1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 17 /* Just an arbitrary number so we can be sure this happened */ 18 #define BACKREF_FOUND_SHARED 6 19 20 struct extent_inode_elem { 21 u64 inum; 22 u64 offset; 23 struct extent_inode_elem *next; 24 }; 25 26 static int check_extent_in_eb(const struct btrfs_key *key, 27 const struct extent_buffer *eb, 28 const struct btrfs_file_extent_item *fi, 29 u64 extent_item_pos, 30 struct extent_inode_elem **eie, 31 bool ignore_offset) 32 { 33 u64 offset = 0; 34 struct extent_inode_elem *e; 35 36 if (!ignore_offset && 37 !btrfs_file_extent_compression(eb, fi) && 38 !btrfs_file_extent_encryption(eb, fi) && 39 !btrfs_file_extent_other_encoding(eb, fi)) { 40 u64 data_offset; 41 u64 data_len; 42 43 data_offset = btrfs_file_extent_offset(eb, fi); 44 data_len = btrfs_file_extent_num_bytes(eb, fi); 45 46 if (extent_item_pos < data_offset || 47 extent_item_pos >= data_offset + data_len) 48 return 1; 49 offset = extent_item_pos - data_offset; 50 } 51 52 e = kmalloc(sizeof(*e), GFP_NOFS); 53 if (!e) 54 return -ENOMEM; 55 56 e->next = *eie; 57 e->inum = key->objectid; 58 e->offset = key->offset + offset; 59 *eie = e; 60 61 return 0; 62 } 63 64 static void free_inode_elem_list(struct extent_inode_elem *eie) 65 { 66 struct extent_inode_elem *eie_next; 67 68 for (; eie; eie = eie_next) { 69 eie_next = eie->next; 70 kfree(eie); 71 } 72 } 73 74 static int find_extent_in_eb(const struct extent_buffer *eb, 75 u64 wanted_disk_byte, u64 extent_item_pos, 76 struct extent_inode_elem **eie, 77 bool ignore_offset) 78 { 79 u64 disk_byte; 80 struct btrfs_key key; 81 struct btrfs_file_extent_item *fi; 82 int slot; 83 int nritems; 84 int extent_type; 85 int ret; 86 87 /* 88 * from the shared data ref, we only have the leaf but we need 89 * the key. thus, we must look into all items and see that we 90 * find one (some) with a reference to our extent item. 91 */ 92 nritems = btrfs_header_nritems(eb); 93 for (slot = 0; slot < nritems; ++slot) { 94 btrfs_item_key_to_cpu(eb, &key, slot); 95 if (key.type != BTRFS_EXTENT_DATA_KEY) 96 continue; 97 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 98 extent_type = btrfs_file_extent_type(eb, fi); 99 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 100 continue; 101 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 102 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 103 if (disk_byte != wanted_disk_byte) 104 continue; 105 106 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 107 if (ret < 0) 108 return ret; 109 } 110 111 return 0; 112 } 113 114 struct preftree { 115 struct rb_root_cached root; 116 unsigned int count; 117 }; 118 119 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 120 121 struct preftrees { 122 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 123 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 124 struct preftree indirect_missing_keys; 125 }; 126 127 /* 128 * Checks for a shared extent during backref search. 129 * 130 * The share_count tracks prelim_refs (direct and indirect) having a 131 * ref->count >0: 132 * - incremented when a ref->count transitions to >0 133 * - decremented when a ref->count transitions to <1 134 */ 135 struct share_check { 136 u64 root_objectid; 137 u64 inum; 138 int share_count; 139 }; 140 141 static inline int extent_is_shared(struct share_check *sc) 142 { 143 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 144 } 145 146 static struct kmem_cache *btrfs_prelim_ref_cache; 147 148 int __init btrfs_prelim_ref_init(void) 149 { 150 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 151 sizeof(struct prelim_ref), 152 0, 153 SLAB_MEM_SPREAD, 154 NULL); 155 if (!btrfs_prelim_ref_cache) 156 return -ENOMEM; 157 return 0; 158 } 159 160 void __cold btrfs_prelim_ref_exit(void) 161 { 162 kmem_cache_destroy(btrfs_prelim_ref_cache); 163 } 164 165 static void free_pref(struct prelim_ref *ref) 166 { 167 kmem_cache_free(btrfs_prelim_ref_cache, ref); 168 } 169 170 /* 171 * Return 0 when both refs are for the same block (and can be merged). 172 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 173 * indicates a 'higher' block. 174 */ 175 static int prelim_ref_compare(struct prelim_ref *ref1, 176 struct prelim_ref *ref2) 177 { 178 if (ref1->level < ref2->level) 179 return -1; 180 if (ref1->level > ref2->level) 181 return 1; 182 if (ref1->root_id < ref2->root_id) 183 return -1; 184 if (ref1->root_id > ref2->root_id) 185 return 1; 186 if (ref1->key_for_search.type < ref2->key_for_search.type) 187 return -1; 188 if (ref1->key_for_search.type > ref2->key_for_search.type) 189 return 1; 190 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 191 return -1; 192 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 193 return 1; 194 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 195 return -1; 196 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 197 return 1; 198 if (ref1->parent < ref2->parent) 199 return -1; 200 if (ref1->parent > ref2->parent) 201 return 1; 202 203 return 0; 204 } 205 206 static void update_share_count(struct share_check *sc, int oldcount, 207 int newcount) 208 { 209 if ((!sc) || (oldcount == 0 && newcount < 1)) 210 return; 211 212 if (oldcount > 0 && newcount < 1) 213 sc->share_count--; 214 else if (oldcount < 1 && newcount > 0) 215 sc->share_count++; 216 } 217 218 /* 219 * Add @newref to the @root rbtree, merging identical refs. 220 * 221 * Callers should assume that newref has been freed after calling. 222 */ 223 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 224 struct preftree *preftree, 225 struct prelim_ref *newref, 226 struct share_check *sc) 227 { 228 struct rb_root_cached *root; 229 struct rb_node **p; 230 struct rb_node *parent = NULL; 231 struct prelim_ref *ref; 232 int result; 233 bool leftmost = true; 234 235 root = &preftree->root; 236 p = &root->rb_root.rb_node; 237 238 while (*p) { 239 parent = *p; 240 ref = rb_entry(parent, struct prelim_ref, rbnode); 241 result = prelim_ref_compare(ref, newref); 242 if (result < 0) { 243 p = &(*p)->rb_left; 244 } else if (result > 0) { 245 p = &(*p)->rb_right; 246 leftmost = false; 247 } else { 248 /* Identical refs, merge them and free @newref */ 249 struct extent_inode_elem *eie = ref->inode_list; 250 251 while (eie && eie->next) 252 eie = eie->next; 253 254 if (!eie) 255 ref->inode_list = newref->inode_list; 256 else 257 eie->next = newref->inode_list; 258 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 259 preftree->count); 260 /* 261 * A delayed ref can have newref->count < 0. 262 * The ref->count is updated to follow any 263 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 264 */ 265 update_share_count(sc, ref->count, 266 ref->count + newref->count); 267 ref->count += newref->count; 268 free_pref(newref); 269 return; 270 } 271 } 272 273 update_share_count(sc, 0, newref->count); 274 preftree->count++; 275 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 276 rb_link_node(&newref->rbnode, parent, p); 277 rb_insert_color_cached(&newref->rbnode, root, leftmost); 278 } 279 280 /* 281 * Release the entire tree. We don't care about internal consistency so 282 * just free everything and then reset the tree root. 283 */ 284 static void prelim_release(struct preftree *preftree) 285 { 286 struct prelim_ref *ref, *next_ref; 287 288 rbtree_postorder_for_each_entry_safe(ref, next_ref, 289 &preftree->root.rb_root, rbnode) 290 free_pref(ref); 291 292 preftree->root = RB_ROOT_CACHED; 293 preftree->count = 0; 294 } 295 296 /* 297 * the rules for all callers of this function are: 298 * - obtaining the parent is the goal 299 * - if you add a key, you must know that it is a correct key 300 * - if you cannot add the parent or a correct key, then we will look into the 301 * block later to set a correct key 302 * 303 * delayed refs 304 * ============ 305 * backref type | shared | indirect | shared | indirect 306 * information | tree | tree | data | data 307 * --------------------+--------+----------+--------+---------- 308 * parent logical | y | - | - | - 309 * key to resolve | - | y | y | y 310 * tree block logical | - | - | - | - 311 * root for resolving | y | y | y | y 312 * 313 * - column 1: we've the parent -> done 314 * - column 2, 3, 4: we use the key to find the parent 315 * 316 * on disk refs (inline or keyed) 317 * ============================== 318 * backref type | shared | indirect | shared | indirect 319 * information | tree | tree | data | data 320 * --------------------+--------+----------+--------+---------- 321 * parent logical | y | - | y | - 322 * key to resolve | - | - | - | y 323 * tree block logical | y | y | y | y 324 * root for resolving | - | y | y | y 325 * 326 * - column 1, 3: we've the parent -> done 327 * - column 2: we take the first key from the block to find the parent 328 * (see add_missing_keys) 329 * - column 4: we use the key to find the parent 330 * 331 * additional information that's available but not required to find the parent 332 * block might help in merging entries to gain some speed. 