xref: /openbmc/linux/fs/btrfs/backref.c (revision 26dd3e4f)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include <linux/rbtree.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "backref.h"
24 #include "ulist.h"
25 #include "transaction.h"
26 #include "delayed-ref.h"
27 #include "locking.h"
28 
29 /* Just an arbitrary number so we can be sure this happened */
30 #define BACKREF_FOUND_SHARED 6
31 
32 struct extent_inode_elem {
33 	u64 inum;
34 	u64 offset;
35 	struct extent_inode_elem *next;
36 };
37 
38 /*
39  * ref_root is used as the root of the ref tree that hold a collection
40  * of unique references.
41  */
42 struct ref_root {
43 	struct rb_root rb_root;
44 
45 	/*
46 	 * The unique_refs represents the number of ref_nodes with a positive
47 	 * count stored in the tree. Even if a ref_node (the count is greater
48 	 * than one) is added, the unique_refs will only increase by one.
49 	 */
50 	unsigned int unique_refs;
51 };
52 
53 /* ref_node is used to store a unique reference to the ref tree. */
54 struct ref_node {
55 	struct rb_node rb_node;
56 
57 	/* For NORMAL_REF, otherwise all these fields should be set to 0 */
58 	u64 root_id;
59 	u64 object_id;
60 	u64 offset;
61 
62 	/* For SHARED_REF, otherwise parent field should be set to 0 */
63 	u64 parent;
64 
65 	/* Ref to the ref_mod of btrfs_delayed_ref_node */
66 	int ref_mod;
67 };
68 
69 /* Dynamically allocate and initialize a ref_root */
70 static struct ref_root *ref_root_alloc(void)
71 {
72 	struct ref_root *ref_tree;
73 
74 	ref_tree = kmalloc(sizeof(*ref_tree), GFP_NOFS);
75 	if (!ref_tree)
76 		return NULL;
77 
78 	ref_tree->rb_root = RB_ROOT;
79 	ref_tree->unique_refs = 0;
80 
81 	return ref_tree;
82 }
83 
84 /* Free all nodes in the ref tree, and reinit ref_root */
85 static void ref_root_fini(struct ref_root *ref_tree)
86 {
87 	struct ref_node *node;
88 	struct rb_node *next;
89 
90 	while ((next = rb_first(&ref_tree->rb_root)) != NULL) {
91 		node = rb_entry(next, struct ref_node, rb_node);
92 		rb_erase(next, &ref_tree->rb_root);
93 		kfree(node);
94 	}
95 
96 	ref_tree->rb_root = RB_ROOT;
97 	ref_tree->unique_refs = 0;
98 }
99 
100 static void ref_root_free(struct ref_root *ref_tree)
101 {
102 	if (!ref_tree)
103 		return;
104 
105 	ref_root_fini(ref_tree);
106 	kfree(ref_tree);
107 }
108 
109 /*
110  * Compare ref_node with (root_id, object_id, offset, parent)
111  *
112  * The function compares two ref_node a and b. It returns an integer less
113  * than, equal to, or greater than zero , respectively, to be less than, to
114  * equal, or be greater than b.
115  */
116 static int ref_node_cmp(struct ref_node *a, struct ref_node *b)
117 {
118 	if (a->root_id < b->root_id)
119 		return -1;
120 	else if (a->root_id > b->root_id)
121 		return 1;
122 
123 	if (a->object_id < b->object_id)
124 		return -1;
125 	else if (a->object_id > b->object_id)
126 		return 1;
127 
128 	if (a->offset < b->offset)
129 		return -1;
130 	else if (a->offset > b->offset)
131 		return 1;
132 
133 	if (a->parent < b->parent)
134 		return -1;
135 	else if (a->parent > b->parent)
136 		return 1;
137 
138 	return 0;
139 }
140 
141 /*
142  * Search ref_node with (root_id, object_id, offset, parent) in the tree
143  *
144  * if found, the pointer of the ref_node will be returned;
145  * if not found, NULL will be returned and pos will point to the rb_node for
146  * insert, pos_parent will point to pos'parent for insert;
147 */
148 static struct ref_node *__ref_tree_search(struct ref_root *ref_tree,
149 					  struct rb_node ***pos,
150 					  struct rb_node **pos_parent,
151 					  u64 root_id, u64 object_id,
152 					  u64 offset, u64 parent)
153 {
154 	struct ref_node *cur = NULL;
155 	struct ref_node entry;
156 	int ret;
157 
158 	entry.root_id = root_id;
159 	entry.object_id = object_id;
160 	entry.offset = offset;
161 	entry.parent = parent;
162 
163 	*pos = &ref_tree->rb_root.rb_node;
164 
165 	while (**pos) {
166 		*pos_parent = **pos;
167 		cur = rb_entry(*pos_parent, struct ref_node, rb_node);
168 
169 		ret = ref_node_cmp(cur, &entry);
170 		if (ret > 0)
171 			*pos = &(**pos)->rb_left;
172 		else if (ret < 0)
173 			*pos = &(**pos)->rb_right;
174 		else
175 			return cur;
176 	}
177 
178 	return NULL;
179 }
180 
181 /*
182  * Insert a ref_node to the ref tree
183  * @pos used for specifiy the position to insert
184  * @pos_parent for specifiy pos's parent
185  *
186  * success, return 0;
187  * ref_node already exists, return -EEXIST;
188 */
189 static int ref_tree_insert(struct ref_root *ref_tree, struct rb_node **pos,
190 			   struct rb_node *pos_parent, struct ref_node *ins)
191 {
192 	struct rb_node **p = NULL;
193 	struct rb_node *parent = NULL;
194 	struct ref_node *cur = NULL;
195 
196 	if (!pos) {
197 		cur = __ref_tree_search(ref_tree, &p, &parent, ins->root_id,
198 					ins->object_id, ins->offset,
199 					ins->parent);
200 		if (cur)
201 			return -EEXIST;
202 	} else {
203 		p = pos;
204 		parent = pos_parent;
205 	}
206 
207 	rb_link_node(&ins->rb_node, parent, p);
208 	rb_insert_color(&ins->rb_node, &ref_tree->rb_root);
209 
210 	return 0;
211 }
212 
213 /* Erase and free ref_node, caller should update ref_root->unique_refs */
214 static void ref_tree_remove(struct ref_root *ref_tree, struct ref_node *node)
215 {
216 	rb_erase(&node->rb_node, &ref_tree->rb_root);
217 	kfree(node);
218 }
219 
220 /*
221  * Update ref_root->unique_refs
222  *
223  * Call __ref_tree_search
224  *	1. if ref_node doesn't exist, ref_tree_insert this node, and update
225  *	ref_root->unique_refs:
226  *		if ref_node->ref_mod > 0, ref_root->unique_refs++;
227  *		if ref_node->ref_mod < 0, do noting;
228  *
229  *	2. if ref_node is found, then get origin ref_node->ref_mod, and update
230  *	ref_node->ref_mod.
231  *		if ref_node->ref_mod is equal to 0,then call ref_tree_remove
232  *
233  *		according to origin_mod and new_mod, update ref_root->items
234  *		+----------------+--------------+-------------+
235  *		|		 |new_count <= 0|new_count > 0|
236  *		+----------------+--------------+-------------+
237  *		|origin_count < 0|       0      |      1      |
238  *		+----------------+--------------+-------------+
239  *		|origin_count > 0|      -1      |      0      |
240  *		+----------------+--------------+-------------+
241  *
242  * In case of allocation failure, -ENOMEM is returned and the ref_tree stays
243  * unaltered.
244  * Success, return 0
245  */
246 static int ref_tree_add(struct ref_root *ref_tree, u64 root_id, u64 object_id,
247 			u64 offset, u64 parent, int count)
248 {
249 	struct ref_node *node = NULL;
250 	struct rb_node **pos = NULL;
251 	struct rb_node *pos_parent = NULL;
252 	int origin_count;
253 	int ret;
254 
255 	if (!count)
256 		return 0;
257 
258 	node = __ref_tree_search(ref_tree, &pos, &pos_parent, root_id,
259 				 object_id, offset, parent);
260 	if (node == NULL) {
261 		node = kmalloc(sizeof(*node), GFP_NOFS);
262 		if (!node)
263 			return -ENOMEM;
264 
265 		node->root_id = root_id;
266 		node->object_id = object_id;
267 		node->offset = offset;
268 		node->parent = parent;
269 		node->ref_mod = count;
270 
271 		ret = ref_tree_insert(ref_tree, pos, pos_parent, node);
272 		ASSERT(!ret);
273 		if (ret) {
274 			kfree(node);
275 			return ret;
276 		}
277 
278 		ref_tree->unique_refs += node->ref_mod > 0 ? 1 : 0;
279 
280 		return 0;
281 	}
282 
283 	origin_count = node->ref_mod;
284 	node->ref_mod += count;
285 
286 	if (node->ref_mod > 0)
287 		ref_tree->unique_refs += origin_count > 0 ? 0 : 1;
288 	else if (node->ref_mod <= 0)
289 		ref_tree->unique_refs += origin_count > 0 ? -1 : 0;
290 
291 	if (!node->ref_mod)
292 		ref_tree_remove(ref_tree, node);
293 
294 	return 0;
295 }
296 
297 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
298 				struct btrfs_file_extent_item *fi,
299 				u64 extent_item_pos,
300 				struct extent_inode_elem **eie)
301 {
302 	u64 offset = 0;
303 	struct extent_inode_elem *e;
304 
305 	if (!btrfs_file_extent_compression(eb, fi) &&
306 	    !btrfs_file_extent_encryption(eb, fi) &&
307 	    !btrfs_file_extent_other_encoding(eb, fi)) {
308 		u64 data_offset;
309 		u64 data_len;
310 
311 		data_offset = btrfs_file_extent_offset(eb, fi);
312 		data_len = btrfs_file_extent_num_bytes(eb, fi);
313 
314 		if (extent_item_pos < data_offset ||
315 		    extent_item_pos >= data_offset + data_len)
316 			return 1;
317 		offset = extent_item_pos - data_offset;
318 	}
319 
320 	e = kmalloc(sizeof(*e), GFP_NOFS);
321 	if (!e)
322 		return -ENOMEM;
323 
324 	e->next = *eie;
325 	e->inum = key->objectid;
326 	e->offset = key->offset + offset;
327 	*eie = e;
328 
329 	return 0;
330 }
331 
332 static void free_inode_elem_list(struct extent_inode_elem *eie)
333 {
334 	struct extent_inode_elem *eie_next;
335 
336 	for (; eie; eie = eie_next) {
337 		eie_next = eie->next;
338 		kfree(eie);
339 	}
340 }
341 
342 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
343 				u64 extent_item_pos,
344 				struct extent_inode_elem **eie)
345 {
346 	u64 disk_byte;
347 	struct btrfs_key key;
348 	struct btrfs_file_extent_item *fi;
349 	int slot;
350 	int nritems;
351 	int extent_type;
352 	int ret;
353 
354 	/*
355 	 * from the shared data ref, we only have the leaf but we need
356 	 * the key. thus, we must look into all items and see that we
357 	 * find one (some) with a reference to our extent item.
