1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 17 /* Just an arbitrary number so we can be sure this happened */ 18 #define BACKREF_FOUND_SHARED 6 19 20 struct extent_inode_elem { 21 u64 inum; 22 u64 offset; 23 struct extent_inode_elem *next; 24 }; 25 26 static int check_extent_in_eb(const struct btrfs_key *key, 27 const struct extent_buffer *eb, 28 const struct btrfs_file_extent_item *fi, 29 u64 extent_item_pos, 30 struct extent_inode_elem **eie, 31 bool ignore_offset) 32 { 33 u64 offset = 0; 34 struct extent_inode_elem *e; 35 36 if (!ignore_offset && 37 !btrfs_file_extent_compression(eb, fi) && 38 !btrfs_file_extent_encryption(eb, fi) && 39 !btrfs_file_extent_other_encoding(eb, fi)) { 40 u64 data_offset; 41 u64 data_len; 42 43 data_offset = btrfs_file_extent_offset(eb, fi); 44 data_len = btrfs_file_extent_num_bytes(eb, fi); 45 46 if (extent_item_pos < data_offset || 47 extent_item_pos >= data_offset + data_len) 48 return 1; 49 offset = extent_item_pos - data_offset; 50 } 51 52 e = kmalloc(sizeof(*e), GFP_NOFS); 53 if (!e) 54 return -ENOMEM; 55 56 e->next = *eie; 57 e->inum = key->objectid; 58 e->offset = key->offset + offset; 59 *eie = e; 60 61 return 0; 62 } 63 64 static void free_inode_elem_list(struct extent_inode_elem *eie) 65 { 66 struct extent_inode_elem *eie_next; 67 68 for (; eie; eie = eie_next) { 69 eie_next = eie->next; 70 kfree(eie); 71 } 72 } 73 74 static int find_extent_in_eb(const struct extent_buffer *eb, 75 u64 wanted_disk_byte, u64 extent_item_pos, 76 struct extent_inode_elem **eie, 77 bool ignore_offset) 78 { 79 u64 disk_byte; 80 struct btrfs_key key; 81 struct btrfs_file_extent_item *fi; 82 int slot; 83 int nritems; 84 int extent_type; 85 int ret; 86 87 /* 88 * from the shared data ref, we only have the leaf but we need 89 * the key. thus, we must look into all items and see that we 90 * find one (some) with a reference to our extent item. 91 */ 92 nritems = btrfs_header_nritems(eb); 93 for (slot = 0; slot < nritems; ++slot) { 94 btrfs_item_key_to_cpu(eb, &key, slot); 95 if (key.type != BTRFS_EXTENT_DATA_KEY) 96 continue; 97 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 98 extent_type = btrfs_file_extent_type(eb, fi); 99 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 100 continue; 101 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 102 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 103 if (disk_byte != wanted_disk_byte) 104 continue; 105 106 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 107 if (ret < 0) 108 return ret; 109 } 110 111 return 0; 112 } 113 114 struct preftree { 115 struct rb_root root; 116 unsigned int count; 117 }; 118 119 #define PREFTREE_INIT { .root = RB_ROOT, .count = 0 } 120 121 struct preftrees { 122 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 123 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 124 struct preftree indirect_missing_keys; 125 }; 126 127 /* 128 * Checks for a shared extent during backref search. 129 * 130 * The share_count tracks prelim_refs (direct and indirect) having a 131 * ref->count >0: 132 * - incremented when a ref->count transitions to >0 133 * - decremented when a ref->count transitions to <1 134 */ 135 struct share_check { 136 u64 root_objectid; 137 u64 inum; 138 int share_count; 139 }; 140 141 static inline int extent_is_shared(struct share_check *sc) 142 { 143 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 144 } 145 146 static struct kmem_cache *btrfs_prelim_ref_cache; 147 148 int __init btrfs_prelim_ref_init(void) 149 { 150 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 151 sizeof(struct prelim_ref), 152 0, 153 SLAB_MEM_SPREAD, 154 NULL); 155 if (!btrfs_prelim_ref_cache) 156 return -ENOMEM; 157 return 0; 158 } 159 160 void __cold btrfs_prelim_ref_exit(void) 161 { 162 kmem_cache_destroy(btrfs_prelim_ref_cache); 163 } 164 165 static void free_pref(struct prelim_ref *ref) 166 { 167 kmem_cache_free(btrfs_prelim_ref_cache, ref); 168 } 169 170 /* 171 * Return 0 when both refs are for the same block (and can be merged). 172 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 173 * indicates a 'higher' block. 174 */ 175 static int prelim_ref_compare(struct prelim_ref *ref1, 176 struct prelim_ref *ref2) 177 { 178 if (ref1->level < ref2->level) 179 return -1; 180 if (ref1->level > ref2->level) 181 return 1; 182 if (ref1->root_id < ref2->root_id) 183 return -1; 184 if (ref1->root_id > ref2->root_id) 185 return 1; 186 if (ref1->key_for_search.type < ref2->key_for_search.type) 187 return -1; 188 if (ref1->key_for_search.type > ref2->key_for_search.type) 189 return 1; 190 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 191 return -1; 192 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 193 return 1; 194 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 195 return -1; 196 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 197 return 1; 198 if (ref1->parent < ref2->parent) 199 return -1; 200 if (ref1->parent > ref2->parent) 201 return 1; 202 203 return 0; 204 } 205 206 static void update_share_count(struct share_check *sc, int oldcount, 207 int newcount) 208 { 209 if ((!sc) || (oldcount == 0 && newcount < 1)) 210 return; 211 212 if (oldcount > 0 && newcount < 1) 213 sc->share_count--; 214 else if (oldcount < 1 && newcount > 0) 215 sc->share_count++; 216 } 217 218 /* 219 * Add @newref to the @root rbtree, merging identical refs. 220 * 221 * Callers should assume that newref has been freed after calling. 222 */ 223 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 224 struct preftree *preftree, 225 struct prelim_ref *newref, 226 struct share_check *sc) 227 { 228 struct rb_root *root; 229 struct rb_node **p; 230 struct rb_node *parent = NULL; 231 struct prelim_ref *ref; 232 int result; 233 234 root = &preftree->root; 235 p = &root->rb_node; 236 237 while (*p) { 238 parent = *p; 239 ref = rb_entry(parent, struct prelim_ref, rbnode); 240 result = prelim_ref_compare(ref, newref); 241 if (result < 0) { 242 p = &(*p)->rb_left; 243 } else if (result > 0) { 244 p = &(*p)->rb_right; 245 } else { 246 /* Identical refs, merge them and free @newref */ 247 struct extent_inode_elem *eie = ref->inode_list; 248 249 while (eie && eie->next) 250 eie = eie->next; 251 252 if (!eie) 253 ref->inode_list = newref->inode_list; 254 else 255 eie->next = newref->inode_list; 256 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 257 preftree->count); 258 /* 259 * A delayed ref can have newref->count < 0. 