333 */ 334 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 335 struct preftree *preftree, u64 root_id, 336 const struct btrfs_key *key, int level, u64 parent, 337 u64 wanted_disk_byte, int count, 338 struct share_check *sc, gfp_t gfp_mask) 339 { 340 struct prelim_ref *ref; 341 342 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 343 return 0; 344 345 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 346 if (!ref) 347 return -ENOMEM; 348 349 ref->root_id = root_id; 350 if (key) { 351 ref->key_for_search = *key; 352 /* 353 * We can often find data backrefs with an offset that is too 354 * large (>= LLONG_MAX, maximum allowed file offset) due to 355 * underflows when subtracting a file's offset with the data 356 * offset of its corresponding extent data item. This can 357 * happen for example in the clone ioctl. 358 * So if we detect such case we set the search key's offset to 359 * zero to make sure we will find the matching file extent item 360 * at add_all_parents(), otherwise we will miss it because the 361 * offset taken form the backref is much larger then the offset 362 * of the file extent item. This can make us scan a very large 363 * number of file extent items, but at least it will not make 364 * us miss any. 365 * This is an ugly workaround for a behaviour that should have 366 * never existed, but it does and a fix for the clone ioctl 367 * would touch a lot of places, cause backwards incompatibility 368 * and would not fix the problem for extents cloned with older 369 * kernels. 370 */ 371 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY && 372 ref->key_for_search.offset >= LLONG_MAX) 373 ref->key_for_search.offset = 0; 374 } else { 375 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 376 } 377 378 ref->inode_list = NULL; 379 ref->level = level; 380 ref->count = count; 381 ref->parent = parent; 382 ref->wanted_disk_byte = wanted_disk_byte; 383 prelim_ref_insert(fs_info, preftree, ref, sc); 384 return extent_is_shared(sc); 385 } 386 387 /* direct refs use root == 0, key == NULL */ 388 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 389 struct preftrees *preftrees, int level, u64 parent, 390 u64 wanted_disk_byte, int count, 391 struct share_check *sc, gfp_t gfp_mask) 392 { 393 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 394 parent, wanted_disk_byte, count, sc, gfp_mask); 395 } 396 397 /* indirect refs use parent == 0 */ 398 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 399 struct preftrees *preftrees, u64 root_id, 400 const struct btrfs_key *key, int level, 401 u64 wanted_disk_byte, int count, 402 struct share_check *sc, gfp_t gfp_mask) 403 { 404 struct preftree *tree = &preftrees->indirect; 405 406 if (!key) 407 tree = &preftrees->indirect_missing_keys; 408 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 409 wanted_disk_byte, count, sc, gfp_mask); 410 } 411 412 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 413 struct ulist *parents, struct prelim_ref *ref, 414 int level, u64 time_seq, const u64 *extent_item_pos, 415 u64 total_refs, bool ignore_offset) 416 { 417 int ret = 0; 418 int slot; 419 struct extent_buffer *eb; 420 struct btrfs_key key; 421 struct btrfs_key *key_for_search = &ref->key_for_search; 422 struct btrfs_file_extent_item *fi; 423 struct extent_inode_elem *eie = NULL, *old = NULL; 424 u64 disk_byte; 425 u64 wanted_disk_byte = ref->wanted_disk_byte; 426 u64 count = 0; 427 428 if (level != 0) { 429 eb = path->nodes[level]; 430 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 431 if (ret < 0) 432 return ret; 433 return 0; 434 } 435 436 /* 437 * We normally enter this function with the path already pointing to 438 * the first item to check. But sometimes, we may enter it with 439 * slot==nritems. In that case, go to the next leaf before we continue. 440 */ 441 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 442 if (time_seq == SEQ_LAST) 443 ret = btrfs_next_leaf(root, path); 444 else 445 ret = btrfs_next_old_leaf(root, path, time_seq); 446 } 447 448 while (!ret && count < total_refs) { 449 eb = path->nodes[0]; 450 slot = path->slots[0]; 451 452 btrfs_item_key_to_cpu(eb, &key, slot); 453 454 if (key.objectid != key_for_search->objectid || 455 key.type != BTRFS_EXTENT_DATA_KEY) 456 break; 457 458 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 459 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 460 461 if (disk_byte == wanted_disk_byte) { 462 eie = NULL; 463 old = NULL; 464 count++; 465 if (extent_item_pos) { 466 ret = check_extent_in_eb(&key, eb, fi, 467 *extent_item_pos, 468 &eie, ignore_offset); 469 if (ret < 0) 470 break; 471 } 472 if (ret > 0) 473 goto next; 474 ret = ulist_add_merge_ptr(parents, eb->start, 475 eie, (void **)&old, GFP_NOFS); 476 if (ret < 0) 477 break; 478 if (!ret && extent_item_pos) { 479 while (old->next) 480 old = old->next; 481 old->next = eie; 482 } 483 eie = NULL; 484 } 485 next: 486 if (time_seq == SEQ_LAST) 487 ret = btrfs_next_item(root, path); 488 else 489 ret = btrfs_next_old_item(root, path, time_seq); 490 } 491 492 if (ret > 0) 493 ret = 0; 494 else if (ret < 0) 495 free_inode_elem_list(eie); 496 return ret; 497 } 498 499 /* 500 * resolve an indirect backref in the form (root_id, key, level) 501 * to a logical address 502 */ 503 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 504 struct btrfs_path *path, u64 time_seq, 505 struct prelim_ref *ref, struct ulist *parents, 506 const u64 *extent_item_pos, u64 total_refs, 507 bool ignore_offset) 508 { 509 struct btrfs_root *root; 510 struct btrfs_key root_key; 511 struct extent_buffer *eb; 512 int ret = 0; 513 int root_level; 514 int level = ref->level; 515 int index; 516 517 root_key.objectid = ref->root_id; 518 root_key.type = BTRFS_ROOT_ITEM_KEY; 519 root_key.offset = (u64)-1; 520 521 index = srcu_read_lock(&fs_info->subvol_srcu); 522 523 root = btrfs_get_fs_root(fs_info, &root_key, false); 524 if (IS_ERR(root)) { 525 srcu_read_unlock(&fs_info->subvol_srcu, index); 526 ret = PTR_ERR(root); 527 goto out; 528 } 529 530 if (btrfs_is_testing(fs_info)) { 531 srcu_read_unlock(&fs_info->subvol_srcu, index); 532 ret = -ENOENT; 533 goto out; 534 } 535 536 if (path->search_commit_root) 537 root_level = btrfs_header_level(root->commit_root); 538 else if (time_seq == SEQ_LAST) 539 root_level = btrfs_header_level(root->node); 540 else 541 root_level = btrfs_old_root_level(root, time_seq); 542 543 if (root_level + 1 == level) { 544 srcu_read_unlock(&fs_info->subvol_srcu, index); 545 goto out; 546 } 547 548 path->lowest_level = level; 549 if (time_seq == SEQ_LAST) 550 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 551 0, 0); 552 else 553 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, 554 time_seq); 555 556 /* root node has been locked, we can release @subvol_srcu safely here */ 557 srcu_read_unlock(&fs_info->subvol_srcu, index); 558 559 btrfs_debug(fs_info, 560 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 561 ref->root_id, level, ref->count, ret, 562 ref->key_for_search.objectid, ref->key_for_search.type, 563 ref->key_for_search.offset); 564 if (ret < 0) 565 goto out; 566 567 eb = path->nodes[level]; 568 while (!eb) { 569 if (WARN_ON(!level)) { 570 ret = 1; 571 goto out; 572 } 573 level--; 574 eb = path->nodes[level]; 575 } 576 577 ret = add_all_parents(root, path, parents, ref, level, time_seq, 578 extent_item_pos, total_refs, ignore_offset); 579 out: 580 path->lowest_level = 0; 581 btrfs_release_path(path); 582 return ret; 583 } 584 585 static struct extent_inode_elem * 586 unode_aux_to_inode_list(struct ulist_node *node) 587 { 588 if (!node) 589 return NULL; 590 return (struct extent_inode_elem *)(uintptr_t)node->aux; 591 } 592 593 /* 594 * We maintain three separate rbtrees: one for direct refs, one for 595 * indirect refs which have a key, and one for indirect refs which do not 596 * have a key. Each tree does merge on insertion. 