358 	 */
359 	nritems = btrfs_header_nritems(eb);
360 	for (slot = 0; slot < nritems; ++slot) {
361 		btrfs_item_key_to_cpu(eb, &key, slot);
362 		if (key.type != BTRFS_EXTENT_DATA_KEY)
363 			continue;
364 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
365 		extent_type = btrfs_file_extent_type(eb, fi);
366 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
367 			continue;
368 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
369 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
370 		if (disk_byte != wanted_disk_byte)
371 			continue;
372 
373 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
374 		if (ret < 0)
375 			return ret;
376 	}
377 
378 	return 0;
379 }
380 
381 /*
382  * this structure records all encountered refs on the way up to the root
383  */
384 struct __prelim_ref {
385 	struct list_head list;
386 	u64 root_id;
387 	struct btrfs_key key_for_search;
388 	int level;
389 	int count;
390 	struct extent_inode_elem *inode_list;
391 	u64 parent;
392 	u64 wanted_disk_byte;
393 };
394 
395 static struct kmem_cache *btrfs_prelim_ref_cache;
396 
397 int __init btrfs_prelim_ref_init(void)
398 {
399 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
400 					sizeof(struct __prelim_ref),
401 					0,
402 					SLAB_MEM_SPREAD,
403 					NULL);
404 	if (!btrfs_prelim_ref_cache)
405 		return -ENOMEM;
406 	return 0;
407 }
408 
409 void btrfs_prelim_ref_exit(void)
410 {
411 	kmem_cache_destroy(btrfs_prelim_ref_cache);
412 }
413 
414 /*
415  * the rules for all callers of this function are:
416  * - obtaining the parent is the goal
417  * - if you add a key, you must know that it is a correct key
418  * - if you cannot add the parent or a correct key, then we will look into the
419  *   block later to set a correct key
420  *
421  * delayed refs
422  * ============
423  *        backref type | shared | indirect | shared | indirect
424  * information         |   tree |     tree |   data |     data
425  * --------------------+--------+----------+--------+----------
426  *      parent logical |    y   |     -    |    -   |     -
427  *      key to resolve |    -   |     y    |    y   |     y
428  *  tree block logical |    -   |     -    |    -   |     -
429  *  root for resolving |    y   |     y    |    y   |     y
430  *
431  * - column 1:       we've the parent -> done
432  * - column 2, 3, 4: we use the key to find the parent
433  *
434  * on disk refs (inline or keyed)
435  * ==============================
436  *        backref type | shared | indirect | shared | indirect
437  * information         |   tree |     tree |   data |     data
438  * --------------------+--------+----------+--------+----------
439  *      parent logical |    y   |     -    |    y   |     -
440  *      key to resolve |    -   |     -    |    -   |     y
441  *  tree block logical |    y   |     y    |    y   |     y
442  *  root for resolving |    -   |     y    |    y   |     y
443  *
444  * - column 1, 3: we've the parent -> done
445  * - column 2:    we take the first key from the block to find the parent
446  *                (see __add_missing_keys)
447  * - column 4:    we use the key to find the parent
448  *
449  * additional information that's available but not required to find the parent
450  * block might help in merging entries to gain some speed.
451  */
452 
453 static int __add_prelim_ref(struct list_head *head, u64 root_id,
454 			    struct btrfs_key *key, int level,
455 			    u64 parent, u64 wanted_disk_byte, int count,
456 			    gfp_t gfp_mask)
457 {
458 	struct __prelim_ref *ref;
459 
460 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
461 		return 0;
462 
463 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
464 	if (!ref)
465 		return -ENOMEM;
466 
467 	ref->root_id = root_id;
468 	if (key) {
469 		ref->key_for_search = *key;
470 		/*
471 		 * We can often find data backrefs with an offset that is too
472 		 * large (>= LLONG_MAX, maximum allowed file offset) due to
473 		 * underflows when subtracting a file's offset with the data
474 		 * offset of its corresponding extent data item. This can
475 		 * happen for example in the clone ioctl.
476 		 * So if we detect such case we set the search key's offset to
477 		 * zero to make sure we will find the matching file extent item
478 		 * at add_all_parents(), otherwise we will miss it because the
479 		 * offset taken form the backref is much larger then the offset
480 		 * of the file extent item. This can make us scan a very large
481 		 * number of file extent items, but at least it will not make
482 		 * us miss any.
483 		 * This is an ugly workaround for a behaviour that should have
484 		 * never existed, but it does and a fix for the clone ioctl
485 		 * would touch a lot of places, cause backwards incompatibility
486 		 * and would not fix the problem for extents cloned with older
487 		 * kernels.
488 		 */
489 		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
490 		    ref->key_for_search.offset >= LLONG_MAX)
491 			ref->key_for_search.offset = 0;
492 	} else {
493 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
494 	}
495 
496 	ref->inode_list = NULL;
497 	ref->level = level;
498 	ref->count = count;
499 	ref->parent = parent;
500 	ref->wanted_disk_byte = wanted_disk_byte;
501 	list_add_tail(&ref->list, head);
502 
503 	return 0;
504 }
505 
506 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
507 			   struct ulist *parents, struct __prelim_ref *ref,
508 			   int level, u64 time_seq, const u64 *extent_item_pos,
509 			   u64 total_refs)
510 {
511 	int ret = 0;
512 	int slot;
513 	struct extent_buffer *eb;
514 	struct btrfs_key key;
515 	struct btrfs_key *key_for_search = &ref->key_for_search;
516 	struct btrfs_file_extent_item *fi;
517 	struct extent_inode_elem *eie = NULL, *old = NULL;
518 	u64 disk_byte;
519 	u64 wanted_disk_byte = ref->wanted_disk_byte;
520 	u64 count = 0;
521 
522 	if (level != 0) {
523 		eb = path->nodes[level];
524 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
525 		if (ret < 0)
526 			return ret;
527 		return 0;
528 	}
529 
530 	/*
531 	 * We normally enter this function with the path already pointing to
532 	 * the first item to check. But sometimes, we may enter it with
533 	 * slot==nritems. In that case, go to the next leaf before we continue.