260 * The ref->count is updated to follow any 261 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 262 */ 263 update_share_count(sc, ref->count, 264 ref->count + newref->count); 265 ref->count += newref->count; 266 free_pref(newref); 267 return; 268 } 269 } 270 271 update_share_count(sc, 0, newref->count); 272 preftree->count++; 273 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 274 rb_link_node(&newref->rbnode, parent, p); 275 rb_insert_color(&newref->rbnode, root); 276 } 277 278 /* 279 * Release the entire tree. We don't care about internal consistency so 280 * just free everything and then reset the tree root. 281 */ 282 static void prelim_release(struct preftree *preftree) 283 { 284 struct prelim_ref *ref, *next_ref; 285 286 rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root, 287 rbnode) 288 free_pref(ref); 289 290 preftree->root = RB_ROOT; 291 preftree->count = 0; 292 } 293 294 /* 295 * the rules for all callers of this function are: 296 * - obtaining the parent is the goal 297 * - if you add a key, you must know that it is a correct key 298 * - if you cannot add the parent or a correct key, then we will look into the 299 * block later to set a correct key 300 * 301 * delayed refs 302 * ============ 303 * backref type | shared | indirect | shared | indirect 304 * information | tree | tree | data | data 305 * --------------------+--------+----------+--------+---------- 306 * parent logical | y | - | - | - 307 * key to resolve | - | y | y | y 308 * tree block logical | - | - | - | - 309 * root for resolving | y | y | y | y 310 * 311 * - column 1: we've the parent -> done 312 * - column 2, 3, 4: we use the key to find the parent 313 * 314 * on disk refs (inline or keyed) 315 * ============================== 316 * backref type | shared | indirect | shared | indirect 317 * information | tree | tree | data | data 318 * --------------------+--------+----------+--------+---------- 319 * parent logical | y | - | y | - 320 * key to resolve | - | - | - | y 321 * tree block logical | y | y | y | y 322 * root for resolving | - | y | y | y 323 * 324 * - column 1, 3: we've the parent -> done 325 * - column 2: we take the first key from the block to find the parent 326 * (see add_missing_keys) 327 * - column 4: we use the key to find the parent 328 * 329 * additional information that's available but not required to find the parent 330 * block might help in merging entries to gain some speed. 331 */ 332 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 333 struct preftree *preftree, u64 root_id, 334 const struct btrfs_key *key, int level, u64 parent, 335 u64 wanted_disk_byte, int count, 336 struct share_check *sc, gfp_t gfp_mask) 337 { 338 struct prelim_ref *ref; 339 340 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 341 return 0; 342 343 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 344 if (!ref) 345 return -ENOMEM; 346 347 ref->root_id = root_id; 348 if (key) { 349 ref->key_for_search = *key; 350 /* 351 * We can often find data backrefs with an offset that is too 352 * large (>= LLONG_MAX, maximum allowed file offset) due to 353 * underflows when subtracting a file's offset with the data 354 * offset of its corresponding extent data item. This can 355 * happen for example in the clone ioctl. 356 * So if we detect such case we set the search key's offset to 357 * zero to make sure we will find the matching file extent item 358 * at add_all_parents(), otherwise we will miss it because the 359 * offset taken form the backref is much larger then the offset 360 * of the file extent item. This can make us scan a very large 361 * number of file extent items, but at least it will not make 362 * us miss any. 363 * This is an ugly workaround for a behaviour that should have 364 * never existed, but it does and a fix for the clone ioctl 365 * would touch a lot of places, cause backwards incompatibility 366 * and would not fix the problem for extents cloned with older 367 * kernels. 368 */ 369 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY && 370 ref->key_for_search.offset >= LLONG_MAX) 371 ref->key_for_search.offset = 0; 372 } else { 373 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 374 } 375 376 ref->inode_list = NULL; 377 ref->level = level; 378 ref->count = count; 379 ref->parent = parent; 380 ref->wanted_disk_byte = wanted_disk_byte; 381 prelim_ref_insert(fs_info, preftree, ref, sc); 382 return extent_is_shared(sc); 383 } 384 385 /* direct refs use root == 0, key == NULL */ 386 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 387 struct preftrees *preftrees, int level, u64 parent, 388 u64 wanted_disk_byte, int count, 389 struct share_check *sc, gfp_t gfp_mask) 390 { 391 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 392 parent, wanted_disk_byte, count, sc, gfp_mask); 393 } 394 395 /* indirect refs use parent == 0 */ 396 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 397 struct preftrees *preftrees, u64 root_id, 398 const struct btrfs_key *key, int level, 399 u64 wanted_disk_byte, int count, 400 struct share_check *sc, gfp_t gfp_mask) 401 { 402 struct preftree *tree = &preftrees->indirect; 403 404 if (!key) 405 tree = &preftrees->indirect_missing_keys; 406 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 407 wanted_disk_byte, count, sc, gfp_mask); 408 } 409 410 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 411 struct ulist *parents, struct prelim_ref *ref, 412 int level, u64 time_seq, const u64 *extent_item_pos, 413 u64 total_refs, bool ignore_offset) 414 { 415 int ret = 0; 416 int slot; 417 struct extent_buffer *eb; 418 struct btrfs_key key; 419 struct btrfs_key *key_for_search = &ref->key_for_search; 420 struct btrfs_file_extent_item *fi; 421 struct extent_inode_elem *eie = NULL, *old = NULL; 422 u64 disk_byte; 423 u64 wanted_disk_byte = ref->wanted_disk_byte; 424 u64 count = 0; 425 426 if (level != 0) { 427 eb = path->nodes[level]; 428 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 429 if (ret < 0) 430 return ret; 431 return 0; 432 } 433 434 /* 435 * We normally enter this function with the path already pointing to 436 * the first item to check. But sometimes, we may enter it with 437 * slot==nritems. In that case, go to the next leaf before we continue. 438 */ 439 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 440 if (time_seq == SEQ_LAST) 441 ret = btrfs_next_leaf(root, path); 442 else 443 ret = btrfs_next_old_leaf(root, path, time_seq); 444 } 445 446 while (!ret && count < total_refs) { 447 eb = path->nodes[0]; 448 slot = path->slots[0]; 449 450 btrfs_item_key_to_cpu(eb, &key, slot); 451 452 if (key.objectid != key_for_search->objectid || 453 key.type != BTRFS_EXTENT_DATA_KEY) 454 break; 455 456 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 457 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 458 459 if (disk_byte == wanted_disk_byte) { 460 eie = NULL; 461 old = NULL; 462 count++; 463 if (extent_item_pos) { 464 ret = check_extent_in_eb(&key, eb, fi, 465 *extent_item_pos, 466 &eie, ignore_offset); 467 if (ret < 0) 468 break; 469 } 470 if (ret > 0) 471 goto next; 472 ret = ulist_add_merge_ptr(parents, eb->start, 473 eie, (void **)&old, GFP_NOFS); 474 if (ret < 0) 475 break; 476 if (!ret && extent_item_pos) { 477 while (old->next) 478 old = old->next; 479 old->next = eie; 480 } 481 eie = NULL; 482 } 483 next: 484 if (time_seq == SEQ_LAST) 485 ret = btrfs_next_item(root, path); 486 else 487 ret = btrfs_next_old_item(root, path, time_seq); 488 } 489 490 if (ret > 0) 491 ret = 0; 492 else if (ret < 0) 493 free_inode_elem_list(eie); 494 return ret; 495 } 496 497 /* 498 * resolve an indirect backref in the form (root_id, key, level) 499 * to a logical address 500 */ 501 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 502 struct btrfs_path *path, u64 time_seq, 503 struct prelim_ref *ref, struct ulist *parents, 504 const u64 *extent_item_pos, u64 total_refs, 505 bool ignore_offset) 506 { 507 struct btrfs_root *root; 508 struct btrfs_key root_key; 509 struct extent_buffer *eb; 510 int ret = 0; 511 int root_level; 512 int level = ref->level; 513 int index; 514 515 root_key.objectid = ref->root_id; 516 root_key.type = BTRFS_ROOT_ITEM_KEY; 517 root_key.offset = (u64)-1; 518 519 index = srcu_read_lock(&fs_info->subvol_srcu); 520 521 root = btrfs_get_fs_root(fs_info, &root_key, false); 522 if (IS_ERR(root)) { 523 srcu_read_unlock(&fs_info->subvol_srcu, index); 524 ret = PTR_ERR(root); 525 goto out; 526 } 527 528 if (btrfs_is_testing(fs_info)) { 529 srcu_read_unlock(&fs_info->subvol_srcu, index); 530 ret = -ENOENT; 531 goto out; 532 } 533 534 if (path->search_commit_root) 535 root_level = btrfs_header_level(root->commit_root); 536 else if (time_seq == SEQ_LAST) 537 root_level = btrfs_header_level(root->node); 538 else 539 root_level = btrfs_old_root_level(root, time_seq); 540 541 if (root_level + 1 == level) { 542 srcu_read_unlock(&fs_info->subvol_srcu, index); 543 goto out; 544 } 545 546 path->lowest_level = level; 547 if (time_seq == SEQ_LAST) 548 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 549 0, 0); 550 else 551 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, 552 time_seq); 553 554 /* root node has been locked, we can release @subvol_srcu safely here */ 555 srcu_read_unlock(&fs_info->subvol_srcu, index); 556 557 btrfs_debug(fs_info, 558 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 559 ref->root_id, level, ref->count, ret, 560 ref->key_for_search.objectid, ref->key_for_search.type, 561 ref->key_for_search.offset); 562 if (ret < 0) 563 goto out; 564 565 eb = path->nodes[level]; 566 while (!eb) { 567 if (WARN_ON(!level)) { 568 ret = 1; 569 goto out; 570 } 571 level--; 572 eb = path->nodes[level]; 573 } 574 575 ret = add_all_parents(root, path, parents, ref, level, time_seq, 576 extent_item_pos, total_refs, ignore_offset); 577 out: 578 path->lowest_level = 0; 579 btrfs_release_path(path); 580 return ret; 581 } 582 583 static struct extent_inode_elem * 584 unode_aux_to_inode_list(struct ulist_node *node) 585 { 586 if (!node) 587 return NULL; 588 return (struct extent_inode_elem *)(uintptr_t)node->aux; 589 } 590 591 /* 592 * We maintain three seperate rbtrees: one for direct refs, one for 593 * indirect refs which have a key, and one for indirect refs which do not 594 * have a key. Each tree does merge on insertion. 595 * 596 * Once all of the references are located, we iterate over the tree of 597 * indirect refs with missing keys. An appropriate key is located and 598 * the ref is moved onto the tree for indirect refs. After all missing 599 * keys are thus located, we iterate over the indirect ref tree, resolve 600 * each reference, and then insert the resolved reference onto the 601 * direct tree (merging there too). 602 * 603 * New backrefs (i.e., for parent nodes) are added to the appropriate 604 * rbtree as they are encountered. The new backrefs are subsequently 605 * resolved as above. 606 */ 607 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 608 struct btrfs_path *path, u64 time_seq, 609 struct preftrees *preftrees, 610 const u64 *extent_item_pos, u64 total_refs, 611 struct share_check *sc, bool ignore_offset) 612 { 613 int err; 614 int ret = 0; 615 struct ulist *parents; 616 struct ulist_node *node; 617 struct ulist_iterator uiter; 618 struct rb_node *rnode; 619 620 parents = ulist_alloc(GFP_NOFS); 621 if (!parents) 622 return -ENOMEM; 623 624 /* 625 * We could trade memory usage for performance here by iterating 626 * the tree, allocating new refs for each insertion, and then 627 * freeing the entire indirect tree when we're done. In some test 628 * cases, the tree can grow quite large (~200k objects). 629 */ 630 while ((rnode = rb_first(&preftrees->indirect.root))) { 631 struct prelim_ref *ref; 632 633 ref = rb_entry(rnode, struct prelim_ref, rbnode); 634 if (WARN(ref->parent, 635 "BUG: direct ref found in indirect tree")) { 636 ret = -EINVAL; 637 goto out; 638 } 639 640 rb_erase(&ref->rbnode, &preftrees->indirect.root); 641 preftrees->indirect.count--; 642 643 if (ref->count == 0) { 644 free_pref(ref); 645 continue; 646 } 647 648 if (sc && sc->root_objectid && 649 ref->root_id != sc->root_objectid) { 650 free_pref(ref); 651 ret = BACKREF_FOUND_SHARED; 652 goto out; 653 } 654 err = resolve_indirect_ref(fs_info, path, time_seq, ref, 655 parents, extent_item_pos, 656 total_refs, ignore_offset); 657 /* 658 * we can only tolerate ENOENT,otherwise,we should catch error 659 * and return directly. 660 */ 661 if (err == -ENOENT) { 662 prelim_ref_insert(fs_info, &preftrees->direct, ref, 663 NULL); 664 continue; 665 } else if (err) { 666 free_pref(ref); 667 ret = err; 668 goto out; 669 } 670 671 /* we put the first parent into the ref at hand */ 672 ULIST_ITER_INIT(&uiter); 673 node = ulist_next(parents, &uiter); 674 ref->parent = node ? node->val : 0; 675 ref->inode_list = unode_aux_to_inode_list(node); 676 677 /* Add a prelim_ref(s) for any other parent(s). */ 678 while ((node = ulist_next(parents, &uiter))) { 679 struct prelim_ref *new_ref; 680 681 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 682 GFP_NOFS); 683 if (!new_ref) { 684 free_pref(ref); 685 ret = -ENOMEM; 686 goto out; 687 } 688 memcpy(new_ref, ref, sizeof(*ref)); 689 new_ref->parent = node->val; 690 new_ref->inode_list = unode_aux_to_inode_list(node); 691 prelim_ref_insert(fs_info, &preftrees->direct, 692 new_ref, NULL); 693 } 694 695 /* 696 * Now it's a direct ref, put it in the the direct tree. We must 697 * do this last because the ref could be merged/freed here. 698 */ 699 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 700 701 ulist_reinit(parents); 702 cond_resched(); 703 } 704 out: 705 ulist_free(parents); 706 return ret; 707 } 708 709 /* 710 * read tree blocks and add keys where required. 