597 * 598 * Once all of the references are located, we iterate over the tree of 599 * indirect refs with missing keys. An appropriate key is located and 600 * the ref is moved onto the tree for indirect refs. After all missing 601 * keys are thus located, we iterate over the indirect ref tree, resolve 602 * each reference, and then insert the resolved reference onto the 603 * direct tree (merging there too). 604 * 605 * New backrefs (i.e., for parent nodes) are added to the appropriate 606 * rbtree as they are encountered. The new backrefs are subsequently 607 * resolved as above. 608 */ 609 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 610 struct btrfs_path *path, u64 time_seq, 611 struct preftrees *preftrees, 612 const u64 *extent_item_pos, u64 total_refs, 613 struct share_check *sc, bool ignore_offset) 614 { 615 int err; 616 int ret = 0; 617 struct ulist *parents; 618 struct ulist_node *node; 619 struct ulist_iterator uiter; 620 struct rb_node *rnode; 621 622 parents = ulist_alloc(GFP_NOFS); 623 if (!parents) 624 return -ENOMEM; 625 626 /* 627 * We could trade memory usage for performance here by iterating 628 * the tree, allocating new refs for each insertion, and then 629 * freeing the entire indirect tree when we're done. In some test 630 * cases, the tree can grow quite large (~200k objects). 631 */ 632 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 633 struct prelim_ref *ref; 634 635 ref = rb_entry(rnode, struct prelim_ref, rbnode); 636 if (WARN(ref->parent, 637 "BUG: direct ref found in indirect tree")) { 638 ret = -EINVAL; 639 goto out; 640 } 641 642 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 643 preftrees->indirect.count--; 644 645 if (ref->count == 0) { 646 free_pref(ref); 647 continue; 648 } 649 650 if (sc && sc->root_objectid && 651 ref->root_id != sc->root_objectid) { 652 free_pref(ref); 653 ret = BACKREF_FOUND_SHARED; 654 goto out; 655 } 656 err = resolve_indirect_ref(fs_info, path, time_seq, ref, 657 parents, extent_item_pos, 658 total_refs, ignore_offset); 659 /* 660 * we can only tolerate ENOENT,otherwise,we should catch error 661 * and return directly. 662 */ 663 if (err == -ENOENT) { 664 prelim_ref_insert(fs_info, &preftrees->direct, ref, 665 NULL); 666 continue; 667 } else if (err) { 668 free_pref(ref); 669 ret = err; 670 goto out; 671 } 672 673 /* we put the first parent into the ref at hand */ 674 ULIST_ITER_INIT(&uiter); 675 node = ulist_next(parents, &uiter); 676 ref->parent = node ? node->val : 0; 677 ref->inode_list = unode_aux_to_inode_list(node); 678 679 /* Add a prelim_ref(s) for any other parent(s). */ 680 while ((node = ulist_next(parents, &uiter))) { 681 struct prelim_ref *new_ref; 682 683 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 684 GFP_NOFS); 685 if (!new_ref) { 686 free_pref(ref); 687 ret = -ENOMEM; 688 goto out; 689 } 690 memcpy(new_ref, ref, sizeof(*ref)); 691 new_ref->parent = node->val; 692 new_ref->inode_list = unode_aux_to_inode_list(node); 693 prelim_ref_insert(fs_info, &preftrees->direct, 694 new_ref, NULL); 695 } 696 697 /* 698 * Now it's a direct ref, put it in the direct tree. We must 699 * do this last because the ref could be merged/freed here. 700 */ 701 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 702 703 ulist_reinit(parents); 704 cond_resched(); 705 } 706 out: 707 ulist_free(parents); 708 return ret; 709 } 710 711 /* 712 * read tree blocks and add keys where required. 713 */ 714 static int add_missing_keys(struct btrfs_fs_info *fs_info, 715 struct preftrees *preftrees, bool lock) 716 { 717 struct prelim_ref *ref; 718 struct extent_buffer *eb; 719 struct preftree *tree = &preftrees->indirect_missing_keys; 720 struct rb_node *node; 721 722 while ((node = rb_first_cached(&tree->root))) { 723 ref = rb_entry(node, struct prelim_ref, rbnode); 724 rb_erase_cached(node, &tree->root); 725 726 BUG_ON(ref->parent); /* should not be a direct ref */ 727 BUG_ON(ref->key_for_search.type); 728 BUG_ON(!ref->wanted_disk_byte); 729 730 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0, 731 ref->level - 1, NULL); 732 if (IS_ERR(eb)) { 733 free_pref(ref); 734 return PTR_ERR(eb); 735 } else if (!extent_buffer_uptodate(eb)) { 736 free_pref(ref); 737 free_extent_buffer(eb); 738 return -EIO; 739 } 740 if (lock) 741 btrfs_tree_read_lock(eb); 742 if (btrfs_header_level(eb) == 0) 743 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 744 else 745 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 746 if (lock) 747 btrfs_tree_read_unlock(eb); 748 free_extent_buffer(eb); 749 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 750 cond_resched(); 751 } 752 return 0; 753 } 754 755 /* 756 * add all currently queued delayed refs from this head whose seq nr is 757 * smaller or equal that seq to the list 758 */ 759 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 760 struct btrfs_delayed_ref_head *head, u64 seq, 761 struct preftrees *preftrees, u64 *total_refs, 762 struct share_check *sc) 763 { 764 struct btrfs_delayed_ref_node *node; 765 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 766 struct btrfs_key key; 767 struct btrfs_key tmp_op_key; 768 struct rb_node *n; 769 int count; 770 int ret = 0; 771 772 if (extent_op && extent_op->update_key) 773 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); 774 775 spin_lock(&head->lock); 776 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 777 node = rb_entry(n, struct btrfs_delayed_ref_node, 778 ref_node); 779 if (node->seq > seq) 780 continue; 781 782 switch (node->action) { 783 case BTRFS_ADD_DELAYED_EXTENT: 784 case BTRFS_UPDATE_DELAYED_HEAD: 785 WARN_ON(1); 786 continue; 787 case BTRFS_ADD_DELAYED_REF: 788 count = node->ref_mod; 789 break; 790 case BTRFS_DROP_DELAYED_REF: 791 count = node->ref_mod * -1; 792 break; 793 default: 794 BUG_ON(1); 795 } 796 *total_refs += count; 797 switch (node->type) { 798 case BTRFS_TREE_BLOCK_REF_KEY: { 799 /* NORMAL INDIRECT METADATA backref */ 800 struct btrfs_delayed_tree_ref *ref; 801 802 ref = btrfs_delayed_node_to_tree_ref(node); 803 ret = add_indirect_ref(fs_info, preftrees, ref->root, 804 &tmp_op_key, ref->level + 1, 805 node->bytenr, count, sc, 806 GFP_ATOMIC); 807 break; 808 } 809 case BTRFS_SHARED_BLOCK_REF_KEY: { 810 /* SHARED DIRECT METADATA backref */ 811 struct btrfs_delayed_tree_ref *ref; 812 813 ref = btrfs_delayed_node_to_tree_ref(node); 814 815 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 816 ref->parent, node->bytenr, count, 817 sc, GFP_ATOMIC); 818 break; 819 } 820 case BTRFS_EXTENT_DATA_REF_KEY: { 821 /* NORMAL INDIRECT DATA backref */ 822 struct btrfs_delayed_data_ref *ref; 823 ref = btrfs_delayed_node_to_data_ref(node); 824 825 key.objectid = ref->objectid; 826 key.type = BTRFS_EXTENT_DATA_KEY; 827 key.offset = ref->offset; 828 829 /* 830 * Found a inum that doesn't match our known inum, we 831 * know it's shared. 832 */ 833 if (sc && sc->inum && ref->objectid != sc->inum) { 834 ret = BACKREF_FOUND_SHARED; 835 goto out; 836 } 837 838 ret = add_indirect_ref(fs_info, preftrees, ref->root, 839 &key, 0, node->bytenr, count, sc, 840 GFP_ATOMIC); 841 break; 842 } 843 case BTRFS_SHARED_DATA_REF_KEY: { 844 /* SHARED DIRECT FULL backref */ 845 struct btrfs_delayed_data_ref *ref; 846 847 ref = btrfs_delayed_node_to_data_ref(node); 848 849 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 850 node->bytenr, count, sc, 851 GFP_ATOMIC); 852 break; 853 } 854 default: 855 WARN_ON(1); 856 } 857 /* 858 * We must ignore BACKREF_FOUND_SHARED until all delayed 859 * refs have been checked. 