534 	 */
535 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
536 		if (time_seq == (u64)-1)
537 			ret = btrfs_next_leaf(root, path);
538 		else
539 			ret = btrfs_next_old_leaf(root, path, time_seq);
540 	}
541 
542 	while (!ret && count < total_refs) {
543 		eb = path->nodes[0];
544 		slot = path->slots[0];
545 
546 		btrfs_item_key_to_cpu(eb, &key, slot);
547 
548 		if (key.objectid != key_for_search->objectid ||
549 		    key.type != BTRFS_EXTENT_DATA_KEY)
550 			break;
551 
552 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
553 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
554 
555 		if (disk_byte == wanted_disk_byte) {
556 			eie = NULL;
557 			old = NULL;
558 			count++;
559 			if (extent_item_pos) {
560 				ret = check_extent_in_eb(&key, eb, fi,
561 						*extent_item_pos,
562 						&eie);
563 				if (ret < 0)
564 					break;
565 			}
566 			if (ret > 0)
567 				goto next;
568 			ret = ulist_add_merge_ptr(parents, eb->start,
569 						  eie, (void **)&old, GFP_NOFS);
570 			if (ret < 0)
571 				break;
572 			if (!ret && extent_item_pos) {
573 				while (old->next)
574 					old = old->next;
575 				old->next = eie;
576 			}
577 			eie = NULL;
578 		}
579 next:
580 		if (time_seq == (u64)-1)
581 			ret = btrfs_next_item(root, path);
582 		else
583 			ret = btrfs_next_old_item(root, path, time_seq);
584 	}
585 
586 	if (ret > 0)
587 		ret = 0;
588 	else if (ret < 0)
589 		free_inode_elem_list(eie);
590 	return ret;
591 }
592 
593 /*
594  * resolve an indirect backref in the form (root_id, key, level)
595  * to a logical address
596  */
597 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
598 				  struct btrfs_path *path, u64 time_seq,
599 				  struct __prelim_ref *ref,
600 				  struct ulist *parents,
601 				  const u64 *extent_item_pos, u64 total_refs)
602 {
603 	struct btrfs_root *root;
604 	struct btrfs_key root_key;
605 	struct extent_buffer *eb;
606 	int ret = 0;
607 	int root_level;
608 	int level = ref->level;
609 	int index;
610 
611 	root_key.objectid = ref->root_id;
612 	root_key.type = BTRFS_ROOT_ITEM_KEY;
613 	root_key.offset = (u64)-1;
614 
615 	index = srcu_read_lock(&fs_info->subvol_srcu);
616 
617 	root = btrfs_get_fs_root(fs_info, &root_key, false);
618 	if (IS_ERR(root)) {
619 		srcu_read_unlock(&fs_info->subvol_srcu, index);
620 		ret = PTR_ERR(root);
621 		goto out;
622 	}
623 
624 	if (btrfs_is_testing(fs_info)) {
625 		srcu_read_unlock(&fs_info->subvol_srcu, index);
626 		ret = -ENOENT;
627 		goto out;
628 	}
629 
630 	if (path->search_commit_root)
631 		root_level = btrfs_header_level(root->commit_root);
632 	else if (time_seq == (u64)-1)
633 		root_level = btrfs_header_level(root->node);
634 	else
635 		root_level = btrfs_old_root_level(root, time_seq);
636 
637 	if (root_level + 1 == level) {
638 		srcu_read_unlock(&fs_info->subvol_srcu, index);
639 		goto out;
640 	}
641 
642 	path->lowest_level = level;
643 	if (time_seq == (u64)-1)
644 		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
645 					0, 0);
646 	else
647 		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
648 					    time_seq);
649 
650 	/* root node has been locked, we can release @subvol_srcu safely here */
651 	srcu_read_unlock(&fs_info->subvol_srcu, index);
652 
653 	btrfs_debug(fs_info,
654 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
655 		 ref->root_id, level, ref->count, ret,
656 		 ref->key_for_search.objectid, ref->key_for_search.type,
657 		 ref->key_for_search.offset);
658 	if (ret < 0)
659 		goto out;
660 
661 	eb = path->nodes[level];
662 	while (!eb) {
663 		if (WARN_ON(!level)) {
664 			ret = 1;
665 			goto out;
666 		}
667 		level--;
668 		eb = path->nodes[level];
669 	}
670 
671 	ret = add_all_parents(root, path, parents, ref, level, time_seq,
672 			      extent_item_pos, total_refs);
673 out:
674 	path->lowest_level = 0;
675 	btrfs_release_path(path);
676 	return ret;
677 }
678 
679 /*
680  * resolve all indirect backrefs from the list
681  */
682 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
683 				   struct btrfs_path *path, u64 time_seq,
684 				   struct list_head *head,
685 				   const u64 *extent_item_pos, u64 total_refs,
686 				   u64 root_objectid)
687 {
688 	int err;
689 	int ret = 0;
690 	struct __prelim_ref *ref;
691 	struct __prelim_ref *ref_safe;
692 	struct __prelim_ref *new_ref;
693 	struct ulist *parents;
694 	struct ulist_node *node;
695 	struct ulist_iterator uiter;
696 
697 	parents = ulist_alloc(GFP_NOFS);
698 	if (!parents)
699 		return -ENOMEM;
700 
701 	/*
702 	 * _safe allows us to insert directly after the current item without
703 	 * iterating over the newly inserted items.
704 	 * we're also allowed to re-assign ref during iteration.
705 	 */
706 	list_for_each_entry_safe(ref, ref_safe, head, list) {
707 		if (ref->parent)	/* already direct */
708 			continue;
709 		if (ref->count == 0)
710 			continue;
711 		if (root_objectid && ref->root_id != root_objectid) {
712 			ret = BACKREF_FOUND_SHARED;
713 			goto out;
714 		}
715 		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
716 					     parents, extent_item_pos,
717 					     total_refs);
718 		/*
719 		 * we can only tolerate ENOENT,otherwise,we should catch error
720 		 * and return directly.
721 		 */
722 		if (err == -ENOENT) {
723 			continue;
724 		} else if (err) {
725 			ret = err;
726 			goto out;
727 		}
728 
729 		/* we put the first parent into the ref at hand */
730 		ULIST_ITER_INIT(&uiter);
731 		node = ulist_next(parents, &uiter);
732 		ref->parent = node ? node->val : 0;
733 		ref->inode_list = node ?
734 			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
735 
736 		/* additional parents require new refs being added here */
737 		while ((node = ulist_next(parents, &uiter))) {
738 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
739 						   GFP_NOFS);
740 			if (!new_ref) {
741 				ret = -ENOMEM;
742 				goto out;
743 			}
744 			memcpy(new_ref, ref, sizeof(*ref));
745 			new_ref->parent = node->val;
746 			new_ref->inode_list = (struct extent_inode_elem *)
747 							(uintptr_t)node->aux;
748 			list_add(&new_ref->list, &ref->list);
749 		}
750 		ulist_reinit(parents);
751 	}
752 out:
753 	ulist_free(parents);
754 	return ret;
755 }
756 
757 static inline int ref_for_same_block(struct __prelim_ref *ref1,
758 				     struct __prelim_ref *ref2)
759 {
760 	if (ref1->level != ref2->level)
761 		return 0;
762 	if (ref1->root_id != ref2->root_id)
763 		return 0;
764 	if (ref1->key_for_search.type != ref2->key_for_search.type)
765 		return 0;
766 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
767 		return 0;
768 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
769 		return 0;
770 	if (ref1->parent != ref2->parent)
771 		return 0;
772 
773 	return 1;
774 }
775 
776 /*
777  * read tree blocks and add keys where required.
778  */
779 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
780 			      struct list_head *head)
781 {
782 	struct __prelim_ref *ref;
783 	struct extent_buffer *eb;
784 
785 	list_for_each_entry(ref, head, list) {
786 		if (ref->parent)
787 			continue;
788 		if (ref->key_for_search.type)
789 			continue;
790 		BUG_ON(!ref->wanted_disk_byte);
791 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
792 		if (IS_ERR(eb)) {
793 			return PTR_ERR(eb);
794 		} else if (!extent_buffer_uptodate(eb)) {
795 			free_extent_buffer(eb);
796 			return -EIO;
797 		}
798 		btrfs_tree_read_lock(eb);
799 		if (btrfs_header_level(eb) == 0)
800 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
801 		else
802 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
803 		btrfs_tree_read_unlock(eb);
804 		free_extent_buffer(eb);
805 	}
806 	return 0;
807 }
808 
809 /*
810  * merge backrefs and adjust counts accordingly
811  *
812  * mode = 1: merge identical keys, if key is set
813  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
814  *           additionally, we could even add a key range for the blocks we
815  *           looked into to merge even more (-> replace unresolved refs by those
816  *           having a parent).
817  * mode = 2: merge identical parents
818  */
819 static void __merge_refs(struct list_head *head, int mode)
820 {
821 	struct __prelim_ref *pos1;
822 
823 	list_for_each_entry(pos1, head, list) {
824 		struct __prelim_ref *pos2 = pos1, *tmp;
825 
826 		list_for_each_entry_safe_continue(pos2, tmp, head, list) {
827 			struct __prelim_ref *ref1 = pos1, *ref2 = pos2;
828 			struct extent_inode_elem *eie;
829 
830 			if (!ref_for_same_block(ref1, ref2))
831 				continue;
832 			if (mode == 1) {
833 				if (!ref1->parent && ref2->parent)
834 					swap(ref1, ref2);
835 			} else {
836 				if (ref1->parent != ref2->parent)
837 					continue;
838 			}
839 
840 			eie = ref1->inode_list;
841 			while (eie && eie->next)
842 				eie = eie->next;
843 			if (eie)
844 				eie->next = ref2->inode_list;
845 			else
846 				ref1->inode_list = ref2->inode_list;
847 			ref1->count += ref2->count;
848 
849 			list_del(&ref2->list);
850 			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
851 			cond_resched();
852 		}
853 
854 	}
855 }
856 
857 /*
858  * add all currently queued delayed refs from this head whose seq nr is
859  * smaller or equal that seq to the list
860  */
861 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
862 			      struct list_head *prefs, u64 *total_refs,
863 			      u64 inum)
864 {
865 	struct btrfs_delayed_ref_node *node;
866 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
867 	struct btrfs_key key;
868 	struct btrfs_key op_key = {0};
869 	int sgn;
870 	int ret = 0;
871 
872 	if (extent_op && extent_op->update_key)
873 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
874 
875 	spin_lock(&head->lock);
876 	list_for_each_entry(node, &head->ref_list, list) {
877 		if (node->seq > seq)
878 			continue;
879 
880 		switch (node->action) {
881 		case BTRFS_ADD_DELAYED_EXTENT:
882 		case BTRFS_UPDATE_DELAYED_HEAD:
883 			WARN_ON(1);
884 			continue;
885 		case BTRFS_ADD_DELAYED_REF:
886 			sgn = 1;
887 			break;
888 		case BTRFS_DROP_DELAYED_REF:
889 			sgn = -1;
890 			break;
891 		default:
892 			BUG_ON(1);
893 		}
894 		*total_refs += (node->ref_mod * sgn);
895 		switch (node->type) {
896 		case BTRFS_TREE_BLOCK_REF_KEY: {
897 			struct btrfs_delayed_tree_ref *ref;
898 
899 			ref = btrfs_delayed_node_to_tree_ref(node);
900 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
901 					       ref->level + 1, 0, node->bytenr,
902 					       node->ref_mod * sgn, GFP_ATOMIC);
903 			break;
904 		}
905 		case BTRFS_SHARED_BLOCK_REF_KEY: {
906 			struct btrfs_delayed_tree_ref *ref;
907 
908 			ref = btrfs_delayed_node_to_tree_ref(node);
909 			ret = __add_prelim_ref(prefs, 0, NULL,
910 					       ref->level + 1, ref->parent,
911 					       node->bytenr,
912 					       node->ref_mod * sgn, GFP_ATOMIC);
913 			break;
914 		}
915 		case BTRFS_EXTENT_DATA_REF_KEY: {
916 			struct btrfs_delayed_data_ref *ref;
917 			ref = btrfs_delayed_node_to_data_ref(node);
918 
919 			key.objectid = ref->objectid;
920 			key.type = BTRFS_EXTENT_DATA_KEY;
921 			key.offset = ref->offset;
922 
923 			/*
924 			 * Found a inum that doesn't match our known inum, we
925 			 * know it's shared.