711 */ 712 static int add_missing_keys(struct btrfs_fs_info *fs_info, 713 struct preftrees *preftrees) 714 { 715 struct prelim_ref *ref; 716 struct extent_buffer *eb; 717 struct preftree *tree = &preftrees->indirect_missing_keys; 718 struct rb_node *node; 719 720 while ((node = rb_first(&tree->root))) { 721 ref = rb_entry(node, struct prelim_ref, rbnode); 722 rb_erase(node, &tree->root); 723 724 BUG_ON(ref->parent); /* should not be a direct ref */ 725 BUG_ON(ref->key_for_search.type); 726 BUG_ON(!ref->wanted_disk_byte); 727 728 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0, 729 ref->level - 1, NULL); 730 if (IS_ERR(eb)) { 731 free_pref(ref); 732 return PTR_ERR(eb); 733 } else if (!extent_buffer_uptodate(eb)) { 734 free_pref(ref); 735 free_extent_buffer(eb); 736 return -EIO; 737 } 738 btrfs_tree_read_lock(eb); 739 if (btrfs_header_level(eb) == 0) 740 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 741 else 742 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 743 btrfs_tree_read_unlock(eb); 744 free_extent_buffer(eb); 745 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 746 cond_resched(); 747 } 748 return 0; 749 } 750 751 /* 752 * add all currently queued delayed refs from this head whose seq nr is 753 * smaller or equal that seq to the list 754 */ 755 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 756 struct btrfs_delayed_ref_head *head, u64 seq, 757 struct preftrees *preftrees, u64 *total_refs, 758 struct share_check *sc) 759 { 760 struct btrfs_delayed_ref_node *node; 761 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 762 struct btrfs_key key; 763 struct btrfs_key tmp_op_key; 764 struct rb_node *n; 765 int count; 766 int ret = 0; 767 768 if (extent_op && extent_op->update_key) 769 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); 770 771 spin_lock(&head->lock); 772 for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) { 773 node = rb_entry(n, struct btrfs_delayed_ref_node, 774 ref_node); 775 if (node->seq > seq) 776 continue; 777 778 switch (node->action) { 779 case BTRFS_ADD_DELAYED_EXTENT: 780 case BTRFS_UPDATE_DELAYED_HEAD: 781 WARN_ON(1); 782 continue; 783 case BTRFS_ADD_DELAYED_REF: 784 count = node->ref_mod; 785 break; 786 case BTRFS_DROP_DELAYED_REF: 787 count = node->ref_mod * -1; 788 break; 789 default: 790 BUG_ON(1); 791 } 792 *total_refs += count; 793 switch (node->type) { 794 case BTRFS_TREE_BLOCK_REF_KEY: { 795 /* NORMAL INDIRECT METADATA backref */ 796 struct btrfs_delayed_tree_ref *ref; 797 798 ref = btrfs_delayed_node_to_tree_ref(node); 799 ret = add_indirect_ref(fs_info, preftrees, ref->root, 800 &tmp_op_key, ref->level + 1, 801 node->bytenr, count, sc, 802 GFP_ATOMIC); 803 break; 804 } 805 case BTRFS_SHARED_BLOCK_REF_KEY: { 806 /* SHARED DIRECT METADATA backref */ 807 struct btrfs_delayed_tree_ref *ref; 808 809 ref = btrfs_delayed_node_to_tree_ref(node); 810 811 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 812 ref->parent, node->bytenr, count, 813 sc, GFP_ATOMIC); 814 break; 815 } 816 case BTRFS_EXTENT_DATA_REF_KEY: { 817 /* NORMAL INDIRECT DATA backref */ 818 struct btrfs_delayed_data_ref *ref; 819 ref = btrfs_delayed_node_to_data_ref(node); 820 821 key.objectid = ref->objectid; 822 key.type = BTRFS_EXTENT_DATA_KEY; 823 key.offset = ref->offset; 824 825 /* 826 * Found a inum that doesn't match our known inum, we 827 * know it's shared. 828 */ 829 if (sc && sc->inum && ref->objectid != sc->inum) { 830 ret = BACKREF_FOUND_SHARED; 831 goto out; 832 } 833 834 ret = add_indirect_ref(fs_info, preftrees, ref->root, 835 &key, 0, node->bytenr, count, sc, 836 GFP_ATOMIC); 837 break; 838 } 839 case BTRFS_SHARED_DATA_REF_KEY: { 840 /* SHARED DIRECT FULL backref */ 841 struct btrfs_delayed_data_ref *ref; 842 843 ref = btrfs_delayed_node_to_data_ref(node); 844 845 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 846 node->bytenr, count, sc, 847 GFP_ATOMIC); 848 break; 849 } 850 default: 851 WARN_ON(1); 852 } 853 /* 854 * We must ignore BACKREF_FOUND_SHARED until all delayed 855 * refs have been checked. 856 */ 857 if (ret && (ret != BACKREF_FOUND_SHARED)) 858 break; 859 } 860 if (!ret) 861 ret = extent_is_shared(sc); 862 out: 863 spin_unlock(&head->lock); 864 return ret; 865 } 866 867 /* 868 * add all inline backrefs for bytenr to the list 869 * 870 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 871 */ 872 static int add_inline_refs(const struct btrfs_fs_info *fs_info, 873 struct btrfs_path *path, u64 bytenr, 874 int *info_level, struct preftrees *preftrees, 875 u64 *total_refs, struct share_check *sc) 876 { 877 int ret = 0; 878 int slot; 879 struct extent_buffer *leaf; 880 struct btrfs_key key; 881 struct btrfs_key found_key; 882 unsigned long ptr; 883 unsigned long end; 884 struct btrfs_extent_item *ei; 885 u64 flags; 886 u64 item_size; 887 888 /* 889 * enumerate all inline refs 890 */ 891 leaf = path->nodes[0]; 892 slot = path->slots[0]; 893 894 item_size = btrfs_item_size_nr(leaf, slot); 895 BUG_ON(item_size < sizeof(*ei)); 896 897 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 898 flags = btrfs_extent_flags(leaf, ei); 899 *total_refs += btrfs_extent_refs(leaf, ei); 900 btrfs_item_key_to_cpu(leaf, &found_key, slot); 901 902 ptr = (unsigned long)(ei + 1); 903 end = (unsigned long)ei + item_size; 904 905 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 906 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 907 struct btrfs_tree_block_info *info; 908 909 info = (struct btrfs_tree_block_info *)ptr; 910 *info_level = btrfs_tree_block_level(leaf, info); 911 ptr += sizeof(struct btrfs_tree_block_info); 912 BUG_ON(ptr > end); 913 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 914 *info_level = found_key.offset; 915 } else { 916 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 917 } 918 919 while (ptr < end) { 920 struct btrfs_extent_inline_ref *iref; 921 u64 offset; 922 int type; 923 924 iref = (struct btrfs_extent_inline_ref *)ptr; 925 type = btrfs_get_extent_inline_ref_type(leaf, iref, 926 BTRFS_REF_TYPE_ANY); 927 if (type == BTRFS_REF_TYPE_INVALID) 928 return -EUCLEAN; 929 930 offset = btrfs_extent_inline_ref_offset(leaf, iref); 931 932 switch (type) { 933 case BTRFS_SHARED_BLOCK_REF_KEY: 934 ret = add_direct_ref(fs_info, preftrees, 935 *info_level + 1, offset, 936 bytenr, 1, NULL, GFP_NOFS); 937 break; 938 case BTRFS_SHARED_DATA_REF_KEY: { 939 struct btrfs_shared_data_ref *sdref; 940 int count; 941 942 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 943 count = btrfs_shared_data_ref_count(leaf, sdref); 944 945 ret = add_direct_ref(fs_info, preftrees, 0, offset, 946 bytenr, count, sc, GFP_NOFS); 947 break; 948 } 949 case BTRFS_TREE_BLOCK_REF_KEY: 950 ret = add_indirect_ref(fs_info, preftrees, offset, 951 NULL, *info_level + 1, 952 bytenr, 1, NULL, GFP_NOFS); 953 break; 954 case BTRFS_EXTENT_DATA_REF_KEY: { 955 struct btrfs_extent_data_ref *dref; 956 int count; 957 u64 root; 958 959 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 960 count = btrfs_extent_data_ref_count(leaf, dref); 961 key.objectid = btrfs_extent_data_ref_objectid(leaf, 962 dref); 963 key.type = BTRFS_EXTENT_DATA_KEY; 964 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 965 966 if (sc && sc->inum && key.objectid != sc->inum) { 967 ret = BACKREF_FOUND_SHARED; 968 break; 969 } 970 971 root = btrfs_extent_data_ref_root(leaf, dref); 972 973 ret = add_indirect_ref(fs_info, preftrees, root, 974 &key, 0, bytenr, count, 975 sc, GFP_NOFS); 976 