1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/mm.h> 20 #include <linux/rbtree.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "backref.h" 24 #include "ulist.h" 25 #include "transaction.h" 26 #include "delayed-ref.h" 27 #include "locking.h" 28 29 enum merge_mode { 30 MERGE_IDENTICAL_KEYS = 1, 31 MERGE_IDENTICAL_PARENTS, 32 }; 33 34 /* Just an arbitrary number so we can be sure this happened */ 35 #define BACKREF_FOUND_SHARED 6 36 37 struct extent_inode_elem { 38 u64 inum; 39 u64 offset; 40 struct extent_inode_elem *next; 41 }; 42 43 /* 44 * ref_root is used as the root of the ref tree that hold a collection 45 * of unique references. 46 */ 47 struct ref_root { 48 struct rb_root rb_root; 49 50 /* 51 * The unique_refs represents the number of ref_nodes with a positive 52 * count stored in the tree. Even if a ref_node (the count is greater 53 * than one) is added, the unique_refs will only increase by one. 54 */ 55 unsigned int unique_refs; 56 }; 57 58 /* ref_node is used to store a unique reference to the ref tree. */ 59 struct ref_node { 60 struct rb_node rb_node; 61 62 /* For NORMAL_REF, otherwise all these fields should be set to 0 */ 63 u64 root_id; 64 u64 object_id; 65 u64 offset; 66 67 /* For SHARED_REF, otherwise parent field should be set to 0 */ 68 u64 parent; 69 70 /* Ref to the ref_mod of btrfs_delayed_ref_node */ 71 int ref_mod; 72 }; 73 74 /* Dynamically allocate and initialize a ref_root */ 75 static struct ref_root *ref_root_alloc(void) 76 { 77 struct ref_root *ref_tree; 78 79 ref_tree = kmalloc(sizeof(*ref_tree), GFP_NOFS); 80 if (!ref_tree) 81 return NULL; 82 83 ref_tree->rb_root = RB_ROOT; 84 ref_tree->unique_refs = 0; 85 86 return ref_tree; 87 } 88 89 /* Free all nodes in the ref tree, and reinit ref_root */ 90 static void ref_root_fini(struct ref_root *ref_tree) 91 { 92 struct ref_node *node; 93 struct rb_node *next; 94 95 while ((next = rb_first(&ref_tree->rb_root)) != NULL) { 96 node = rb_entry(next, struct ref_node, rb_node); 97 rb_erase(next, &ref_tree->rb_root); 98 kfree(node); 99 } 100 101 ref_tree->rb_root = RB_ROOT; 102 ref_tree->unique_refs = 0; 103 } 104 105 static void ref_root_free(struct ref_root *ref_tree) 106 { 107 if (!ref_tree) 108 return; 109 110 ref_root_fini(ref_tree); 111 kfree(ref_tree); 112 } 113 114 /* 115 * Compare ref_node with (root_id, object_id, offset, parent) 116 * 117 * The function compares two ref_node a and b. It returns an integer less 118 * than, equal to, or greater than zero , respectively, to be less than, to 119 * equal, or be greater than b. 120 */ 121 static int ref_node_cmp(struct ref_node *a, struct ref_node *b) 122 { 123 if (a->root_id < b->root_id) 124 return -1; 125 else if (a->root_id > b->root_id) 126 return 1; 127 128 if (a->object_id < b->object_id) 129 return -1; 130 else if (a->object_id > b->object_id) 131 return 1; 132 133 if (a->offset < b->offset) 134 return -1; 135 else if (a->offset > b->offset) 136 return 1; 137 138 if (a->parent < b->parent) 139 return -1; 140 else if (a->parent > b->parent) 141 return 1; 142 143 return 0; 144 } 145 146 /* 147 * Search ref_node with (root_id, object_id, offset, parent) in the tree 148 * 149 * if found, the pointer of the ref_node will be returned; 150 * if not found, NULL will be returned and pos will point to the rb_node for 151 * insert, pos_parent will point to pos'parent for insert; 152 */ 153 static struct ref_node *__ref_tree_search(struct ref_root *ref_tree, 154 struct rb_node ***pos, 155 struct rb_node **pos_parent, 156 u64 root_id, u64 object_id, 157 u64 offset, u64 parent) 158 { 159 struct ref_node *cur = NULL; 160 struct ref_node entry; 161 int ret; 162 163 entry.root_id = root_id; 164 entry.object_id = object_id; 165 entry.offset = offset; 166 entry.parent = parent; 167 168 *pos = &ref_tree->rb_root.rb_node; 169 170 while (**pos) { 171 *pos_parent = **pos; 172 cur = rb_entry(*pos_parent, struct ref_node, rb_node); 173 174 ret = ref_node_cmp(cur, &entry); 175 if (ret > 0) 176 *pos = &(**pos)->rb_left; 177 else if (ret < 0) 178 *pos = &(**pos)->rb_right; 179 else 180 return cur; 181 } 182 183 return NULL; 184 } 185 186 /* 187 * Insert a ref_node to the ref tree 188 * @pos used for specifiy the position to insert 189 * @pos_parent for specifiy pos's parent 190 * 191 * success, return 0; 192 * ref_node already exists, return -EEXIST; 193 */ 194 static int ref_tree_insert(struct ref_root *ref_tree, struct rb_node **pos, 195 struct rb_node *pos_parent, struct ref_node *ins) 196 { 197 struct rb_node **p = NULL; 198 struct rb_node *parent = NULL; 199 struct ref_node *cur = NULL; 200 201 if (!pos) { 202 cur = __ref_tree_search(ref_tree, &p, &parent, ins->root_id, 203 ins->object_id, ins->offset, 204 ins->parent); 205 if (cur) 206 return -EEXIST; 207 } else { 208 p = pos; 209 parent = pos_parent; 210 } 211 212 rb_link_node(&ins->rb_node, parent, p); 213 rb_insert_color(&ins->rb_node, &ref_tree->rb_root); 214 215 return 0; 216 } 217 218 /* Erase and free ref_node, caller should update ref_root->unique_refs */ 219 static void ref_tree_remove(struct ref_root *ref_tree, struct ref_node *node) 220 { 221 rb_erase(&node->rb_node, &ref_tree->rb_root); 222 kfree(node); 223 } 224 225 /* 226 * Update ref_root->unique_refs 227 * 228 * Call __ref_tree_search 229 * 1. if ref_node doesn't exist, ref_tree_insert this node, and update 230 * ref_root->unique_refs: 231 * if ref_node->ref_mod > 0, ref_root->unique_refs++; 232 * if ref_node->ref_mod < 0, do noting; 233 * 234 * 2. if ref_node is found, then get origin ref_node->ref_mod, and update 235 * ref_node->ref_mod. 236 * if ref_node->ref_mod is equal to 0,then call ref_tree_remove 237 * 238 * according to origin_mod and new_mod, update ref_root->items 239 * +----------------+--------------+-------------+ 240 * | |new_count <= 0|new_count > 0| 241 * +----------------+--------------+-------------+ 242 * |origin_count < 0| 0 | 1 | 243 * +----------------+--------------+-------------+ 244 * |origin_count > 0| -1 | 0 | 245 * +----------------+--------------+-------------+ 246 * 247 * In case of allocation failure, -ENOMEM is returned and the ref_tree stays 248 * unaltered. 249 * Success, return 0 250 */ 251 static int ref_tree_add(struct ref_root *ref_tree, u64 root_id, u64 object_id, 252 u64 offset, u64 parent, int count) 253 { 254 struct ref_node *node = NULL; 255 struct rb_node **pos = NULL; 256 struct rb_node *pos_parent = NULL; 257 int origin_count; 258 int ret; 259 260 if (!count) 261 return 0; 262 263 node = __ref_tree_search(ref_tree, &pos, &pos_parent, root_id, 264 object_id, offset, parent); 265 if (node == NULL) { 266 node = kmalloc(sizeof(*node), GFP_NOFS); 267 if (!node) 268 return -ENOMEM; 269 270 node->root_id = root_id; 271 node->object_id = object_id; 272 node->offset = offset; 273 node->parent = parent; 274 node->ref_mod = count; 275 276 ret = ref_tree_insert(ref_tree, pos, pos_parent, node); 277 ASSERT(!ret); 278 if (ret) { 279 kfree(node); 280 return ret; 281 } 282 283 ref_tree->unique_refs += node->ref_mod > 0 ? 1 : 0; 284 285 return 0; 286 } 287 288 origin_count = node->ref_mod; 289 node->ref_mod += count; 290 291 if (node->ref_mod > 0) 292 ref_tree->unique_refs += origin_count > 0 ? 