926 			 */
927 			if (inum && ref->objectid != inum) {
928 				ret = BACKREF_FOUND_SHARED;
929 				break;
930 			}
931 
932 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
933 					       node->bytenr,
934 					       node->ref_mod * sgn, GFP_ATOMIC);
935 			break;
936 		}
937 		case BTRFS_SHARED_DATA_REF_KEY: {
938 			struct btrfs_delayed_data_ref *ref;
939 
940 			ref = btrfs_delayed_node_to_data_ref(node);
941 			ret = __add_prelim_ref(prefs, 0, NULL, 0,
942 					       ref->parent, node->bytenr,
943 					       node->ref_mod * sgn, GFP_ATOMIC);
944 			break;
945 		}
946 		default:
947 			WARN_ON(1);
948 		}
949 		if (ret)
950 			break;
951 	}
952 	spin_unlock(&head->lock);
953 	return ret;
954 }
955 
956 /*
957  * add all inline backrefs for bytenr to the list
958  */
959 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
960 			     struct btrfs_path *path, u64 bytenr,
961 			     int *info_level, struct list_head *prefs,
962 			     struct ref_root *ref_tree,
963 			     u64 *total_refs, u64 inum)
964 {
965 	int ret = 0;
966 	int slot;
967 	struct extent_buffer *leaf;
968 	struct btrfs_key key;
969 	struct btrfs_key found_key;
970 	unsigned long ptr;
971 	unsigned long end;
972 	struct btrfs_extent_item *ei;
973 	u64 flags;
974 	u64 item_size;
975 
976 	/*
977 	 * enumerate all inline refs
978 	 */
979 	leaf = path->nodes[0];
980 	slot = path->slots[0];
981 
982 	item_size = btrfs_item_size_nr(leaf, slot);
983 	BUG_ON(item_size < sizeof(*ei));
984 
985 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
986 	flags = btrfs_extent_flags(leaf, ei);
987 	*total_refs += btrfs_extent_refs(leaf, ei);
988 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
989 
990 	ptr = (unsigned long)(ei + 1);
991 	end = (unsigned long)ei + item_size;
992 
993 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
994 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
995 		struct btrfs_tree_block_info *info;
996 
997 		info = (struct btrfs_tree_block_info *)ptr;
998 		*info_level = btrfs_tree_block_level(leaf, info);
999 		ptr += sizeof(struct btrfs_tree_block_info);
1000 		BUG_ON(ptr > end);
1001 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1002 		*info_level = found_key.offset;
1003 	} else {
1004 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1005 	}
1006 
1007 	while (ptr < end) {
1008 		struct btrfs_extent_inline_ref *iref;
1009 		u64 offset;
1010 		int type;
1011 
1012 		iref = (struct btrfs_extent_inline_ref *)ptr;
1013 		type = btrfs_extent_inline_ref_type(leaf, iref);
1014 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
1015 
1016 		switch (type) {
1017 		case BTRFS_SHARED_BLOCK_REF_KEY:
1018 			ret = __add_prelim_ref(prefs, 0, NULL,
1019 						*info_level + 1, offset,
1020 						bytenr, 1, GFP_NOFS);
1021 			break;
1022 		case BTRFS_SHARED_DATA_REF_KEY: {
1023 			struct btrfs_shared_data_ref *sdref;
1024 			int count;
1025 
1026 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1027 			count = btrfs_shared_data_ref_count(leaf, sdref);
1028 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
1029 					       bytenr, count, GFP_NOFS);
1030 			if (ref_tree) {
1031 				if (!ret)
1032 					ret = ref_tree_add(ref_tree, 0, 0, 0,
1033 							   bytenr, count);
1034 				if (!ret && ref_tree->unique_refs > 1)
1035 					ret = BACKREF_FOUND_SHARED;
1036 			}
1037 			break;
1038 		}
1039 		case BTRFS_TREE_BLOCK_REF_KEY:
1040 			ret = __add_prelim_ref(prefs, offset, NULL,
1041 					       *info_level + 1, 0,
1042 					       bytenr, 1, GFP_NOFS);
1043 			break;
1044 		case BTRFS_EXTENT_DATA_REF_KEY: {
1045 			struct btrfs_extent_data_ref *dref;
1046 			int count;
1047 			u64 root;
1048 
1049 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1050 			count = btrfs_extent_data_ref_count(leaf, dref);
1051 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1052 								      dref);
1053 			key.type = BTRFS_EXTENT_DATA_KEY;
1054 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1055 
1056 			if (inum && key.objectid != inum) {
1057 				ret = BACKREF_FOUND_SHARED;
1058 				break;
1059 			}
1060 
1061 			root = btrfs_extent_data_ref_root(leaf, dref);
1062 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
1063 					       bytenr, count, GFP_NOFS);
1064 			if (ref_tree) {
1065 				if (!ret)
1066 					ret = ref_tree_add(ref_tree, root,
1067 							   key.objectid,
1068 							   key.offset, 0,
1069 							   count);
1070 				if (!ret && ref_tree->unique_refs > 1)
1071 					ret = BACKREF_FOUND_SHARED;
1072 			}
1073 			break;
1074 		}
1075 		default:
1076 			WARN_ON(1);
1077 		}
1078 		if (ret)
1079 			return ret;
1080 		ptr += btrfs_extent_inline_ref_size(type);
1081 	}
1082 
1083 	return 0;
1084 }
1085 
1086 /*
1087  * add all non-inline backrefs for bytenr to the list
1088  */
1089 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
1090 			    struct btrfs_path *path, u64 bytenr,
1091 			    int info_level, struct list_head *prefs,
1092 			    struct ref_root *ref_tree, u64 inum)
1093 {
1094 	struct btrfs_root *extent_root = fs_info->extent_root;
1095 	int ret;
1096 	int slot;
1097 	struct extent_buffer *leaf;
1098 	struct btrfs_key key;
1099 
1100 	while (1) {
1101 		ret = btrfs_next_item(extent_root, path);
1102 		if (ret < 0)
1103 			break;
1104 		if (ret) {
1105 			ret = 0;
1106 			break;
1107 		}
1108 
1109 		slot = path->slots[0];
1110 		leaf = path->nodes[0];
1111 		btrfs_item_key_to_cpu(leaf, &key, slot);
1112 
1113 		if (key.objectid != bytenr)
1114 			break;
1115 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1116 			continue;
1117 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1118 			break;
1119 
1120 		switch (key.type) {
1121 		case BTRFS_SHARED_BLOCK_REF_KEY:
1122 			ret = __add_prelim_ref(prefs, 0, NULL,
1123 						info_level + 1, key.offset,
1124 						bytenr, 1, GFP_NOFS);
1125 			break;
1126 		case BTRFS_SHARED_DATA_REF_KEY: {
1127 			struct btrfs_shared_data_ref *sdref;
1128 			int count;
1129 
1130 			sdref = btrfs_item_ptr(leaf, slot,
1131 					      struct btrfs_shared_data_ref);
1132 			count = btrfs_shared_data_ref_count(leaf, sdref);
1133 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
1134 						bytenr, count, GFP_NOFS);
1135 			if (ref_tree) {
1136 				if (!ret)
1137 					ret = ref_tree_add(ref_tree, 0, 0, 0,
1138 							   bytenr, count);
1139 				if (!ret && ref_tree->unique_refs > 1)
1140 					ret = BACKREF_FOUND_SHARED;
1141 			}
1142 			break;
1143 		}
1144 		case BTRFS_TREE_BLOCK_REF_KEY:
1145 			ret = __add_prelim_ref(prefs, key.offset, NULL,
1146 					       info_level + 1, 0,
1147 					       bytenr, 1, GFP_NOFS);
1148 			break;
1149 		case BTRFS_EXTENT_DATA_REF_KEY: {
1150 			struct btrfs_extent_data_ref *dref;
1151 			int count;
1152 			u64 root;
1153 
1154 			dref = btrfs_item_ptr(leaf, slot,
1155 					      struct btrfs_extent_data_ref);
1156 			count = btrfs_extent_data_ref_count(leaf, dref);
1157 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1158 								      dref);
1159 			key.type = BTRFS_EXTENT_DATA_KEY;
1160 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1161 
1162 			if (inum && key.objectid != inum) {
1163 				ret = BACKREF_FOUND_SHARED;
1164 				break;
1165 			}
1166 
1167 			root = btrfs_extent_data_ref_root(leaf, dref);
1168 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
1169 					       bytenr, count, GFP_NOFS);
1170 			if (ref_tree) {
1171 				if (!ret)
1172 					ret = ref_tree_add(ref_tree, root,
1173 							   key.objectid,
1174 							   key.offset, 0,
1175 							   count);
1176 				if (!ret && ref_tree->unique_refs > 1)
1177 					ret = BACKREF_FOUND_SHARED;
1178 			}
1179 			break;
1180 		}
1181 		default:
1182 			WARN_ON(1);
1183 		}
1184 		if (ret)
1185 			return ret;
1186 
1187 	}
1188 
1189 	return ret;
1190 }
1191 
1192 /*
1193  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1194  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1195  * indirect refs to their parent bytenr.