break; 977 } 978 default: 979 WARN_ON(1); 980 } 981 if (ret) 982 return ret; 983 ptr += btrfs_extent_inline_ref_size(type); 984 } 985 986 return 0; 987 } 988 989 /* 990 * add all non-inline backrefs for bytenr to the list 991 * 992 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 993 */ 994 static int add_keyed_refs(struct btrfs_fs_info *fs_info, 995 struct btrfs_path *path, u64 bytenr, 996 int info_level, struct preftrees *preftrees, 997 struct share_check *sc) 998 { 999 struct btrfs_root *extent_root = fs_info->extent_root; 1000 int ret; 1001 int slot; 1002 struct extent_buffer *leaf; 1003 struct btrfs_key key; 1004 1005 while (1) { 1006 ret = btrfs_next_item(extent_root, path); 1007 if (ret < 0) 1008 break; 1009 if (ret) { 1010 ret = 0; 1011 break; 1012 } 1013 1014 slot = path->slots[0]; 1015 leaf = path->nodes[0]; 1016 btrfs_item_key_to_cpu(leaf, &key, slot); 1017 1018 if (key.objectid != bytenr) 1019 break; 1020 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1021 continue; 1022 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1023 break; 1024 1025 switch (key.type) { 1026 case BTRFS_SHARED_BLOCK_REF_KEY: 1027 /* SHARED DIRECT METADATA backref */ 1028 ret = add_direct_ref(fs_info, preftrees, 1029 info_level + 1, key.offset, 1030 bytenr, 1, NULL, GFP_NOFS); 1031 break; 1032 case BTRFS_SHARED_DATA_REF_KEY: { 1033 /* SHARED DIRECT FULL backref */ 1034 struct btrfs_shared_data_ref *sdref; 1035 int count; 1036 1037 sdref = btrfs_item_ptr(leaf, slot, 1038 struct btrfs_shared_data_ref); 1039 count = btrfs_shared_data_ref_count(leaf, sdref); 1040 ret = add_direct_ref(fs_info, preftrees, 0, 1041 key.offset, bytenr, count, 1042 sc, GFP_NOFS); 1043 break; 1044 } 1045 case BTRFS_TREE_BLOCK_REF_KEY: 1046 /* NORMAL INDIRECT METADATA backref */ 1047 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1048 NULL, info_level + 1, bytenr, 1049 1, NULL, GFP_NOFS); 1050 break; 1051 case BTRFS_EXTENT_DATA_REF_KEY: { 1052 /* NORMAL INDIRECT DATA backref */ 1053 struct btrfs_extent_data_ref *dref; 1054 int count; 1055 u64 root; 1056 1057 dref = btrfs_item_ptr(leaf, slot, 1058 struct btrfs_extent_data_ref); 1059 count = btrfs_extent_data_ref_count(leaf, dref); 1060 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1061 dref); 1062 key.type = BTRFS_EXTENT_DATA_KEY; 1063 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1064 1065 if (sc && sc->inum && key.objectid != sc->inum) { 1066 ret = BACKREF_FOUND_SHARED; 1067 break; 1068 } 1069 1070 root = btrfs_extent_data_ref_root(leaf, dref); 1071 ret = add_indirect_ref(fs_info, preftrees, root, 1072 &key, 0, bytenr, count, 1073 sc, GFP_NOFS); 1074 break; 1075 } 1076 default: 1077 WARN_ON(1); 1078 } 1079 if (ret) 1080 return ret; 1081 1082 } 1083 1084 return ret; 1085 } 1086 1087 /* 1088 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1089 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1090 * indirect refs to their parent bytenr. 1091 * When roots are found, they're added to the roots list 1092 * 1093 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave 1094 * much like trans == NULL case, the difference only lies in it will not 1095 * commit root. 1096 * The special case is for qgroup to search roots in commit_transaction(). 1097 * 1098 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1099 * shared extent is detected. 1100 * 1101 * Otherwise this returns 0 for success and <0 for an error. 1102 * 1103 * If ignore_offset is set to false, only extent refs whose offsets match 1104 * extent_item_pos are returned. If true, every extent ref is returned 1105 * and extent_item_pos is ignored. 1106 * 1107 * FIXME some caching might speed things up 1108 */ 1109 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1110 struct btrfs_fs_info *fs_info, u64 bytenr, 1111 u64 time_seq, struct ulist *refs, 1112 struct ulist *roots, const u64 *extent_item_pos, 1113 struct share_check *sc, bool ignore_offset) 1114 { 1115 struct btrfs_key key; 1116 struct btrfs_path *path; 1117 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1118 struct btrfs_delayed_ref_head *head; 1119 int info_level = 0; 1120 int ret; 1121 struct prelim_ref *ref; 1122 struct rb_node *node; 1123 struct extent_inode_elem *eie = NULL; 1124 /* total of both direct AND indirect refs! */ 1125 u64 total_refs = 0; 1126 struct preftrees preftrees = { 1127 .direct = PREFTREE_INIT, 1128 .indirect = PREFTREE_INIT, 1129 .indirect_missing_keys = PREFTREE_INIT 1130 }; 1131 1132 key.objectid = bytenr; 1133 key.offset = (u64)-1; 1134 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1135 key.type = BTRFS_METADATA_ITEM_KEY; 1136 else 1137 key.type = BTRFS_EXTENT_ITEM_KEY; 1138 1139 path = btrfs_alloc_path(); 1140 if (!path) 1141 return -ENOMEM; 1142 if (!trans) { 1143 path->search_commit_root = 1; 1144 path->skip_locking = 1; 1145 } 1146 1147 if (time_seq == SEQ_LAST) 1148 path->skip_locking = 1; 1149 1150 /* 1151 * grab both a lock on the path and a lock on the delayed ref head. 1152 * We need both to get a consistent picture of how the refs look 1153 * at a specified point in time 1154 */ 1155 again: 1156 head = NULL; 1157 1158 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 1159 if (ret < 0) 1160 goto out; 1161 BUG_ON(ret == 0); 1162 1163 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1164 if (trans && likely(trans->type != __TRANS_DUMMY) && 1165 time_seq != SEQ_LAST) { 1166 #else 1167 if (trans && time_seq != SEQ_LAST) { 1168 #endif 1169 /* 1170 * look if there are updates for this ref queued and lock the 1171 * head 1172 */ 1173 delayed_refs = &trans->transaction->delayed_refs; 1174 spin_lock(&delayed_refs->lock); 1175 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1176 if (head) { 1177 if (!mutex_trylock(&head->mutex)) { 1178 refcount_inc(&head->refs); 1179 spin_unlock(&delayed_refs->lock); 1180 1181 btrfs_release_path(path); 1182 1183 /* 1184 * Mutex was contended, block until it's 1185 * released and try again 1186 */ 1187 mutex_lock(&head->mutex); 1188 mutex_unlock(&head->mutex); 1189 btrfs_put_delayed_ref_head(head); 1190 goto again; 1191 } 1192 spin_unlock(&delayed_refs->lock); 1193 ret = add_delayed_refs(fs_info, head, time_seq, 1194 &preftrees, &total_refs, sc); 1195 mutex_unlock(&head->mutex); 1196 if (ret) 1197 goto out; 1198 } else { 1199 spin_unlock(&delayed_refs->lock); 1200 } 1201 } 1202 1203 if (path->slots[0]) { 1204 struct extent_buffer *leaf; 1205 int slot; 1206 1207 path->slots[0]--; 1208 leaf = path->nodes[0]; 1209 slot = path->slots[0]; 1210 btrfs_item_key_to_cpu(leaf, &key, slot); 1211 if (key.objectid == bytenr && 1212 (key.type == BTRFS_EXTENT_ITEM_KEY || 1213 key.type == BTRFS_METADATA_ITEM_KEY)) { 1214 ret = add_inline_refs(fs_info, path, bytenr, 1215 &info_level, &preftrees, 1216 &total_refs, sc); 1217 if (ret) 1218 goto out; 1219 ret = add_keyed_refs(fs_info, path, bytenr, info_level, 1220 &preftrees, sc); 1221 if (ret) 1222 goto out; 1223 } 1224 } 1225 1226 btrfs_release_path(path); 1227 1228 ret = add_missing_keys(fs_info, &preftrees); 1229 if (ret) 1230 goto out; 1231 1232 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root)); 1233 1234 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1235 extent_item_pos, total_refs, sc, ignore_offset); 1236 if (ret) 1237 goto out; 1238 1239 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root)); 1240 1241 /* 1242 * This walks the tree of merged and resolved refs. Tree blocks are 1243 * read in as needed. Unique entries are added to the ulist, and 1244 * the list of found roots is updated. 