xref: /openbmc/linux/fs/btrfs/backref.c (revision 2208f39c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 
18 /* Just an arbitrary number so we can be sure this happened */
19 #define BACKREF_FOUND_SHARED 6
20 
21 struct extent_inode_elem {
22 	u64 inum;
23 	u64 offset;
24 	struct extent_inode_elem *next;
25 };
26 
27 static int check_extent_in_eb(const struct btrfs_key *key,
28 			      const struct extent_buffer *eb,
29 			      const struct btrfs_file_extent_item *fi,
30 			      u64 extent_item_pos,
31 			      struct extent_inode_elem **eie,
32 			      bool ignore_offset)
33 {
34 	u64 offset = 0;
35 	struct extent_inode_elem *e;
36 
37 	if (!ignore_offset &&
38 	    !btrfs_file_extent_compression(eb, fi) &&
39 	    !btrfs_file_extent_encryption(eb, fi) &&
40 	    !btrfs_file_extent_other_encoding(eb, fi)) {
41 		u64 data_offset;
42 		u64 data_len;
43 
44 		data_offset = btrfs_file_extent_offset(eb, fi);
45 		data_len = btrfs_file_extent_num_bytes(eb, fi);
46 
47 		if (extent_item_pos < data_offset ||
48 		    extent_item_pos >= data_offset + data_len)
49 			return 1;
50 		offset = extent_item_pos - data_offset;
51 	}
52 
53 	e = kmalloc(sizeof(*e), GFP_NOFS);
54 	if (!e)
55 		return -ENOMEM;
56 
57 	e->next = *eie;
58 	e->inum = key->objectid;
59 	e->offset = key->offset + offset;
60 	*eie = e;
61 
62 	return 0;
63 }
64 
65 static void free_inode_elem_list(struct extent_inode_elem *eie)
66 {
67 	struct extent_inode_elem *eie_next;
68 
69 	for (; eie; eie = eie_next) {
70 		eie_next = eie->next;
71 		kfree(eie);
72 	}
73 }
74 
75 static int find_extent_in_eb(const struct extent_buffer *eb,
76 			     u64 wanted_disk_byte, u64 extent_item_pos,
77 			     struct extent_inode_elem **eie,
78 			     bool ignore_offset)
79 {
80 	u64 disk_byte;
81 	struct btrfs_key key;
82 	struct btrfs_file_extent_item *fi;
83 	int slot;
84 	int nritems;
85 	int extent_type;
86 	int ret;
87 
88 	/*
89 	 * from the shared data ref, we only have the leaf but we need
90 	 * the key. thus, we must look into all items and see that we
91 	 * find one (some) with a reference to our extent item.
92 	 */
93 	nritems = btrfs_header_nritems(eb);
94 	for (slot = 0; slot < nritems; ++slot) {
95 		btrfs_item_key_to_cpu(eb, &key, slot);
96 		if (key.type != BTRFS_EXTENT_DATA_KEY)
97 			continue;
98 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
99 		extent_type = btrfs_file_extent_type(eb, fi);
100 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
101 			continue;
102 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
103 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
104 		if (disk_byte != wanted_disk_byte)
105 			continue;
106 
107 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
108 		if (ret < 0)
109 			return ret;
110 	}
111 
112 	return 0;
113 }
114 
115 struct preftree {
116 	struct rb_root_cached root;
117 	unsigned int count;
118 };
119 
120 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
121 
122 struct preftrees {
123 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
124 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
125 	struct preftree indirect_missing_keys;
126 };
127 
128 /*
129  * Checks for a shared extent during backref search.
130  *
131  * The share_count tracks prelim_refs (direct and indirect) having a
132  * ref->count >0:
133  *  - incremented when a ref->count transitions to >0
134  *  - decremented when a ref->count transitions to <1
135  */
136 struct share_check {
137 	u64 root_objectid;
138 	u64 inum;
139 	int share_count;
140 };
141 
142 static inline int extent_is_shared(struct share_check *sc)
143 {
144 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
145 }
146 
147 static struct kmem_cache *btrfs_prelim_ref_cache;
148 
149 int __init btrfs_prelim_ref_init(void)
150 {
151 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
152 					sizeof(struct prelim_ref),
153 					0,
154 					SLAB_MEM_SPREAD,
155 					NULL);
156 	if (!btrfs_prelim_ref_cache)
157 		return -ENOMEM;
158 	return 0;
159 }
160 
161 void __cold btrfs_prelim_ref_exit(void)
162 {
163 	kmem_cache_destroy(btrfs_prelim_ref_cache);
164 }
165 
166 static void free_pref(struct prelim_ref *ref)
167 {
168 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
169 }
170 
171 /*
172  * Return 0 when both refs are for the same block (and can be merged).
173  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
174  * indicates a 'higher' block.
175  */
176 static int prelim_ref_compare(struct prelim_ref *ref1,
177 			      struct prelim_ref *ref2)
178 {
179 	if (ref1->level < ref2->level)
180 		return -1;
181 	if (ref1->level > ref2->level)
182 		return 1;
183 	if (ref1->root_id < ref2->root_id)
184 		return -1;
185 	if (ref1->root_id > ref2->root_id)
186 		return 1;
187 	if (ref1->key_for_search.type < ref2->key_for_search.type)
188 		return -1;
189 	if (ref1->key_for_search.type > ref2->key_for_search.type)
190 		return 1;
191 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
192 		return -1;
193 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
194 		return 1;
195 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
196 		return -1;
197 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
198 		return 1;
199 	if (ref1->parent < ref2->parent)
200 		return -1;
201 	if (ref1->parent > ref2->parent)
202 		return 1;
203 
204 	return 0;
205 }
206 
207 static void update_share_count(struct share_check *sc, int oldcount,
208 			       int newcount)
209 {
210 	if ((!sc) || (oldcount == 0 && newcount < 1))
211 		return;
212 
213 	if (oldcount > 0 && newcount < 1)
214 		sc->share_count--;
215 	else if (oldcount < 1 && newcount > 0)
216 		sc->share_count++;
217 }
218 
219 /*
220  * Add @newref to the @root rbtree, merging identical refs.
221  *
222  * Callers should assume that newref has been freed after calling.
223  */
224 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
225 			      struct preftree *preftree,
226 			      struct prelim_ref *newref,
227 			      struct share_check *sc)
228 {
229 	struct rb_root_cached *root;
230 	struct rb_node **p;
231 	struct rb_node *parent = NULL;
232 	struct prelim_ref *ref;
233 	int result;
234 	bool leftmost = true;
235 
236 	root = &preftree->root;
237 	p = &root->rb_root.rb_node;
238 
239 	while (*p) {
240 		parent = *p;
241 		ref = rb_entry(parent, struct prelim_ref, rbnode);
242 		result = prelim_ref_compare(ref, newref);
243 		if (result < 0) {
244 			p = &(*p)->rb_left;
245 		} else if (result > 0) {
246 			p = &(*p)->rb_right;
247 			leftmost = false;
248 		} else {
249 			/* Identical refs, merge them and free @newref */
250 			struct extent_inode_elem *eie = ref->inode_list;
251 
252 			while (eie && eie->next)
253 				eie = eie->next;
254 
255 			if (!eie)
256 				ref->inode_list = newref->inode_list;
257 			else
258 				eie->next = newref->inode_list;
259 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
260 						     preftree->count);
261 			/*
262 			 * A delayed ref can have newref->count < 0.
263 			 * The ref->count is updated to follow any
264 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
265 			 */
266 			update_share_count(sc, ref->count,
267 					   ref->count + newref->count);
268 			ref->count += newref->count;
269 			free_pref(newref);
270 			return;
271 		}
272 	}
273 
274 	update_share_count(sc, 0, newref->count);
275 	preftree->count++;
276 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
277 	rb_link_node(&newref->rbnode, parent, p);
278 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
279 }
280 
281 /*
282  * Release the entire tree.  We don't care about internal consistency so
283  * just free everything and then reset the tree root.
284  */
285 static void prelim_release(struct preftree *preftree)
286 {
287 	struct prelim_ref *ref, *next_ref;
288 
289 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
290 					     &preftree->root.rb_root, rbnode)
291 		free_pref(ref);
292 
293 	preftree->root = RB_ROOT_CACHED;
294 	preftree->count = 0;
295 }
296 
297 /*
298  * the rules for all callers of this function are:
299  * - obtaining the parent is the goal
300  * - if you add a key, you must know that it is a correct key
301  * - if you cannot add the parent or a correct key, then we will look into the
302  *   block later to set a correct key
303  *
304  * delayed refs
305  * ============
306  *        backref type | shared | indirect | shared | indirect
307  * information         |   tree |     tree |   data |     data
308  * --------------------+--------+----------+--------+----------
309  *      parent logical |    y   |     -    |    -   |     -
310  *      key to resolve |    -   |     y    |    y   |     y
311  *  tree block logical |    -   |     -    |    -   |     -
312  *  root for resolving |    y   |     y    |    y   |     y
313  *
314  * - column 1:       we've the parent -> done
315  * - column 2, 3, 4: we use the key to find the parent
316  *
317  * on disk refs (inline or keyed)
318  * ==============================
319  *        backref type | shared | indirect | shared | indirect
320  * information         |   tree |     tree |   data |     data
321  * --------------------+--------+----------+--------+----------
322  *      parent logical |    y   |     -    |    y   |     -
323  *      key to resolve |    -   |     -    |    -   |     y
324  *  tree block logical |    y   |     y    |    y   |     y
325  *  root for resolving |    -   |     y    |    y   |     y
326  *
327  * - column 1, 3: we've the parent -> done
328  * - column 2:    we take the first key from the block to find the parent
329  *                (see add_missing_keys)
330  * - column 4:    we use the key to find the parent
331  *
332  * additional information that's available but not required to find the parent
333  * block might help in merging entries to gain some speed.
334  */
335 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
336 			  struct preftree *preftree, u64 root_id,
337 			  const struct btrfs_key *key, int level, u64 parent,
338 			  u64 wanted_disk_byte, int count,
339 			  struct share_check *sc, gfp_t gfp_mask)
340 {
341 	struct prelim_ref *ref;
342 
343 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
344 		return 0;
345 
346 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
347 	if (!ref)
348 		return -ENOMEM;
349 
350 	ref->root_id = root_id;
351 	if (key)
352 		ref->key_for_search = *key;
353 	else
354 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
355 
356 	ref->inode_list = NULL;
357 	ref->level = level;
358 	ref->count = count;
359 	ref->parent = parent;
360 	ref->wanted_disk_byte = wanted_disk_byte;
361 	prelim_ref_insert(fs_info, preftree, ref, sc);
362 	return extent_is_shared(sc);
363 }
364 
365 /* direct refs use root == 0, key == NULL */
366 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
367 			  struct preftrees *preftrees, int level, u64 parent,
368 			  u64 wanted_disk_byte, int count,
369 			  struct share_check *sc, gfp_t gfp_mask)
370 {
371 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
372 			      parent, wanted_disk_byte, count, sc, gfp_mask);
373 }
374 
375 /* indirect refs use parent == 0 */
376 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
377 			    struct preftrees *preftrees, u64 root_id,
378 			    const struct btrfs_key *key, int level,
379 			    u64 wanted_disk_byte, int count,
380 			    struct share_check *sc, gfp_t gfp_mask)
381 {
382 	struct preftree *tree = &preftrees->indirect;
383 
384 	if (!key)
385 		tree = &preftrees->indirect_missing_keys;
386 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
387 			      wanted_disk_byte, count, sc, gfp_mask);
388 }
389 
390 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
391 {
392 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
393 	struct rb_node *parent = NULL;
394 	struct prelim_ref *ref = NULL;
395 	struct prelim_ref target = {};
396 	int result;
397 
398 	target.parent = bytenr;
399 
400 	while (*p) {
401 		parent = *p;
402 		ref = rb_entry(parent, struct prelim_ref, rbnode);
403 		result = prelim_ref_compare(ref, &target);
404 
405 		if (result < 0)
406 			p = &(*p)->rb_left;
407 		else if (result > 0)
408 			p = &(*p)->rb_right;
409 		else
410 			return 1;
411 	}
412 	return 0;
413 }
414 
415 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
416 			   struct ulist *parents,
417 			   struct preftrees *preftrees, struct prelim_ref *ref,
418 			   int level, u64 time_seq, const u64 *extent_item_pos,
419 			   bool ignore_offset)
420 {
421 	int ret = 0;
422 	int slot;
423 	struct extent_buffer *eb;
424 	struct btrfs_key key;
425 	struct btrfs_key *key_for_search = &ref->key_for_search;
426 	struct btrfs_file_extent_item *fi;
427 	struct extent_inode_elem *eie = NULL, *old = NULL;
428 	u64 disk_byte;
429 	u64 wanted_disk_byte = ref->wanted_disk_byte;
430 	u64 count = 0;
431 	u64 data_offset;
432 
433 	if (level != 0) {
434 		eb = path->nodes[level];
435 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
436 		if (ret < 0)
437 			return ret;
438 		return 0;
439 	}
440 
441 	/*
442 	 * 1. We normally enter this function with the path already pointing to
443 	 *    the first item to check. But sometimes, we may enter it with
444 	 *    slot == nritems.