1196  * When roots are found, they're added to the roots list
1197  *
1198  * NOTE: This can return values > 0
1199  *
1200  * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
1201  * much like trans == NULL case, the difference only lies in it will not
1202  * commit root.
1203  * The special case is for qgroup to search roots in commit_transaction().
1204  *
1205  * If check_shared is set to 1, any extent has more than one ref item, will
1206  * be returned BACKREF_FOUND_SHARED immediately.
1207  *
1208  * FIXME some caching might speed things up
1209  */
1210 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1211 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1212 			     u64 time_seq, struct ulist *refs,
1213 			     struct ulist *roots, const u64 *extent_item_pos,
1214 			     u64 root_objectid, u64 inum, int check_shared)
1215 {
1216 	struct btrfs_key key;
1217 	struct btrfs_path *path;
1218 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1219 	struct btrfs_delayed_ref_head *head;
1220 	int info_level = 0;
1221 	int ret;
1222 	struct list_head prefs_delayed;
1223 	struct list_head prefs;
1224 	struct __prelim_ref *ref;
1225 	struct extent_inode_elem *eie = NULL;
1226 	struct ref_root *ref_tree = NULL;
1227 	u64 total_refs = 0;
1228 
1229 	INIT_LIST_HEAD(&prefs);
1230 	INIT_LIST_HEAD(&prefs_delayed);
1231 
1232 	key.objectid = bytenr;
1233 	key.offset = (u64)-1;
1234 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1235 		key.type = BTRFS_METADATA_ITEM_KEY;
1236 	else
1237 		key.type = BTRFS_EXTENT_ITEM_KEY;
1238 
1239 	path = btrfs_alloc_path();
1240 	if (!path)
1241 		return -ENOMEM;
1242 	if (!trans) {
1243 		path->search_commit_root = 1;
1244 		path->skip_locking = 1;
1245 	}
1246 
1247 	if (time_seq == (u64)-1)
1248 		path->skip_locking = 1;
1249 
1250 	/*
1251 	 * grab both a lock on the path and a lock on the delayed ref head.
1252 	 * We need both to get a consistent picture of how the refs look
1253 	 * at a specified point in time
1254 	 */
1255 again:
1256 	head = NULL;
1257 
1258 	if (check_shared) {
1259 		if (!ref_tree) {
1260 			ref_tree = ref_root_alloc();
1261 			if (!ref_tree) {
1262 				ret = -ENOMEM;
1263 				goto out;
1264 			}
1265 		} else {
1266 			ref_root_fini(ref_tree);
1267 		}
1268 	}
1269 
1270 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1271 	if (ret < 0)
1272 		goto out;
1273 	BUG_ON(ret == 0);
1274 
1275 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1276 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1277 	    time_seq != (u64)-1) {
1278 #else
1279 	if (trans && time_seq != (u64)-1) {
1280 #endif
1281 		/*
1282 		 * look if there are updates for this ref queued and lock the
1283 		 * head
1284 		 */
1285 		delayed_refs = &trans->transaction->delayed_refs;
1286 		spin_lock(&delayed_refs->lock);
1287 		head = btrfs_find_delayed_ref_head(trans, bytenr);
1288 		if (head) {
1289 			if (!mutex_trylock(&head->mutex)) {
1290 				atomic_inc(&head->node.refs);
1291 				spin_unlock(&delayed_refs->lock);
1292 
1293 				btrfs_release_path(path);
1294 
1295 				/*
1296 				 * Mutex was contended, block until it's
1297 				 * released and try again
1298 				 */
1299 				mutex_lock(&head->mutex);
1300 				mutex_unlock(&head->mutex);
1301 				btrfs_put_delayed_ref(&head->node);
1302 				goto again;
1303 			}
1304 			spin_unlock(&delayed_refs->lock);
1305 			ret = __add_delayed_refs(head, time_seq,
1306 						 &prefs_delayed, &total_refs,
1307 						 inum);
1308 			mutex_unlock(&head->mutex);
1309 			if (ret)
1310 				goto out;
1311 		} else {
1312 			spin_unlock(&delayed_refs->lock);
1313 		}
1314 
1315 		if (check_shared && !list_empty(&prefs_delayed)) {
1316 			/*
1317 			 * Add all delay_ref to the ref_tree and check if there
1318 			 * are multiple ref items added.
1319 			 */
1320 			list_for_each_entry(ref, &prefs_delayed, list) {
1321 				if (ref->key_for_search.type) {
1322 					ret = ref_tree_add(ref_tree,
1323 						ref->root_id,
1324 						ref->key_for_search.objectid,
1325 						ref->key_for_search.offset,
1326 						0, ref->count);
1327 					if (ret)
1328 						goto out;
1329 				} else {
1330 					ret = ref_tree_add(ref_tree, 0, 0, 0,
1331 						     ref->parent, ref->count);
1332 					if (ret)
1333 						goto out;
1334 				}
1335 
1336 			}
1337 
1338 			if (ref_tree->unique_refs > 1) {
1339 				ret = BACKREF_FOUND_SHARED;
1340 				goto out;
1341 			}
1342 
1343 		}
1344 	}
1345 
1346 	if (path->slots[0]) {
1347 		struct extent_buffer *leaf;
1348 		int slot;
1349 
1350 		path->slots[0]--;
1351 		leaf = path->nodes[0];
1352 		slot = path->slots[0];
1353 		btrfs_item_key_to_cpu(leaf, &key, slot);
1354 		if (key.objectid == bytenr &&
1355 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1356 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1357 			ret = __add_inline_refs(fs_info, path, bytenr,
1358 						&info_level, &prefs,
1359 						ref_tree, &total_refs,
1360 						inum);
1361 			if (ret)
1362 				goto out;
1363 			ret = __add_keyed_refs(fs_info, path, bytenr,
1364 					       info_level, &prefs,
1365 					       ref_tree, inum);
1366 			if (ret)
1367 				goto out;
1368 		}
1369 	}
1370 	btrfs_release_path(path);
1371 
1372 	list_splice_init(&prefs_delayed, &prefs);
1373 
1374 	ret = __add_missing_keys(fs_info, &prefs);
1375 	if (ret)
1376 		goto out;
1377 
1378 	__merge_refs(&prefs, 1);
1379 
1380 	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1381 				      extent_item_pos, total_refs,
1382 				      root_objectid);
1383 	if (ret)
1384 		goto out;
1385 
1386 	__merge_refs(&prefs, 2);
1387 
1388 	while (!list_empty(&prefs)) {
1389 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1390 		WARN_ON(ref->count < 0);
1391 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1392 			if (root_objectid && ref->root_id != root_objectid) {
1393 				ret = BACKREF_FOUND_SHARED;
1394 				goto out;
1395 			}
1396 
1397 			/* no parent == root of tree */
1398 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1399 			if (ret < 0)
1400 				goto out;
1401 		}
1402 		if (ref->count && ref->parent) {
1403 			if (extent_item_pos && !ref->inode_list &&
1404 			    ref->level == 0) {
1405 				struct extent_buffer *eb;
1406 
1407 				eb = read_tree_block(fs_info, ref->parent, 0);
1408 				if (IS_ERR(eb)) {
1409 					ret = PTR_ERR(eb);
1410 					goto out;
1411 				} else if (!extent_buffer_uptodate(eb)) {
1412 					free_extent_buffer(eb);
1413 					ret = -EIO;
1414 					goto out;
1415 				}
1416 				btrfs_tree_read_lock(eb);
1417 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1418 				ret = find_extent_in_eb(eb, bytenr,
1419 							*extent_item_pos, &eie);
1420 				btrfs_tree_read_unlock_blocking(eb);
1421 				free_extent_buffer(eb);
1422 				if (ret < 0)
1423 					goto out;
1424 				ref->inode_list = eie;
1425 			}
1426 			ret = ulist_add_merge_ptr(refs, ref->parent,
1427 						  ref->inode_list,
1428 						  (void **)&eie, GFP_NOFS);
1429 			if (ret < 0)
1430 				goto out;
1431 			if (!ret && extent_item_pos) {
1432 				/*
1433 				 * we've recorded that parent, so we must extend
1434 				 * its inode list here
1435 				 */
1436 				BUG_ON(!eie);
1437 				while (eie->next)
1438 					eie = eie->next;
1439 				eie->next = ref->inode_list;
1440 			}
1441 			eie = NULL;
1442 		}
1443 		list_del(&ref->list);
1444 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1445 	}
1446 
1447 out:
1448 	btrfs_free_path(path);
1449 	ref_root_free(ref_tree);
1450 	while (!list_empty(&prefs)) {
1451 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1452 		list_del(&ref->list);
1453 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1454 	}
1455 	while (!list_empty(&prefs_delayed)) {
1456 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1457 				       list);
1458 		list_del(&ref->list);
1459 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1460 	}
1461 	if (ret < 0)
1462 		free_inode_elem_list(eie);
1463 	return ret;
1464 }
1465 
1466 static void free_leaf_list(struct ulist *blocks)
1467 {
1468 	struct ulist_node *node = NULL;
1469 	struct extent_inode_elem *eie;
1470 	struct ulist_iterator uiter;
1471 
1472 	ULIST_ITER_INIT(&uiter);
1473 	while ((node = ulist_next(blocks, &uiter))) {
1474 		if (!node->aux)
1475 			continue;
1476 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1477 		free_inode_elem_list(eie);
1478 		node->aux = 0;
1479 	}
1480 
1481 	ulist_free(blocks);
1482 }
1483 
1484 /*
1485  * Finds all leafs with a reference to the specified combination of bytenr and
1486  * offset. key_list_head will point to a list of corresponding keys (caller must
1487  * free each list element). The leafs will be stored in the leafs ulist, which
1488  * must be freed with ulist_free.