0 : 1; 293 else if (node->ref_mod <= 0) 294 ref_tree->unique_refs += origin_count > 0 ? -1 : 0; 295 296 if (!node->ref_mod) 297 ref_tree_remove(ref_tree, node); 298 299 return 0; 300 } 301 302 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 303 struct btrfs_file_extent_item *fi, 304 u64 extent_item_pos, 305 struct extent_inode_elem **eie) 306 { 307 u64 offset = 0; 308 struct extent_inode_elem *e; 309 310 if (!btrfs_file_extent_compression(eb, fi) && 311 !btrfs_file_extent_encryption(eb, fi) && 312 !btrfs_file_extent_other_encoding(eb, fi)) { 313 u64 data_offset; 314 u64 data_len; 315 316 data_offset = btrfs_file_extent_offset(eb, fi); 317 data_len = btrfs_file_extent_num_bytes(eb, fi); 318 319 if (extent_item_pos < data_offset || 320 extent_item_pos >= data_offset + data_len) 321 return 1; 322 offset = extent_item_pos - data_offset; 323 } 324 325 e = kmalloc(sizeof(*e), GFP_NOFS); 326 if (!e) 327 return -ENOMEM; 328 329 e->next = *eie; 330 e->inum = key->objectid; 331 e->offset = key->offset + offset; 332 *eie = e; 333 334 return 0; 335 } 336 337 static void free_inode_elem_list(struct extent_inode_elem *eie) 338 { 339 struct extent_inode_elem *eie_next; 340 341 for (; eie; eie = eie_next) { 342 eie_next = eie->next; 343 kfree(eie); 344 } 345 } 346 347 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 348 u64 extent_item_pos, 349 struct extent_inode_elem **eie) 350 { 351 u64 disk_byte; 352 struct btrfs_key key; 353 struct btrfs_file_extent_item *fi; 354 int slot; 355 int nritems; 356 int extent_type; 357 int ret; 358 359 /* 360 * from the shared data ref, we only have the leaf but we need 361 * the key. thus, we must look into all items and see that we 362 * find one (some) with a reference to our extent item. 363 */ 364 nritems = btrfs_header_nritems(eb); 365 for (slot = 0; slot < nritems; ++slot) { 366 btrfs_item_key_to_cpu(eb, &key, slot); 367 if (key.type != BTRFS_EXTENT_DATA_KEY) 368 continue; 369 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 370 extent_type = btrfs_file_extent_type(eb, fi); 371 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 372 continue; 373 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 374 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 375 if (disk_byte != wanted_disk_byte) 376 continue; 377 378 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 379 if (ret < 0) 380 return ret; 381 } 382 383 return 0; 384 } 385 386 /* 387 * this structure records all encountered refs on the way up to the root 388 */ 389 struct __prelim_ref { 390 struct list_head list; 391 u64 root_id; 392 struct btrfs_key key_for_search; 393 int level; 394 int count; 395 struct extent_inode_elem *inode_list; 396 u64 parent; 397 u64 wanted_disk_byte; 398 }; 399 400 static struct kmem_cache *btrfs_prelim_ref_cache; 401 402 int __init btrfs_prelim_ref_init(void) 403 { 404 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 405 sizeof(struct __prelim_ref), 406 0, 407 SLAB_MEM_SPREAD, 408 NULL); 409 if (!btrfs_prelim_ref_cache) 410 return -ENOMEM; 411 return 0; 412 } 413 414 void btrfs_prelim_ref_exit(void) 415 { 416 kmem_cache_destroy(btrfs_prelim_ref_cache); 417 } 418 419 /* 420 * the rules for all callers of this function are: 421 * - obtaining the parent is the goal 422 * - if you add a key, you must know that it is a correct key 423 * - if you cannot add the parent or a correct key, then we will look into the 424 * block later to set a correct key 425 * 426 * delayed refs 427 * ============ 428 * backref type | shared | indirect | shared | indirect 429 * information | tree | tree | data | data 430 * --------------------+--------+----------+--------+---------- 431 * parent logical | y | - | - | - 432 * key to resolve | - | y | y | y 433 * tree block logical | - | - | - | - 434 * root for resolving | y | y | y | y 435 * 436 * - column 1: we've the parent -> done 437 * - column 2, 3, 4: we use the key to find the parent 438 * 439 * on disk refs (inline or keyed) 440 * ============================== 441 * backref type | shared | indirect | shared | indirect 442 * information | tree | tree | data | data 443 * --------------------+--------+----------+--------+---------- 444 * parent logical | y | - | y | - 445 * key to resolve | - | - | - | y 446 * tree block logical | y | y | y | y 447 * root for resolving | - | y | y | y 448 * 449 * - column 1, 3: we've the parent -> done 450 * - column 2: we take the first key from the block to find the parent 451 * (see __add_missing_keys) 452 * - column 4: we use the key to find the parent 453 * 454 * additional information that's available but not required to find the parent 455 * block might help in merging entries to gain some speed. 456 */ 457 458 static int __add_prelim_ref(struct list_head *head, u64 root_id, 459 struct btrfs_key *key, int level, 460 u64 parent, u64 wanted_disk_byte, int count, 461 gfp_t gfp_mask) 462 { 463 struct __prelim_ref *ref; 464 465 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 466 return 0; 467 468 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 469 if (!ref) 470 return -ENOMEM; 471 472 ref->root_id = root_id; 473 if (key) { 474 ref->key_for_search = *key; 475 /* 476 * We can often find data backrefs with an offset that is too 477 * large (>= LLONG_MAX, maximum allowed file offset) due to 478 * underflows when subtracting a file's offset with the data 479 * offset of its corresponding extent data item. This can 480 * happen for example in the clone ioctl. 481 * So if we detect such case we set the search key's offset to 482 * zero to make sure we will find the matching file extent item 483 * at add_all_parents(), otherwise we will miss it because the 484 * offset taken form the backref is much larger then the offset 485 * of the file extent item. This can make us scan a very large 486 * number of file extent items, but at least it will not make 487 * us miss any. 488 * This is an ugly workaround for a behaviour that should have 489 * never existed, but it does and a fix for the clone ioctl 490 * would touch a lot of places, cause backwards incompatibility 491 * and would not fix the problem for extents cloned with older 492 * kernels. 493 */ 494 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY && 495 ref->key_for_search.offset >= LLONG_MAX) 496 ref->key_for_search.offset = 0; 497 } else { 498 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 499 } 500 501 ref->inode_list = NULL; 502 ref->level = level; 503 ref->count = count; 504 ref->parent = parent; 505 ref->wanted_disk_byte = wanted_disk_byte; 506 list_add_tail(&ref->list, head); 507 508 return 0; 509 } 510 511 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 512 struct ulist *parents, struct __prelim_ref *ref, 513 int level, u64 time_seq, const u64 *extent_item_pos, 514 u64 total_refs) 515 { 516 int ret = 0; 517 int slot; 518 struct extent_buffer *eb; 519 struct btrfs_key key; 520 struct btrfs_key *key_for_search = &ref->key_for_search; 521 struct btrfs_file_extent_item *fi; 522 struct extent_inode_elem *eie = NULL, *old = NULL; 523 u64 disk_byte; 524 u64 wanted_disk_byte = ref->wanted_disk_byte; 525 u64 count = 0; 526 527 if (level != 0) { 528 eb = path->nodes[level]; 529 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 530 if (ret < 0) 531 return ret; 532 return 0; 533 } 534 535 /* 536 * We normally enter this function with the path already pointing to 537 * the first item to check. But sometimes, we may enter it with 538 * slot==nritems. In that case, go to the next leaf before we continue. 539 */ 540 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 541 if (time_seq == SEQ_LAST) 542 ret = btrfs_next_leaf(root, path); 543 else 544 ret = btrfs_next_old_leaf(root, path, time_seq); 545 } 546 547 while (!ret && count < total_refs) { 548 eb = path->nodes[0]; 549 slot = path->slots[0]; 550 551 btrfs_item_key_to_cpu(eb, &key, slot); 552 553 if (key.objectid != key_for_search->objectid || 554 key.type != BTRFS_EXTENT_DATA_KEY) 555 break; 556 557 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 558 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 559 560 if (disk_byte == wanted_disk_byte) { 561 eie = NULL; 562 old = NULL; 563 count++; 564 if (extent_item_pos) { 565 ret = check_extent_in_eb(&key, eb, fi, 566 *extent_item_pos, 567 &eie); 568 if (ret < 0) 569 break; 570 } 571 if (ret > 0) 572 goto next; 573 ret = ulist_add_merge_ptr(parents, eb->start, 574 eie, (void **)&old, GFP_NOFS); 575 if (ret < 0) 576 break; 577 if (!ret && extent_item_pos) { 578 while (old->next) 579 old = old->next; 580 old->next = eie; 581 } 582 eie = NULL; 583 } 584 next: 585 if (time_seq == SEQ_LAST) 586 ret = btrfs_next_item(root, path); 587 else 588 ret = btrfs_next_old_item(root, path, time_seq); 589 } 590 591 if (ret > 0) 592 ret = 0; 593 else if (ret < 0) 594 free_inode_elem_list(eie); 595 return ret; 596 } 597 598 /* 599 * resolve an indirect backref in the form (root_id, key, level) 600 * to a logical address 601 */ 602 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 603 struct btrfs_path *path, u64 time_seq, 604 struct __prelim_ref *ref, 605 struct ulist *parents, 606 const u64 *extent_item_pos, u64 total_refs) 