445 	 * 2. We are searching for normal backref but bytenr of this leaf
446 	 *    matches shared data backref
447 	 * 3. The leaf owner is not equal to the root we are searching
448 	 *
449 	 * For these cases, go to the next leaf before we continue.
450 	 */
451 	eb = path->nodes[0];
452 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
453 	    is_shared_data_backref(preftrees, eb->start) ||
454 	    ref->root_id != btrfs_header_owner(eb)) {
455 		if (time_seq == SEQ_LAST)
456 			ret = btrfs_next_leaf(root, path);
457 		else
458 			ret = btrfs_next_old_leaf(root, path, time_seq);
459 	}
460 
461 	while (!ret && count < ref->count) {
462 		eb = path->nodes[0];
463 		slot = path->slots[0];
464 
465 		btrfs_item_key_to_cpu(eb, &key, slot);
466 
467 		if (key.objectid != key_for_search->objectid ||
468 		    key.type != BTRFS_EXTENT_DATA_KEY)
469 			break;
470 
471 		/*
472 		 * We are searching for normal backref but bytenr of this leaf
473 		 * matches shared data backref, OR
474 		 * the leaf owner is not equal to the root we are searching for
475 		 */
476 		if (slot == 0 &&
477 		    (is_shared_data_backref(preftrees, eb->start) ||
478 		     ref->root_id != btrfs_header_owner(eb))) {
479 			if (time_seq == SEQ_LAST)
480 				ret = btrfs_next_leaf(root, path);
481 			else
482 				ret = btrfs_next_old_leaf(root, path, time_seq);
483 			continue;
484 		}
485 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
486 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
487 		data_offset = btrfs_file_extent_offset(eb, fi);
488 
489 		if (disk_byte == wanted_disk_byte) {
490 			eie = NULL;
491 			old = NULL;
492 			if (ref->key_for_search.offset == key.offset - data_offset)
493 				count++;
494 			else
495 				goto next;
496 			if (extent_item_pos) {
497 				ret = check_extent_in_eb(&key, eb, fi,
498 						*extent_item_pos,
499 						&eie, ignore_offset);
500 				if (ret < 0)
501 					break;
502 			}
503 			if (ret > 0)
504 				goto next;
505 			ret = ulist_add_merge_ptr(parents, eb->start,
506 						  eie, (void **)&old, GFP_NOFS);
507 			if (ret < 0)
508 				break;
509 			if (!ret && extent_item_pos) {
510 				while (old->next)
511 					old = old->next;
512 				old->next = eie;
513 			}
514 			eie = NULL;
515 		}
516 next:
517 		if (time_seq == SEQ_LAST)
518 			ret = btrfs_next_item(root, path);
519 		else
520 			ret = btrfs_next_old_item(root, path, time_seq);
521 	}
522 
523 	if (ret > 0)
524 		ret = 0;
525 	else if (ret < 0)
526 		free_inode_elem_list(eie);
527 	return ret;
528 }
529 
530 /*
531  * resolve an indirect backref in the form (root_id, key, level)
532  * to a logical address
533  */
534 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
535 				struct btrfs_path *path, u64 time_seq,
536 				struct preftrees *preftrees,
537 				struct prelim_ref *ref, struct ulist *parents,
538 				const u64 *extent_item_pos, bool ignore_offset)
539 {
540 	struct btrfs_root *root;
541 	struct extent_buffer *eb;
542 	int ret = 0;
543 	int root_level;
544 	int level = ref->level;
545 	struct btrfs_key search_key = ref->key_for_search;
546 
547 	/*
548 	 * If we're search_commit_root we could possibly be holding locks on
549 	 * other tree nodes.  This happens when qgroups does backref walks when
550 	 * adding new delayed refs.  To deal with this we need to look in cache
551 	 * for the root, and if we don't find it then we need to search the
552 	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
553 	 * here.
554 	 */
555 	if (path->search_commit_root)
556 		root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
557 	else
558 		root = btrfs_get_fs_root(fs_info, ref->root_id, false);
559 	if (IS_ERR(root)) {
560 		ret = PTR_ERR(root);
561 		goto out_free;
562 	}
563 
564 	if (!path->search_commit_root &&
565 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
566 		ret = -ENOENT;
567 		goto out;
568 	}
569 
570 	if (btrfs_is_testing(fs_info)) {
571 		ret = -ENOENT;
572 		goto out;
573 	}
574 
575 	if (path->search_commit_root)
576 		root_level = btrfs_header_level(root->commit_root);
577 	else if (time_seq == SEQ_LAST)
578 		root_level = btrfs_header_level(root->node);
579 	else
580 		root_level = btrfs_old_root_level(root, time_seq);
581 
582 	if (root_level + 1 == level)
583 		goto out;
584 
585 	/*
586 	 * We can often find data backrefs with an offset that is too large
587 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
588 	 * subtracting a file's offset with the data offset of its
589 	 * corresponding extent data item. This can happen for example in the
590 	 * clone ioctl.
591 	 *
592 	 * So if we detect such case we set the search key's offset to zero to
593 	 * make sure we will find the matching file extent item at
594 	 * add_all_parents(), otherwise we will miss it because the offset
595 	 * taken form the backref is much larger then the offset of the file
596 	 * extent item. This can make us scan a very large number of file
597 	 * extent items, but at least it will not make us miss any.
598 	 *
599 	 * This is an ugly workaround for a behaviour that should have never
600 	 * existed, but it does and a fix for the clone ioctl would touch a lot
601 	 * of places, cause backwards incompatibility and would not fix the
602 	 * problem for extents cloned with older kernels.
603 	 */
604 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
605 	    search_key.offset >= LLONG_MAX)
606 		search_key.offset = 0;
607 	path->lowest_level = level;
608 	if (time_seq == SEQ_LAST)
609 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
610 	else
611 		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
612 
613 	btrfs_debug(fs_info,
614 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
615 		 ref->root_id, level, ref->count, ret,
616 		 ref->key_for_search.objectid, ref->key_for_search.type,
617 		 ref->key_for_search.offset);
618 	if (ret < 0)
619 		goto out;
620 
621 	eb = path->nodes[level];
622 	while (!eb) {
623 		if (WARN_ON(!level)) {
624 			ret = 1;
625 			goto out;
626 		}
627 		level--;
628 		eb = path->nodes[level];
629 	}
630 
631 	ret = add_all_parents(root, path, parents, preftrees, ref, level,
632 			      time_seq, extent_item_pos, ignore_offset);
633 out:
634 	btrfs_put_root(root);
635 out_free:
636 	path->lowest_level = 0;
637 	btrfs_release_path(path);
638 	return ret;
639 }
640 
641 static struct extent_inode_elem *
642 unode_aux_to_inode_list(struct ulist_node *node)
643 {
644 	if (!node)
645 		return NULL;
646 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
647 }
648 
649 /*
650  * We maintain three separate rbtrees: one for direct refs, one for
651  * indirect refs which have a key, and one for indirect refs which do not
652  * have a key. Each tree does merge on insertion.
653  *
654  * Once all of the references are located, we iterate over the tree of
655  * indirect refs with missing keys. An appropriate key is located and
656  * the ref is moved onto the tree for indirect refs. After all missing
657  * keys are thus located, we iterate over the indirect ref tree, resolve
658  * each reference, and then insert the resolved reference onto the
659  * direct tree (merging there too).
660  *
661  * New backrefs (i.e., for parent nodes) are added to the appropriate
662  * rbtree as they are encountered. The new backrefs are subsequently
663  * resolved as above.
664  */
665 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
666 				 struct btrfs_path *path, u64 time_seq,
667 				 struct preftrees *preftrees,
668 				 const u64 *extent_item_pos,
669 				 struct share_check *sc, bool ignore_offset)
670 {
671 	int err;
672 	int ret = 0;
673 	struct ulist *parents;
674 	struct ulist_node *node;
675 	struct ulist_iterator uiter;
676 	struct rb_node *rnode;
677 
678 	parents = ulist_alloc(GFP_NOFS);
679 	if (!parents)
680 		return -ENOMEM;
681 
682 	/*
683 	 * We could trade memory usage for performance here by iterating
684 	 * the tree, allocating new refs for each insertion, and then
685 	 * freeing the entire indirect tree when we're done.  In some test
686 	 * cases, the tree can grow quite large (~200k objects).
687 	 */
688 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
689 		struct prelim_ref *ref;
690 
691 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
692 		if (WARN(ref->parent,
693 			 "BUG: direct ref found in indirect tree")) {
694 			ret = -EINVAL;
695 			goto out;
696 		}
697 
698 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
699 		preftrees->indirect.count--;
700 
701 		if (ref->count == 0) {
702 			free_pref(ref);
703 			continue;
704 		}
705 
706 		if (sc && sc->root_objectid &&
707 		    ref->root_id != sc->root_objectid) {
708 			free_pref(ref);
709 			ret = BACKREF_FOUND_SHARED;
710 			goto out;
711 		}
712 		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
713 					   ref, parents, extent_item_pos,
714 					   ignore_offset);
715 		/*
716 		 * we can only tolerate ENOENT,otherwise,we should catch error
717 		 * and return directly.
718 		 */
719 		if (err == -ENOENT) {
720 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
721 					  NULL);
722 			continue;
723 		} else if (err) {
724 			free_pref(ref);
725 			ret = err;
726 			goto out;
727 		}
728 
729 		/* we put the first parent into the ref at hand */
730 		ULIST_ITER_INIT(&uiter);
731 		node = ulist_next(parents, &uiter);
732 		ref->parent = node ? node->val : 0;
733 		ref->inode_list = unode_aux_to_inode_list(node);
734 
735 		/* Add a prelim_ref(s) for any other parent(s). */
736 		while ((node = ulist_next(parents, &uiter))) {
737 			struct prelim_ref *new_ref;
738 
739 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
740 						   GFP_NOFS);
741 			if (!new_ref) {
742 				free_pref(ref);
743 				ret = -ENOMEM;
744 				goto out;
745 			}
746 			memcpy(new_ref, ref, sizeof(*ref));
747 			new_ref->parent = node->val;
748 			new_ref->inode_list = unode_aux_to_inode_list(node);
749 			prelim_ref_insert(fs_info, &preftrees->direct,
750 					  new_ref, NULL);
751 		}
752 
753 		/*
754 		 * Now it's a direct ref, put it in the direct tree. We must
755 		 * do this last because the ref could be merged/freed here.
756 		 */
757 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
758 
759 		ulist_reinit(parents);
760 		cond_resched();
761 	}
762 out:
763 	ulist_free(parents);
764 	return ret;
765 }
766 
767 /*
768  * read tree blocks and add keys where required.