1245 * 1246 * We release the entire tree in one go before returning. 1247 */ 1248 node = rb_first(&preftrees.direct.root); 1249 while (node) { 1250 ref = rb_entry(node, struct prelim_ref, rbnode); 1251 node = rb_next(&ref->rbnode); 1252 /* 1253 * ref->count < 0 can happen here if there are delayed 1254 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1255 * prelim_ref_insert() relies on this when merging 1256 * identical refs to keep the overall count correct. 1257 * prelim_ref_insert() will merge only those refs 1258 * which compare identically. Any refs having 1259 * e.g. different offsets would not be merged, 1260 * and would retain their original ref->count < 0. 1261 */ 1262 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1263 if (sc && sc->root_objectid && 1264 ref->root_id != sc->root_objectid) { 1265 ret = BACKREF_FOUND_SHARED; 1266 goto out; 1267 } 1268 1269 /* no parent == root of tree */ 1270 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1271 if (ret < 0) 1272 goto out; 1273 } 1274 if (ref->count && ref->parent) { 1275 if (extent_item_pos && !ref->inode_list && 1276 ref->level == 0) { 1277 struct extent_buffer *eb; 1278 1279 eb = read_tree_block(fs_info, ref->parent, 0, 1280 ref->level, NULL); 1281 if (IS_ERR(eb)) { 1282 ret = PTR_ERR(eb); 1283 goto out; 1284 } else if (!extent_buffer_uptodate(eb)) { 1285 free_extent_buffer(eb); 1286 ret = -EIO; 1287 goto out; 1288 } 1289 btrfs_tree_read_lock(eb); 1290 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1291 ret = find_extent_in_eb(eb, bytenr, 1292 *extent_item_pos, &eie, ignore_offset); 1293 btrfs_tree_read_unlock_blocking(eb); 1294 free_extent_buffer(eb); 1295 if (ret < 0) 1296 goto out; 1297 ref->inode_list = eie; 1298 } 1299 ret = ulist_add_merge_ptr(refs, ref->parent, 1300 ref->inode_list, 1301 (void **)&eie, GFP_NOFS); 1302 if (ret < 0) 1303 goto out; 1304 if (!ret && extent_item_pos) { 1305 /* 1306 * we've recorded that parent, so we must extend 1307 * its inode list here 1308 */ 1309 BUG_ON(!eie); 1310 while (eie->next) 1311 eie = eie->next; 1312 eie->next = ref->inode_list; 1313 } 1314 eie = NULL; 1315 } 1316 cond_resched(); 1317 } 1318 1319 out: 1320 btrfs_free_path(path); 1321 1322 prelim_release(&preftrees.direct); 1323 prelim_release(&preftrees.indirect); 1324 prelim_release(&preftrees.indirect_missing_keys); 1325 1326 if (ret < 0) 1327 free_inode_elem_list(eie); 1328 return ret; 1329 } 1330 1331 static void free_leaf_list(struct ulist *blocks) 1332 { 1333 struct ulist_node *node = NULL; 1334 struct extent_inode_elem *eie; 1335 struct ulist_iterator uiter; 1336 1337 ULIST_ITER_INIT(&uiter); 1338 while ((node = ulist_next(blocks, &uiter))) { 1339 if (!node->aux) 1340 continue; 1341 eie = unode_aux_to_inode_list(node); 1342 free_inode_elem_list(eie); 1343 node->aux = 0; 1344 } 1345 1346 ulist_free(blocks); 1347 } 1348 1349 /* 1350 * Finds all leafs with a reference to the specified combination of bytenr and 1351 * offset. key_list_head will point to a list of corresponding keys (caller must 1352 * free each list element). The leafs will be stored in the leafs ulist, which 1353 * must be freed with ulist_free. 1354 * 1355 * returns 0 on success, <0 on error 1356 */ 1357 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1358 struct btrfs_fs_info *fs_info, u64 bytenr, 1359 u64 time_seq, struct ulist **leafs, 1360 const u64 *extent_item_pos, bool ignore_offset) 1361 { 1362 int ret; 1363 1364 *leafs = ulist_alloc(GFP_NOFS); 1365 if (!*leafs) 1366 return -ENOMEM; 1367 1368 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1369 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1370 if (ret < 0 && ret != -ENOENT) { 1371 free_leaf_list(*leafs); 1372 return ret; 1373 } 1374 1375 return 0; 1376 } 1377 1378 /* 1379 * walk all backrefs for a given extent to find all roots that reference this 1380 * extent. Walking a backref means finding all extents that reference this 1381 * extent and in turn walk the backrefs of those, too. Naturally this is a 1382 * recursive process, but here it is implemented in an iterative fashion: We 1383 * find all referencing extents for the extent in question and put them on a 1384 * list. In turn, we find all referencing extents for those, further appending 1385 * to the list. The way we iterate the list allows adding more elements after 1386 * the current while iterating. The process stops when we reach the end of the 1387 * list. Found roots are added to the roots list. 1388 * 1389 * returns 0 on success, < 0 on error. 1390 */ 1391 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1392 struct btrfs_fs_info *fs_info, u64 bytenr, 1393 u64 time_seq, struct ulist **roots, 1394 bool ignore_offset) 1395 { 1396 struct ulist *tmp; 1397 struct ulist_node *node = NULL; 1398 struct ulist_iterator uiter; 1399 int ret; 1400 1401 tmp = ulist_alloc(GFP_NOFS); 1402 if (!tmp) 1403 return -ENOMEM; 1404 *roots = ulist_alloc(GFP_NOFS); 1405 if (!*roots) { 1406 ulist_free(tmp); 1407 return -ENOMEM; 1408 } 1409 1410 ULIST_ITER_INIT(&uiter); 1411 while (1) { 1412 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1413 tmp, *roots, NULL, NULL, ignore_offset); 1414 if (ret < 0 && ret != -ENOENT) { 1415 ulist_free(tmp); 1416 ulist_free(*roots); 1417 return ret; 1418 } 1419 node = ulist_next(tmp, &uiter); 1420 if (!node) 1421 break; 1422 bytenr = node->val; 1423 cond_resched(); 1424 } 1425 1426 ulist_free(tmp); 1427 return 0; 1428 } 1429 1430 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1431 struct btrfs_fs_info *fs_info, u64 bytenr, 1432 u64 time_seq, struct ulist **roots, 1433 bool ignore_offset) 1434 { 1435 int ret; 1436 1437 if (!trans) 1438 down_read(&fs_info->commit_root_sem); 1439 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1440 time_seq, roots, ignore_offset); 1441 if (!trans) 1442 up_read(&fs_info->commit_root_sem); 1443 return ret; 1444 } 1445 1446 /** 1447 * btrfs_check_shared - tell us whether an extent is shared 1448 * 1449 * btrfs_check_shared uses the backref walking code but will short 1450 * circuit as soon as it finds a root or inode that doesn't match the 1451 * one passed in. This provides a significant performance benefit for 1452 * callers (such as fiemap) which want to know whether the extent is 1453 * shared but do not need a ref count. 