860 */ 861 if (ret && (ret != BACKREF_FOUND_SHARED)) 862 break; 863 } 864 if (!ret) 865 ret = extent_is_shared(sc); 866 out: 867 spin_unlock(&head->lock); 868 return ret; 869 } 870 871 /* 872 * add all inline backrefs for bytenr to the list 873 * 874 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 875 */ 876 static int add_inline_refs(const struct btrfs_fs_info *fs_info, 877 struct btrfs_path *path, u64 bytenr, 878 int *info_level, struct preftrees *preftrees, 879 u64 *total_refs, struct share_check *sc) 880 { 881 int ret = 0; 882 int slot; 883 struct extent_buffer *leaf; 884 struct btrfs_key key; 885 struct btrfs_key found_key; 886 unsigned long ptr; 887 unsigned long end; 888 struct btrfs_extent_item *ei; 889 u64 flags; 890 u64 item_size; 891 892 /* 893 * enumerate all inline refs 894 */ 895 leaf = path->nodes[0]; 896 slot = path->slots[0]; 897 898 item_size = btrfs_item_size_nr(leaf, slot); 899 BUG_ON(item_size < sizeof(*ei)); 900 901 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 902 flags = btrfs_extent_flags(leaf, ei); 903 *total_refs += btrfs_extent_refs(leaf, ei); 904 btrfs_item_key_to_cpu(leaf, &found_key, slot); 905 906 ptr = (unsigned long)(ei + 1); 907 end = (unsigned long)ei + item_size; 908 909 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 910 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 911 struct btrfs_tree_block_info *info; 912 913 info = (struct btrfs_tree_block_info *)ptr; 914 *info_level = btrfs_tree_block_level(leaf, info); 915 ptr += sizeof(struct btrfs_tree_block_info); 916 BUG_ON(ptr > end); 917 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 918 *info_level = found_key.offset; 919 } else { 920 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 921 } 922 923 while (ptr < end) { 924 struct btrfs_extent_inline_ref *iref; 925 u64 offset; 926 int type; 927 928 iref = (struct btrfs_extent_inline_ref *)ptr; 929 type = btrfs_get_extent_inline_ref_type(leaf, iref, 930 BTRFS_REF_TYPE_ANY); 931 if (type == BTRFS_REF_TYPE_INVALID) 932 return -EUCLEAN; 933 934 offset = btrfs_extent_inline_ref_offset(leaf, iref); 935 936 switch (type) { 937 case BTRFS_SHARED_BLOCK_REF_KEY: 938 ret = add_direct_ref(fs_info, preftrees, 939 *info_level + 1, offset, 940 bytenr, 1, NULL, GFP_NOFS); 941 break; 942 case BTRFS_SHARED_DATA_REF_KEY: { 943 struct btrfs_shared_data_ref *sdref; 944 int count; 945 946 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 947 count = btrfs_shared_data_ref_count(leaf, sdref); 948 949 ret = add_direct_ref(fs_info, preftrees, 0, offset, 950 bytenr, count, sc, GFP_NOFS); 951 break; 952 } 953 case BTRFS_TREE_BLOCK_REF_KEY: 954 ret = add_indirect_ref(fs_info, preftrees, offset, 955 NULL, *info_level + 1, 956 bytenr, 1, NULL, GFP_NOFS); 957 break; 958 case BTRFS_EXTENT_DATA_REF_KEY: { 959 struct btrfs_extent_data_ref *dref; 960 int count; 961 u64 root; 962 963 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 964 count = btrfs_extent_data_ref_count(leaf, dref); 965 key.objectid = btrfs_extent_data_ref_objectid(leaf, 966 dref); 967 key.type = BTRFS_EXTENT_DATA_KEY; 968 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 969 970 if (sc && sc->inum && key.objectid != sc->inum) { 971 ret = BACKREF_FOUND_SHARED; 972 break; 973 } 974 975 root = btrfs_extent_data_ref_root(leaf, dref); 976 977 ret = add_indirect_ref(fs_info, preftrees, root, 978 &key, 0, bytenr, count, 979 sc, GFP_NOFS); 980 break; 981 } 982 default: 983 WARN_ON(1); 984 } 985 if (ret) 986 return ret; 987 ptr += btrfs_extent_inline_ref_size(type); 988 } 989 990 return 0; 991 } 992 993 /* 994 * add all non-inline backrefs for bytenr to the list 995 * 996 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 997 */ 998 static int add_keyed_refs(struct btrfs_fs_info *fs_info, 999 struct btrfs_path *path, u64 bytenr, 1000 int info_level, struct preftrees *preftrees, 1001 struct share_check *sc) 1002 { 1003 struct btrfs_root *extent_root = fs_info->extent_root; 1004 int ret; 1005 int slot; 1006 struct extent_buffer *leaf; 1007 struct btrfs_key key; 1008 1009 while (1) { 1010 ret = btrfs_next_item(extent_root, path); 1011 if (ret < 0) 1012 break; 1013 if (ret) { 1014 ret = 0; 1015 break; 1016 } 1017 1018 slot = path->slots[0]; 1019 leaf = path->nodes[0]; 1020 btrfs_item_key_to_cpu(leaf, &key, slot); 1021 1022 if (key.objectid != bytenr) 1023 break; 1024 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1025 continue; 1026 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1027 break; 1028 1029 switch (key.type) { 1030 case BTRFS_SHARED_BLOCK_REF_KEY: 1031 /* SHARED DIRECT METADATA backref */ 1032 ret = add_direct_ref(fs_info, preftrees, 1033 info_level + 1, key.offset, 1034 bytenr, 1, NULL, GFP_NOFS); 1035 break; 1036 case BTRFS_SHARED_DATA_REF_KEY: { 1037 /* SHARED DIRECT FULL backref */ 1038 struct btrfs_shared_data_ref *sdref; 1039 int count; 1040 1041 sdref = btrfs_item_ptr(leaf, slot, 1042 struct btrfs_shared_data_ref); 1043 count = btrfs_shared_data_ref_count(leaf, sdref); 1044 ret = add_direct_ref(fs_info, preftrees, 0, 1045 key.offset, bytenr, count, 1046 sc, GFP_NOFS); 1047 break; 1048 } 1049 case BTRFS_TREE_BLOCK_REF_KEY: 1050 /* NORMAL INDIRECT METADATA backref */ 1051 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1052 NULL, info_level + 1, bytenr, 1053 1, NULL, GFP_NOFS); 1054 break; 1055 case BTRFS_EXTENT_DATA_REF_KEY: { 1056 /* NORMAL INDIRECT DATA backref */ 1057 struct btrfs_extent_data_ref *dref; 1058 int count; 1059 u64 root; 1060 1061 dref = btrfs_item_ptr(leaf, slot, 1062 struct btrfs_extent_data_ref); 1063 count = btrfs_extent_data_ref_count(leaf, dref); 1064 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1065 dref); 1066 key.type = BTRFS_EXTENT_DATA_KEY; 1067 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1068 1069 if (sc && sc->inum && key.objectid != sc->inum) { 1070 ret = BACKREF_FOUND_SHARED; 1071 break; 1072 } 1073 1074 root = btrfs_extent_data_ref_root(leaf, dref); 1075 ret = add_indirect_ref(fs_info, preftrees, root, 1076 &key, 0, bytenr, count, 1077 sc, GFP_NOFS); 1078 break; 1079 } 1080 default: 1081 WARN_ON(1); 1082 } 1083 if (ret) 1084 return ret; 1085 1086 } 1087 1088 return ret; 1089 } 1090 1091 /* 1092 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1093 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1094 * indirect refs to their parent bytenr. 1095 * When roots are found, they're added to the roots list 1096 * 1097 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave 1098 * much like trans == NULL case, the difference only lies in it will not 1099 * commit root. 1100 * The special case is for qgroup to search roots in commit_transaction(). 1101 * 1102 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1103 * shared extent is detected. 1104 * 1105 * Otherwise this returns 0 for success and <0 for an error. 1106 * 1107 * If ignore_offset is set to false, only extent refs whose offsets match 1108 * extent_item_pos are returned. If true, every extent ref is returned 1109 * and extent_item_pos is ignored. 