769  */
770 static int add_missing_keys(struct btrfs_fs_info *fs_info,
771 			    struct preftrees *preftrees, bool lock)
772 {
773 	struct prelim_ref *ref;
774 	struct extent_buffer *eb;
775 	struct preftree *tree = &preftrees->indirect_missing_keys;
776 	struct rb_node *node;
777 
778 	while ((node = rb_first_cached(&tree->root))) {
779 		ref = rb_entry(node, struct prelim_ref, rbnode);
780 		rb_erase_cached(node, &tree->root);
781 
782 		BUG_ON(ref->parent);	/* should not be a direct ref */
783 		BUG_ON(ref->key_for_search.type);
784 		BUG_ON(!ref->wanted_disk_byte);
785 
786 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
787 				     ref->level - 1, NULL);
788 		if (IS_ERR(eb)) {
789 			free_pref(ref);
790 			return PTR_ERR(eb);
791 		} else if (!extent_buffer_uptodate(eb)) {
792 			free_pref(ref);
793 			free_extent_buffer(eb);
794 			return -EIO;
795 		}
796 		if (lock)
797 			btrfs_tree_read_lock(eb);
798 		if (btrfs_header_level(eb) == 0)
799 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
800 		else
801 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
802 		if (lock)
803 			btrfs_tree_read_unlock(eb);
804 		free_extent_buffer(eb);
805 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
806 		cond_resched();
807 	}
808 	return 0;
809 }
810 
811 /*
812  * add all currently queued delayed refs from this head whose seq nr is
813  * smaller or equal that seq to the list
814  */
815 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
816 			    struct btrfs_delayed_ref_head *head, u64 seq,
817 			    struct preftrees *preftrees, struct share_check *sc)
818 {
819 	struct btrfs_delayed_ref_node *node;
820 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
821 	struct btrfs_key key;
822 	struct btrfs_key tmp_op_key;
823 	struct rb_node *n;
824 	int count;
825 	int ret = 0;
826 
827 	if (extent_op && extent_op->update_key)
828 		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
829 
830 	spin_lock(&head->lock);
831 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
832 		node = rb_entry(n, struct btrfs_delayed_ref_node,
833 				ref_node);
834 		if (node->seq > seq)
835 			continue;
836 
837 		switch (node->action) {
838 		case BTRFS_ADD_DELAYED_EXTENT:
839 		case BTRFS_UPDATE_DELAYED_HEAD:
840 			WARN_ON(1);
841 			continue;
842 		case BTRFS_ADD_DELAYED_REF:
843 			count = node->ref_mod;
844 			break;
845 		case BTRFS_DROP_DELAYED_REF:
846 			count = node->ref_mod * -1;
847 			break;
848 		default:
849 			BUG();
850 		}
851 		switch (node->type) {
852 		case BTRFS_TREE_BLOCK_REF_KEY: {
853 			/* NORMAL INDIRECT METADATA backref */
854 			struct btrfs_delayed_tree_ref *ref;
855 
856 			ref = btrfs_delayed_node_to_tree_ref(node);
857 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
858 					       &tmp_op_key, ref->level + 1,
859 					       node->bytenr, count, sc,
860 					       GFP_ATOMIC);
861 			break;
862 		}
863 		case BTRFS_SHARED_BLOCK_REF_KEY: {
864 			/* SHARED DIRECT METADATA backref */
865 			struct btrfs_delayed_tree_ref *ref;
866 
867 			ref = btrfs_delayed_node_to_tree_ref(node);
868 
869 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
870 					     ref->parent, node->bytenr, count,
871 					     sc, GFP_ATOMIC);
872 			break;
873 		}
874 		case BTRFS_EXTENT_DATA_REF_KEY: {
875 			/* NORMAL INDIRECT DATA backref */
876 			struct btrfs_delayed_data_ref *ref;
877 			ref = btrfs_delayed_node_to_data_ref(node);
878 
879 			key.objectid = ref->objectid;
880 			key.type = BTRFS_EXTENT_DATA_KEY;
881 			key.offset = ref->offset;
882 
883 			/*
884 			 * Found a inum that doesn't match our known inum, we
885 			 * know it's shared.
886 			 */
887 			if (sc && sc->inum && ref->objectid != sc->inum) {
888 				ret = BACKREF_FOUND_SHARED;
889 				goto out;
890 			}
891 
892 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
893 					       &key, 0, node->bytenr, count, sc,
894 					       GFP_ATOMIC);
895 			break;
896 		}
897 		case BTRFS_SHARED_DATA_REF_KEY: {
898 			/* SHARED DIRECT FULL backref */
899 			struct btrfs_delayed_data_ref *ref;
900 
901 			ref = btrfs_delayed_node_to_data_ref(node);
902 
903 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
904 					     node->bytenr, count, sc,
905 					     GFP_ATOMIC);
906 			break;
907 		}
908 		default:
909 			WARN_ON(1);
910 		}
911 		/*
912 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
913 		 * refs have been checked.
914 		 */
915 		if (ret && (ret != BACKREF_FOUND_SHARED))
916 			break;
917 	}
918 	if (!ret)
919 		ret = extent_is_shared(sc);
920 out:
921 	spin_unlock(&head->lock);
922 	return ret;
923 }
924 
925 /*
926  * add all inline backrefs for bytenr to the list
927  *
928  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
929  */
930 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
931 			   struct btrfs_path *path, u64 bytenr,
932 			   int *info_level, struct preftrees *preftrees,
933 			   struct share_check *sc)
934 {
935 	int ret = 0;
936 	int slot;
937 	struct extent_buffer *leaf;
938 	struct btrfs_key key;
939 	struct btrfs_key found_key;
940 	unsigned long ptr;
941 	unsigned long end;
942 	struct btrfs_extent_item *ei;
943 	u64 flags;
944 	u64 item_size;
945 
946 	/*
947 	 * enumerate all inline refs
948 	 */
949 	leaf = path->nodes[0];
950 	slot = path->slots[0];
951 
952 	item_size = btrfs_item_size_nr(leaf, slot);
953 	BUG_ON(item_size < sizeof(*ei));
954 
955 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
956 	flags = btrfs_extent_flags(leaf, ei);
957 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
958 
959 	ptr = (unsigned long)(ei + 1);
960 	end = (unsigned long)ei + item_size;
961 
962 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
963 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
964 		struct btrfs_tree_block_info *info;
965 
966 		info = (struct btrfs_tree_block_info *)ptr;
967 		*info_level = btrfs_tree_block_level(leaf, info);
968 		ptr += sizeof(struct btrfs_tree_block_info);
969 		BUG_ON(ptr > end);
970 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
971 		*info_level = found_key.offset;
972 	} else {
973 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
974 	}
975 
976 	while (ptr < end) {
977 		struct btrfs_extent_inline_ref *iref;
978 		u64 offset;
979 		int type;
980 
981 		iref = (struct btrfs_extent_inline_ref *)ptr;
982 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
983 							BTRFS_REF_TYPE_ANY);
984 		if (type == BTRFS_REF_TYPE_INVALID)
985 			return -EUCLEAN;
986 
987 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
988 
989 		switch (type) {
990 		case BTRFS_SHARED_BLOCK_REF_KEY:
991 			ret = add_direct_ref(fs_info, preftrees,
992 					     *info_level + 1, offset,
993 					     bytenr, 1, NULL, GFP_NOFS);
994 			break;
995 		case BTRFS_SHARED_DATA_REF_KEY: {
996 			struct btrfs_shared_data_ref *sdref;
997 			int count;
998 
999 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1000 			count = btrfs_shared_data_ref_count(leaf, sdref);
1001 
1002 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
1003 					     bytenr, count, sc, GFP_NOFS);
1004 			break;
1005 		}
1006 		case BTRFS_TREE_BLOCK_REF_KEY:
1007 			ret = add_indirect_ref(fs_info, preftrees, offset,
1008 					       NULL, *info_level + 1,
1009 					       bytenr, 1, NULL, GFP_NOFS);
1010 			break;
1011 		case BTRFS_EXTENT_DATA_REF_KEY: {
1012 			struct btrfs_extent_data_ref *dref;
1013 			int count;
1014 			u64 root;
1015 
1016 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1017 			count = btrfs_extent_data_ref_count(leaf, dref);
1018 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1019 								      dref);
1020 			key.type = BTRFS_EXTENT_DATA_KEY;
1021 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1022 
1023 			if (sc && sc->inum && key.objectid != sc->inum) {
1024 				ret = BACKREF_FOUND_SHARED;
1025 				break;
1026 			}
1027 
1028 			root = btrfs_extent_data_ref_root(leaf, dref);
1029 
1030 			ret = add_indirect_ref(fs_info, preftrees, root,
1031 					       &key, 0, bytenr, count,
1032 					       sc, GFP_NOFS);
1033 			break;
1034 		}
1035 		default:
1036 			WARN_ON(1);
1037 		}
1038 		if (ret)
1039 			return ret;
1040 		ptr += btrfs_extent_inline_ref_size(type);
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 /*
1047  * add all non-inline backrefs for bytenr to the list
1048  *
1049  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1050  */
1051 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1052 			  struct btrfs_path *path, u64 bytenr,
1053 			  int info_level, struct preftrees *preftrees,
1054 			  struct share_check *sc)
1055 {
1056 	struct btrfs_root *extent_root = fs_info->extent_root;
1057 	int ret;
1058 	int slot;
1059 	struct extent_buffer *leaf;
1060 	struct btrfs_key key;
1061 
1062 	while (1) {
1063 		ret = btrfs_next_item(extent_root, path);
1064 		if (ret < 0)
1065 			break;
1066 		if (ret) {
1067 			ret = 0;
1068 			break;
1069 		}
1070 
1071 		slot = path->slots[0];
1072 		leaf = path->nodes[0];
1073 		btrfs_item_key_to_cpu(leaf, &key, slot);
1074 
1075 		if (key.objectid != bytenr)
1076 			break;
1077 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1078 			continue;
1079 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1080 			break;
1081 
1082 		switch (key.type) {
1083 		case BTRFS_SHARED_BLOCK_REF_KEY:
1084 			/* SHARED DIRECT METADATA backref */
1085 			ret = add_direct_ref(fs_info, preftrees,
1086 					     info_level + 1, key.offset,
1087 					     bytenr, 1, NULL, GFP_NOFS);
1088 			break;
1089 		case BTRFS_SHARED_DATA_REF_KEY: {
1090 			/* SHARED DIRECT FULL backref */
1091 			struct btrfs_shared_data_ref *sdref;
1092 			int count;
1093 
1094 			sdref = btrfs_item_ptr(leaf, slot,
1095 					      struct btrfs_shared_data_ref);
1096 			count = btrfs_shared_data_ref_count(leaf, sdref);
1097 			ret = add_direct_ref(fs_info, preftrees, 0,
1098 					     key.offset, bytenr, count,
1099 					     sc, GFP_NOFS);
1100 			break;
1101 		}
1102 		case BTRFS_TREE_BLOCK_REF_KEY:
1103 			/* NORMAL INDIRECT METADATA backref */
1104 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1105 					       NULL, info_level + 1, bytenr,
1106 					       1, NULL, GFP_NOFS);
1107 			break;
1108 		case BTRFS_EXTENT_DATA_REF_KEY: {
1109 			/* NORMAL INDIRECT DATA backref */
1110 			struct btrfs_extent_data_ref *dref;
1111 			int count;
1112 			u64 root;
1113 
1114 			dref = btrfs_item_ptr(leaf, slot,
1115 					      struct btrfs_extent_data_ref);
1116 			count = btrfs_extent_data_ref_count(leaf, dref);
1117 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1118 								      dref);
1119 			key.type = BTRFS_EXTENT_DATA_KEY;
1120 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1121 
1122 			if (sc && sc->inum && key.objectid != sc->inum) {
1123 				ret = BACKREF_FOUND_SHARED;
1124 				break;
1125 			}
1126 
1127 			root = btrfs_extent_data_ref_root(leaf, dref);
1128 			ret = add_indirect_ref(fs_info, preftrees, root,
1129 					       &key, 0, bytenr, count,
1130 					       sc, GFP_NOFS);
1131 			break;
1132 		}
1133 		default:
1134 			WARN_ON(1);
1135 		}
1136 		if (ret)
1137 			return ret;
1138 
1139 	}
1140 
1141 	return ret;
1142 }
1143 
1144 /*
1145  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1146  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1147  * indirect refs to their parent bytenr.
1148  * When roots are found, they're added to the roots list
1149  *
1150  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1151  * much like trans == NULL case, the difference only lies in it will not
1152  * commit root.
1153  * The special case is for qgroup to search roots in commit_transaction().
1154  *
1155  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1156  * shared extent is detected.
1157  *
1158  * Otherwise this returns 0 for success and <0 for an error.
1159  *
1160  * If ignore_offset is set to false, only extent refs whose offsets match
1161  * extent_item_pos are returned.  If true, every extent ref is returned
1162  * and extent_item_pos is ignored.
1163  *
1164  * FIXME some caching might speed things up
1165  */
1166 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1167 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1168 			     u64 time_seq, struct ulist *refs,
1169 			     struct ulist *roots, const u64 *extent_item_pos,
1170 			     struct share_check *sc, bool ignore_offset)
1171 {
1172 	struct btrfs_key key;
1173 	struct btrfs_path *path;
1174 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1175 	struct btrfs_delayed_ref_head *head;
1176 	int info_level = 0;
1177 	int ret;
1178 	struct prelim_ref *ref;
1179 	struct rb_node *node;
1180 	struct extent_inode_elem *eie = NULL;
1181 	struct preftrees preftrees = {
1182 		.direct = PREFTREE_INIT,
1183 		.indirect = PREFTREE_INIT,
1184 		.indirect_missing_keys = PREFTREE_INIT
1185 	};
1186 
1187 	key.objectid = bytenr;
1188 	key.offset = (u64)-1;
1189 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1190 		key.type = BTRFS_METADATA_ITEM_KEY;
1191 	else
1192 		key.type = BTRFS_EXTENT_ITEM_KEY;
1193 
1194 	path = btrfs_alloc_path();
1195 	if (!path)
1196 		return -ENOMEM;
1197 	if (!trans) {
1198 		path->search_commit_root = 1;
1199 		path->skip_locking = 1;
1200 	}
1201 
1202 	if (time_seq == SEQ_LAST)
1203 		path->skip_locking = 1;
1204 
1205 	/*
1206 	 * grab both a lock on the path and a lock on the delayed ref head.