1454 * 1455 * This attempts to allocate a transaction in order to account for 1456 * delayed refs, but continues on even when the alloc fails. 1457 * 1458 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1459 */ 1460 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr) 1461 { 1462 struct btrfs_fs_info *fs_info = root->fs_info; 1463 struct btrfs_trans_handle *trans; 1464 struct ulist *tmp = NULL; 1465 struct ulist *roots = NULL; 1466 struct ulist_iterator uiter; 1467 struct ulist_node *node; 1468 struct seq_list elem = SEQ_LIST_INIT(elem); 1469 int ret = 0; 1470 struct share_check shared = { 1471 .root_objectid = root->objectid, 1472 .inum = inum, 1473 .share_count = 0, 1474 }; 1475 1476 tmp = ulist_alloc(GFP_NOFS); 1477 roots = ulist_alloc(GFP_NOFS); 1478 if (!tmp || !roots) { 1479 ulist_free(tmp); 1480 ulist_free(roots); 1481 return -ENOMEM; 1482 } 1483 1484 trans = btrfs_join_transaction(root); 1485 if (IS_ERR(trans)) { 1486 trans = NULL; 1487 down_read(&fs_info->commit_root_sem); 1488 } else { 1489 btrfs_get_tree_mod_seq(fs_info, &elem); 1490 } 1491 1492 ULIST_ITER_INIT(&uiter); 1493 while (1) { 1494 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1495 roots, NULL, &shared, false); 1496 if (ret == BACKREF_FOUND_SHARED) { 1497 /* this is the only condition under which we return 1 */ 1498 ret = 1; 1499 break; 1500 } 1501 if (ret < 0 && ret != -ENOENT) 1502 break; 1503 ret = 0; 1504 node = ulist_next(tmp, &uiter); 1505 if (!node) 1506 break; 1507 bytenr = node->val; 1508 shared.share_count = 0; 1509 cond_resched(); 1510 } 1511 1512 if (trans) { 1513 btrfs_put_tree_mod_seq(fs_info, &elem); 1514 btrfs_end_transaction(trans); 1515 } else { 1516 up_read(&fs_info->commit_root_sem); 1517 } 1518 ulist_free(tmp); 1519 ulist_free(roots); 1520 return ret; 1521 } 1522 1523 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1524 u64 start_off, struct btrfs_path *path, 1525 struct btrfs_inode_extref **ret_extref, 1526 u64 *found_off) 1527 { 1528 int ret, slot; 1529 struct btrfs_key key; 1530 struct btrfs_key found_key; 1531 struct btrfs_inode_extref *extref; 1532 const struct extent_buffer *leaf; 1533 unsigned long ptr; 1534 1535 key.objectid = inode_objectid; 1536 key.type = BTRFS_INODE_EXTREF_KEY; 1537 key.offset = start_off; 1538 1539 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1540 if (ret < 0) 1541 return ret; 1542 1543 while (1) { 1544 leaf = path->nodes[0]; 1545 slot = path->slots[0]; 1546 if (slot >= btrfs_header_nritems(leaf)) { 1547 /* 1548 * If the item at offset is not found, 1549 * btrfs_search_slot will point us to the slot 1550 * where it should be inserted. In our case 1551 * that will be the slot directly before the 1552 * next INODE_REF_KEY_V2 item. In the case 1553 * that we're pointing to the last slot in a 1554 * leaf, we must move one leaf over. 1555 */ 1556 ret = btrfs_next_leaf(root, path); 1557 if (ret) { 1558 if (ret >= 1) 1559 ret = -ENOENT; 1560 break; 1561 } 1562 continue; 1563 } 1564 1565 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1566 1567 /* 1568 * Check that we're still looking at an extended ref key for 1569 * this particular objectid. If we have different 1570 * objectid or type then there are no more to be found 1571 * in the tree and we can exit. 1572 */ 1573 ret = -ENOENT; 1574 if (found_key.objectid != inode_objectid) 1575 break; 1576 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1577 break; 1578 1579 ret = 0; 1580 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1581 extref = (struct btrfs_inode_extref *)ptr; 1582 *ret_extref = extref; 1583 if (found_off) 1584 *found_off = found_key.offset; 1585 break; 1586 } 1587 1588 return ret; 1589 } 1590 1591 /* 1592 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1593 * Elements of the path are separated by '/' and the path is guaranteed to be 1594 * 0-terminated. the path is only given within the current file system. 1595 * Therefore, it never starts with a '/'. the caller is responsible to provide 1596 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1597 * the start point of the resulting string is returned. this pointer is within 1598 * dest, normally. 1599 * in case the path buffer would overflow, the pointer is decremented further 1600 * as if output was written to the buffer, though no more output is actually 1601 * generated. that way, the caller can determine how much space would be 1602 * required for the path to fit into the buffer. in that case, the returned 1603 * value will be smaller than dest. callers must check this! 1604 */ 1605 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1606 u32 name_len, unsigned long name_off, 1607 struct extent_buffer *eb_in, u64 parent, 1608 char *dest, u32 size) 1609 { 1610 int slot; 1611 u64 next_inum; 1612 int ret; 1613 s64 bytes_left = ((s64)size) - 1; 1614 struct extent_buffer *eb = eb_in; 1615 struct btrfs_key found_key; 1616 int leave_spinning = path->leave_spinning; 1617 struct btrfs_inode_ref *iref; 1618 1619 if (bytes_left >= 0) 1620 dest[bytes_left] = '\0'; 1621 1622 path->leave_spinning = 1; 1623 while (1) { 1624 bytes_left -= name_len; 1625 if (bytes_left >= 0) 1626 read_extent_buffer(eb, dest + bytes_left, 1627 name_off, name_len); 1628 if (eb != eb_in) { 1629 if (!path->skip_locking) 1630 btrfs_tree_read_unlock_blocking(eb); 1631 free_extent_buffer(eb); 1632 } 1633 ret = btrfs_find_item(fs_root, path, parent, 0, 1634 BTRFS_INODE_REF_KEY, &found_key); 1635 if (ret > 0) 1636 ret = -ENOENT; 1637 if (ret) 1638 break; 1639 1640 next_inum = found_key.offset; 1641 1642 /* regular exit ahead */ 1643 if (parent == next_inum) 1644 break; 1645 1646 slot = path->slots[0]; 1647 eb = path->nodes[0]; 1648 /* make sure we can use eb after releasing the path */ 1649 if (eb != eb_in) { 1650 if (!path->skip_locking) 1651 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1652 path->nodes[0] = NULL; 1653 path->locks[0] = 0; 1654 } 1655 btrfs_release_path(path); 1656 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1657 1658 name_len = btrfs_inode_ref_name_len(eb, iref); 1659 name_off = (unsigned long)(iref + 1); 1660 1661 parent = next_inum; 1662 --bytes_left; 1663 if (bytes_left >= 0) 1664 dest[bytes_left] = '/'; 1665 } 1666 1667 btrfs_release_path(path); 1668 path->leave_spinning = leave_spinning; 1669 1670 if (ret) 1671 return ERR_PTR(ret); 1672 1673 return dest + bytes_left; 1674 } 1675 1676 /* 1677 * this makes the path point to (logical EXTENT_ITEM *) 1678 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1679 * tree blocks and <0 on error. 