1489  *
1490  * returns 0 on success, <0 on error
1491  */
1492 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1493 				struct btrfs_fs_info *fs_info, u64 bytenr,
1494 				u64 time_seq, struct ulist **leafs,
1495 				const u64 *extent_item_pos)
1496 {
1497 	int ret;
1498 
1499 	*leafs = ulist_alloc(GFP_NOFS);
1500 	if (!*leafs)
1501 		return -ENOMEM;
1502 
1503 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1504 				*leafs, NULL, extent_item_pos, 0, 0, 0);
1505 	if (ret < 0 && ret != -ENOENT) {
1506 		free_leaf_list(*leafs);
1507 		return ret;
1508 	}
1509 
1510 	return 0;
1511 }
1512 
1513 /*
1514  * walk all backrefs for a given extent to find all roots that reference this
1515  * extent. Walking a backref means finding all extents that reference this
1516  * extent and in turn walk the backrefs of those, too. Naturally this is a
1517  * recursive process, but here it is implemented in an iterative fashion: We
1518  * find all referencing extents for the extent in question and put them on a
1519  * list. In turn, we find all referencing extents for those, further appending
1520  * to the list. The way we iterate the list allows adding more elements after
1521  * the current while iterating. The process stops when we reach the end of the
1522  * list. Found roots are added to the roots list.
1523  *
1524  * returns 0 on success, < 0 on error.
1525  */
1526 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1527 				  struct btrfs_fs_info *fs_info, u64 bytenr,
1528 				  u64 time_seq, struct ulist **roots)
1529 {
1530 	struct ulist *tmp;
1531 	struct ulist_node *node = NULL;
1532 	struct ulist_iterator uiter;
1533 	int ret;
1534 
1535 	tmp = ulist_alloc(GFP_NOFS);
1536 	if (!tmp)
1537 		return -ENOMEM;
1538 	*roots = ulist_alloc(GFP_NOFS);
1539 	if (!*roots) {
1540 		ulist_free(tmp);
1541 		return -ENOMEM;
1542 	}
1543 
1544 	ULIST_ITER_INIT(&uiter);
1545 	while (1) {
1546 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1547 					tmp, *roots, NULL, 0, 0, 0);
1548 		if (ret < 0 && ret != -ENOENT) {
1549 			ulist_free(tmp);
1550 			ulist_free(*roots);
1551 			return ret;
1552 		}
1553 		node = ulist_next(tmp, &uiter);
1554 		if (!node)
1555 			break;
1556 		bytenr = node->val;
1557 		cond_resched();
1558 	}
1559 
1560 	ulist_free(tmp);
1561 	return 0;
1562 }
1563 
1564 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1565 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1566 			 u64 time_seq, struct ulist **roots)
1567 {
1568 	int ret;
1569 
1570 	if (!trans)
1571 		down_read(&fs_info->commit_root_sem);
1572 	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1573 	if (!trans)
1574 		up_read(&fs_info->commit_root_sem);
1575 	return ret;
1576 }
1577 
1578 /**
1579  * btrfs_check_shared - tell us whether an extent is shared
1580  *
1581  * @trans: optional trans handle
1582  *
1583  * btrfs_check_shared uses the backref walking code but will short
1584  * circuit as soon as it finds a root or inode that doesn't match the
1585  * one passed in. This provides a significant performance benefit for
1586  * callers (such as fiemap) which want to know whether the extent is
1587  * shared but do not need a ref count.
1588  *
1589  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1590  */
1591 int btrfs_check_shared(struct btrfs_trans_handle *trans,
1592 		       struct btrfs_fs_info *fs_info, u64 root_objectid,
1593 		       u64 inum, u64 bytenr)
1594 {
1595 	struct ulist *tmp = NULL;
1596 	struct ulist *roots = NULL;
1597 	struct ulist_iterator uiter;
1598 	struct ulist_node *node;
1599 	struct seq_list elem = SEQ_LIST_INIT(elem);
1600 	int ret = 0;
1601 
1602 	tmp = ulist_alloc(GFP_NOFS);
1603 	roots = ulist_alloc(GFP_NOFS);
1604 	if (!tmp || !roots) {
1605 		ulist_free(tmp);
1606 		ulist_free(roots);
1607 		return -ENOMEM;
1608 	}
1609 
1610 	if (trans)
1611 		btrfs_get_tree_mod_seq(fs_info, &elem);
1612 	else
1613 		down_read(&fs_info->commit_root_sem);
1614 	ULIST_ITER_INIT(&uiter);
1615 	while (1) {
1616 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1617 					roots, NULL, root_objectid, inum, 1);
1618 		if (ret == BACKREF_FOUND_SHARED) {
1619 			/* this is the only condition under which we return 1 */
1620 			ret = 1;
1621 			break;
1622 		}
1623 		if (ret < 0 && ret != -ENOENT)
1624 			break;
1625 		ret = 0;
1626 		node = ulist_next(tmp, &uiter);
1627 		if (!node)
1628 			break;
1629 		bytenr = node->val;
1630 		cond_resched();
1631 	}
1632 	if (trans)
1633 		btrfs_put_tree_mod_seq(fs_info, &elem);
1634 	else
1635 		up_read(&fs_info->commit_root_sem);
1636 	ulist_free(tmp);
1637 	ulist_free(roots);
1638 	return ret;
1639 }
1640 
1641 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1642 			  u64 start_off, struct btrfs_path *path,
1643 			  struct btrfs_inode_extref **ret_extref,
1644 			  u64 *found_off)
1645 {
1646 	int ret, slot;
1647 	struct btrfs_key key;
1648 	struct btrfs_key found_key;
1649 	struct btrfs_inode_extref *extref;
1650 	struct extent_buffer *leaf;
1651 	unsigned long ptr;
1652 
1653 	key.objectid = inode_objectid;
1654 	key.type = BTRFS_INODE_EXTREF_KEY;
1655 	key.offset = start_off;
1656 
1657 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1658 	if (ret < 0)
1659 		return ret;
1660 
1661 	while (1) {
1662 		leaf = path->nodes[0];
1663 		slot = path->slots[0];
1664 		if (slot >= btrfs_header_nritems(leaf)) {
1665 			/*
1666 			 * If the item at offset is not found,
1667 			 * btrfs_search_slot will point us to the slot
1668 			 * where it should be inserted. In our case
1669 			 * that will be the slot directly before the
1670 			 * next INODE_REF_KEY_V2 item. In the case
1671 			 * that we're pointing to the last slot in a
1672 			 * leaf, we must move one leaf over.
1673 			 */
1674 			ret = btrfs_next_leaf(root, path);
1675 			if (ret) {
1676 				if (ret >= 1)
1677 					ret = -ENOENT;
1678 				break;
1679 			}
1680 			continue;
1681 		}
1682 
1683 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1684 
1685 		/*
1686 		 * Check that we're still looking at an extended ref key for
1687 		 * this particular objectid. If we have different
1688 		 * objectid or type then there are no more to be found
1689 		 * in the tree and we can exit.
1690 		 */
1691 		ret = -ENOENT;
1692 		if (found_key.objectid != inode_objectid)
1693 			break;
1694 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1695 			break;
1696 
1697 		ret = 0;
1698 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1699 		extref = (struct btrfs_inode_extref *)ptr;
1700 		*ret_extref = extref;
1701 		if (found_off)
1702 			*found_off = found_key.offset;
1703 		break;
1704 	}
1705 
1706 	return ret;
1707 }
1708 
1709 /*
1710  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1711  * Elements of the path are separated by '/' and the path is guaranteed to be
1712  * 0-terminated. the path is only given within the current file system.
1713  * Therefore, it never starts with a '/'. the caller is responsible to provide
1714  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1715  * the start point of the resulting string is returned. this pointer is within
1716  * dest, normally.
1717  * in case the path buffer would overflow, the pointer is decremented further
1718  * as if output was written to the buffer, though no more output is actually
1719  * generated. that way, the caller can determine how much space would be
1720  * required for the path to fit into the buffer. in that case, the returned
1721  * value will be smaller than dest. callers must check this!