607 { 608 struct btrfs_root *root; 609 struct btrfs_key root_key; 610 struct extent_buffer *eb; 611 int ret = 0; 612 int root_level; 613 int level = ref->level; 614 int index; 615 616 root_key.objectid = ref->root_id; 617 root_key.type = BTRFS_ROOT_ITEM_KEY; 618 root_key.offset = (u64)-1; 619 620 index = srcu_read_lock(&fs_info->subvol_srcu); 621 622 root = btrfs_get_fs_root(fs_info, &root_key, false); 623 if (IS_ERR(root)) { 624 srcu_read_unlock(&fs_info->subvol_srcu, index); 625 ret = PTR_ERR(root); 626 goto out; 627 } 628 629 if (btrfs_is_testing(fs_info)) { 630 srcu_read_unlock(&fs_info->subvol_srcu, index); 631 ret = -ENOENT; 632 goto out; 633 } 634 635 if (path->search_commit_root) 636 root_level = btrfs_header_level(root->commit_root); 637 else if (time_seq == SEQ_LAST) 638 root_level = btrfs_header_level(root->node); 639 else 640 root_level = btrfs_old_root_level(root, time_seq); 641 642 if (root_level + 1 == level) { 643 srcu_read_unlock(&fs_info->subvol_srcu, index); 644 goto out; 645 } 646 647 path->lowest_level = level; 648 if (time_seq == SEQ_LAST) 649 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 650 0, 0); 651 else 652 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, 653 time_seq); 654 655 /* root node has been locked, we can release @subvol_srcu safely here */ 656 srcu_read_unlock(&fs_info->subvol_srcu, index); 657 658 btrfs_debug(fs_info, 659 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 660 ref->root_id, level, ref->count, ret, 661 ref->key_for_search.objectid, ref->key_for_search.type, 662 ref->key_for_search.offset); 663 if (ret < 0) 664 goto out; 665 666 eb = path->nodes[level]; 667 while (!eb) { 668 if (WARN_ON(!level)) { 669 ret = 1; 670 goto out; 671 } 672 level--; 673 eb = path->nodes[level]; 674 } 675 676 ret = add_all_parents(root, path, parents, ref, level, time_seq, 677 extent_item_pos, total_refs); 678 out: 679 path->lowest_level = 0; 680 btrfs_release_path(path); 681 return ret; 682 } 683 684 /* 685 * resolve all indirect backrefs from the list 686 */ 687 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 688 struct btrfs_path *path, u64 time_seq, 689 struct list_head *head, 690 const u64 *extent_item_pos, u64 total_refs, 691 u64 root_objectid) 692 { 693 int err; 694 int ret = 0; 695 struct __prelim_ref *ref; 696 struct __prelim_ref *ref_safe; 697 struct __prelim_ref *new_ref; 698 struct ulist *parents; 699 struct ulist_node *node; 700 struct ulist_iterator uiter; 701 702 parents = ulist_alloc(GFP_NOFS); 703 if (!parents) 704 return -ENOMEM; 705 706 /* 707 * _safe allows us to insert directly after the current item without 708 * iterating over the newly inserted items. 709 * we're also allowed to re-assign ref during iteration. 710 */ 711 list_for_each_entry_safe(ref, ref_safe, head, list) { 712 if (ref->parent) /* already direct */ 713 continue; 714 if (ref->count == 0) 715 continue; 716 if (root_objectid && ref->root_id != root_objectid) { 717 ret = BACKREF_FOUND_SHARED; 718 goto out; 719 } 720 err = __resolve_indirect_ref(fs_info, path, time_seq, ref, 721 parents, extent_item_pos, 722 total_refs); 723 /* 724 * we can only tolerate ENOENT,otherwise,we should catch error 725 * and return directly. 726 */ 727 if (err == -ENOENT) { 728 continue; 729 } else if (err) { 730 ret = err; 731 goto out; 732 } 733 734 /* we put the first parent into the ref at hand */ 735 ULIST_ITER_INIT(&uiter); 736 node = ulist_next(parents, &uiter); 737 ref->parent = node ? node->val : 0; 738 ref->inode_list = node ? 739 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL; 740 741 /* additional parents require new refs being added here */ 742 while ((node = ulist_next(parents, &uiter))) { 743 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 744 GFP_NOFS); 745 if (!new_ref) { 746 ret = -ENOMEM; 747 goto out; 748 } 749 memcpy(new_ref, ref, sizeof(*ref)); 750 new_ref->parent = node->val; 751 new_ref->inode_list = (struct extent_inode_elem *) 752 (uintptr_t)node->aux; 753 list_add(&new_ref->list, &ref->list); 754 } 755 ulist_reinit(parents); 756 } 757 out: 758 ulist_free(parents); 759 return ret; 760 } 761 762 static inline int ref_for_same_block(struct __prelim_ref *ref1, 763 struct __prelim_ref *ref2) 764 { 765 if (ref1->level != ref2->level) 766 return 0; 767 if (ref1->root_id != ref2->root_id) 768 return 0; 769 if (ref1->key_for_search.type != ref2->key_for_search.type) 770 return 0; 771 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 772 return 0; 773 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 774 return 0; 775 if (ref1->parent != ref2->parent) 776 return 0; 777 778 return 1; 779 } 780 781 /* 782 * read tree blocks and add keys where required. 783 */ 784 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 785 struct list_head *head) 786 { 787 struct __prelim_ref *ref; 788 struct extent_buffer *eb; 789 790 list_for_each_entry(ref, head, list) { 791 if (ref->parent) 792 continue; 793 if (ref->key_for_search.type) 794 continue; 795 BUG_ON(!ref->wanted_disk_byte); 796 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0); 797 if (IS_ERR(eb)) { 798 return PTR_ERR(eb); 799 } else if (!extent_buffer_uptodate(eb)) { 800 free_extent_buffer(eb); 801 return -EIO; 802 } 803 btrfs_tree_read_lock(eb); 804 if (btrfs_header_level(eb) == 0) 805 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 806 else 807 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 808 btrfs_tree_read_unlock(eb); 809 free_extent_buffer(eb); 810 } 811 return 0; 812 } 813 814 /* 815 * merge backrefs and adjust counts accordingly 816 * 817 * FIXME: For MERGE_IDENTICAL_KEYS, if we add more keys in __add_prelim_ref 818 * then we can merge more here. Additionally, we could even add a key 819 * range for the blocks we looked into to merge even more (-> replace 820 * unresolved refs by those having a parent). 821 */ 822 static void __merge_refs(struct list_head *head, enum merge_mode mode) 823 { 824 struct __prelim_ref *pos1; 825 826 list_for_each_entry(pos1, head, list) { 827 struct __prelim_ref *pos2 = pos1, *tmp; 828 829 list_for_each_entry_safe_continue(pos2, tmp, head, list) { 830 struct __prelim_ref *ref1 = pos1, *ref2 = pos2; 831 struct extent_inode_elem *eie; 832 833 if (!ref_for_same_block(ref1, ref2)) 834 continue; 835 if (mode == MERGE_IDENTICAL_KEYS) { 836 if (!ref1->parent && ref2->parent) 837 swap(ref1, ref2); 838 } else { 839 if (ref1->parent != ref2->parent) 840 continue; 841 } 842 843 eie = ref1->inode_list; 844 while (eie && eie->next) 845 eie = eie->next; 846 if (eie) 847 eie->next = ref2->inode_list; 848 else 849 ref1->inode_list = ref2->inode_list; 850 ref1->count += ref2->count; 851 852 list_del(&ref2->list); 853 kmem_cache_free(btrfs_prelim_ref_cache, ref2); 854 cond_resched(); 855 } 856 857 } 858 } 859 860 /* 861 * add all currently queued delayed refs from this head whose seq nr is 862 * smaller or equal that seq to the list 863 */ 864 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 865 struct list_head *prefs, u64 *total_refs, 866 u64 inum) 867 { 868 struct btrfs_delayed_ref_node *node; 869 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 870 struct btrfs_key key; 871 struct btrfs_key op_key = {0}; 872 int sgn; 873 int ret = 0; 874 875 if (extent_op && extent_op->update_key) 876 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 877 878 spin_lock(&head->lock); 879 list_for_each_entry(node, &head->ref_list, list) { 880 if (node->seq > seq) 881 continue; 882 883 switch (node->action) { 884 case BTRFS_ADD_DELAYED_EXTENT: 885 case BTRFS_UPDATE_DELAYED_HEAD: 886 WARN_ON(1); 887 continue; 888 case BTRFS_ADD_DELAYED_REF: 889 sgn = 1; 890 break; 891 case BTRFS_DROP_DELAYED_REF: 892 sgn = -1; 893 break; 894 default: 895 BUG_ON(1); 896 } 897 *total_refs += (node->ref_mod * sgn); 898 switch (node->type) { 899 case BTRFS_TREE_BLOCK_REF_KEY: { 900 struct btrfs_delayed_tree_ref *ref; 901 902 ref = btrfs_delayed_node_to_tree_ref(node); 903 ret = __add_prelim_ref(prefs, ref->root, &op_key, 904 ref->level + 1, 0, node->bytenr, 905 node->ref_mod * sgn, GFP_ATOMIC); 906 break; 907 } 908 case BTRFS_SHARED_BLOCK_REF_KEY: { 909 struct btrfs_delayed_tree_ref *ref; 910 911 ref = btrfs_delayed_node_to_tree_ref(node); 912 ret = __add_prelim_ref(prefs, 0, NULL, 913 ref->level + 1, ref->parent, 914 node->bytenr, 915 node->ref_mod * sgn, GFP_ATOMIC); 916 break; 917 } 918 case BTRFS_EXTENT_DATA_REF_KEY: { 919 struct btrfs_delayed_data_ref *ref; 920 ref = btrfs_delayed_node_to_data_ref(node); 921 922 key.objectid = ref->objectid; 923 key.type = BTRFS_EXTENT_DATA_KEY; 924 key.offset = ref->offset; 925 926 /* 927 * Found a inum that doesn't match our known inum, we 928 * know it's shared. 