1207 	 * We need both to get a consistent picture of how the refs look
1208 	 * at a specified point in time
1209 	 */
1210 again:
1211 	head = NULL;
1212 
1213 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1214 	if (ret < 0)
1215 		goto out;
1216 	BUG_ON(ret == 0);
1217 
1218 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1219 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1220 	    time_seq != SEQ_LAST) {
1221 #else
1222 	if (trans && time_seq != SEQ_LAST) {
1223 #endif
1224 		/*
1225 		 * look if there are updates for this ref queued and lock the
1226 		 * head
1227 		 */
1228 		delayed_refs = &trans->transaction->delayed_refs;
1229 		spin_lock(&delayed_refs->lock);
1230 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1231 		if (head) {
1232 			if (!mutex_trylock(&head->mutex)) {
1233 				refcount_inc(&head->refs);
1234 				spin_unlock(&delayed_refs->lock);
1235 
1236 				btrfs_release_path(path);
1237 
1238 				/*
1239 				 * Mutex was contended, block until it's
1240 				 * released and try again
1241 				 */
1242 				mutex_lock(&head->mutex);
1243 				mutex_unlock(&head->mutex);
1244 				btrfs_put_delayed_ref_head(head);
1245 				goto again;
1246 			}
1247 			spin_unlock(&delayed_refs->lock);
1248 			ret = add_delayed_refs(fs_info, head, time_seq,
1249 					       &preftrees, sc);
1250 			mutex_unlock(&head->mutex);
1251 			if (ret)
1252 				goto out;
1253 		} else {
1254 			spin_unlock(&delayed_refs->lock);
1255 		}
1256 	}
1257 
1258 	if (path->slots[0]) {
1259 		struct extent_buffer *leaf;
1260 		int slot;
1261 
1262 		path->slots[0]--;
1263 		leaf = path->nodes[0];
1264 		slot = path->slots[0];
1265 		btrfs_item_key_to_cpu(leaf, &key, slot);
1266 		if (key.objectid == bytenr &&
1267 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1268 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1269 			ret = add_inline_refs(fs_info, path, bytenr,
1270 					      &info_level, &preftrees, sc);
1271 			if (ret)
1272 				goto out;
1273 			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1274 					     &preftrees, sc);
1275 			if (ret)
1276 				goto out;
1277 		}
1278 	}
1279 
1280 	btrfs_release_path(path);
1281 
1282 	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1283 	if (ret)
1284 		goto out;
1285 
1286 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1287 
1288 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1289 				    extent_item_pos, sc, ignore_offset);
1290 	if (ret)
1291 		goto out;
1292 
1293 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1294 
1295 	/*
1296 	 * This walks the tree of merged and resolved refs. Tree blocks are
1297 	 * read in as needed. Unique entries are added to the ulist, and
1298 	 * the list of found roots is updated.
1299 	 *
1300 	 * We release the entire tree in one go before returning.
1301 	 */
1302 	node = rb_first_cached(&preftrees.direct.root);
1303 	while (node) {
1304 		ref = rb_entry(node, struct prelim_ref, rbnode);
1305 		node = rb_next(&ref->rbnode);
1306 		/*
1307 		 * ref->count < 0 can happen here if there are delayed
1308 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1309 		 * prelim_ref_insert() relies on this when merging
1310 		 * identical refs to keep the overall count correct.
1311 		 * prelim_ref_insert() will merge only those refs
1312 		 * which compare identically.  Any refs having
1313 		 * e.g. different offsets would not be merged,
1314 		 * and would retain their original ref->count < 0.
1315 		 */
1316 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1317 			if (sc && sc->root_objectid &&
1318 			    ref->root_id != sc->root_objectid) {
1319 				ret = BACKREF_FOUND_SHARED;
1320 				goto out;
1321 			}
1322 
1323 			/* no parent == root of tree */
1324 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1325 			if (ret < 0)
1326 				goto out;
1327 		}
1328 		if (ref->count && ref->parent) {
1329 			if (extent_item_pos && !ref->inode_list &&
1330 			    ref->level == 0) {
1331 				struct extent_buffer *eb;
1332 
1333 				eb = read_tree_block(fs_info, ref->parent, 0,
1334 						     ref->level, NULL);
1335 				if (IS_ERR(eb)) {
1336 					ret = PTR_ERR(eb);
1337 					goto out;
1338 				} else if (!extent_buffer_uptodate(eb)) {
1339 					free_extent_buffer(eb);
1340 					ret = -EIO;
1341 					goto out;
1342 				}
1343 
1344 				if (!path->skip_locking) {
1345 					btrfs_tree_read_lock(eb);
1346 					btrfs_set_lock_blocking_read(eb);
1347 				}
1348 				ret = find_extent_in_eb(eb, bytenr,
1349 							*extent_item_pos, &eie, ignore_offset);
1350 				if (!path->skip_locking)
1351 					btrfs_tree_read_unlock_blocking(eb);
1352 				free_extent_buffer(eb);
1353 				if (ret < 0)
1354 					goto out;
1355 				ref->inode_list = eie;
1356 			}
1357 			ret = ulist_add_merge_ptr(refs, ref->parent,
1358 						  ref->inode_list,
1359 						  (void **)&eie, GFP_NOFS);
1360 			if (ret < 0)
1361 				goto out;
1362 			if (!ret && extent_item_pos) {
1363 				/*
1364 				 * we've recorded that parent, so we must extend
1365 				 * its inode list here
1366 				 */
1367 				BUG_ON(!eie);
1368 				while (eie->next)
1369 					eie = eie->next;
1370 				eie->next = ref->inode_list;
1371 			}
1372 			eie = NULL;
1373 		}
1374 		cond_resched();
1375 	}
1376 
1377 out:
1378 	btrfs_free_path(path);
1379 
1380 	prelim_release(&preftrees.direct);
1381 	prelim_release(&preftrees.indirect);
1382 	prelim_release(&preftrees.indirect_missing_keys);
1383 
1384 	if (ret < 0)
1385 		free_inode_elem_list(eie);
1386 	return ret;
1387 }
1388 
1389 static void free_leaf_list(struct ulist *blocks)
1390 {
1391 	struct ulist_node *node = NULL;
1392 	struct extent_inode_elem *eie;
1393 	struct ulist_iterator uiter;
1394 
1395 	ULIST_ITER_INIT(&uiter);
1396 	while ((node = ulist_next(blocks, &uiter))) {
1397 		if (!node->aux)
1398 			continue;
1399 		eie = unode_aux_to_inode_list(node);
1400 		free_inode_elem_list(eie);
1401 		node->aux = 0;
1402 	}
1403 
1404 	ulist_free(blocks);
1405 }
1406 
1407 /*
1408  * Finds all leafs with a reference to the specified combination of bytenr and
1409  * offset. key_list_head will point to a list of corresponding keys (caller must
1410  * free each list element). The leafs will be stored in the leafs ulist, which
1411  * must be freed with ulist_free.
1412  *
1413  * returns 0 on success, <0 on error
1414  */
1415 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1416 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1417 			 u64 time_seq, struct ulist **leafs,
1418 			 const u64 *extent_item_pos, bool ignore_offset)
1419 {
1420 	int ret;
1421 
1422 	*leafs = ulist_alloc(GFP_NOFS);
1423 	if (!*leafs)
1424 		return -ENOMEM;
1425 
1426 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1427 				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1428 	if (ret < 0 && ret != -ENOENT) {
1429 		free_leaf_list(*leafs);
1430 		return ret;
1431 	}
1432 
1433 	return 0;
1434 }
1435 
1436 /*
1437  * walk all backrefs for a given extent to find all roots that reference this
1438  * extent. Walking a backref means finding all extents that reference this
1439  * extent and in turn walk the backrefs of those, too. Naturally this is a
1440  * recursive process, but here it is implemented in an iterative fashion: We
1441  * find all referencing extents for the extent in question and put them on a
1442  * list. In turn, we find all referencing extents for those, further appending
1443  * to the list. The way we iterate the list allows adding more elements after
1444  * the current while iterating. The process stops when we reach the end of the
1445  * list. Found roots are added to the roots list.
1446  *
1447  * returns 0 on success, < 0 on error.
1448  */
1449 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1450 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1451 				     u64 time_seq, struct ulist **roots,
1452 				     bool ignore_offset)
1453 {
1454 	struct ulist *tmp;
1455 	struct ulist_node *node = NULL;
1456 	struct ulist_iterator uiter;
1457 	int ret;
1458 
1459 	tmp = ulist_alloc(GFP_NOFS);
1460 	if (!tmp)
1461 		return -ENOMEM;
1462 	*roots = ulist_alloc(GFP_NOFS);
1463 	if (!*roots) {
1464 		ulist_free(tmp);
1465 		return -ENOMEM;
1466 	}
1467 
1468 	ULIST_ITER_INIT(&uiter);
1469 	while (1) {
1470 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1471 					tmp, *roots, NULL, NULL, ignore_offset);
1472 		if (ret < 0 && ret != -ENOENT) {
1473 			ulist_free(tmp);
1474 			ulist_free(*roots);
1475 			*roots = NULL;
1476 			return ret;
1477 		}
1478 		node = ulist_next(tmp, &uiter);
1479 		if (!node)
1480 			break;
1481 		bytenr = node->val;
1482 		cond_resched();
1483 	}
1484 
1485 	ulist_free(tmp);
1486 	return 0;
1487 }
1488 
1489 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1490 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1491 			 u64 time_seq, struct ulist **roots,
1492 			 bool ignore_offset)
1493 {
1494 	int ret;
1495 
1496 	if (!trans)
1497 		down_read(&fs_info->commit_root_sem);
1498 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1499 					time_seq, roots, ignore_offset);
1500 	if (!trans)
1501 		up_read(&fs_info->commit_root_sem);
1502 	return ret;
1503 }
1504 
1505 /**
1506  * btrfs_check_shared - tell us whether an extent is shared
1507  *
1508  * btrfs_check_shared uses the backref walking code but will short
1509  * circuit as soon as it finds a root or inode that doesn't match the
1510  * one passed in. This provides a significant performance benefit for
1511  * callers (such as fiemap) which want to know whether the extent is
1512  * shared but do not need a ref count.
1513  *
1514  * This attempts to attach to the running transaction in order to account for
1515  * delayed refs, but continues on even when no running transaction exists.
1516  *
1517  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1518  */
1519 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1520 		struct ulist *roots, struct ulist *tmp)
1521 {
1522 	struct btrfs_fs_info *fs_info = root->fs_info;
1523 	struct btrfs_trans_handle *trans;
1524 	struct ulist_iterator uiter;
1525 	struct ulist_node *node;
1526 	struct seq_list elem = SEQ_LIST_INIT(elem);
1527 	int ret = 0;
1528 	struct share_check shared = {
1529 		.root_objectid = root->root_key.objectid,
1530 		.inum = inum,
1531 		.share_count = 0,
1532 	};
1533 
1534 	ulist_init(roots);
1535 	ulist_init(tmp);
1536 
1537 	trans = btrfs_join_transaction_nostart(root);
1538 	if (IS_ERR(trans)) {
1539 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1540 			ret = PTR_ERR(trans);
1541 			goto out;
1542 		}
1543 		trans = NULL;
1544 		down_read(&fs_info->commit_root_sem);
1545 	} else {
1546 		btrfs_get_tree_mod_seq(fs_info, &elem);
1547 	}
1548 
1549 	ULIST_ITER_INIT(&uiter);
1550 	while (1) {
1551 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1552 					roots, NULL, &shared, false);
1553 		if (ret == BACKREF_FOUND_SHARED) {
1554 			/* this is the only condition under which we return 1 */
1555 			ret = 1;
1556 			break;
1557 		}
1558 		if (ret < 0 && ret != -ENOENT)
1559 			break;
1560 		ret = 0;
1561 		node = ulist_next(tmp, &uiter);
1562 		if (!node)
1563 			break;
1564 		bytenr = node->val;
1565 		shared.share_count = 0;
1566 		cond_resched();
1567 	}
1568 
1569 	if (trans) {
1570 		btrfs_put_tree_mod_seq(fs_info, &elem);
1571 		btrfs_end_transaction(trans);
1572 	} else {
1573 		up_read(&fs_info->commit_root_sem);
1574 	}
1575 out:
1576 	ulist_release(roots);
1577 	ulist_release(tmp);
1578 	return ret;
1579 }
1580 
1581 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1582 			  u64 start_off, struct btrfs_path *path,
1583 			  struct btrfs_inode_extref **ret_extref,
1584 			  u64 *found_off)
1585 {
1586 	int ret, slot;
1587 	struct btrfs_key key;
1588 	struct btrfs_key found_key;
1589 	struct btrfs_inode_extref *extref;
1590 	const struct extent_buffer *leaf;
1591 	unsigned long ptr;
1592 
1593 	key.objectid = inode_objectid;
1594 	key.type = BTRFS_INODE_EXTREF_KEY;
1595 	key.offset = start_off;
1596 
1597 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1598 	if (ret < 0)
1599 		return ret;
1600 
1601 	while (1) {
1602 		leaf = path->nodes[0];
1603 		slot = path->slots[0];
1604 		if (slot >= btrfs_header_nritems(leaf)) {
1605 			/*
1606 			 * If the item at offset is not found,
1607 			 * btrfs_search_slot will point us to the slot
1608 			 * where it should be inserted. In our case
1609 			 * that will be the slot directly before the
1610 			 * next INODE_REF_KEY_V2 item. In the case
1611 			 * that we're pointing to the last slot in a
1612 			 * leaf, we must move one leaf over.