1722  */
1723 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1724 			u32 name_len, unsigned long name_off,
1725 			struct extent_buffer *eb_in, u64 parent,
1726 			char *dest, u32 size)
1727 {
1728 	int slot;
1729 	u64 next_inum;
1730 	int ret;
1731 	s64 bytes_left = ((s64)size) - 1;
1732 	struct extent_buffer *eb = eb_in;
1733 	struct btrfs_key found_key;
1734 	int leave_spinning = path->leave_spinning;
1735 	struct btrfs_inode_ref *iref;
1736 
1737 	if (bytes_left >= 0)
1738 		dest[bytes_left] = '\0';
1739 
1740 	path->leave_spinning = 1;
1741 	while (1) {
1742 		bytes_left -= name_len;
1743 		if (bytes_left >= 0)
1744 			read_extent_buffer(eb, dest + bytes_left,
1745 					   name_off, name_len);
1746 		if (eb != eb_in) {
1747 			if (!path->skip_locking)
1748 				btrfs_tree_read_unlock_blocking(eb);
1749 			free_extent_buffer(eb);
1750 		}
1751 		ret = btrfs_find_item(fs_root, path, parent, 0,
1752 				BTRFS_INODE_REF_KEY, &found_key);
1753 		if (ret > 0)
1754 			ret = -ENOENT;
1755 		if (ret)
1756 			break;
1757 
1758 		next_inum = found_key.offset;
1759 
1760 		/* regular exit ahead */
1761 		if (parent == next_inum)
1762 			break;
1763 
1764 		slot = path->slots[0];
1765 		eb = path->nodes[0];
1766 		/* make sure we can use eb after releasing the path */
1767 		if (eb != eb_in) {
1768 			if (!path->skip_locking)
1769 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1770 			path->nodes[0] = NULL;
1771 			path->locks[0] = 0;
1772 		}
1773 		btrfs_release_path(path);
1774 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1775 
1776 		name_len = btrfs_inode_ref_name_len(eb, iref);
1777 		name_off = (unsigned long)(iref + 1);
1778 
1779 		parent = next_inum;
1780 		--bytes_left;
1781 		if (bytes_left >= 0)
1782 			dest[bytes_left] = '/';
1783 	}
1784 
1785 	btrfs_release_path(path);
1786 	path->leave_spinning = leave_spinning;
1787 
1788 	if (ret)
1789 		return ERR_PTR(ret);
1790 
1791 	return dest + bytes_left;
1792 }
1793 
1794 /*
1795  * this makes the path point to (logical EXTENT_ITEM *)
1796  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1797  * tree blocks and <0 on error.
1798  */
1799 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1800 			struct btrfs_path *path, struct btrfs_key *found_key,
1801 			u64 *flags_ret)
1802 {
1803 	int ret;
1804 	u64 flags;
1805 	u64 size = 0;
1806 	u32 item_size;
1807 	struct extent_buffer *eb;
1808 	struct btrfs_extent_item *ei;
1809 	struct btrfs_key key;
1810 
1811 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1812 		key.type = BTRFS_METADATA_ITEM_KEY;
1813 	else
1814 		key.type = BTRFS_EXTENT_ITEM_KEY;
1815 	key.objectid = logical;
1816 	key.offset = (u64)-1;
1817 
1818 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1819 	if (ret < 0)
1820 		return ret;
1821 
1822 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1823 	if (ret) {
1824 		if (ret > 0)
1825 			ret = -ENOENT;
1826 		return ret;
1827 	}
1828 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1829 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1830 		size = fs_info->nodesize;
1831 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1832 		size = found_key->offset;
1833 
1834 	if (found_key->objectid > logical ||
1835 	    found_key->objectid + size <= logical) {
1836 		btrfs_debug(fs_info,
1837 			"logical %llu is not within any extent", logical);
1838 		return -ENOENT;
1839 	}
1840 
1841 	eb = path->nodes[0];
1842 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1843 	BUG_ON(item_size < sizeof(*ei));
1844 
1845 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1846 	flags = btrfs_extent_flags(eb, ei);
1847 
1848 	btrfs_debug(fs_info,
1849 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1850 		 logical, logical - found_key->objectid, found_key->objectid,
1851 		 found_key->offset, flags, item_size);
1852 
1853 	WARN_ON(!flags_ret);
1854 	if (flags_ret) {
1855 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1856 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1857 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1858 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1859 		else
1860 			BUG_ON(1);
1861 		return 0;
1862 	}
1863 
1864 	return -EIO;
1865 }
1866 
1867 /*
1868  * helper function to iterate extent inline refs. ptr must point to a 0 value
1869  * for the first call and may be modified. it is used to track state.
1870  * if more refs exist, 0 is returned and the next call to
1871  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1872  * next ref. after the last ref was processed, 1 is returned.
1873  * returns <0 on error
1874  */
1875 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1876 				   struct btrfs_key *key,
1877 				   struct btrfs_extent_item *ei, u32 item_size,
1878 				   struct btrfs_extent_inline_ref **out_eiref,
1879 				   int *out_type)
1880 {
1881 	unsigned long end;
1882 	u64 flags;
1883 	struct btrfs_tree_block_info *info;
1884 
1885 	if (!*ptr) {
1886 		/* first call */
1887 		flags = btrfs_extent_flags(eb, ei);
1888 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1889 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1890 				/* a skinny metadata extent */
1891 				*out_eiref =
1892 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1893 			} else {
1894 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1895 				info = (struct btrfs_tree_block_info *)(ei + 1);
1896 				*out_eiref =
1897 				   (struct btrfs_extent_inline_ref *)(info + 1);
1898 			}
1899 		} else {
1900 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1901 		}
1902 		*ptr = (unsigned long)*out_eiref;
1903 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1904 			return -ENOENT;
1905 	}
1906 
1907 	end = (unsigned long)ei + item_size;
1908 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1909 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1910 
1911 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1912 	WARN_ON(*ptr > end);
1913 	if (*ptr == end)
1914 		return 1; /* last */
1915 
1916 	return 0;
1917 }
1918 
1919 /*
1920  * reads the tree block backref for an extent. tree level and root are returned
1921  * through out_level and out_root. ptr must point to a 0 value for the first
1922  * call and may be modified (see __get_extent_inline_ref comment).
1923  * returns 0 if data was provided, 1 if there was no more data to provide or
1924  * <0 on error.
1925  */
1926 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1927 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1928 			    u32 item_size, u64 *out_root, u8 *out_level)
1929 {
1930 	int ret;
1931 	int type;
1932 	struct btrfs_extent_inline_ref *eiref;
1933 
1934 	if (*ptr == (unsigned long)-1)
1935 		return 1;
1936 
1937 	while (1) {
1938 		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1939 					      &eiref, &type);
1940 		if (ret < 0)
1941 			return ret;
1942 
1943 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1944 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1945 			break;
1946 
1947 		if (ret == 1)
1948 			return 1;
1949 	}
1950 
1951 	/* we can treat both ref types equally here */
1952 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1953 
1954 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1955 		struct btrfs_tree_block_info *info;
1956 
1957 		info = (struct btrfs_tree_block_info *)(ei + 1);
1958 		*out_level = btrfs_tree_block_level(eb, info);
1959 	} else {
1960 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1961 		*out_level = (u8)key->offset;
1962 	}
1963 
1964 	if (ret == 1)
1965 		*ptr = (unsigned long)-1;
1966 
1967 	return 0;
1968 }
1969 
1970 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1971 			     struct extent_inode_elem *inode_list,
1972 			     u64 root, u64 extent_item_objectid,
1973 			     iterate_extent_inodes_t *iterate, void *ctx)
1974 {
1975 	struct extent_inode_elem *eie;
1976 	int ret = 0;
1977 
1978 	for (eie = inode_list; eie; eie = eie->next) {
1979 		btrfs_debug(fs_info,
1980 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1981 			    extent_item_objectid, eie->inum,
1982 			    eie->offset, root);
1983 		ret = iterate(eie->inum, eie->offset, root, ctx);
1984 		if (ret) {
1985 			btrfs_debug(fs_info,
1986 				    "stopping iteration for %llu due to ret=%d",
1987 				    extent_item_objectid, ret);
1988 			break;
1989 		}
1990 	}
1991 
1992 	return ret;
1993 }
1994 
1995 /*
1996  * calls iterate() for every inode that references the extent identified by
1997  * the given parameters.
1998  * when the iterator function returns a non-zero value, iteration stops.