1110 * 1111 * FIXME some caching might speed things up 1112 */ 1113 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1114 struct btrfs_fs_info *fs_info, u64 bytenr, 1115 u64 time_seq, struct ulist *refs, 1116 struct ulist *roots, const u64 *extent_item_pos, 1117 struct share_check *sc, bool ignore_offset) 1118 { 1119 struct btrfs_key key; 1120 struct btrfs_path *path; 1121 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1122 struct btrfs_delayed_ref_head *head; 1123 int info_level = 0; 1124 int ret; 1125 struct prelim_ref *ref; 1126 struct rb_node *node; 1127 struct extent_inode_elem *eie = NULL; 1128 /* total of both direct AND indirect refs! */ 1129 u64 total_refs = 0; 1130 struct preftrees preftrees = { 1131 .direct = PREFTREE_INIT, 1132 .indirect = PREFTREE_INIT, 1133 .indirect_missing_keys = PREFTREE_INIT 1134 }; 1135 1136 key.objectid = bytenr; 1137 key.offset = (u64)-1; 1138 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1139 key.type = BTRFS_METADATA_ITEM_KEY; 1140 else 1141 key.type = BTRFS_EXTENT_ITEM_KEY; 1142 1143 path = btrfs_alloc_path(); 1144 if (!path) 1145 return -ENOMEM; 1146 if (!trans) { 1147 path->search_commit_root = 1; 1148 path->skip_locking = 1; 1149 } 1150 1151 if (time_seq == SEQ_LAST) 1152 path->skip_locking = 1; 1153 1154 /* 1155 * grab both a lock on the path and a lock on the delayed ref head. 1156 * We need both to get a consistent picture of how the refs look 1157 * at a specified point in time 1158 */ 1159 again: 1160 head = NULL; 1161 1162 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 1163 if (ret < 0) 1164 goto out; 1165 BUG_ON(ret == 0); 1166 1167 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1168 if (trans && likely(trans->type != __TRANS_DUMMY) && 1169 time_seq != SEQ_LAST) { 1170 #else 1171 if (trans && time_seq != SEQ_LAST) { 1172 #endif 1173 /* 1174 * look if there are updates for this ref queued and lock the 1175 * head 1176 */ 1177 delayed_refs = &trans->transaction->delayed_refs; 1178 spin_lock(&delayed_refs->lock); 1179 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1180 if (head) { 1181 if (!mutex_trylock(&head->mutex)) { 1182 refcount_inc(&head->refs); 1183 spin_unlock(&delayed_refs->lock); 1184 1185 btrfs_release_path(path); 1186 1187 /* 1188 * Mutex was contended, block until it's 1189 * released and try again 1190 */ 1191 mutex_lock(&head->mutex); 1192 mutex_unlock(&head->mutex); 1193 btrfs_put_delayed_ref_head(head); 1194 goto again; 1195 } 1196 spin_unlock(&delayed_refs->lock); 1197 ret = add_delayed_refs(fs_info, head, time_seq, 1198 &preftrees, &total_refs, sc); 1199 mutex_unlock(&head->mutex); 1200 if (ret) 1201 goto out; 1202 } else { 1203 spin_unlock(&delayed_refs->lock); 1204 } 1205 } 1206 1207 if (path->slots[0]) { 1208 struct extent_buffer *leaf; 1209 int slot; 1210 1211 path->slots[0]--; 1212 leaf = path->nodes[0]; 1213 slot = path->slots[0]; 1214 btrfs_item_key_to_cpu(leaf, &key, slot); 1215 if (key.objectid == bytenr && 1216 (key.type == BTRFS_EXTENT_ITEM_KEY || 1217 key.type == BTRFS_METADATA_ITEM_KEY)) { 1218 ret = add_inline_refs(fs_info, path, bytenr, 1219 &info_level, &preftrees, 1220 &total_refs, sc); 1221 if (ret) 1222 goto out; 1223 ret = add_keyed_refs(fs_info, path, bytenr, info_level, 1224 &preftrees, sc); 1225 if (ret) 1226 goto out; 1227 } 1228 } 1229 1230 btrfs_release_path(path); 1231 1232 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0); 1233 if (ret) 1234 goto out; 1235 1236 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1237 1238 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1239 extent_item_pos, total_refs, sc, ignore_offset); 1240 if (ret) 1241 goto out; 1242 1243 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1244 1245 /* 1246 * This walks the tree of merged and resolved refs. Tree blocks are 1247 * read in as needed. Unique entries are added to the ulist, and 1248 * the list of found roots is updated. 1249 * 1250 * We release the entire tree in one go before returning. 1251 */ 1252 node = rb_first_cached(&preftrees.direct.root); 1253 while (node) { 1254 ref = rb_entry(node, struct prelim_ref, rbnode); 1255 node = rb_next(&ref->rbnode); 1256 /* 1257 * ref->count < 0 can happen here if there are delayed 1258 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1259 * prelim_ref_insert() relies on this when merging 1260 * identical refs to keep the overall count correct. 1261 * prelim_ref_insert() will merge only those refs 1262 * which compare identically. Any refs having 1263 * e.g. different offsets would not be merged, 1264 * and would retain their original ref->count < 0. 1265 */ 1266 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1267 if (sc && sc->root_objectid && 1268 ref->root_id != sc->root_objectid) { 1269 ret = BACKREF_FOUND_SHARED; 1270 goto out; 1271 } 1272 1273 /* no parent == root of tree */ 1274 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1275 if (ret < 0) 1276 goto out; 1277 } 1278 if (ref->count && ref->parent) { 1279 if (extent_item_pos && !ref->inode_list && 1280 ref->level == 0) { 1281 struct extent_buffer *eb; 1282 1283 eb = read_tree_block(fs_info, ref->parent, 0, 1284 ref->level, NULL); 1285 if (IS_ERR(eb)) { 1286 ret = PTR_ERR(eb); 1287 goto out; 1288 } else if (!extent_buffer_uptodate(eb)) { 1289 free_extent_buffer(eb); 1290 ret = -EIO; 1291 goto out; 1292 } 1293 1294 if (!path->skip_locking) { 1295 btrfs_tree_read_lock(eb); 1296 btrfs_set_lock_blocking_read(eb); 1297 } 1298 ret = find_extent_in_eb(eb, bytenr, 1299 *extent_item_pos, &eie, ignore_offset); 1300 if (!path->skip_locking) 1301 btrfs_tree_read_unlock_blocking(eb); 1302 free_extent_buffer(eb); 1303 if (ret < 0) 1304 goto out; 1305 ref->inode_list = eie; 1306 } 1307 ret = ulist_add_merge_ptr(refs, ref->parent, 1308 ref->inode_list, 1309 (void **)&eie, GFP_NOFS); 1310 if (ret < 0) 1311 goto out; 1312 if (!ret && extent_item_pos) { 1313 /* 1314 * we've recorded that parent, so we must extend 1315 * its inode list here 1316 */ 1317 BUG_ON(!eie); 1318 while (eie->next) 1319 eie = eie->next; 1320 eie->next = ref->inode_list; 1321 } 1322 eie = NULL; 1323 } 1324 cond_resched(); 1325 } 1326 1327 out: 1328 btrfs_free_path(path); 1329 1330 prelim_release(&preftrees.direct); 1331 prelim_release(&preftrees.indirect); 1332 prelim_release(&preftrees.indirect_missing_keys); 1333 1334 if (ret < 0) 1335 free_inode_elem_list(eie); 1336 return ret; 1337 } 1338 1339 static void free_leaf_list(struct ulist *blocks) 1340 { 1341 struct ulist_node *node = NULL; 1342 struct extent_inode_elem *eie; 1343 struct ulist_iterator uiter; 1344 1345 ULIST_ITER_INIT(&uiter); 1346 while ((node = ulist_next(blocks, &uiter))) { 1347 if (!node->aux) 1348 continue; 1349 eie = unode_aux_to_inode_list(node); 1350 free_inode_elem_list(eie); 1351 node->aux = 0; 1352 } 1353 1354 ulist_free(blocks); 1355 } 1356 1357 /* 1358 * Finds all leafs with a reference to the specified combination of bytenr and 1359 * offset. key_list_head will point to a list of corresponding keys (caller must 1360 * free each list element). The leafs will be stored in the leafs ulist, which 1361 * must be freed with ulist_free. 1362 * 1363 * returns 0 on success, <0 on error 1364 */ 1365 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1366 struct btrfs_fs_info *fs_info, u64 bytenr, 1367 u64 time_seq, struct ulist **leafs, 1368 const u64 *extent_item_pos, bool ignore_offset) 1369 { 1370 int ret; 1371 1372 *leafs = ulist_alloc(GFP_NOFS); 1373 if (!*leafs) 1374 return -ENOMEM; 1375 1376 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1377 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1378 if (ret < 0 && ret != -ENOENT) { 1379 free_leaf_list(*leafs); 1380 return ret; 1381 } 1382 1383 return 0; 1384 } 1385 1386 /* 1387 * walk all backrefs for a given extent to find all roots that reference this 1388 * extent. Walking a backref means finding all extents that reference this 1389 * extent and in turn walk the backrefs of those, too. Naturally this is a 1390 * recursive process, but here it is implemented in an iterative fashion: We 1391 * find all referencing extents for the extent in question and put them on a 1392 * list. In turn, we find all referencing extents for those, further appending 1393 * to the list. The way we iterate the list allows adding more elements after 1394 * the current while iterating. The process stops when we reach the end of the 1395 * list. Found roots are added to the roots list. 1396 * 1397 * returns 0 on success, < 0 on error. 1398 */ 1399 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1400 struct btrfs_fs_info *fs_info, u64 bytenr, 1401 u64 time_seq, struct ulist **roots, 1402 bool ignore_offset) 1403 { 1404 struct ulist *tmp; 1405 struct ulist_node *node = NULL; 1406 struct ulist_iterator uiter; 1407 int ret; 1408 1409 tmp = ulist_alloc(GFP_NOFS); 1410 if (!tmp) 1411 return -ENOMEM; 1412 *roots = ulist_alloc(GFP_NOFS); 1413 if (!