929 */ 930 if (inum && ref->objectid != inum) { 931 ret = BACKREF_FOUND_SHARED; 932 break; 933 } 934 935 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 936 node->bytenr, 937 node->ref_mod * sgn, GFP_ATOMIC); 938 break; 939 } 940 case BTRFS_SHARED_DATA_REF_KEY: { 941 struct btrfs_delayed_data_ref *ref; 942 943 ref = btrfs_delayed_node_to_data_ref(node); 944 ret = __add_prelim_ref(prefs, 0, NULL, 0, 945 ref->parent, node->bytenr, 946 node->ref_mod * sgn, GFP_ATOMIC); 947 break; 948 } 949 default: 950 WARN_ON(1); 951 } 952 if (ret) 953 break; 954 } 955 spin_unlock(&head->lock); 956 return ret; 957 } 958 959 /* 960 * add all inline backrefs for bytenr to the list 961 */ 962 static int __add_inline_refs(struct btrfs_path *path, u64 bytenr, 963 int *info_level, struct list_head *prefs, 964 struct ref_root *ref_tree, 965 u64 *total_refs, u64 inum) 966 { 967 int ret = 0; 968 int slot; 969 struct extent_buffer *leaf; 970 struct btrfs_key key; 971 struct btrfs_key found_key; 972 unsigned long ptr; 973 unsigned long end; 974 struct btrfs_extent_item *ei; 975 u64 flags; 976 u64 item_size; 977 978 /* 979 * enumerate all inline refs 980 */ 981 leaf = path->nodes[0]; 982 slot = path->slots[0]; 983 984 item_size = btrfs_item_size_nr(leaf, slot); 985 BUG_ON(item_size < sizeof(*ei)); 986 987 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 988 flags = btrfs_extent_flags(leaf, ei); 989 *total_refs += btrfs_extent_refs(leaf, ei); 990 btrfs_item_key_to_cpu(leaf, &found_key, slot); 991 992 ptr = (unsigned long)(ei + 1); 993 end = (unsigned long)ei + item_size; 994 995 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 996 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 997 struct btrfs_tree_block_info *info; 998 999 info = (struct btrfs_tree_block_info *)ptr; 1000 *info_level = btrfs_tree_block_level(leaf, info); 1001 ptr += sizeof(struct btrfs_tree_block_info); 1002 BUG_ON(ptr > end); 1003 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 1004 *info_level = found_key.offset; 1005 } else { 1006 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1007 } 1008 1009 while (ptr < end) { 1010 struct btrfs_extent_inline_ref *iref; 1011 u64 offset; 1012 int type; 1013 1014 iref = (struct btrfs_extent_inline_ref *)ptr; 1015 type = btrfs_extent_inline_ref_type(leaf, iref); 1016 offset = btrfs_extent_inline_ref_offset(leaf, iref); 1017 1018 switch (type) { 1019 case BTRFS_SHARED_BLOCK_REF_KEY: 1020 ret = __add_prelim_ref(prefs, 0, NULL, 1021 *info_level + 1, offset, 1022 bytenr, 1, GFP_NOFS); 1023 break; 1024 case BTRFS_SHARED_DATA_REF_KEY: { 1025 struct btrfs_shared_data_ref *sdref; 1026 int count; 1027 1028 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1029 count = btrfs_shared_data_ref_count(leaf, sdref); 1030 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 1031 bytenr, count, GFP_NOFS); 1032 if (ref_tree) { 1033 if (!ret) 1034 ret = ref_tree_add(ref_tree, 0, 0, 0, 1035 bytenr, count); 1036 if (!ret && ref_tree->unique_refs > 1) 1037 ret = BACKREF_FOUND_SHARED; 1038 } 1039 break; 1040 } 1041 case BTRFS_TREE_BLOCK_REF_KEY: 1042 ret = __add_prelim_ref(prefs, offset, NULL, 1043 *info_level + 1, 0, 1044 bytenr, 1, GFP_NOFS); 1045 break; 1046 case BTRFS_EXTENT_DATA_REF_KEY: { 1047 struct btrfs_extent_data_ref *dref; 1048 int count; 1049 u64 root; 1050 1051 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1052 count = btrfs_extent_data_ref_count(leaf, dref); 1053 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1054 dref); 1055 key.type = BTRFS_EXTENT_DATA_KEY; 1056 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1057 1058 if (inum && key.objectid != inum) { 1059 ret = BACKREF_FOUND_SHARED; 1060 break; 1061 } 1062 1063 root = btrfs_extent_data_ref_root(leaf, dref); 1064 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 1065 bytenr, count, GFP_NOFS); 1066 if (ref_tree) { 1067 if (!ret) 1068 ret = ref_tree_add(ref_tree, root, 1069 key.objectid, 1070 key.offset, 0, 1071 count); 1072 if (!ret && ref_tree->unique_refs > 1) 1073 ret = BACKREF_FOUND_SHARED; 1074 } 1075 break; 1076 } 1077 default: 1078 WARN_ON(1); 1079 } 1080 if (ret) 1081 return ret; 1082 ptr += btrfs_extent_inline_ref_size(type); 1083 } 1084 1085 return 0; 1086 } 1087 1088 /* 1089 * add all non-inline backrefs for bytenr to the list 1090 */ 1091 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 1092 struct btrfs_path *path, u64 bytenr, 1093 int info_level, struct list_head *prefs, 1094 struct ref_root *ref_tree, u64 inum) 1095 { 1096 struct btrfs_root *extent_root = fs_info->extent_root; 1097 int ret; 1098 int slot; 1099 struct extent_buffer *leaf; 1100 struct btrfs_key key; 1101 1102 while (1) { 1103 ret = btrfs_next_item(extent_root, path); 1104 if (ret < 0) 1105 break; 1106 if (ret) { 1107 ret = 0; 1108 break; 1109 } 1110 1111 slot = path->slots[0]; 1112 leaf = path->nodes[0]; 1113 btrfs_item_key_to_cpu(leaf, &key, slot); 1114 1115 if (key.objectid != bytenr) 1116 break; 1117 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1118 continue; 1119 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1120 break; 1121 1122 switch (key.type) { 1123 case BTRFS_SHARED_BLOCK_REF_KEY: 1124 ret = __add_prelim_ref(prefs, 0, NULL, 1125 info_level + 1, key.offset, 1126 bytenr, 1, GFP_NOFS); 1127 break; 1128 case BTRFS_SHARED_DATA_REF_KEY: { 1129 struct btrfs_shared_data_ref *sdref; 1130 int count; 1131 1132 sdref = btrfs_item_ptr(leaf, slot, 1133 struct btrfs_shared_data_ref); 1134 count = btrfs_shared_data_ref_count(leaf, sdref); 1135 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 1136 bytenr, count, GFP_NOFS); 1137 if (ref_tree) { 1138 if (!ret) 1139 ret = ref_tree_add(ref_tree, 0, 0, 0, 1140 bytenr, count); 1141 if (!ret && ref_tree->unique_refs > 1) 1142 ret = BACKREF_FOUND_SHARED; 1143 } 1144 break; 1145 } 1146 case BTRFS_TREE_BLOCK_REF_KEY: 1147 ret = __add_prelim_ref(prefs, key.offset, NULL, 1148 info_level + 1, 0, 1149 bytenr, 1, GFP_NOFS); 1150 break; 1151 case BTRFS_EXTENT_DATA_REF_KEY: { 1152 struct btrfs_extent_data_ref *dref; 1153 int count; 1154 u64 root; 1155 1156 dref = btrfs_item_ptr(leaf, slot, 1157 struct btrfs_extent_data_ref); 1158 count = btrfs_extent_data_ref_count(leaf, dref); 1159 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1160 dref); 1161 key.type = BTRFS_EXTENT_DATA_KEY; 1162 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1163 1164 if (inum && key.objectid != inum) { 1165 ret = BACKREF_FOUND_SHARED; 1166 break; 1167 } 1168 1169 root = btrfs_extent_data_ref_root(leaf, dref); 1170 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 1171 bytenr, count, GFP_NOFS); 1172 if (ref_tree) { 1173 if (!ret) 1174 ret = ref_tree_add(ref_tree, root, 1175 key.objectid, 1176 key.offset, 0, 1177 count); 1178 if (!ret && ref_tree->unique_refs > 1) 1179 ret = BACKREF_FOUND_SHARED; 1180 } 1181 break; 1182 } 1183 default: 1184 WARN_ON(1); 1185 } 1186 if (ret) 1187 return ret; 1188 1189 } 1190 1191 return ret; 1192 } 1193 1194 /* 1195 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1196 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1197 * indirect refs to their parent bytenr. 1198 * When roots are found, they're added to the roots list 1199 * 1200 * NOTE: This can return values > 0 1201 * 1202 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave 1203 * much like trans == NULL case, the difference only lies in it will not 1204 * commit root. 1205 * The special case is for qgroup to search roots in commit_transaction(). 1206 * 1207 * If check_shared is set to 1, any extent has more than one ref item, will 1208 * be returned BACKREF_FOUND_SHARED immediately. 