1613 			 */
1614 			ret = btrfs_next_leaf(root, path);
1615 			if (ret) {
1616 				if (ret >= 1)
1617 					ret = -ENOENT;
1618 				break;
1619 			}
1620 			continue;
1621 		}
1622 
1623 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1624 
1625 		/*
1626 		 * Check that we're still looking at an extended ref key for
1627 		 * this particular objectid. If we have different
1628 		 * objectid or type then there are no more to be found
1629 		 * in the tree and we can exit.
1630 		 */
1631 		ret = -ENOENT;
1632 		if (found_key.objectid != inode_objectid)
1633 			break;
1634 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1635 			break;
1636 
1637 		ret = 0;
1638 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1639 		extref = (struct btrfs_inode_extref *)ptr;
1640 		*ret_extref = extref;
1641 		if (found_off)
1642 			*found_off = found_key.offset;
1643 		break;
1644 	}
1645 
1646 	return ret;
1647 }
1648 
1649 /*
1650  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1651  * Elements of the path are separated by '/' and the path is guaranteed to be
1652  * 0-terminated. the path is only given within the current file system.
1653  * Therefore, it never starts with a '/'. the caller is responsible to provide
1654  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1655  * the start point of the resulting string is returned. this pointer is within
1656  * dest, normally.
1657  * in case the path buffer would overflow, the pointer is decremented further
1658  * as if output was written to the buffer, though no more output is actually
1659  * generated. that way, the caller can determine how much space would be
1660  * required for the path to fit into the buffer. in that case, the returned
1661  * value will be smaller than dest. callers must check this!
1662  */
1663 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1664 			u32 name_len, unsigned long name_off,
1665 			struct extent_buffer *eb_in, u64 parent,
1666 			char *dest, u32 size)
1667 {
1668 	int slot;
1669 	u64 next_inum;
1670 	int ret;
1671 	s64 bytes_left = ((s64)size) - 1;
1672 	struct extent_buffer *eb = eb_in;
1673 	struct btrfs_key found_key;
1674 	int leave_spinning = path->leave_spinning;
1675 	struct btrfs_inode_ref *iref;
1676 
1677 	if (bytes_left >= 0)
1678 		dest[bytes_left] = '\0';
1679 
1680 	path->leave_spinning = 1;
1681 	while (1) {
1682 		bytes_left -= name_len;
1683 		if (bytes_left >= 0)
1684 			read_extent_buffer(eb, dest + bytes_left,
1685 					   name_off, name_len);
1686 		if (eb != eb_in) {
1687 			if (!path->skip_locking)
1688 				btrfs_tree_read_unlock_blocking(eb);
1689 			free_extent_buffer(eb);
1690 		}
1691 		ret = btrfs_find_item(fs_root, path, parent, 0,
1692 				BTRFS_INODE_REF_KEY, &found_key);
1693 		if (ret > 0)
1694 			ret = -ENOENT;
1695 		if (ret)
1696 			break;
1697 
1698 		next_inum = found_key.offset;
1699 
1700 		/* regular exit ahead */
1701 		if (parent == next_inum)
1702 			break;
1703 
1704 		slot = path->slots[0];
1705 		eb = path->nodes[0];
1706 		/* make sure we can use eb after releasing the path */
1707 		if (eb != eb_in) {
1708 			if (!path->skip_locking)
1709 				btrfs_set_lock_blocking_read(eb);
1710 			path->nodes[0] = NULL;
1711 			path->locks[0] = 0;
1712 		}
1713 		btrfs_release_path(path);
1714 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1715 
1716 		name_len = btrfs_inode_ref_name_len(eb, iref);
1717 		name_off = (unsigned long)(iref + 1);
1718 
1719 		parent = next_inum;
1720 		--bytes_left;
1721 		if (bytes_left >= 0)
1722 			dest[bytes_left] = '/';
1723 	}
1724 
1725 	btrfs_release_path(path);
1726 	path->leave_spinning = leave_spinning;
1727 
1728 	if (ret)
1729 		return ERR_PTR(ret);
1730 
1731 	return dest + bytes_left;
1732 }
1733 
1734 /*
1735  * this makes the path point to (logical EXTENT_ITEM *)
1736  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1737  * tree blocks and <0 on error.
1738  */
1739 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1740 			struct btrfs_path *path, struct btrfs_key *found_key,
1741 			u64 *flags_ret)
1742 {
1743 	int ret;
1744 	u64 flags;
1745 	u64 size = 0;
1746 	u32 item_size;
1747 	const struct extent_buffer *eb;
1748 	struct btrfs_extent_item *ei;
1749 	struct btrfs_key key;
1750 
1751 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1752 		key.type = BTRFS_METADATA_ITEM_KEY;
1753 	else
1754 		key.type = BTRFS_EXTENT_ITEM_KEY;
1755 	key.objectid = logical;
1756 	key.offset = (u64)-1;
1757 
1758 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1759 	if (ret < 0)
1760 		return ret;
1761 
1762 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1763 	if (ret) {
1764 		if (ret > 0)
1765 			ret = -ENOENT;
1766 		return ret;
1767 	}
1768 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1769 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1770 		size = fs_info->nodesize;
1771 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1772 		size = found_key->offset;
1773 
1774 	if (found_key->objectid > logical ||
1775 	    found_key->objectid + size <= logical) {
1776 		btrfs_debug(fs_info,
1777 			"logical %llu is not within any extent", logical);
1778 		return -ENOENT;
1779 	}
1780 
1781 	eb = path->nodes[0];
1782 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1783 	BUG_ON(item_size < sizeof(*ei));
1784 
1785 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1786 	flags = btrfs_extent_flags(eb, ei);
1787 
1788 	btrfs_debug(fs_info,
1789 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1790 		 logical, logical - found_key->objectid, found_key->objectid,
1791 		 found_key->offset, flags, item_size);
1792 
1793 	WARN_ON(!flags_ret);
1794 	if (flags_ret) {
1795 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1796 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1797 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1798 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1799 		else
1800 			BUG();
1801 		return 0;
1802 	}
1803 
1804 	return -EIO;
1805 }
1806 
1807 /*
1808  * helper function to iterate extent inline refs. ptr must point to a 0 value
1809  * for the first call and may be modified. it is used to track state.
1810  * if more refs exist, 0 is returned and the next call to
1811  * get_extent_inline_ref must pass the modified ptr parameter to get the
1812  * next ref. after the last ref was processed, 1 is returned.
1813  * returns <0 on error
1814  */
1815 static int get_extent_inline_ref(unsigned long *ptr,
1816 				 const struct extent_buffer *eb,
1817 				 const struct btrfs_key *key,
1818 				 const struct btrfs_extent_item *ei,
1819 				 u32 item_size,
1820 				 struct btrfs_extent_inline_ref **out_eiref,
1821 				 int *out_type)
1822 {
1823 	unsigned long end;
1824 	u64 flags;
1825 	struct btrfs_tree_block_info *info;
1826 
1827 	if (!*ptr) {
1828 		/* first call */
1829 		flags = btrfs_extent_flags(eb, ei);
1830 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1831 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1832 				/* a skinny metadata extent */
1833 				*out_eiref =
1834 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1835 			} else {
1836 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1837 				info = (struct btrfs_tree_block_info *)(ei + 1);
1838 				*out_eiref =
1839 				   (struct btrfs_extent_inline_ref *)(info + 1);
1840 			}
1841 		} else {
1842 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1843 		}
1844 		*ptr = (unsigned long)*out_eiref;
1845 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1846 			return -ENOENT;
1847 	}
1848 
1849 	end = (unsigned long)ei + item_size;
1850 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1851 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1852 						     BTRFS_REF_TYPE_ANY);
1853 	if (*out_type == BTRFS_REF_TYPE_INVALID)
1854 		return -EUCLEAN;
1855 
1856 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1857 	WARN_ON(*ptr > end);
1858 	if (*ptr == end)
1859 		return 1; /* last */
1860 
1861 	return 0;
1862 }
1863 
1864 /*
1865  * reads the tree block backref for an extent. tree level and root are returned
1866  * through out_level and out_root. ptr must point to a 0 value for the first
1867  * call and may be modified (see get_extent_inline_ref comment).
1868  * returns 0 if data was provided, 1 if there was no more data to provide or
1869  * <0 on error.
1870  */
1871 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1872 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1873 			    u32 item_size, u64 *out_root, u8 *out_level)
1874 {
1875 	int ret;
1876 	int type;
1877 	struct btrfs_extent_inline_ref *eiref;
1878 
1879 	if (*ptr == (unsigned long)-1)
1880 		return 1;
1881 
1882 	while (1) {
1883 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1884 					      &eiref, &type);
1885 		if (ret < 0)
1886 			return ret;
1887 
1888 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1889 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1890 			break;
1891 
1892 		if (ret == 1)
1893 			return 1;
1894 	}
1895 
1896 	/* we can treat both ref types equally here */
1897 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1898 
1899 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1900 		struct btrfs_tree_block_info *info;
1901 
1902 		info = (struct btrfs_tree_block_info *)(ei + 1);
1903 		*out_level = btrfs_tree_block_level(eb, info);
1904 	} else {
1905 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1906 		*out_level = (u8)key->offset;
1907 	}
1908 
1909 	if (ret == 1)
1910 		*ptr = (unsigned long)-1;
1911 
1912 	return 0;
1913 }
1914 
1915 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1916 			     struct extent_inode_elem *inode_list,
1917 			     u64 root, u64 extent_item_objectid,
1918 			     iterate_extent_inodes_t *iterate, void *ctx)
1919 {
1920 	struct extent_inode_elem *eie;
1921 	int ret = 0;
1922 
1923 	for (eie = inode_list; eie; eie = eie->next) {
1924 		btrfs_debug(fs_info,
1925 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1926 			    extent_item_objectid, eie->inum,
1927 			    eie->offset, root);
1928 		ret = iterate(eie->inum, eie->offset, root, ctx);
1929 		if (ret) {
1930 			btrfs_debug(fs_info,
1931 				    "stopping iteration for %llu due to ret=%d",
1932 				    extent_item_objectid, ret);
1933 			break;
1934 		}
1935 	}
1936 
1937 	return ret;
1938 }
1939 
1940 /*
1941  * calls iterate() for every inode that references the extent identified by
1942  * the given parameters.
1943  * when the iterator function returns a non-zero value, iteration stops.
