offset = 0; 2141 2142 while (cur_offset < item_size) { 2143 u32 name_len; 2144 2145 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2146 parent = btrfs_inode_extref_parent(eb, extref); 2147 name_len = btrfs_inode_extref_name_len(eb, extref); 2148 ret = iterate(parent, name_len, 2149 (unsigned long)&extref->name, eb, ctx); 2150 if (ret) 2151 break; 2152 2153 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2154 cur_offset += sizeof(*extref); 2155 } 2156 free_extent_buffer(eb); 2157 2158 offset++; 2159 } 2160 2161 btrfs_release_path(path); 2162 2163 return ret; 2164 } 2165 2166 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2167 struct btrfs_path *path, iterate_irefs_t *iterate, 2168 void *ctx) 2169 { 2170 int ret; 2171 int found_refs = 0; 2172 2173 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2174 if (!ret) 2175 ++found_refs; 2176 else if (ret != -ENOENT) 2177 return ret; 2178 2179 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2180 if (ret == -ENOENT && found_refs) 2181 return 0; 2182 2183 return ret; 2184 } 2185 2186 /* 2187 * returns 0 if the path could be dumped (probably truncated) 2188 * returns <0 in case of an error 2189 */ 2190 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2191 struct extent_buffer *eb, void *ctx) 2192 { 2193 struct inode_fs_paths *ipath = ctx; 2194 char *fspath; 2195 char *fspath_min; 2196 int i = ipath->fspath->elem_cnt; 2197 const int s_ptr = sizeof(char *); 2198 u32 bytes_left; 2199 2200 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2201 ipath->fspath->bytes_left - s_ptr : 0; 2202 2203 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2204 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2205 name_off, eb, inum, fspath_min, bytes_left); 2206 if (IS_ERR(fspath)) 2207 return PTR_ERR(fspath); 2208 2209 if (fspath > fspath_min) { 2210 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2211 ++ipath->fspath->elem_cnt; 2212 ipath->fspath->bytes_left = fspath - fspath_min; 2213 } else { 2214 ++ipath->fspath->elem_missed; 2215 ipath->fspath->bytes_missing += fspath_min - fspath; 2216 ipath->fspath->bytes_left = 0; 2217 } 2218 2219 return 0; 2220 } 2221 2222 /* 2223 * this dumps all file system paths to the inode into the ipath struct, provided 2224 * is has been created large enough. each path is zero-terminated and accessed 2225 * from ipath->fspath->val[i]. 2226 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2227 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2228 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2229 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2230 * have been needed to return all paths. 2231 */ 2232 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2233 { 2234 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2235 inode_to_path, ipath); 2236 } 2237 2238 struct btrfs_data_container *init_data_container(u32 total_bytes) 2239 { 2240 struct btrfs_data_container *data; 2241 size_t alloc_bytes; 2242 2243 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2244 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2245 if (!data) 2246 return ERR_PTR(-ENOMEM); 2247 2248 if (total_bytes >= sizeof(*data)) { 2249 data->bytes_left = total_bytes - sizeof(*data); 2250 data->bytes_missing = 0; 2251 } else { 2252 data->bytes_missing = sizeof(*data) - total_bytes; 2253 data->bytes_left = 0; 2254 } 2255 2256 data->elem_cnt = 0; 2257 data->elem_missed = 0; 2258 2259 return data; 2260 } 2261 2262 /* 2263 * allocates space to return multiple file system paths for an inode. 2264 * total_bytes to allocate are passed, note that space usable for actual path 2265 * information will be total_bytes - sizeof(struct inode_fs_paths). 2266 * the returned pointer must be freed with free_ipath() in the end. 2267 */ 2268 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2269 struct btrfs_path *path) 2270 { 2271 struct inode_fs_paths *ifp; 2272 struct btrfs_data_container *fspath; 2273 2274 fspath = init_data_container(total_bytes); 2275 if (IS_ERR(fspath)) 2276 return ERR_CAST(fspath); 2277 2278 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2279 if (!ifp) { 2280 kvfree(fspath); 2281 return ERR_PTR(-ENOMEM); 2282 } 2283 2284 ifp->btrfs_path = path; 2285 ifp->fspath = fspath; 2286 ifp->fs_root = fs_root; 2287 2288 return ifp; 2289 } 2290 2291 void free_ipath(struct inode_fs_paths *ipath) 2292 { 2293 if (!ipath) 2294 return; 2295 kvfree(ipath->fspath); 2296 kfree(ipath); 2297 } 2298