1209 * 1210 * FIXME some caching might speed things up 1211 */ 1212 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1213 struct btrfs_fs_info *fs_info, u64 bytenr, 1214 u64 time_seq, struct ulist *refs, 1215 struct ulist *roots, const u64 *extent_item_pos, 1216 u64 root_objectid, u64 inum, int check_shared) 1217 { 1218 struct btrfs_key key; 1219 struct btrfs_path *path; 1220 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1221 struct btrfs_delayed_ref_head *head; 1222 int info_level = 0; 1223 int ret; 1224 struct list_head prefs_delayed; 1225 struct list_head prefs; 1226 struct __prelim_ref *ref; 1227 struct extent_inode_elem *eie = NULL; 1228 struct ref_root *ref_tree = NULL; 1229 u64 total_refs = 0; 1230 1231 INIT_LIST_HEAD(&prefs); 1232 INIT_LIST_HEAD(&prefs_delayed); 1233 1234 key.objectid = bytenr; 1235 key.offset = (u64)-1; 1236 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1237 key.type = BTRFS_METADATA_ITEM_KEY; 1238 else 1239 key.type = BTRFS_EXTENT_ITEM_KEY; 1240 1241 path = btrfs_alloc_path(); 1242 if (!path) 1243 return -ENOMEM; 1244 if (!trans) { 1245 path->search_commit_root = 1; 1246 path->skip_locking = 1; 1247 } 1248 1249 if (time_seq == SEQ_LAST) 1250 path->skip_locking = 1; 1251 1252 /* 1253 * grab both a lock on the path and a lock on the delayed ref head. 1254 * We need both to get a consistent picture of how the refs look 1255 * at a specified point in time 1256 */ 1257 again: 1258 head = NULL; 1259 1260 if (check_shared) { 1261 if (!ref_tree) { 1262 ref_tree = ref_root_alloc(); 1263 if (!ref_tree) { 1264 ret = -ENOMEM; 1265 goto out; 1266 } 1267 } else { 1268 ref_root_fini(ref_tree); 1269 } 1270 } 1271 1272 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 1273 if (ret < 0) 1274 goto out; 1275 BUG_ON(ret == 0); 1276 1277 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1278 if (trans && likely(trans->type != __TRANS_DUMMY) && 1279 time_seq != SEQ_LAST) { 1280 #else 1281 if (trans && time_seq != SEQ_LAST) { 1282 #endif 1283 /* 1284 * look if there are updates for this ref queued and lock the 1285 * head 1286 */ 1287 delayed_refs = &trans->transaction->delayed_refs; 1288 spin_lock(&delayed_refs->lock); 1289 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1290 if (head) { 1291 if (!mutex_trylock(&head->mutex)) { 1292 refcount_inc(&head->node.refs); 1293 spin_unlock(&delayed_refs->lock); 1294 1295 btrfs_release_path(path); 1296 1297 /* 1298 * Mutex was contended, block until it's 1299 * released and try again 1300 */ 1301 mutex_lock(&head->mutex); 1302 mutex_unlock(&head->mutex); 1303 btrfs_put_delayed_ref(&head->node); 1304 goto again; 1305 } 1306 spin_unlock(&delayed_refs->lock); 1307 ret = __add_delayed_refs(head, time_seq, 1308 &prefs_delayed, &total_refs, 1309 inum); 1310 mutex_unlock(&head->mutex); 1311 if (ret) 1312 goto out; 1313 } else { 1314 spin_unlock(&delayed_refs->lock); 1315 } 1316 1317 if (check_shared && !list_empty(&prefs_delayed)) { 1318 /* 1319 * Add all delay_ref to the ref_tree and check if there 1320 * are multiple ref items added. 1321 */ 1322 list_for_each_entry(ref, &prefs_delayed, list) { 1323 if (ref->key_for_search.type) { 1324 ret = ref_tree_add(ref_tree, 1325 ref->root_id, 1326 ref->key_for_search.objectid, 1327 ref->key_for_search.offset, 1328 0, ref->count); 1329 if (ret) 1330 goto out; 1331 } else { 1332 ret = ref_tree_add(ref_tree, 0, 0, 0, 1333 ref->parent, ref->count); 1334 if (ret) 1335 goto out; 1336 } 1337 1338 } 1339 1340 if (ref_tree->unique_refs > 1) { 1341 ret = BACKREF_FOUND_SHARED; 1342 goto out; 1343 } 1344 1345 } 1346 } 1347 1348 if (path->slots[0]) { 1349 struct extent_buffer *leaf; 1350 int slot; 1351 1352 path->slots[0]--; 1353 leaf = path->nodes[0]; 1354 slot = path->slots[0]; 1355 btrfs_item_key_to_cpu(leaf, &key, slot); 1356 if (key.objectid == bytenr && 1357 (key.type == BTRFS_EXTENT_ITEM_KEY || 1358 key.type == BTRFS_METADATA_ITEM_KEY)) { 1359 ret = __add_inline_refs(path, bytenr, 1360 &info_level, &prefs, 1361 ref_tree, &total_refs, 1362 inum); 1363 if (ret) 1364 goto out; 1365 ret = __add_keyed_refs(fs_info, path, bytenr, 1366 info_level, &prefs, 1367 ref_tree, inum); 1368 if (ret) 1369 goto out; 1370 } 1371 } 1372 btrfs_release_path(path); 1373 1374 list_splice_init(&prefs_delayed, &prefs); 1375 1376 ret = __add_missing_keys(fs_info, &prefs); 1377 if (ret) 1378 goto out; 1379 1380 __merge_refs(&prefs, MERGE_IDENTICAL_KEYS); 1381 1382 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs, 1383 extent_item_pos, total_refs, 1384 root_objectid); 1385 if (ret) 1386 goto out; 1387 1388 __merge_refs(&prefs, MERGE_IDENTICAL_PARENTS); 1389 1390 while (!list_empty(&prefs)) { 1391 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1392 WARN_ON(ref->count < 0); 1393 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1394 if (root_objectid && ref->root_id != root_objectid) { 1395 ret = BACKREF_FOUND_SHARED; 1396 goto out; 1397 } 1398 1399 /* no parent == root of tree */ 1400 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1401 if (ret < 0) 1402 goto out; 1403 } 1404 if (ref->count && ref->parent) { 1405 if (extent_item_pos && !ref->inode_list && 1406 ref->level == 0) { 1407 struct extent_buffer *eb; 1408 1409 eb = read_tree_block(fs_info, ref->parent, 0); 1410 if (IS_ERR(eb)) { 1411 ret = PTR_ERR(eb); 1412 goto out; 1413 } else if (!extent_buffer_uptodate(eb)) { 1414 free_extent_buffer(eb); 1415 ret = -EIO; 1416 goto out; 1417 } 1418 btrfs_tree_read_lock(eb); 1419 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1420 ret = find_extent_in_eb(eb, bytenr, 1421 *extent_item_pos, &eie); 1422 btrfs_tree_read_unlock_blocking(eb); 1423 free_extent_buffer(eb); 1424 if (ret < 0) 1425 goto out; 1426 ref->inode_list = eie; 1427 } 1428 ret = ulist_add_merge_ptr(refs, ref->parent, 1429 ref->inode_list, 1430 (void **)&eie, GFP_NOFS); 1431 if (ret < 0) 1432 goto out; 1433 if (!ret && extent_item_pos) { 1434 /* 1435 * we've recorded that parent, so we must extend 1436 * its inode list here 1437 */ 1438 BUG_ON(!eie); 1439 while (eie->next) 1440 eie = eie->next; 1441 eie->next = ref->inode_list; 1442 } 1443 eie = NULL; 1444 } 1445 list_del(&ref->list); 1446 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1447 } 1448 1449 out: 1450 btrfs_free_path(path); 1451 ref_root_free(ref_tree); 1452 while (!list_empty(&prefs)) { 1453 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1454 list_del(&ref->list); 1455 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1456 } 1457 while (!list_empty(&prefs_delayed)) { 1458 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 1459 list); 1460 list_del(&ref->list); 1461 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1462 } 1463 if (ret < 0) 1464 free_inode_elem_list(eie); 1465 return ret; 1466 } 1467 1468 static void free_leaf_list(struct ulist *blocks) 1469 { 1470 struct ulist_node *node = NULL; 1471 struct extent_inode_elem *eie; 1472 struct ulist_iterator uiter; 1473 1474 ULIST_ITER_INIT(&uiter); 1475 while ((node = ulist_next(blocks, &uiter))) { 1476 if (!node->aux) 1477 continue; 1478 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 1479 free_inode_elem_list(eie); 1480 node->aux = 0; 1481 } 1482 1483 ulist_free(blocks); 1484 } 1485 1486 /* 1487 * Finds all leafs with a reference to the specified combination of bytenr and 1488 * offset. key_list_head will point to a list of corresponding keys (caller must 1489 * free each list element). The leafs will be stored in the leafs ulist, which 1490 * must be freed with ulist_free. 1491 * 1492 * returns 0 on success, <0 on error 1493 */ 1494 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1495 struct btrfs_fs_info *fs_info, u64 bytenr, 1496 u64 time_seq, struct ulist **leafs, 1497 const u64 *extent_item_pos) 1498 { 1499 int ret; 1500 1501 *leafs = ulist_alloc(GFP_NOFS); 1502 if (!