*roots) { 1414 ulist_free(tmp); 1415 return -ENOMEM; 1416 } 1417 1418 ULIST_ITER_INIT(&uiter); 1419 while (1) { 1420 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1421 tmp, *roots, NULL, NULL, ignore_offset); 1422 if (ret < 0 && ret != -ENOENT) { 1423 ulist_free(tmp); 1424 ulist_free(*roots); 1425 return ret; 1426 } 1427 node = ulist_next(tmp, &uiter); 1428 if (!node) 1429 break; 1430 bytenr = node->val; 1431 cond_resched(); 1432 } 1433 1434 ulist_free(tmp); 1435 return 0; 1436 } 1437 1438 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1439 struct btrfs_fs_info *fs_info, u64 bytenr, 1440 u64 time_seq, struct ulist **roots, 1441 bool ignore_offset) 1442 { 1443 int ret; 1444 1445 if (!trans) 1446 down_read(&fs_info->commit_root_sem); 1447 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1448 time_seq, roots, ignore_offset); 1449 if (!trans) 1450 up_read(&fs_info->commit_root_sem); 1451 return ret; 1452 } 1453 1454 /** 1455 * btrfs_check_shared - tell us whether an extent is shared 1456 * 1457 * btrfs_check_shared uses the backref walking code but will short 1458 * circuit as soon as it finds a root or inode that doesn't match the 1459 * one passed in. This provides a significant performance benefit for 1460 * callers (such as fiemap) which want to know whether the extent is 1461 * shared but do not need a ref count. 1462 * 1463 * This attempts to allocate a transaction in order to account for 1464 * delayed refs, but continues on even when the alloc fails. 1465 * 1466 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1467 */ 1468 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr) 1469 { 1470 struct btrfs_fs_info *fs_info = root->fs_info; 1471 struct btrfs_trans_handle *trans; 1472 struct ulist *tmp = NULL; 1473 struct ulist *roots = NULL; 1474 struct ulist_iterator uiter; 1475 struct ulist_node *node; 1476 struct seq_list elem = SEQ_LIST_INIT(elem); 1477 int ret = 0; 1478 struct share_check shared = { 1479 .root_objectid = root->root_key.objectid, 1480 .inum = inum, 1481 .share_count = 0, 1482 }; 1483 1484 tmp = ulist_alloc(GFP_NOFS); 1485 roots = ulist_alloc(GFP_NOFS); 1486 if (!tmp || !roots) { 1487 ulist_free(tmp); 1488 ulist_free(roots); 1489 return -ENOMEM; 1490 } 1491 1492 trans = btrfs_join_transaction(root); 1493 if (IS_ERR(trans)) { 1494 trans = NULL; 1495 down_read(&fs_info->commit_root_sem); 1496 } else { 1497 btrfs_get_tree_mod_seq(fs_info, &elem); 1498 } 1499 1500 ULIST_ITER_INIT(&uiter); 1501 while (1) { 1502 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1503 roots, NULL, &shared, false); 1504 if (ret == BACKREF_FOUND_SHARED) { 1505 /* this is the only condition under which we return 1 */ 1506 ret = 1; 1507 break; 1508 } 1509 if (ret < 0 && ret != -ENOENT) 1510 break; 1511 ret = 0; 1512 node = ulist_next(tmp, &uiter); 1513 if (!node) 1514 break; 1515 bytenr = node->val; 1516 shared.share_count = 0; 1517 cond_resched(); 1518 } 1519 1520 if (trans) { 1521 btrfs_put_tree_mod_seq(fs_info, &elem); 1522 btrfs_end_transaction(trans); 1523 } else { 1524 up_read(&fs_info->commit_root_sem); 1525 } 1526 ulist_free(tmp); 1527 ulist_free(roots); 1528 return ret; 1529 } 1530 1531 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1532 u64 start_off, struct btrfs_path *path, 1533 struct btrfs_inode_extref **ret_extref, 1534 u64 *found_off) 1535 { 1536 int ret, slot; 1537 struct btrfs_key key; 1538 struct btrfs_key found_key; 1539 struct btrfs_inode_extref *extref; 1540 const struct extent_buffer *leaf; 1541 unsigned long ptr; 1542 1543 key.objectid = inode_objectid; 1544 key.type = BTRFS_INODE_EXTREF_KEY; 1545 key.offset = start_off; 1546 1547 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1548 if (ret < 0) 1549 return ret; 1550 1551 while (1) { 1552 leaf = path->nodes[0]; 1553 slot = path->slots[0]; 1554 if (slot >= btrfs_header_nritems(leaf)) { 1555 /* 1556 * If the item at offset is not found, 1557 * btrfs_search_slot will point us to the slot 1558 * where it should be inserted. In our case 1559 * that will be the slot directly before the 1560 * next INODE_REF_KEY_V2 item. In the case 1561 * that we're pointing to the last slot in a 1562 * leaf, we must move one leaf over. 1563 */ 1564 ret = btrfs_next_leaf(root, path); 1565 if (ret) { 1566 if (ret >= 1) 1567 ret = -ENOENT; 1568 break; 1569 } 1570 continue; 1571 } 1572 1573 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1574 1575 /* 1576 * Check that we're still looking at an extended ref key for 1577 * this particular objectid. If we have different 1578 * objectid or type then there are no more to be found 1579 * in the tree and we can exit. 1580 */ 1581 ret = -ENOENT; 1582 if (found_key.objectid != inode_objectid) 1583 break; 1584 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1585 break; 1586 1587 ret = 0; 1588 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1589 extref = (struct btrfs_inode_extref *)ptr; 1590 *ret_extref = extref; 1591 if (found_off) 1592 *found_off = found_key.offset; 1593 break; 1594 } 1595 1596 return ret; 1597 } 1598 1599 /* 1600 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1601 * Elements of the path are separated by '/' and the path is guaranteed to be 1602 * 0-terminated. the path is only given within the current file system. 1603 * Therefore, it never starts with a '/'. the caller is responsible to provide 1604 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1605 * the start point of the resulting string is returned. this pointer is within 1606 * dest, normally. 1607 * in case the path buffer would overflow, the pointer is decremented further 1608 * as if output was written to the buffer, though no more output is actually 1609 * generated. that way, the caller can determine how much space would be 1610 * required for the path to fit into the buffer. in that case, the returned 1611 * value will be smaller than dest. callers must check this! 1612 */ 1613 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1614 u32 name_len, unsigned long name_off, 1615 struct extent_buffer *eb_in, u64 parent, 1616 char *dest, u32 size) 1617 { 1618 int slot; 1619 u64 next_inum; 1620 int ret; 1621 s64 bytes_left = ((s64)size) - 1; 1622 struct extent_buffer *eb = eb_in; 1623 struct btrfs_key found_key; 1624 int leave_spinning = path->leave_spinning; 1625 struct btrfs_inode_ref *iref; 1626 1627 if (bytes_left >= 0) 1628 dest[bytes_left] = '\0'; 1629 1630 path->leave_spinning = 1; 1631 while (1) { 1632 bytes_left -= name_len; 1633 if (bytes_left >= 0) 1634 read_extent_buffer(eb, dest + bytes_left, 1635 name_off, name_len); 1636 if (eb != eb_in) { 1637 if (!path->skip_locking) 1638 btrfs_tree_read_unlock_blocking(eb); 1639 free_extent_buffer(eb); 1640 } 1641 ret = btrfs_find_item(fs_root, path, parent, 0, 1642 BTRFS_INODE_REF_KEY, &found_key); 1643 if (ret > 0) 1644 ret = -ENOENT; 1645 if (ret) 1646 break; 1647 1648 next_inum = found_key.offset; 1649 1650 /* regular exit ahead */ 1651 if (parent == next_inum) 1652 break; 1653 1654 slot = path->slots[0]; 1655 eb = path->nodes[0]; 1656 /* make sure we can use eb after releasing the path */ 1657 if (eb != eb_in) { 1658 if (!path->skip_locking) 1659 btrfs_set_lock_blocking_read(eb); 1660 path->nodes[0] = NULL; 1661 path->locks[0] = 0; 1662 } 1663 btrfs_release_path(path); 1664 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1665 1666 name_len = btrfs_inode_ref_name_len(eb, iref); 1667 name_off = (unsigned long)(iref + 1); 1668 1669 parent = next_inum; 1670 --bytes_left; 1671 if (bytes_left >= 0) 1672 dest[bytes_left] = '/'; 1673 } 1674 1675 btrfs_release_path(path); 1676 path->leave_spinning = leave_spinning; 1677 1678 if (ret) 1679 return ERR_PTR(ret); 1680 1681 return dest + bytes_left; 1682 } 1683 1684 /* 1685 * this makes the path point to (logical EXTENT_ITEM *) 1686 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1687 * tree blocks and <0 on error. 