1944  */
1945 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1946 				u64 extent_item_objectid, u64 extent_item_pos,
1947 				int search_commit_root,
1948 				iterate_extent_inodes_t *iterate, void *ctx,
1949 				bool ignore_offset)
1950 {
1951 	int ret;
1952 	struct btrfs_trans_handle *trans = NULL;
1953 	struct ulist *refs = NULL;
1954 	struct ulist *roots = NULL;
1955 	struct ulist_node *ref_node = NULL;
1956 	struct ulist_node *root_node = NULL;
1957 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1958 	struct ulist_iterator ref_uiter;
1959 	struct ulist_iterator root_uiter;
1960 
1961 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1962 			extent_item_objectid);
1963 
1964 	if (!search_commit_root) {
1965 		trans = btrfs_attach_transaction(fs_info->extent_root);
1966 		if (IS_ERR(trans)) {
1967 			if (PTR_ERR(trans) != -ENOENT &&
1968 			    PTR_ERR(trans) != -EROFS)
1969 				return PTR_ERR(trans);
1970 			trans = NULL;
1971 		}
1972 	}
1973 
1974 	if (trans)
1975 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1976 	else
1977 		down_read(&fs_info->commit_root_sem);
1978 
1979 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1980 				   tree_mod_seq_elem.seq, &refs,
1981 				   &extent_item_pos, ignore_offset);
1982 	if (ret)
1983 		goto out;
1984 
1985 	ULIST_ITER_INIT(&ref_uiter);
1986 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1987 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1988 						tree_mod_seq_elem.seq, &roots,
1989 						ignore_offset);
1990 		if (ret)
1991 			break;
1992 		ULIST_ITER_INIT(&root_uiter);
1993 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1994 			btrfs_debug(fs_info,
1995 				    "root %llu references leaf %llu, data list %#llx",
1996 				    root_node->val, ref_node->val,
1997 				    ref_node->aux);
1998 			ret = iterate_leaf_refs(fs_info,
1999 						(struct extent_inode_elem *)
2000 						(uintptr_t)ref_node->aux,
2001 						root_node->val,
2002 						extent_item_objectid,
2003 						iterate, ctx);
2004 		}
2005 		ulist_free(roots);
2006 	}
2007 
2008 	free_leaf_list(refs);
2009 out:
2010 	if (trans) {
2011 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2012 		btrfs_end_transaction(trans);
2013 	} else {
2014 		up_read(&fs_info->commit_root_sem);
2015 	}
2016 
2017 	return ret;
2018 }
2019 
2020 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2021 				struct btrfs_path *path,
2022 				iterate_extent_inodes_t *iterate, void *ctx,
2023 				bool ignore_offset)
2024 {
2025 	int ret;
2026 	u64 extent_item_pos;
2027 	u64 flags = 0;
2028 	struct btrfs_key found_key;
2029 	int search_commit_root = path->search_commit_root;
2030 
2031 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2032 	btrfs_release_path(path);
2033 	if (ret < 0)
2034 		return ret;
2035 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2036 		return -EINVAL;
2037 
2038 	extent_item_pos = logical - found_key.objectid;
2039 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2040 					extent_item_pos, search_commit_root,
2041 					iterate, ctx, ignore_offset);
2042 
2043 	return ret;
2044 }
2045 
2046 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2047 			      struct extent_buffer *eb, void *ctx);
2048 
2049 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2050 			      struct btrfs_path *path,
2051 			      iterate_irefs_t *iterate, void *ctx)
2052 {
2053 	int ret = 0;
2054 	int slot;
2055 	u32 cur;
2056 	u32 len;
2057 	u32 name_len;
2058 	u64 parent = 0;
2059 	int found = 0;
2060 	struct extent_buffer *eb;
2061 	struct btrfs_item *item;
2062 	struct btrfs_inode_ref *iref;
2063 	struct btrfs_key found_key;
2064 
2065 	while (!ret) {
2066 		ret = btrfs_find_item(fs_root, path, inum,
2067 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2068 				&found_key);
2069 
2070 		if (ret < 0)
2071 			break;
2072 		if (ret) {
2073 			ret = found ? 0 : -ENOENT;
2074 			break;
2075 		}
2076 		++found;
2077 
2078 		parent = found_key.offset;
2079 		slot = path->slots[0];
2080 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2081 		if (!eb) {
2082 			ret = -ENOMEM;
2083 			break;
2084 		}
2085 		btrfs_release_path(path);
2086 
2087 		item = btrfs_item_nr(slot);
2088 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2089 
2090 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2091 			name_len = btrfs_inode_ref_name_len(eb, iref);
2092 			/* path must be released before calling iterate()! */
2093 			btrfs_debug(fs_root->fs_info,
2094 				"following ref at offset %u for inode %llu in tree %llu",
2095 				cur, found_key.objectid,
2096 				fs_root->root_key.objectid);
2097 			ret = iterate(parent, name_len,
2098 				      (unsigned long)(iref + 1), eb, ctx);
2099 			if (ret)
2100 				break;
2101 			len = sizeof(*iref) + name_len;
2102 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2103 		}
2104 		free_extent_buffer(eb);
2105 	}
2106 
2107 	btrfs_release_path(path);
2108 
2109 	return ret;
2110 }
2111 
2112 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2113 				 struct btrfs_path *path,
2114 				 iterate_irefs_t *iterate, void *ctx)
2115 {
2116 	int ret;
2117 	int slot;
2118 	u64 offset = 0;
2119 	u64 parent;
2120 	int found = 0;
2121 	struct extent_buffer *eb;
2122 	struct btrfs_inode_extref *extref;
2123 	u32 item_size;
2124 	u32 cur_offset;
2125 	unsigned long ptr;
2126 
2127 	while (1) {
2128 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2129 					    &offset);
2130 		if (ret < 0)
2131 			break;
2132 		if (ret) {
2133 			ret = found ? 0 : -ENOENT;
2134 			break;
2135 		}
2136 		++found;
2137 
2138 		slot = path->slots[0];
2139 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2140 		if (!eb) {
2141 			ret = -ENOMEM;
2142 			break;
2143 		}
2144 		btrfs_release_path(path);
2145 
2146 		item_size = btrfs_item_size_nr(eb, slot);
2147 		ptr = btrfs_item_ptr_offset(eb, slot);
2148 		cur_offset = 0;
2149 
2150 		while (cur_offset < item_size) {
2151 			u32 name_len;
2152 
2153 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2154 			parent = btrfs_inode_extref_parent(eb, extref);
2155 			name_len = btrfs_inode_extref_name_len(eb, extref);
2156 			ret = iterate(parent, name_len,
2157 				      (unsigned long)&extref->name, eb, ctx);
2158 			if (ret)
2159 				break;
2160 
2161 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2162 			cur_offset += sizeof(*extref);
2163 		}
2164 		free_extent_buffer(eb);
2165 
2166 		offset++;
2167 	}
2168 
2169 	btrfs_release_path(path);
2170 
2171 	return ret;
2172 }
2173 
2174 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2175 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2176 			 void *ctx)
2177 {
2178 	int ret;
2179 	int found_refs = 0;
2180 
2181 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2182 	if (!ret)
2183 		++found_refs;
2184 	else if (ret != -ENOENT)
2185 		return ret;
2186 
2187 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2188 	if (ret == -ENOENT && found_refs)
2189 		return 0;
2190 
2191 	return ret;
2192 }
2193 
2194 /*
2195  * returns 0 if the path could be dumped (probably truncated)
2196  * returns <0 in case of an error
2197  */
2198 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2199 			 struct extent_buffer *eb, void *ctx)
2200 {
2201 	struct inode_fs_paths *ipath = ctx;
2202 	char *fspath;
2203 	char *fspath_min;
2204 	int i = ipath->fspath->elem_cnt;
2205 	const int s_ptr = sizeof(char *);
2206 	u32 bytes_left;
2207 
2208 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2209 					ipath->fspath->bytes_left - s_ptr : 0;
2210 
2211 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2212 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2213 				   name_off, eb, inum, fspath_min, bytes_left);
2214 	if (IS_ERR(fspath))
2215 		return PTR_ERR(fspath);
2216 
2217 	if (fspath > fspath_min) {
2218 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2219 		++ipath->fspath->elem_cnt;
2220 		ipath->fspath->bytes_left = fspath - fspath_min;
2221 	} else {
2222 		++ipath->fspath->elem_missed;
2223 		ipath->fspath->bytes_missing += fspath_min - fspath;
2224 		ipath->fspath->bytes_left = 0;
2225 	}
2226 
2227 	return 0;
2228 }
2229 
2230 /*
2231  * this dumps all file system paths to the inode into the ipath struct, provided
2232  * is has been created large enough. each path is zero-terminated and accessed
2233  * from ipath->fspath->val[i].
2234  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2235  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2236  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2237  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2238  * have been needed to return all paths.
2239  */
2240 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2241 {
2242 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2243 			     inode_to_path, ipath);
2244 }
2245 
2246 struct btrfs_data_container *init_data_container(u32 total_bytes)
2247 {
2248 	struct btrfs_data_container *data;
2249 	size_t alloc_bytes;
2250 
2251 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2252 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2253 	if (!data)
2254 		return ERR_PTR(-ENOMEM);
2255 
2256 	if (total_bytes >= sizeof(*data)) {
2257 		data->bytes_left = total_bytes - sizeof(*data);
2258 		data->bytes_missing = 0;
2259 	} else {
2260 		data->bytes_missing = sizeof(*data) - total_bytes;
2261 		data->bytes_left = 0;
2262 	}
2263 
2264 	data->elem_cnt = 0;
2265 	data->elem_missed = 0;
2266 
2267 	return data;
2268 }
2269 
2270 /*
2271  * allocates space to return multiple file system paths for an inode.
2272  * total_bytes to allocate are passed, note that space usable for actual path
2273  * information will be total_bytes - sizeof(struct inode_fs_paths).
2274  * the returned pointer must be freed with free_ipath() in the end.
2275  */
2276 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2277 					struct btrfs_path *path)
2278 {
2279 	struct inode_fs_paths *ifp;
2280 	struct btrfs_data_container *fspath;
2281 
2282 	fspath = init_data_container(total_bytes);
2283 	if (IS_ERR(fspath))
2284 		return ERR_CAST(fspath);
2285 
2286 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2287 	if (!ifp) {
2288 		kvfree(fspath);
2289 		return ERR_PTR(-ENOMEM);
2290 	}
2291 
2292 	ifp->btrfs_path = path;
2293 	ifp->fspath = fspath;
2294 	ifp->fs_root = fs_root;
2295 
2296 	return ifp;
2297 }
2298 
2299 void free_ipath(struct inode_fs_paths *ipath)
2300 {
2301 	if (!ipath)
2302 		return;
2303 	kvfree(ipath->fspath);
2304 	kfree(ipath);
2305 }
2306 
2307 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2308 		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2309 {
2310 	struct btrfs_backref_iter *ret;
2311 
2312 	ret = kzalloc(sizeof(*ret), gfp_flag);
2313 	if (!ret)
2314 		return NULL;
2315 
2316 	ret->path = btrfs_alloc_path();
2317 	if (!ret->path) {
2318 		kfree(ret);
2319 		return NULL;
2320 	}
2321 
2322 	/* Current backref iterator only supports iteration in commit root */
2323 	ret->path->search_commit_root = 1;
2324 	ret->path->skip_locking = 1;
2325 	ret->fs_info = fs_info;
2326 
2327 	return ret;
2328 }
2329 
2330 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2331 {
2332 	struct btrfs_fs_info *fs_info = iter->fs_info;
2333 	struct btrfs_path *path = iter->path;
2334 	struct btrfs_extent_item *ei;
2335 	struct btrfs_key key;
2336 	int ret;
2337 
2338 	key.objectid = bytenr;
2339 	key.type = BTRFS_METADATA_ITEM_KEY;
2340 	key.offset = (u64)-1;
2341 	iter->bytenr = bytenr;
2342 
2343 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2344 	if (ret < 0)
2345 		return ret;
2346 	if (ret == 0) {
2347 		ret = -EUCLEAN;
2348 		goto release;
2349 	}
2350 	if (path->slots[0] == 0) {
2351 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2352 		ret = -EUCLEAN;
2353 		goto release;
2354 	}
2355 	path->slots[0]--;
2356 
2357 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2358 	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2359 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2360 		ret = -ENOENT;
2361 		goto release;
2362 	}
2363 	memcpy(&iter->cur_key, &key, sizeof(key));
2364 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2365 						    path->slots[0]);
2366 	iter->end_ptr = (u32)(iter->item_ptr +
2367 			btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2368 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2369 			    struct btrfs_extent_item);
2370 
2371 	/*
2372 	 * Only support iteration on tree backref yet.
2373 	 *
2374 	 * This is an extra precaution for non skinny-metadata, where
2375 	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2376 	 * extent flags to determine if it's a tree block.