*leafs) 1503 return -ENOMEM; 1504 1505 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1506 *leafs, NULL, extent_item_pos, 0, 0, 0); 1507 if (ret < 0 && ret != -ENOENT) { 1508 free_leaf_list(*leafs); 1509 return ret; 1510 } 1511 1512 return 0; 1513 } 1514 1515 /* 1516 * walk all backrefs for a given extent to find all roots that reference this 1517 * extent. Walking a backref means finding all extents that reference this 1518 * extent and in turn walk the backrefs of those, too. Naturally this is a 1519 * recursive process, but here it is implemented in an iterative fashion: We 1520 * find all referencing extents for the extent in question and put them on a 1521 * list. In turn, we find all referencing extents for those, further appending 1522 * to the list. The way we iterate the list allows adding more elements after 1523 * the current while iterating. The process stops when we reach the end of the 1524 * list. Found roots are added to the roots list. 1525 * 1526 * returns 0 on success, < 0 on error. 1527 */ 1528 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1529 struct btrfs_fs_info *fs_info, u64 bytenr, 1530 u64 time_seq, struct ulist **roots) 1531 { 1532 struct ulist *tmp; 1533 struct ulist_node *node = NULL; 1534 struct ulist_iterator uiter; 1535 int ret; 1536 1537 tmp = ulist_alloc(GFP_NOFS); 1538 if (!tmp) 1539 return -ENOMEM; 1540 *roots = ulist_alloc(GFP_NOFS); 1541 if (!*roots) { 1542 ulist_free(tmp); 1543 return -ENOMEM; 1544 } 1545 1546 ULIST_ITER_INIT(&uiter); 1547 while (1) { 1548 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1549 tmp, *roots, NULL, 0, 0, 0); 1550 if (ret < 0 && ret != -ENOENT) { 1551 ulist_free(tmp); 1552 ulist_free(*roots); 1553 return ret; 1554 } 1555 node = ulist_next(tmp, &uiter); 1556 if (!node) 1557 break; 1558 bytenr = node->val; 1559 cond_resched(); 1560 } 1561 1562 ulist_free(tmp); 1563 return 0; 1564 } 1565 1566 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1567 struct btrfs_fs_info *fs_info, u64 bytenr, 1568 u64 time_seq, struct ulist **roots) 1569 { 1570 int ret; 1571 1572 if (!trans) 1573 down_read(&fs_info->commit_root_sem); 1574 ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots); 1575 if (!trans) 1576 up_read(&fs_info->commit_root_sem); 1577 return ret; 1578 } 1579 1580 /** 1581 * btrfs_check_shared - tell us whether an extent is shared 1582 * 1583 * @trans: optional trans handle 1584 * 1585 * btrfs_check_shared uses the backref walking code but will short 1586 * circuit as soon as it finds a root or inode that doesn't match the 1587 * one passed in. This provides a significant performance benefit for 1588 * callers (such as fiemap) which want to know whether the extent is 1589 * shared but do not need a ref count. 1590 * 1591 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1592 */ 1593 int btrfs_check_shared(struct btrfs_trans_handle *trans, 1594 struct btrfs_fs_info *fs_info, u64 root_objectid, 1595 u64 inum, u64 bytenr) 1596 { 1597 struct ulist *tmp = NULL; 1598 struct ulist *roots = NULL; 1599 struct ulist_iterator uiter; 1600 struct ulist_node *node; 1601 struct seq_list elem = SEQ_LIST_INIT(elem); 1602 int ret = 0; 1603 1604 tmp = ulist_alloc(GFP_NOFS); 1605 roots = ulist_alloc(GFP_NOFS); 1606 if (!tmp || !roots) { 1607 ulist_free(tmp); 1608 ulist_free(roots); 1609 return -ENOMEM; 1610 } 1611 1612 if (trans) 1613 btrfs_get_tree_mod_seq(fs_info, &elem); 1614 else 1615 down_read(&fs_info->commit_root_sem); 1616 ULIST_ITER_INIT(&uiter); 1617 while (1) { 1618 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1619 roots, NULL, root_objectid, inum, 1); 1620 if (ret == BACKREF_FOUND_SHARED) { 1621 /* this is the only condition under which we return 1 */ 1622 ret = 1; 1623 break; 1624 } 1625 if (ret < 0 && ret != -ENOENT) 1626 break; 1627 ret = 0; 1628 node = ulist_next(tmp, &uiter); 1629 if (!node) 1630 break; 1631 bytenr = node->val; 1632 cond_resched(); 1633 } 1634 if (trans) 1635 btrfs_put_tree_mod_seq(fs_info, &elem); 1636 else 1637 up_read(&fs_info->commit_root_sem); 1638 ulist_free(tmp); 1639 ulist_free(roots); 1640 return ret; 1641 } 1642 1643 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1644 u64 start_off, struct btrfs_path *path, 1645 struct btrfs_inode_extref **ret_extref, 1646 u64 *found_off) 1647 { 1648 int ret, slot; 1649 struct btrfs_key key; 1650 struct btrfs_key found_key; 1651 struct btrfs_inode_extref *extref; 1652 struct extent_buffer *leaf; 1653 unsigned long ptr; 1654 1655 key.objectid = inode_objectid; 1656 key.type = BTRFS_INODE_EXTREF_KEY; 1657 key.offset = start_off; 1658 1659 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1660 if (ret < 0) 1661 return ret; 1662 1663 while (1) { 1664 leaf = path->nodes[0]; 1665 slot = path->slots[0]; 1666 if (slot >= btrfs_header_nritems(leaf)) { 1667 /* 1668 * If the item at offset is not found, 1669 * btrfs_search_slot will point us to the slot 1670 * where it should be inserted. In our case 1671 * that will be the slot directly before the 1672 * next INODE_REF_KEY_V2 item. In the case 1673 * that we're pointing to the last slot in a 1674 * leaf, we must move one leaf over. 1675 */ 1676 ret = btrfs_next_leaf(root, path); 1677 if (ret) { 1678 if (ret >= 1) 1679 ret = -ENOENT; 1680 break; 1681 } 1682 continue; 1683 } 1684 1685 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1686 1687 /* 1688 * Check that we're still looking at an extended ref key for 1689 * this particular objectid. If we have different 1690 * objectid or type then there are no more to be found 1691 * in the tree and we can exit. 1692 */ 1693 ret = -ENOENT; 1694 if (found_key.objectid != inode_objectid) 1695 break; 1696 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1697 break; 1698 1699 ret = 0; 1700 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1701 extref = (struct btrfs_inode_extref *)ptr; 1702 *ret_extref = extref; 1703 if (found_off) 1704 *found_off = found_key.offset; 1705 break; 1706 } 1707 1708 return ret; 1709 } 1710 1711 /* 1712 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1713 * Elements of the path are separated by '/' and the path is guaranteed to be 1714 * 0-terminated. the path is only given within the current file system. 1715 * Therefore, it never starts with a '/'. the caller is responsible to provide 1716 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1717 * the start point of the resulting string is returned. this pointer is within 1718 * dest, normally. 1719 * in case the path buffer would overflow, the pointer is decremented further 1720 * as if output was written to the buffer, though no more output is actually 1721 * generated. that way, the caller can determine how much space would be 1722 * required for the path to fit into the buffer. in that case, the returned 1723 * value will be smaller than dest. callers must check this! 1724 */ 1725 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1726 u32 name_len, unsigned long name_off, 1727 struct extent_buffer *eb_in, u64 parent, 1728 char *dest, u32 size) 1729 { 1730 int slot; 1731 u64 next_inum; 1732 int ret; 1733 s64 bytes_left = ((s64)size) - 1; 1734 struct extent_buffer *eb = eb_in; 1735 struct btrfs_key found_key; 1736 int leave_spinning = path->leave_spinning; 1737 struct btrfs_inode_ref *iref; 1738 1739 if (bytes_left >= 0) 1740 dest[bytes_left] = '\0'; 1741 1742 path->leave_spinning = 1; 1743 while (1) { 1744 bytes_left -= name_len; 1745 if (bytes_left >= 0) 1746 read_extent_buffer(eb, dest + bytes_left, 1747 name_off, name_len); 1748 if (eb != eb_in) { 1749 if (!path->skip_locking) 1750 btrfs_tree_read_unlock_blocking(eb); 1751 free_extent_buffer(eb); 1752 } 1753 ret = btrfs_find_item(fs_root, path, parent, 0, 1754 BTRFS_INODE_REF_KEY, &found_key); 1755 if (ret > 0) 1756 ret = -ENOENT; 1757 if (ret) 1758 break; 1759 1760 next_inum = found_key.offset; 1761 1762 /* regular exit ahead */ 1763 if (parent == next_inum) 1764 break; 1765 1766 slot = path->slots[0]; 1767 eb = path->nodes[0]; 1768 /* make sure we can use eb after releasing the path */ 1769 if (eb != eb_in) { 1770 if (!path->skip_locking) 1771 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1772 path->nodes[0] = NULL; 1773 path->locks[0] = 0; 1774 } 1775 btrfs_release_path(path); 1776 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1777 1778 name_len = btrfs_inode_ref_name_len(eb, iref); 1779 name_off = (unsigned long)(iref + 1); 1780 1781 parent = next_inum; 1782 --bytes_left; 1783 if (bytes_left >= 0) 1784 dest[bytes_left] = '/'; 1785 } 1786 1787 btrfs_release_path(path); 1788 path->leave_spinning = leave_spinning; 1789 1790 if (ret) 1791 return ERR_PTR(ret); 1792 1793 return dest + bytes_left; 1794 } 1795 1796 /* 1797 * this makes the path point to (logical EXTENT_ITEM *) 1798 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1799 * tree blocks and <0 on error. 