1999  */
2000 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
2001 				u64 extent_item_objectid, u64 extent_item_pos,
2002 				int search_commit_root,
2003 				iterate_extent_inodes_t *iterate, void *ctx)
2004 {
2005 	int ret;
2006 	struct btrfs_trans_handle *trans = NULL;
2007 	struct ulist *refs = NULL;
2008 	struct ulist *roots = NULL;
2009 	struct ulist_node *ref_node = NULL;
2010 	struct ulist_node *root_node = NULL;
2011 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
2012 	struct ulist_iterator ref_uiter;
2013 	struct ulist_iterator root_uiter;
2014 
2015 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
2016 			extent_item_objectid);
2017 
2018 	if (!search_commit_root) {
2019 		trans = btrfs_join_transaction(fs_info->extent_root);
2020 		if (IS_ERR(trans))
2021 			return PTR_ERR(trans);
2022 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2023 	} else {
2024 		down_read(&fs_info->commit_root_sem);
2025 	}
2026 
2027 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
2028 				   tree_mod_seq_elem.seq, &refs,
2029 				   &extent_item_pos);
2030 	if (ret)
2031 		goto out;
2032 
2033 	ULIST_ITER_INIT(&ref_uiter);
2034 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2035 		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
2036 					     tree_mod_seq_elem.seq, &roots);
2037 		if (ret)
2038 			break;
2039 		ULIST_ITER_INIT(&root_uiter);
2040 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2041 			btrfs_debug(fs_info,
2042 				    "root %llu references leaf %llu, data list %#llx",
2043 				    root_node->val, ref_node->val,
2044 				    ref_node->aux);
2045 			ret = iterate_leaf_refs(fs_info,
2046 						(struct extent_inode_elem *)
2047 						(uintptr_t)ref_node->aux,
2048 						root_node->val,
2049 						extent_item_objectid,
2050 						iterate, ctx);
2051 		}
2052 		ulist_free(roots);
2053 	}
2054 
2055 	free_leaf_list(refs);
2056 out:
2057 	if (!search_commit_root) {
2058 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2059 		btrfs_end_transaction(trans);
2060 	} else {
2061 		up_read(&fs_info->commit_root_sem);
2062 	}
2063 
2064 	return ret;
2065 }
2066 
2067 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2068 				struct btrfs_path *path,
2069 				iterate_extent_inodes_t *iterate, void *ctx)
2070 {
2071 	int ret;
2072 	u64 extent_item_pos;
2073 	u64 flags = 0;
2074 	struct btrfs_key found_key;
2075 	int search_commit_root = path->search_commit_root;
2076 
2077 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2078 	btrfs_release_path(path);
2079 	if (ret < 0)
2080 		return ret;
2081 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2082 		return -EINVAL;
2083 
2084 	extent_item_pos = logical - found_key.objectid;
2085 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2086 					extent_item_pos, search_commit_root,
2087 					iterate, ctx);
2088 
2089 	return ret;
2090 }
2091 
2092 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2093 			      struct extent_buffer *eb, void *ctx);
2094 
2095 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2096 			      struct btrfs_path *path,
2097 			      iterate_irefs_t *iterate, void *ctx)
2098 {
2099 	int ret = 0;
2100 	int slot;
2101 	u32 cur;
2102 	u32 len;
2103 	u32 name_len;
2104 	u64 parent = 0;
2105 	int found = 0;
2106 	struct extent_buffer *eb;
2107 	struct btrfs_item *item;
2108 	struct btrfs_inode_ref *iref;
2109 	struct btrfs_key found_key;
2110 
2111 	while (!ret) {
2112 		ret = btrfs_find_item(fs_root, path, inum,
2113 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2114 				&found_key);
2115 
2116 		if (ret < 0)
2117 			break;
2118 		if (ret) {
2119 			ret = found ? 0 : -ENOENT;
2120 			break;
2121 		}
2122 		++found;
2123 
2124 		parent = found_key.offset;
2125 		slot = path->slots[0];
2126 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2127 		if (!eb) {
2128 			ret = -ENOMEM;
2129 			break;
2130 		}
2131 		extent_buffer_get(eb);
2132 		btrfs_tree_read_lock(eb);
2133 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2134 		btrfs_release_path(path);
2135 
2136 		item = btrfs_item_nr(slot);
2137 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2138 
2139 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2140 			name_len = btrfs_inode_ref_name_len(eb, iref);
2141 			/* path must be released before calling iterate()! */
2142 			btrfs_debug(fs_root->fs_info,
2143 				"following ref at offset %u for inode %llu in tree %llu",
2144 				cur, found_key.objectid, fs_root->objectid);
2145 			ret = iterate(parent, name_len,
2146 				      (unsigned long)(iref + 1), eb, ctx);
2147 			if (ret)
2148 				break;
2149 			len = sizeof(*iref) + name_len;
2150 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2151 		}
2152 		btrfs_tree_read_unlock_blocking(eb);
2153 		free_extent_buffer(eb);
2154 	}
2155 
2156 	btrfs_release_path(path);
2157 
2158 	return ret;
2159 }
2160 
2161 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2162 				 struct btrfs_path *path,
2163 				 iterate_irefs_t *iterate, void *ctx)
2164 {
2165 	int ret;
2166 	int slot;
2167 	u64 offset = 0;
2168 	u64 parent;
2169 	int found = 0;
2170 	struct extent_buffer *eb;
2171 	struct btrfs_inode_extref *extref;
2172 	u32 item_size;
2173 	u32 cur_offset;
2174 	unsigned long ptr;
2175 
2176 	while (1) {
2177 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2178 					    &offset);
2179 		if (ret < 0)
2180 			break;
2181 		if (ret) {
2182 			ret = found ? 0 : -ENOENT;
2183 			break;
2184 		}
2185 		++found;
2186 
2187 		slot = path->slots[0];
2188 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2189 		if (!eb) {
2190 			ret = -ENOMEM;
2191 			break;
2192 		}
2193 		extent_buffer_get(eb);
2194 
2195 		btrfs_tree_read_lock(eb);
2196 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2197 		btrfs_release_path(path);
2198 
2199 		item_size = btrfs_item_size_nr(eb, slot);
2200 		ptr = btrfs_item_ptr_offset(eb, slot);
2201 		cur_offset = 0;
2202 
2203 		while (cur_offset < item_size) {
2204 			u32 name_len;
2205 
2206 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2207 			parent = btrfs_inode_extref_parent(eb, extref);
2208 			name_len = btrfs_inode_extref_name_len(eb, extref);
2209 			ret = iterate(parent, name_len,
2210 				      (unsigned long)&extref->name, eb, ctx);
2211 			if (ret)
2212 				break;
2213 
2214 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2215 			cur_offset += sizeof(*extref);
2216 		}
2217 		btrfs_tree_read_unlock_blocking(eb);
2218 		free_extent_buffer(eb);
2219 
2220 		offset++;
2221 	}
2222 
2223 	btrfs_release_path(path);
2224 
2225 	return ret;
2226 }
2227 
2228 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2229 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2230 			 void *ctx)
2231 {
2232 	int ret;
2233 	int found_refs = 0;
2234 
2235 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2236 	if (!ret)
2237 		++found_refs;
2238 	else if (ret != -ENOENT)
2239 		return ret;
2240 
2241 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2242 	if (ret == -ENOENT && found_refs)
2243 		return 0;
2244 
2245 	return ret;
2246 }
2247 
2248 /*
2249  * returns 0 if the path could be dumped (probably truncated)
2250  * returns <0 in case of an error
2251  */
2252 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2253 			 struct extent_buffer *eb, void *ctx)
2254 {
2255 	struct inode_fs_paths *ipath = ctx;
2256 	char *fspath;
2257 	char *fspath_min;
2258 	int i = ipath->fspath->elem_cnt;
2259 	const int s_ptr = sizeof(char *);
2260 	u32 bytes_left;
2261 
2262 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2263 					ipath->fspath->bytes_left - s_ptr : 0;
2264 
2265 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2266 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2267 				   name_off, eb, inum, fspath_min, bytes_left);
2268 	if (IS_ERR(fspath))
2269 		return PTR_ERR(fspath);
2270 
2271 	if (fspath > fspath_min) {
2272 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2273 		++ipath->fspath->elem_cnt;
2274 		ipath->fspath->bytes_left = fspath - fspath_min;
2275 	} else {
2276 		++ipath->fspath->elem_missed;
2277 		ipath->fspath->bytes_missing += fspath_min - fspath;
2278 		ipath->fspath->bytes_left = 0;
2279 	}
2280 
2281 	return 0;
2282 }
2283 
2284 /*
2285  * this dumps all file system paths to the inode into the ipath struct, provided
2286  * is has been created large enough. each path is zero-terminated and accessed
2287  * from ipath->fspath->val[i].
2288  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2289  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2290  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2291  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2292  * have been needed to return all paths.
2293  */
2294 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2295 {
2296 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2297 			     inode_to_path, ipath);
2298 }
2299 
2300 struct btrfs_data_container *init_data_container(u32 total_bytes)
2301 {
2302 	struct btrfs_data_container *data;
2303 	size_t alloc_bytes;
2304 
2305 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2306 	data = vmalloc(alloc_bytes);
2307 	if (!data)
2308 		return ERR_PTR(-ENOMEM);
2309 
2310 	if (total_bytes >= sizeof(*data)) {
2311 		data->bytes_left = total_bytes - sizeof(*data);
2312 		data->bytes_missing = 0;
2313 	} else {
2314 		data->bytes_missing = sizeof(*data) - total_bytes;
2315 		data->bytes_left = 0;
2316 	}
2317 
2318 	data->elem_cnt = 0;
2319 	data->elem_missed = 0;
2320 
2321 	return data;
2322 }
2323 
2324 /*
2325  * allocates space to return multiple file system paths for an inode.
2326  * total_bytes to allocate are passed, note that space usable for actual path
2327  * information will be total_bytes - sizeof(struct inode_fs_paths).
2328  * the returned pointer must be freed with free_ipath() in the end.
2329  */
2330 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2331 					struct btrfs_path *path)
2332 {
2333 	struct inode_fs_paths *ifp;
2334 	struct btrfs_data_container *fspath;
2335 
2336 	fspath = init_data_container(total_bytes);
2337 	if (IS_ERR(fspath))
2338 		return (void *)fspath;
2339 
2340 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
2341 	if (!ifp) {
2342 		vfree(fspath);
2343 		return ERR_PTR(-ENOMEM);
2344 	}
2345 
2346 	ifp->btrfs_path = path;
2347 	ifp->fspath = fspath;
2348 	ifp->fs_root = fs_root;
2349 
2350 	return ifp;
2351 }
2352 
2353 void free_ipath(struct inode_fs_paths *ipath)
2354 {
2355 	if (!ipath)
2356 		return;
2357 	vfree(ipath->fspath);
2358 	kfree(ipath);
2359 }
2360