2377 	 */
2378 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2379 		ret = -ENOTSUPP;
2380 		goto release;
2381 	}
2382 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2383 
2384 	/* If there is no inline backref, go search for keyed backref */
2385 	if (iter->cur_ptr >= iter->end_ptr) {
2386 		ret = btrfs_next_item(fs_info->extent_root, path);
2387 
2388 		/* No inline nor keyed ref */
2389 		if (ret > 0) {
2390 			ret = -ENOENT;
2391 			goto release;
2392 		}
2393 		if (ret < 0)
2394 			goto release;
2395 
2396 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2397 				path->slots[0]);
2398 		if (iter->cur_key.objectid != bytenr ||
2399 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2400 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2401 			ret = -ENOENT;
2402 			goto release;
2403 		}
2404 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2405 							   path->slots[0]);
2406 		iter->item_ptr = iter->cur_ptr;
2407 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2408 				      path->nodes[0], path->slots[0]));
2409 	}
2410 
2411 	return 0;
2412 release:
2413 	btrfs_backref_iter_release(iter);
2414 	return ret;
2415 }
2416 
2417 /*
2418  * Go to the next backref item of current bytenr, can be either inlined or
2419  * keyed.
2420  *
2421  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2422  *
2423  * Return 0 if we get next backref without problem.
2424  * Return >0 if there is no extra backref for this bytenr.
2425  * Return <0 if there is something wrong happened.
2426  */
2427 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2428 {
2429 	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2430 	struct btrfs_path *path = iter->path;
2431 	struct btrfs_extent_inline_ref *iref;
2432 	int ret;
2433 	u32 size;
2434 
2435 	if (btrfs_backref_iter_is_inline_ref(iter)) {
2436 		/* We're still inside the inline refs */
2437 		ASSERT(iter->cur_ptr < iter->end_ptr);
2438 
2439 		if (btrfs_backref_has_tree_block_info(iter)) {
2440 			/* First tree block info */
2441 			size = sizeof(struct btrfs_tree_block_info);
2442 		} else {
2443 			/* Use inline ref type to determine the size */
2444 			int type;
2445 
2446 			iref = (struct btrfs_extent_inline_ref *)
2447 				((unsigned long)iter->cur_ptr);
2448 			type = btrfs_extent_inline_ref_type(eb, iref);
2449 
2450 			size = btrfs_extent_inline_ref_size(type);
2451 		}
2452 		iter->cur_ptr += size;
2453 		if (iter->cur_ptr < iter->end_ptr)
2454 			return 0;
2455 
2456 		/* All inline items iterated, fall through */
2457 	}
2458 
2459 	/* We're at keyed items, there is no inline item, go to the next one */
2460 	ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2461 	if (ret)
2462 		return ret;
2463 
2464 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2465 	if (iter->cur_key.objectid != iter->bytenr ||
2466 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2467 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2468 		return 1;
2469 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2470 					path->slots[0]);
2471 	iter->cur_ptr = iter->item_ptr;
2472 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2473 						path->slots[0]);
2474 	return 0;
2475 }
2476 
2477 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2478 			      struct btrfs_backref_cache *cache, int is_reloc)
2479 {
2480 	int i;
2481 
2482 	cache->rb_root = RB_ROOT;
2483 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2484 		INIT_LIST_HEAD(&cache->pending[i]);
2485 	INIT_LIST_HEAD(&cache->changed);
2486 	INIT_LIST_HEAD(&cache->detached);
2487 	INIT_LIST_HEAD(&cache->leaves);
2488 	INIT_LIST_HEAD(&cache->pending_edge);
2489 	INIT_LIST_HEAD(&cache->useless_node);
2490 	cache->fs_info = fs_info;
2491 	cache->is_reloc = is_reloc;
2492 }
2493 
2494 struct btrfs_backref_node *btrfs_backref_alloc_node(
2495 		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2496 {
2497 	struct btrfs_backref_node *node;
2498 
2499 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2500 	node = kzalloc(sizeof(*node), GFP_NOFS);
2501 	if (!node)
2502 		return node;
2503 
2504 	INIT_LIST_HEAD(&node->list);
2505 	INIT_LIST_HEAD(&node->upper);
2506 	INIT_LIST_HEAD(&node->lower);
2507 	RB_CLEAR_NODE(&node->rb_node);
2508 	cache->nr_nodes++;
2509 	node->level = level;
2510 	node->bytenr = bytenr;
2511 
2512 	return node;
2513 }
2514 
2515 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2516 		struct btrfs_backref_cache *cache)
2517 {
2518 	struct btrfs_backref_edge *edge;
2519 
2520 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2521 	if (edge)
2522 		cache->nr_edges++;
2523 	return edge;
2524 }
2525 
2526 /*
2527  * Drop the backref node from cache, also cleaning up all its
2528  * upper edges and any uncached nodes in the path.
2529  *
2530  * This cleanup happens bottom up, thus the node should either
2531  * be the lowest node in the cache or a detached node.
2532  */
2533 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2534 				struct btrfs_backref_node *node)
2535 {
2536 	struct btrfs_backref_node *upper;
2537 	struct btrfs_backref_edge *edge;
2538 
2539 	if (!node)
2540 		return;
2541 
2542 	BUG_ON(!node->lowest && !node->detached);
2543 	while (!list_empty(&node->upper)) {
2544 		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2545 				  list[LOWER]);
2546 		upper = edge->node[UPPER];
2547 		list_del(&edge->list[LOWER]);
2548 		list_del(&edge->list[UPPER]);
2549 		btrfs_backref_free_edge(cache, edge);
2550 
2551 		if (RB_EMPTY_NODE(&upper->rb_node)) {
2552 			BUG_ON(!list_empty(&node->upper));
2553 			btrfs_backref_drop_node(cache, node);
2554 			node = upper;
2555 			node->lowest = 1;
2556 			continue;
2557 		}
2558 		/*
2559 		 * Add the node to leaf node list if no other child block
2560 		 * cached.
2561 		 */
2562 		if (list_empty(&upper->lower)) {
2563 			list_add_tail(&upper->lower, &cache->leaves);
2564 			upper->lowest = 1;
2565 		}
2566 	}
2567 
2568 	btrfs_backref_drop_node(cache, node);
2569 }
2570 
2571 /*
2572  * Release all nodes/edges from current cache
2573  */
2574 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2575 {
2576 	struct btrfs_backref_node *node;
2577 	int i;
2578 
2579 	while (!list_empty(&cache->detached)) {
2580 		node = list_entry(cache->detached.next,
2581 				  struct btrfs_backref_node, list);
2582 		btrfs_backref_cleanup_node(cache, node);
2583 	}
2584 
2585 	while (!list_empty(&cache->leaves)) {
2586 		node = list_entry(cache->leaves.next,
2587 				  struct btrfs_backref_node, lower);
2588 		btrfs_backref_cleanup_node(cache, node);
2589 	}
2590 
2591 	cache->last_trans = 0;
2592 
2593 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2594 		ASSERT(list_empty(&cache->pending[i]));
2595 	ASSERT(list_empty(&cache->pending_edge));
2596 	ASSERT(list_empty(&cache->useless_node));
2597 	ASSERT(list_empty(&cache->changed));
2598 	ASSERT(list_empty(&cache->detached));
2599 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2600 	ASSERT(!cache->nr_nodes);
2601 	ASSERT(!cache->nr_edges);
2602 }
2603 
2604 /*
2605  * Handle direct tree backref
2606  *
2607  * Direct tree backref means, the backref item shows its parent bytenr
2608  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2609  *
2610  * @ref_key:	The converted backref key.
2611  *		For keyed backref, it's the item key.
2612  *		For inlined backref, objectid is the bytenr,
2613  *		type is btrfs_inline_ref_type, offset is
2614  *		btrfs_inline_ref_offset.
2615  */
2616 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2617 				      struct btrfs_key *ref_key,
2618 				      struct btrfs_backref_node *cur)
2619 {
2620 	struct btrfs_backref_edge *edge;
2621 	struct btrfs_backref_node *upper;
2622 	struct rb_node *rb_node;
2623 
2624 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2625 
2626 	/* Only reloc root uses backref pointing to itself */
2627 	if (ref_key->objectid == ref_key->offset) {
2628 		struct btrfs_root *root;
2629 
2630 		cur->is_reloc_root = 1;
2631 		/* Only reloc backref cache cares about a specific root */
2632 		if (cache->is_reloc) {
2633 			root = find_reloc_root(cache->fs_info, cur->bytenr);
2634 			if (WARN_ON(!root))
2635 				return -ENOENT;
2636 			cur->root = root;
2637 		} else {
2638 			/*
2639 			 * For generic purpose backref cache, reloc root node
2640 			 * is useless.
2641 			 */
2642 			list_add(&cur->list, &cache->useless_node);
2643 		}
2644 		return 0;
2645 	}
2646 
2647 	edge = btrfs_backref_alloc_edge(cache);
2648 	if (!edge)
2649 		return -ENOMEM;
2650 
2651 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2652 	if (!rb_node) {
2653 		/* Parent node not yet cached */
2654 		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2655 					   cur->level + 1);
2656 		if (!upper) {
2657 			btrfs_backref_free_edge(cache, edge);
2658 			return -ENOMEM;
2659 		}
2660 
2661 		/*
2662 		 *  Backrefs for the upper level block isn't cached, add the
2663 		 *  block to pending list
2664 		 */
2665 		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2666 	} else {
2667 		/* Parent node already cached */
2668 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2669 		ASSERT(upper->checked);
2670 		INIT_LIST_HEAD(&edge->list[UPPER]);
2671 	}
2672 	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2673 	return 0;
2674 }
2675 
2676 /*
2677  * Handle indirect tree backref
2678  *
2679  * Indirect tree backref means, we only know which tree the node belongs to.
2680  * We still need to do a tree search to find out the parents. This is for
2681  * TREE_BLOCK_REF backref (keyed or inlined).
2682  *
2683  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
2684  * @tree_key:	The first key of this tree block.
2685  * @path:	A clean (released) path, to avoid allocating path everytime
2686  *		the function get called.
2687  */
2688 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2689 					struct btrfs_path *path,
2690 					struct btrfs_key *ref_key,
2691 					struct btrfs_key *tree_key,
2692 					struct btrfs_backref_node *cur)
2693 {
2694 	struct btrfs_fs_info *fs_info = cache->fs_info;
2695 	struct btrfs_backref_node *upper;
2696 	struct btrfs_backref_node *lower;
2697 	struct btrfs_backref_edge *edge;
2698 	struct extent_buffer *eb;
2699 	struct btrfs_root *root;
2700 	struct rb_node *rb_node;
2701 	int level;
2702 	bool need_check = true;
2703 	int ret;
2704 
2705 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2706 	if (IS_ERR(root))
2707 		return PTR_ERR(root);
2708 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2709 		cur->cowonly = 1;
2710 
2711 	if (btrfs_root_level(&root->root_item) == cur->level) {
2712 		/* Tree root */
2713 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2714 		/*
2715 		 * For reloc backref cache, we may ignore reloc root.  But for
2716 		 * general purpose backref cache, we can't rely on
2717 		 * btrfs_should_ignore_reloc_root() as it may conflict with
2718 		 * current running relocation and lead to missing root.
2719 		 *
2720 		 * For general purpose backref cache, reloc root detection is
2721 		 * completely relying on direct backref (key->offset is parent
2722 		 * bytenr), thus only do such check for reloc cache.
2723 		 */
2724 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2725 			btrfs_put_root(root);
2726 			list_add(&cur->list, &cache->useless_node);
2727 		} else {
2728 			cur->root = root;
2729 		}
2730 		return 0;
2731 	}
2732 
2733 	level = cur->level + 1;
2734 
2735 	/* Search the tree to find parent blocks referring to the block */
2736 	path->search_commit_root = 1;
2737 	path->skip_locking = 1;
2738 	path->lowest_level = level;
2739 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2740 	path->lowest_level = 0;
2741 	if (ret < 0) {
2742 		btrfs_put_root(root);
2743 		return ret;
2744 	}
2745 	if (ret > 0 && path->slots[level] > 0)
2746 		path->slots[level]--;
2747 
2748 	eb = path->nodes[level];
2749 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2750 		btrfs_err(fs_info,
2751 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2752 			  cur->bytenr, level - 1, root->root_key.objectid,
2753 			  tree_key->objectid, tree_key->type, tree_key->offset);
2754 		btrfs_put_root(root);
2755 		ret = -ENOENT;
2756 		goto out;
2757 	}
2758 	lower = cur;
2759 
2760 	/* Add all nodes and edges in the path */
2761 	for (; level < BTRFS_MAX_LEVEL; level++) {
2762 		if (!path->nodes[level]) {
2763 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
2764 			       lower->bytenr);
2765 			/* Same as previous should_ignore_reloc_root() call */
2766 			if (btrfs_should_ignore_reloc_root(root) &&
2767 			    cache->is_reloc) {
2768 				btrfs_put_root(root);
2769 				list_add(&lower->list, &cache->useless_node);
2770 			} else {
2771 				lower->root = root;
2772 			}
2773 			break;
2774 		}
2775 
2776 		edge = btrfs_backref_alloc_edge(cache);
2777 		if (!edge) {
2778 			btrfs_put_root(root);
2779 			ret = -ENOMEM;
2780 			goto out;
2781 		}
2782 
2783 		eb = path->nodes[level];
2784 		rb_node = rb_simple_search(&cache->rb_root, eb->start);
2785 		if (!rb_node) {
2786 			upper = btrfs_backref_alloc_node(cache, eb->start,
2787 							 lower->level + 1);
2788 			if (!upper) {
2789 				btrfs_put_root(root);
2790 				btrfs_backref_free_edge(cache, edge);
2791 				ret = -ENOMEM;
2792 				goto out;
2793 			}
2794 			upper->owner = btrfs_header_owner(eb);
2795 			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2796 				upper->cowonly = 1;
2797 
2798 			/*
2799 			 * If we know the block isn't shared we can avoid
2800 			 * checking its backrefs.