1800 */ 1801 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1802 struct btrfs_path *path, struct btrfs_key *found_key, 1803 u64 *flags_ret) 1804 { 1805 int ret; 1806 u64 flags; 1807 u64 size = 0; 1808 u32 item_size; 1809 struct extent_buffer *eb; 1810 struct btrfs_extent_item *ei; 1811 struct btrfs_key key; 1812 1813 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1814 key.type = BTRFS_METADATA_ITEM_KEY; 1815 else 1816 key.type = BTRFS_EXTENT_ITEM_KEY; 1817 key.objectid = logical; 1818 key.offset = (u64)-1; 1819 1820 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1821 if (ret < 0) 1822 return ret; 1823 1824 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1825 if (ret) { 1826 if (ret > 0) 1827 ret = -ENOENT; 1828 return ret; 1829 } 1830 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1831 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1832 size = fs_info->nodesize; 1833 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1834 size = found_key->offset; 1835 1836 if (found_key->objectid > logical || 1837 found_key->objectid + size <= logical) { 1838 btrfs_debug(fs_info, 1839 "logical %llu is not within any extent", logical); 1840 return -ENOENT; 1841 } 1842 1843 eb = path->nodes[0]; 1844 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1845 BUG_ON(item_size < sizeof(*ei)); 1846 1847 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1848 flags = btrfs_extent_flags(eb, ei); 1849 1850 btrfs_debug(fs_info, 1851 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1852 logical, logical - found_key->objectid, found_key->objectid, 1853 found_key->offset, flags, item_size); 1854 1855 WARN_ON(!flags_ret); 1856 if (flags_ret) { 1857 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1858 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1859 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1860 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1861 else 1862 BUG_ON(1); 1863 return 0; 1864 } 1865 1866 return -EIO; 1867 } 1868 1869 /* 1870 * helper function to iterate extent inline refs. ptr must point to a 0 value 1871 * for the first call and may be modified. it is used to track state. 1872 * if more refs exist, 0 is returned and the next call to 1873 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1874 * next ref. after the last ref was processed, 1 is returned. 1875 * returns <0 on error 1876 */ 1877 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1878 struct btrfs_key *key, 1879 struct btrfs_extent_item *ei, u32 item_size, 1880 struct btrfs_extent_inline_ref **out_eiref, 1881 int *out_type) 1882 { 1883 unsigned long end; 1884 u64 flags; 1885 struct btrfs_tree_block_info *info; 1886 1887 if (!*ptr) { 1888 /* first call */ 1889 flags = btrfs_extent_flags(eb, ei); 1890 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1891 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1892 /* a skinny metadata extent */ 1893 *out_eiref = 1894 (struct btrfs_extent_inline_ref *)(ei + 1); 1895 } else { 1896 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1897 info = (struct btrfs_tree_block_info *)(ei + 1); 1898 *out_eiref = 1899 (struct btrfs_extent_inline_ref *)(info + 1); 1900 } 1901 } else { 1902 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1903 } 1904 *ptr = (unsigned long)*out_eiref; 1905 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1906 return -ENOENT; 1907 } 1908 1909 end = (unsigned long)ei + item_size; 1910 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1911 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1912 1913 *ptr += btrfs_extent_inline_ref_size(*out_type); 1914 WARN_ON(*ptr > end); 1915 if (*ptr == end) 1916 return 1; /* last */ 1917 1918 return 0; 1919 } 1920 1921 /* 1922 * reads the tree block backref for an extent. tree level and root are returned 1923 * through out_level and out_root. ptr must point to a 0 value for the first 1924 * call and may be modified (see __get_extent_inline_ref comment). 1925 * returns 0 if data was provided, 1 if there was no more data to provide or 1926 * <0 on error. 1927 */ 1928 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1929 struct btrfs_key *key, struct btrfs_extent_item *ei, 1930 u32 item_size, u64 *out_root, u8 *out_level) 1931 { 1932 int ret; 1933 int type; 1934 struct btrfs_extent_inline_ref *eiref; 1935 1936 if (*ptr == (unsigned long)-1) 1937 return 1; 1938 1939 while (1) { 1940 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size, 1941 &eiref, &type); 1942 if (ret < 0) 1943 return ret; 1944 1945 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1946 type == BTRFS_SHARED_BLOCK_REF_KEY) 1947 break; 1948 1949 if (ret == 1) 1950 return 1; 1951 } 1952 1953 /* we can treat both ref types equally here */ 1954 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1955 1956 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1957 struct btrfs_tree_block_info *info; 1958 1959 info = (struct btrfs_tree_block_info *)(ei + 1); 1960 *out_level = btrfs_tree_block_level(eb, info); 1961 } else { 1962 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1963 *out_level = (u8)key->offset; 1964 } 1965 1966 if (ret == 1) 1967 *ptr = (unsigned long)-1; 1968 1969 return 0; 1970 } 1971 1972 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1973 struct extent_inode_elem *inode_list, 1974 u64 root, u64 extent_item_objectid, 1975 iterate_extent_inodes_t *iterate, void *ctx) 1976 { 1977 struct extent_inode_elem *eie; 1978 int ret = 0; 1979 1980 for (eie = inode_list; eie; eie = eie->next) { 1981 btrfs_debug(fs_info, 1982 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1983 extent_item_objectid, eie->inum, 1984 eie->offset, root); 1985 ret = iterate(eie->inum, eie->offset, root, ctx); 1986 if (ret) { 1987 btrfs_debug(fs_info, 1988 "stopping iteration for %llu due to ret=%d", 1989 extent_item_objectid, ret); 1990 break; 1991 } 1992 } 1993 1994 return ret; 1995 } 1996 1997 /* 1998 * calls iterate() for every inode that references the extent identified by 1999 * the given parameters. 2000 * when the iterator function returns a non-zero value, iteration stops. 2001 */ 2002 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 2003 u64 extent_item_objectid, u64 extent_item_pos, 2004 int search_commit_root, 2005 iterate_extent_inodes_t *iterate, void *ctx) 2006 { 2007 int ret; 2008 struct btrfs_trans_handle *trans = NULL; 2009 struct ulist *refs = NULL; 2010 struct ulist *roots = NULL; 2011 struct ulist_node *ref_node = NULL; 2012 struct ulist_node *root_node = NULL; 2013 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 2014 struct ulist_iterator ref_uiter; 2015 struct ulist_iterator root_uiter; 2016 2017 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 2018 extent_item_objectid); 2019 2020 if (!search_commit_root) { 2021 trans = btrfs_join_transaction(fs_info->extent_root); 2022 if (IS_ERR(trans)) 2023 return PTR_ERR(trans); 2024 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 2025 } else { 2026 down_read(&fs_info->commit_root_sem); 2027 } 2028 2029 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 2030 tree_mod_seq_elem.seq, &refs, 2031 &extent_item_pos); 2032 if (ret) 2033 goto out; 2034 2035 ULIST_ITER_INIT(&ref_uiter); 2036 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2037 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val, 2038 tree_mod_seq_elem.seq, &roots); 2039 if (ret) 2040 break; 2041 ULIST_ITER_INIT(&root_uiter); 2042 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 2043 btrfs_debug(fs_info, 2044 "root %llu references leaf %llu, data list %#llx", 2045 root_node->val, ref_node->val, 2046 ref_node->aux); 2047 ret = iterate_leaf_refs(fs_info, 2048 (struct extent_inode_elem *) 2049 (uintptr_t)ref_node->aux, 2050 root_node->val, 2051 extent_item_objectid, 2052 iterate, ctx); 2053 } 2054 ulist_free(roots); 2055 } 2056 2057 free_leaf_list(refs); 2058 out: 2059 if (!search_commit_root) { 2060 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 