1688 */ 1689 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1690 struct btrfs_path *path, struct btrfs_key *found_key, 1691 u64 *flags_ret) 1692 { 1693 int ret; 1694 u64 flags; 1695 u64 size = 0; 1696 u32 item_size; 1697 const struct extent_buffer *eb; 1698 struct btrfs_extent_item *ei; 1699 struct btrfs_key key; 1700 1701 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1702 key.type = BTRFS_METADATA_ITEM_KEY; 1703 else 1704 key.type = BTRFS_EXTENT_ITEM_KEY; 1705 key.objectid = logical; 1706 key.offset = (u64)-1; 1707 1708 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1709 if (ret < 0) 1710 return ret; 1711 1712 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1713 if (ret) { 1714 if (ret > 0) 1715 ret = -ENOENT; 1716 return ret; 1717 } 1718 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1719 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1720 size = fs_info->nodesize; 1721 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1722 size = found_key->offset; 1723 1724 if (found_key->objectid > logical || 1725 found_key->objectid + size <= logical) { 1726 btrfs_debug(fs_info, 1727 "logical %llu is not within any extent", logical); 1728 return -ENOENT; 1729 } 1730 1731 eb = path->nodes[0]; 1732 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1733 BUG_ON(item_size < sizeof(*ei)); 1734 1735 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1736 flags = btrfs_extent_flags(eb, ei); 1737 1738 btrfs_debug(fs_info, 1739 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1740 logical, logical - found_key->objectid, found_key->objectid, 1741 found_key->offset, flags, item_size); 1742 1743 WARN_ON(!flags_ret); 1744 if (flags_ret) { 1745 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1746 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1747 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1748 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1749 else 1750 BUG_ON(1); 1751 return 0; 1752 } 1753 1754 return -EIO; 1755 } 1756 1757 /* 1758 * helper function to iterate extent inline refs. ptr must point to a 0 value 1759 * for the first call and may be modified. it is used to track state. 1760 * if more refs exist, 0 is returned and the next call to 1761 * get_extent_inline_ref must pass the modified ptr parameter to get the 1762 * next ref. after the last ref was processed, 1 is returned. 1763 * returns <0 on error 1764 */ 1765 static int get_extent_inline_ref(unsigned long *ptr, 1766 const struct extent_buffer *eb, 1767 const struct btrfs_key *key, 1768 const struct btrfs_extent_item *ei, 1769 u32 item_size, 1770 struct btrfs_extent_inline_ref **out_eiref, 1771 int *out_type) 1772 { 1773 unsigned long end; 1774 u64 flags; 1775 struct btrfs_tree_block_info *info; 1776 1777 if (!*ptr) { 1778 /* first call */ 1779 flags = btrfs_extent_flags(eb, ei); 1780 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1781 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1782 /* a skinny metadata extent */ 1783 *out_eiref = 1784 (struct btrfs_extent_inline_ref *)(ei + 1); 1785 } else { 1786 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1787 info = (struct btrfs_tree_block_info *)(ei + 1); 1788 *out_eiref = 1789 (struct btrfs_extent_inline_ref *)(info + 1); 1790 } 1791 } else { 1792 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1793 } 1794 *ptr = (unsigned long)*out_eiref; 1795 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1796 return -ENOENT; 1797 } 1798 1799 end = (unsigned long)ei + item_size; 1800 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1801 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1802 BTRFS_REF_TYPE_ANY); 1803 if (*out_type == BTRFS_REF_TYPE_INVALID) 1804 return -EUCLEAN; 1805 1806 *ptr += btrfs_extent_inline_ref_size(*out_type); 1807 WARN_ON(*ptr > end); 1808 if (*ptr == end) 1809 return 1; /* last */ 1810 1811 return 0; 1812 } 1813 1814 /* 1815 * reads the tree block backref for an extent. tree level and root are returned 1816 * through out_level and out_root. ptr must point to a 0 value for the first 1817 * call and may be modified (see get_extent_inline_ref comment). 1818 * returns 0 if data was provided, 1 if there was no more data to provide or 1819 * <0 on error. 1820 */ 1821 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1822 struct btrfs_key *key, struct btrfs_extent_item *ei, 1823 u32 item_size, u64 *out_root, u8 *out_level) 1824 { 1825 int ret; 1826 int type; 1827 struct btrfs_extent_inline_ref *eiref; 1828 1829 if (*ptr == (unsigned long)-1) 1830 return 1; 1831 1832 while (1) { 1833 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1834 &eiref, &type); 1835 if (ret < 0) 1836 return ret; 1837 1838 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1839 type == BTRFS_SHARED_BLOCK_REF_KEY) 1840 break; 1841 1842 if (ret == 1) 1843 return 1; 1844 } 1845 1846 /* we can treat both ref types equally here */ 1847 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1848 1849 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1850 struct btrfs_tree_block_info *info; 1851 1852 info = (struct btrfs_tree_block_info *)(ei + 1); 1853 *out_level = btrfs_tree_block_level(eb, info); 1854 } else { 1855 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1856 *out_level = (u8)key->offset; 1857 } 1858 1859 if (ret == 1) 1860 *ptr = (unsigned long)-1; 1861 1862 return 0; 1863 } 1864 1865 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1866 struct extent_inode_elem *inode_list, 1867 u64 root, u64 extent_item_objectid, 1868 iterate_extent_inodes_t *iterate, void *ctx) 1869 { 1870 struct extent_inode_elem *eie; 1871 int ret = 0; 1872 1873 for (eie = inode_list; eie; eie = eie->next) { 1874 btrfs_debug(fs_info, 1875 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1876 extent_item_objectid, eie->inum, 1877 eie->offset, root); 1878 ret = iterate(eie->inum, eie->offset, root, ctx); 1879 if (ret) { 1880 btrfs_debug(fs_info, 1881 "stopping iteration for %llu due to ret=%d", 1882 extent_item_objectid, ret); 1883 break; 1884 } 1885 } 1886 1887 return ret; 1888 } 1889 1890 /* 1891 * calls iterate() for every inode that references the extent identified by 1892 * the given parameters. 1893 * when the iterator function returns a non-zero value, iteration stops. 1894 */ 1895 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1896 u64 extent_item_objectid, u64 extent_item_pos, 1897 int search_commit_root, 1898 iterate_extent_inodes_t *iterate, void *ctx, 1899 bool ignore_offset) 1900 { 1901 int ret; 1902 struct btrfs_trans_handle *trans = NULL; 1903 struct ulist *refs = NULL; 1904 struct ulist *roots = NULL; 1905 struct ulist_node *ref_node = NULL; 1906 struct ulist_node *root_node = NULL; 1907 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 1908 struct ulist_iterator ref_uiter; 1909 struct ulist_iterator root_uiter; 1910 1911 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 1912 extent_item_objectid); 1913 1914 if (!search_commit_root) { 1915 trans = btrfs_join_transaction(fs_info->extent_root); 1916 if (IS_ERR(trans)) 1917 return PTR_ERR(trans); 1918 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1919 } else { 1920 down_read(&fs_info->commit_root_sem); 1921 } 1922 1923 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1924 tree_mod_seq_elem.seq, &refs, 1925 &extent_item_pos, ignore_offset); 1926 if (ret) 1927 goto out; 1928 1929 ULIST_ITER_INIT(&ref_uiter); 1930 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1931 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 1932 tree_mod_seq_elem.seq, &roots, 1933 ignore_offset); 1934 if (ret) 1935 break; 1936 ULIST_ITER_INIT(&root_uiter); 1937 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1938 btrfs_debug(fs_info, 1939 "root %llu references leaf %llu, data list %#llx", 1940 root_node->val, ref_node->val, 1941 ref_node->aux); 1942 ret = iterate_leaf_refs(fs_info, 1943 (struct extent_inode_elem *) 1944 (uintptr_t)ref_node->aux, 1945 root_node->val, 1946 extent_item_objectid, 1947 iterate, ctx); 1948 } 1949 ulist_free(roots); 1950 } 1951 1952 free_leaf_list(refs); 1953 out: 1954 if (!search_commit_root) { 1955 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1956 btrfs_end_transaction(trans); 1957 } else { 1958 up_read(&fs_info->commit_root_sem); 1959 } 1960 1961 return ret; 1962 } 1963 1964 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1965 struct btrfs_path *path, 1966 iterate_extent_inodes_t *iterate, void *ctx, 1967 bool ignore_offset) 1968 { 1969 int ret; 1970 u64 extent_item_pos; 1971 u64 flags = 0; 1972 struct btrfs_key found_key; 1973 int search_commit_root = path->search_commit_root; 1974 1975 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1976 btrfs_release_path(path); 1977 if (ret < 0) 1978 return ret; 1979 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1980 return -EINVAL; 1981 1982 extent_item_pos = logical - found_key.objectid; 1983 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1984 extent_item_pos, search_commit_root, 1985 iterate, ctx, ignore_offset); 1986 1987 return ret; 1988 } 1989 1990 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1991 struct extent_buffer *eb, void *ctx); 1992 1993 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1994 struct btrfs_path *path, 1995 iterate_irefs_t *iterate, void *ctx) 1996 { 1997 int ret = 0; 1998 int slot; 1999 u32 cur; 2000 u32 len; 2001 u32 name_len; 2002 u64 parent = 0; 2003 int found = 0; 2004 struct extent_buffer *eb; 2005 struct btrfs_item *item; 2006 struct btrfs_inode_ref *iref; 2007 struct btrfs_key found_key; 2008 2009 while (!ret) { 2010 ret = btrfs_find_item(fs_root, path, inum, 2011 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2012 &found_key); 2013 2014 if (ret < 0) 2015 break; 2016 if (ret) { 2017 ret = found ? 0 : -ENOENT; 2018 break; 2019 } 2020 ++found; 2021 2022 parent = found_key.offset; 2023 slot = path->slots[0]; 2024 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2025 if (!eb) { 2026 ret = -ENOMEM; 2027 break; 2028 } 2029 btrfs_release_path(path); 2030 2031 item = btrfs_item_nr(slot); 2032 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2033 2034 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 2035 name_len = btrfs_inode_ref_name_len(eb, iref); 2036 /* path must be released before calling iterate()! */ 2037 btrfs_debug(fs_root->fs_info, 2038 "following ref at offset %u for inode %llu in tree %llu", 2039 cur, found_key.objectid, 2040 fs_root->root_key.objectid); 2041 ret = iterate(parent, name_len, 2042 (unsigned long)(iref + 1), eb, ctx); 2043 if (ret) 2044 break; 2045 len = sizeof(*iref) + name_len; 2046 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2047 } 2048 free_extent_buffer(eb); 2049 } 2050 2051 btrfs_release_path(path); 2052 2053 return ret; 2054 } 2055 2056 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2057 struct btrfs_path *path, 2058 iterate_irefs_t *iterate, void *ctx) 2059 { 2060 int ret; 2061 int slot; 2062 u64 offset = 0; 2063 u64 parent; 2064 int found = 0; 2065 struct extent_buffer *eb; 2066 struct btrfs_inode_extref *extref; 2067 u32 item_size; 2068 u32 cur_offset; 2069 unsigned long ptr; 2070 2071 while (1) { 2072 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2073 &offset); 2074 if (ret < 0) 2075 break; 2076 if (ret) { 2077 ret = found ? 0 : -ENOENT; 2078 break; 2079 } 2080 ++found; 2081 2082 slot = path->slots[0]; 2083 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2084 if (!eb) { 2085 ret = -ENOMEM; 2086 break; 2087 } 2088 btrfs_release_path(path); 2089 2090 item_size = btrfs_item_size_nr(eb, slot); 2091 ptr = btrfs_item_ptr_offset(eb, slot); 2092 cur_offset = 0; 2093 2094 while (cur_offset < item_size) { 2095 u32 name_len; 2096 2097 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2098 parent = btrfs_inode_extref_parent(eb, extref); 2099 name_len = btrfs_inode_extref_name_len(eb, extref); 2100 ret = iterate(parent, name_len, 2101 (unsigned long)&extref->name, eb, ctx); 2102 if (ret) 2103 break; 2104 2105 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2106 cur_offset += sizeof(*extref); 2107 } 2108 free_extent_buffer(eb); 2109 2110 offset++; 2111 } 2112 2113 btrfs_release_path(path); 2114 2115 return ret; 2116 } 2117 2118 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2119 struct btrfs_path *path, iterate_irefs_t *iterate, 2120 void *ctx) 2121 { 2122 int ret; 2123 int found_refs = 0; 2124 2125 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2126 if (!ret) 2127 ++found_refs; 2128 else if (ret != -ENOENT) 2129 return ret; 2130 2131 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2132 if (ret == -ENOENT && found_refs) 2133 return 0; 2134 2135 return ret; 2136 } 2137 2138 /* 2139 * returns 0 if the path could be dumped (probably truncated) 2140 * returns <0 in case of an error 2141 */ 2142 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2143 struct extent_buffer *eb, void *ctx) 2144 { 2145 struct inode_fs_paths *ipath = ctx; 2146 char *fspath; 2147 char *fspath_min; 2148 int i = ipath->fspath->elem_cnt; 2149 const int s_ptr = sizeof(char *); 2150 u32 bytes_left; 2151 2152 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2153 ipath->fspath->bytes_left - s_ptr : 0; 2154 2155 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2156 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2157 name_off, eb, inum, fspath_min, bytes_left); 2158 if (IS_ERR(fspath)) 2159 return PTR_ERR(fspath); 2160 2161 if (fspath > fspath_min) { 2162 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2163 ++ipath->fspath->elem_cnt; 2164 ipath->fspath->bytes_left = fspath - fspath_min; 2165 } else { 2166 ++ipath->fspath->elem_missed; 2167 ipath->fspath->bytes_missing += fspath_min - fspath; 2168 ipath->fspath->bytes_left = 0; 2169 } 2170 2171 return 0; 2172 } 2173 2174 /* 2175 * this dumps all file system paths to the inode into the ipath struct, provided 2176 * is has been created large enough. each path is zero-terminated and accessed 2177 * from ipath->fspath->val[i]. 2178 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2179 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2180 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2181 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2182 * have been needed to return all paths. 2183 */ 2184 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2185 { 2186 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2187 inode_to_path, ipath); 2188 } 2189 2190 struct btrfs_data_container *init_data_container(u32 total_bytes) 2191 { 2192 struct btrfs_data_container *data; 2193 size_t alloc_bytes; 2194 2195 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2196 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2197 if (!data) 2198 return ERR_PTR(-ENOMEM); 2199 2200 if (total_bytes >= sizeof(*data)) { 2201 data->bytes_left = total_bytes - sizeof(*data); 2202 data->bytes_missing = 0; 2203 } else { 2204 data->bytes_missing = sizeof(*data) - total_bytes; 2205 data->bytes_left = 0; 2206 } 2207 2208 data->elem_cnt = 0; 2209 data->elem_missed = 0; 2210 2211 return data; 2212 } 2213 2214 /* 2215 * allocates space to return multiple file system paths for an inode. 2216 * total_bytes to allocate are passed, note that space usable for actual path 2217 * information will be total_bytes - sizeof(struct inode_fs_paths). 2218 * the returned pointer must be freed with free_ipath() in the end. 2219 */ 2220 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2221 struct btrfs_path *path) 2222 { 2223 struct inode_fs_paths *ifp; 2224 struct btrfs_data_container *fspath; 2225 2226 fspath = init_data_container(total_bytes); 2227 if (IS_ERR(fspath)) 2228 return ERR_CAST(fspath); 2229 2230 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2231 if (!ifp) { 2232 kvfree(fspath); 2233 return ERR_PTR(-ENOMEM); 2234 } 2235 2236 ifp->btrfs_path = path; 2237 ifp->fspath = fspath; 2238 ifp->fs_root = fs_root; 2239 2240 return ifp; 2241 } 2242 2243 void free_ipath(struct inode_fs_paths *ipath) 2244 { 2245 if (!ipath) 2246 return; 2247 kvfree(ipath->fspath); 2248 kfree(ipath); 2249 } 2250