2801 			 */
2802 			if (btrfs_block_can_be_shared(root, eb))
2803 				upper->checked = 0;
2804 			else
2805 				upper->checked = 1;
2806 
2807 			/*
2808 			 * Add the block to pending list if we need to check its
2809 			 * backrefs, we only do this once while walking up a
2810 			 * tree as we will catch anything else later on.
2811 			 */
2812 			if (!upper->checked && need_check) {
2813 				need_check = false;
2814 				list_add_tail(&edge->list[UPPER],
2815 					      &cache->pending_edge);
2816 			} else {
2817 				if (upper->checked)
2818 					need_check = true;
2819 				INIT_LIST_HEAD(&edge->list[UPPER]);
2820 			}
2821 		} else {
2822 			upper = rb_entry(rb_node, struct btrfs_backref_node,
2823 					 rb_node);
2824 			ASSERT(upper->checked);
2825 			INIT_LIST_HEAD(&edge->list[UPPER]);
2826 			if (!upper->owner)
2827 				upper->owner = btrfs_header_owner(eb);
2828 		}
2829 		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2830 
2831 		if (rb_node) {
2832 			btrfs_put_root(root);
2833 			break;
2834 		}
2835 		lower = upper;
2836 		upper = NULL;
2837 	}
2838 out:
2839 	btrfs_release_path(path);
2840 	return ret;
2841 }
2842 
2843 /*
2844  * Add backref node @cur into @cache.
2845  *
2846  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2847  *	 links aren't yet bi-directional. Needs to finish such links.
2848  *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
2849  *
2850  * @path:	Released path for indirect tree backref lookup
2851  * @iter:	Released backref iter for extent tree search
2852  * @node_key:	The first key of the tree block
2853  */
2854 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2855 				struct btrfs_path *path,
2856 				struct btrfs_backref_iter *iter,
2857 				struct btrfs_key *node_key,
2858 				struct btrfs_backref_node *cur)
2859 {
2860 	struct btrfs_fs_info *fs_info = cache->fs_info;
2861 	struct btrfs_backref_edge *edge;
2862 	struct btrfs_backref_node *exist;
2863 	int ret;
2864 
2865 	ret = btrfs_backref_iter_start(iter, cur->bytenr);
2866 	if (ret < 0)
2867 		return ret;
2868 	/*
2869 	 * We skip the first btrfs_tree_block_info, as we don't use the key
2870 	 * stored in it, but fetch it from the tree block
2871 	 */
2872 	if (btrfs_backref_has_tree_block_info(iter)) {
2873 		ret = btrfs_backref_iter_next(iter);
2874 		if (ret < 0)
2875 			goto out;
2876 		/* No extra backref? This means the tree block is corrupted */
2877 		if (ret > 0) {
2878 			ret = -EUCLEAN;
2879 			goto out;
2880 		}
2881 	}
2882 	WARN_ON(cur->checked);
2883 	if (!list_empty(&cur->upper)) {
2884 		/*
2885 		 * The backref was added previously when processing backref of
2886 		 * type BTRFS_TREE_BLOCK_REF_KEY
2887 		 */
2888 		ASSERT(list_is_singular(&cur->upper));
2889 		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2890 				  list[LOWER]);
2891 		ASSERT(list_empty(&edge->list[UPPER]));
2892 		exist = edge->node[UPPER];
2893 		/*
2894 		 * Add the upper level block to pending list if we need check
2895 		 * its backrefs
2896 		 */
2897 		if (!exist->checked)
2898 			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2899 	} else {
2900 		exist = NULL;
2901 	}
2902 
2903 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2904 		struct extent_buffer *eb;
2905 		struct btrfs_key key;
2906 		int type;
2907 
2908 		cond_resched();
2909 		eb = btrfs_backref_get_eb(iter);
2910 
2911 		key.objectid = iter->bytenr;
2912 		if (btrfs_backref_iter_is_inline_ref(iter)) {
2913 			struct btrfs_extent_inline_ref *iref;
2914 
2915 			/* Update key for inline backref */
2916 			iref = (struct btrfs_extent_inline_ref *)
2917 				((unsigned long)iter->cur_ptr);
2918 			type = btrfs_get_extent_inline_ref_type(eb, iref,
2919 							BTRFS_REF_TYPE_BLOCK);
2920 			if (type == BTRFS_REF_TYPE_INVALID) {
2921 				ret = -EUCLEAN;
2922 				goto out;
2923 			}
2924 			key.type = type;
2925 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2926 		} else {
2927 			key.type = iter->cur_key.type;
2928 			key.offset = iter->cur_key.offset;
2929 		}
2930 
2931 		/*
2932 		 * Parent node found and matches current inline ref, no need to
2933 		 * rebuild this node for this inline ref
2934 		 */
2935 		if (exist &&
2936 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2937 		      exist->owner == key.offset) ||
2938 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2939 		      exist->bytenr == key.offset))) {
2940 			exist = NULL;
2941 			continue;
2942 		}
2943 
2944 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2945 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2946 			ret = handle_direct_tree_backref(cache, &key, cur);
2947 			if (ret < 0)
2948 				goto out;
2949 			continue;
2950 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2951 			ret = -EINVAL;
2952 			btrfs_print_v0_err(fs_info);
2953 			btrfs_handle_fs_error(fs_info, ret, NULL);
2954 			goto out;
2955 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2956 			continue;
2957 		}
2958 
2959 		/*
2960 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2961 		 * means the root objectid. We need to search the tree to get
2962 		 * its parent bytenr.
2963 		 */
2964 		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2965 						   cur);
2966 		if (ret < 0)
2967 			goto out;
2968 	}
2969 	ret = 0;
2970 	cur->checked = 1;
2971 	WARN_ON(exist);
2972 out:
2973 	btrfs_backref_iter_release(iter);
2974 	return ret;
2975 }
2976 
2977 /*
2978  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2979  */
2980 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2981 				     struct btrfs_backref_node *start)
2982 {
2983 	struct list_head *useless_node = &cache->useless_node;
2984 	struct btrfs_backref_edge *edge;
2985 	struct rb_node *rb_node;
2986 	LIST_HEAD(pending_edge);
2987 
2988 	ASSERT(start->checked);
2989 
2990 	/* Insert this node to cache if it's not COW-only */
2991 	if (!start->cowonly) {
2992 		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2993 					   &start->rb_node);
2994 		if (rb_node)
2995 			btrfs_backref_panic(cache->fs_info, start->bytenr,
2996 					    -EEXIST);
2997 		list_add_tail(&start->lower, &cache->leaves);
2998 	}
2999 
3000 	/*
3001 	 * Use breadth first search to iterate all related edges.
3002 	 *
3003 	 * The starting points are all the edges of this node
3004 	 */
3005 	list_for_each_entry(edge, &start->upper, list[LOWER])
3006 		list_add_tail(&edge->list[UPPER], &pending_edge);
3007 
3008 	while (!list_empty(&pending_edge)) {
3009 		struct btrfs_backref_node *upper;
3010 		struct btrfs_backref_node *lower;
3011 
3012 		edge = list_first_entry(&pending_edge,
3013 				struct btrfs_backref_edge, list[UPPER]);
3014 		list_del_init(&edge->list[UPPER]);
3015 		upper = edge->node[UPPER];
3016 		lower = edge->node[LOWER];
3017 
3018 		/* Parent is detached, no need to keep any edges */
3019 		if (upper->detached) {
3020 			list_del(&edge->list[LOWER]);
3021 			btrfs_backref_free_edge(cache, edge);
3022 
3023 			/* Lower node is orphan, queue for cleanup */
3024 			if (list_empty(&lower->upper))
3025 				list_add(&lower->list, useless_node);
3026 			continue;
3027 		}
3028 
3029 		/*
3030 		 * All new nodes added in current build_backref_tree() haven't
3031 		 * been linked to the cache rb tree.
3032 		 * So if we have upper->rb_node populated, this means a cache
3033 		 * hit. We only need to link the edge, as @upper and all its
3034 		 * parents have already been linked.
3035 		 */
3036 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3037 			if (upper->lowest) {
3038 				list_del_init(&upper->lower);
3039 				upper->lowest = 0;
3040 			}
3041 
3042 			list_add_tail(&edge->list[UPPER], &upper->lower);
3043 			continue;
3044 		}
3045 
3046 		/* Sanity check, we shouldn't have any unchecked nodes */
3047 		if (!upper->checked) {
3048 			ASSERT(0);
3049 			return -EUCLEAN;
3050 		}
3051 
3052 		/* Sanity check, COW-only node has non-COW-only parent */
3053 		if (start->cowonly != upper->cowonly) {
3054 			ASSERT(0);
3055 			return -EUCLEAN;
3056 		}
3057 
3058 		/* Only cache non-COW-only (subvolume trees) tree blocks */
3059 		if (!upper->cowonly) {
3060 			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3061 						   &upper->rb_node);
3062 			if (rb_node) {
3063 				btrfs_backref_panic(cache->fs_info,
3064 						upper->bytenr, -EEXIST);
3065 				return -EUCLEAN;
3066 			}
3067 		}
3068 
3069 		list_add_tail(&edge->list[UPPER], &upper->lower);
3070 
3071 		/*
3072 		 * Also queue all the parent edges of this uncached node
3073 		 * to finish the upper linkage
3074 		 */
3075 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3076 			list_add_tail(&edge->list[UPPER], &pending_edge);
3077 	}
3078 	return 0;
3079 }
3080 
3081 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3082 				 struct btrfs_backref_node *node)
3083 {
3084 	struct btrfs_backref_node *lower;
3085 	struct btrfs_backref_node *upper;
3086 	struct btrfs_backref_edge *edge;
3087 
3088 	while (!list_empty(&cache->useless_node)) {
3089 		lower = list_first_entry(&cache->useless_node,
3090 				   struct btrfs_backref_node, list);
3091 		list_del_init(&lower->list);
3092 	}
3093 	while (!list_empty(&cache->pending_edge)) {
3094 		edge = list_first_entry(&cache->pending_edge,
3095 				struct btrfs_backref_edge, list[UPPER]);
3096 		list_del(&edge->list[UPPER]);
3097 		list_del(&edge->list[LOWER]);
3098 		lower = edge->node[LOWER];
3099 		upper = edge->node[UPPER];
3100 		btrfs_backref_free_edge(cache, edge);
3101 
3102 		/*
3103 		 * Lower is no longer linked to any upper backref nodes and
3104 		 * isn't in the cache, we can free it ourselves.
3105 		 */
3106 		if (list_empty(&lower->upper) &&
3107 		    RB_EMPTY_NODE(&lower->rb_node))
3108 			list_add(&lower->list, &cache->useless_node);
3109 
3110 		if (!RB_EMPTY_NODE(&upper->rb_node))
3111 			continue;
3112 
3113 		/* Add this guy's upper edges to the list to process */
3114 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3115 			list_add_tail(&edge->list[UPPER],
3116 				      &cache->pending_edge);
3117 		if (list_empty(&upper->upper))
3118 			list_add(&upper->list, &cache->useless_node);
3119 	}
3120 
3121 	while (!list_empty(&cache->useless_node)) {
3122 		lower = list_first_entry(&cache->useless_node,
3123 				   struct btrfs_backref_node, list);
3124 		list_del_init(&lower->list);
3125 		if (lower == node)
3126 			node = NULL;
3127 		btrfs_backref_free_node(cache, lower);
3128 	}
3129 
3130 	btrfs_backref_cleanup_node(cache, node);
3131 	ASSERT(list_empty(&cache->useless_node) &&
3132 	       list_empty(&cache->pending_edge));
3133 }
3134