2061 btrfs_end_transaction(trans); 2062 } else { 2063 up_read(&fs_info->commit_root_sem); 2064 } 2065 2066 return ret; 2067 } 2068 2069 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2070 struct btrfs_path *path, 2071 iterate_extent_inodes_t *iterate, void *ctx) 2072 { 2073 int ret; 2074 u64 extent_item_pos; 2075 u64 flags = 0; 2076 struct btrfs_key found_key; 2077 int search_commit_root = path->search_commit_root; 2078 2079 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2080 btrfs_release_path(path); 2081 if (ret < 0) 2082 return ret; 2083 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2084 return -EINVAL; 2085 2086 extent_item_pos = logical - found_key.objectid; 2087 ret = iterate_extent_inodes(fs_info, found_key.objectid, 2088 extent_item_pos, search_commit_root, 2089 iterate, ctx); 2090 2091 return ret; 2092 } 2093 2094 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 2095 struct extent_buffer *eb, void *ctx); 2096 2097 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 2098 struct btrfs_path *path, 2099 iterate_irefs_t *iterate, void *ctx) 2100 { 2101 int ret = 0; 2102 int slot; 2103 u32 cur; 2104 u32 len; 2105 u32 name_len; 2106 u64 parent = 0; 2107 int found = 0; 2108 struct extent_buffer *eb; 2109 struct btrfs_item *item; 2110 struct btrfs_inode_ref *iref; 2111 struct btrfs_key found_key; 2112 2113 while (!ret) { 2114 ret = btrfs_find_item(fs_root, path, inum, 2115 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2116 &found_key); 2117 2118 if (ret < 0) 2119 break; 2120 if (ret) { 2121 ret = found ? 0 : -ENOENT; 2122 break; 2123 } 2124 ++found; 2125 2126 parent = found_key.offset; 2127 slot = path->slots[0]; 2128 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2129 if (!eb) { 2130 ret = -ENOMEM; 2131 break; 2132 } 2133 extent_buffer_get(eb); 2134 btrfs_tree_read_lock(eb); 2135 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 2136 btrfs_release_path(path); 2137 2138 item = btrfs_item_nr(slot); 2139 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2140 2141 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 2142 name_len = btrfs_inode_ref_name_len(eb, iref); 2143 /* path must be released before calling iterate()! */ 2144 btrfs_debug(fs_root->fs_info, 2145 "following ref at offset %u for inode %llu in tree %llu", 2146 cur, found_key.objectid, fs_root->objectid); 2147 ret = iterate(parent, name_len, 2148 (unsigned long)(iref + 1), eb, ctx); 2149 if (ret) 2150 break; 2151 len = sizeof(*iref) + name_len; 2152 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2153 } 2154 btrfs_tree_read_unlock_blocking(eb); 2155 free_extent_buffer(eb); 2156 } 2157 2158 btrfs_release_path(path); 2159 2160 return ret; 2161 } 2162 2163 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2164 struct btrfs_path *path, 2165 iterate_irefs_t *iterate, void *ctx) 2166 { 2167 int ret; 2168 int slot; 2169 u64 offset = 0; 2170 u64 parent; 2171 int found = 0; 2172 struct extent_buffer *eb; 2173 struct btrfs_inode_extref *extref; 2174 u32 item_size; 2175 u32 cur_offset; 2176 unsigned long ptr; 2177 2178 while (1) { 2179 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2180 &offset); 2181 if (ret < 0) 2182 break; 2183 if (ret) { 2184 ret = found ? 0 : -ENOENT; 2185 break; 2186 } 2187 ++found; 2188 2189 slot = path->slots[0]; 2190 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2191 if (!eb) { 2192 ret = -ENOMEM; 2193 break; 2194 } 2195 extent_buffer_get(eb); 2196 2197 btrfs_tree_read_lock(eb); 2198 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 2199 btrfs_release_path(path); 2200 2201 item_size = btrfs_item_size_nr(eb, slot); 2202 ptr = btrfs_item_ptr_offset(eb, slot); 2203 cur_offset = 0; 2204 2205 while (cur_offset < item_size) { 2206 u32 name_len; 2207 2208 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2209 parent = btrfs_inode_extref_parent(eb, extref); 2210 name_len = btrfs_inode_extref_name_len(eb, extref); 2211 ret = iterate(parent, name_len, 2212 (unsigned long)&extref->name, eb, ctx); 2213 if (ret) 2214 break; 2215 2216 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2217 cur_offset += sizeof(*extref); 2218 } 2219 btrfs_tree_read_unlock_blocking(eb); 2220 free_extent_buffer(eb); 2221 2222 offset++; 2223 } 2224 2225 btrfs_release_path(path); 2226 2227 return ret; 2228 } 2229 2230 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2231 struct btrfs_path *path, iterate_irefs_t *iterate, 2232 void *ctx) 2233 { 2234 int ret; 2235 int found_refs = 0; 2236 2237 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2238 if (!ret) 2239 ++found_refs; 2240 else if (ret != -ENOENT) 2241 return ret; 2242 2243 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2244 if (ret == -ENOENT && found_refs) 2245 return 0; 2246 2247 return ret; 2248 } 2249 2250 /* 2251 * returns 0 if the path could be dumped (probably truncated) 2252 * returns <0 in case of an error 2253 */ 2254 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2255 struct extent_buffer *eb, void *ctx) 2256 { 2257 struct inode_fs_paths *ipath = ctx; 2258 char *fspath; 2259 char *fspath_min; 2260 int i = ipath->fspath->elem_cnt; 2261 const int s_ptr = sizeof(char *); 2262 u32 bytes_left; 2263 2264 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2265 ipath->fspath->bytes_left - s_ptr : 0; 2266 2267 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2268 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2269 name_off, eb, inum, fspath_min, bytes_left); 2270 if (IS_ERR(fspath)) 2271 return PTR_ERR(fspath); 2272 2273 if (fspath > fspath_min) { 2274 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2275 ++ipath->fspath->elem_cnt; 2276 ipath->fspath->bytes_left = fspath - fspath_min; 2277 } else { 2278 ++ipath->fspath->elem_missed; 2279 ipath->fspath->bytes_missing += fspath_min - fspath; 2280 ipath->fspath->bytes_left = 0; 2281 } 2282 2283 return 0; 2284 } 2285 2286 /* 2287 * this dumps all file system paths to the inode into the ipath struct, provided 2288 * is has been created large enough. each path is zero-terminated and accessed 2289 * from ipath->fspath->val[i]. 2290 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2291 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2292 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2293 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2294 * have been needed to return all paths. 2295 */ 2296 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2297 { 2298 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2299 inode_to_path, ipath); 2300 } 2301 2302 struct btrfs_data_container *init_data_container(u32 total_bytes) 2303 { 2304 struct btrfs_data_container *data; 2305 size_t alloc_bytes; 2306 2307 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2308 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2309 if (!data) 2310 return ERR_PTR(-ENOMEM); 2311 2312 if (total_bytes >= sizeof(*data)) { 2313 data->bytes_left = total_bytes - sizeof(*data); 2314 data->bytes_missing = 0; 2315 } else { 2316 data->bytes_missing = sizeof(*data) - total_bytes; 2317 data->bytes_left = 0; 2318 } 2319 2320 data->elem_cnt = 0; 2321 data->elem_missed = 0; 2322 2323 return data; 2324 } 2325 2326 /* 2327 * allocates space to return multiple file system paths for an inode. 2328 * total_bytes to allocate are passed, note that space usable for actual path 2329 * information will be total_bytes - sizeof(struct inode_fs_paths). 2330 * the returned pointer must be freed with free_ipath() in the end. 2331 */ 2332 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2333 struct btrfs_path *path) 2334 { 2335 struct inode_fs_paths *ifp; 2336 struct btrfs_data_container *fspath; 2337 2338 fspath = init_data_container(total_bytes); 2339 if (IS_ERR(fspath)) 2340 return (void *)fspath; 2341 2342 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2343 if (!ifp) { 2344 kvfree(fspath); 2345 return ERR_PTR(-ENOMEM); 2346 } 2347 2348 ifp->btrfs_path = path; 2349 ifp->fspath = fspath; 2350 ifp->fs_root = fs_root; 2351 2352 return ifp; 2353 } 2354 2355 void free_ipath(struct inode_fs_paths *ipath) 2356 { 2357 if (!ipath) 2358 return; 2359 kvfree(ipath->fspath); 2360 kfree(ipath); 2361 } 2362