1680 */ 1681 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1682 struct btrfs_path *path, struct btrfs_key *found_key, 1683 u64 *flags_ret) 1684 { 1685 int ret; 1686 u64 flags; 1687 u64 size = 0; 1688 u32 item_size; 1689 const struct extent_buffer *eb; 1690 struct btrfs_extent_item *ei; 1691 struct btrfs_key key; 1692 1693 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1694 key.type = BTRFS_METADATA_ITEM_KEY; 1695 else 1696 key.type = BTRFS_EXTENT_ITEM_KEY; 1697 key.objectid = logical; 1698 key.offset = (u64)-1; 1699 1700 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1701 if (ret < 0) 1702 return ret; 1703 1704 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1705 if (ret) { 1706 if (ret > 0) 1707 ret = -ENOENT; 1708 return ret; 1709 } 1710 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1711 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1712 size = fs_info->nodesize; 1713 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1714 size = found_key->offset; 1715 1716 if (found_key->objectid > logical || 1717 found_key->objectid + size <= logical) { 1718 btrfs_debug(fs_info, 1719 "logical %llu is not within any extent", logical); 1720 return -ENOENT; 1721 } 1722 1723 eb = path->nodes[0]; 1724 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1725 BUG_ON(item_size < sizeof(*ei)); 1726 1727 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1728 flags = btrfs_extent_flags(eb, ei); 1729 1730 btrfs_debug(fs_info, 1731 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1732 logical, logical - found_key->objectid, found_key->objectid, 1733 found_key->offset, flags, item_size); 1734 1735 WARN_ON(!flags_ret); 1736 if (flags_ret) { 1737 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1738 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1739 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1740 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1741 else 1742 BUG_ON(1); 1743 return 0; 1744 } 1745 1746 return -EIO; 1747 } 1748 1749 /* 1750 * helper function to iterate extent inline refs. ptr must point to a 0 value 1751 * for the first call and may be modified. it is used to track state. 1752 * if more refs exist, 0 is returned and the next call to 1753 * get_extent_inline_ref must pass the modified ptr parameter to get the 1754 * next ref. after the last ref was processed, 1 is returned. 1755 * returns <0 on error 1756 */ 1757 static int get_extent_inline_ref(unsigned long *ptr, 1758 const struct extent_buffer *eb, 1759 const struct btrfs_key *key, 1760 const struct btrfs_extent_item *ei, 1761 u32 item_size, 1762 struct btrfs_extent_inline_ref **out_eiref, 1763 int *out_type) 1764 { 1765 unsigned long end; 1766 u64 flags; 1767 struct btrfs_tree_block_info *info; 1768 1769 if (!*ptr) { 1770 /* first call */ 1771 flags = btrfs_extent_flags(eb, ei); 1772 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1773 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1774 /* a skinny metadata extent */ 1775 *out_eiref = 1776 (struct btrfs_extent_inline_ref *)(ei + 1); 1777 } else { 1778 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1779 info = (struct btrfs_tree_block_info *)(ei + 1); 1780 *out_eiref = 1781 (struct btrfs_extent_inline_ref *)(info + 1); 1782 } 1783 } else { 1784 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1785 } 1786 *ptr = (unsigned long)*out_eiref; 1787 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1788 return -ENOENT; 1789 } 1790 1791 end = (unsigned long)ei + item_size; 1792 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1793 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1794 BTRFS_REF_TYPE_ANY); 1795 if (*out_type == BTRFS_REF_TYPE_INVALID) 1796 return -EUCLEAN; 1797 1798 *ptr += btrfs_extent_inline_ref_size(*out_type); 1799 WARN_ON(*ptr > end); 1800 if (*ptr == end) 1801 return 1; /* last */ 1802 1803 return 0; 1804 } 1805 1806 /* 1807 * reads the tree block backref for an extent. tree level and root are returned 1808 * through out_level and out_root. ptr must point to a 0 value for the first 1809 * call and may be modified (see get_extent_inline_ref comment). 1810 * returns 0 if data was provided, 1 if there was no more data to provide or 1811 * <0 on error. 1812 */ 1813 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1814 struct btrfs_key *key, struct btrfs_extent_item *ei, 1815 u32 item_size, u64 *out_root, u8 *out_level) 1816 { 1817 int ret; 1818 int type; 1819 struct btrfs_extent_inline_ref *eiref; 1820 1821 if (*ptr == (unsigned long)-1) 1822 return 1; 1823 1824 while (1) { 1825 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1826 &eiref, &type); 1827 if (ret < 0) 1828 return ret; 1829 1830 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1831 type == BTRFS_SHARED_BLOCK_REF_KEY) 1832 break; 1833 1834 if (ret == 1) 1835 return 1; 1836 } 1837 1838 /* we can treat both ref types equally here */ 1839 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1840 1841 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1842 struct btrfs_tree_block_info *info; 1843 1844 info = (struct btrfs_tree_block_info *)(ei + 1); 1845 *out_level = btrfs_tree_block_level(eb, info); 1846 } else { 1847 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1848 *out_level = (u8)key->offset; 1849 } 1850 1851 if (ret == 1) 1852 *ptr = (unsigned long)-1; 1853 1854 return 0; 1855 } 1856 1857 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1858 struct extent_inode_elem *inode_list, 1859 u64 root, u64 extent_item_objectid, 1860 iterate_extent_inodes_t *iterate, void *ctx) 1861 { 1862 struct extent_inode_elem *eie; 1863 int ret = 0; 1864 1865 for (eie = inode_list; eie; eie = eie->next) { 1866 btrfs_debug(fs_info, 1867 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1868 extent_item_objectid, eie->inum, 1869 eie->offset, root); 1870 ret = iterate(eie->inum, eie->offset, root, ctx); 1871 if (ret) { 1872 btrfs_debug(fs_info, 1873 "stopping iteration for %llu due to ret=%d", 1874 extent_item_objectid, ret); 1875 break; 1876 } 1877 } 1878 1879 return ret; 1880 } 1881 1882 /* 1883 * calls iterate() for every inode that references the extent identified by 1884 * the given parameters. 1885 * when the iterator function returns a non-zero value, iteration stops. 1886 */ 1887 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1888 u64 extent_item_objectid, u64 extent_item_pos, 1889 int search_commit_root, 1890 iterate_extent_inodes_t *iterate, void *ctx, 1891 bool ignore_offset) 1892 { 1893 int ret; 1894 struct btrfs_trans_handle *trans = NULL; 1895 struct ulist *refs = NULL; 1896 struct ulist *roots = NULL; 1897 struct ulist_node *ref_node = NULL; 1898 struct ulist_node *root_node = NULL; 1899 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 1900 struct ulist_iterator ref_uiter; 1901 struct ulist_iterator root_uiter; 1902 1903 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 1904 extent_item_objectid); 1905 1906 if (!search_commit_root) { 1907 trans = btrfs_join_transaction(fs_info->extent_root); 1908 if (IS_ERR(trans)) 1909 return PTR_ERR(trans); 1910 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1911 } else { 1912 down_read(&fs_info->commit_root_sem); 1913 } 1914 1915 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1916 tree_mod_seq_elem.seq, &refs, 1917 &extent_item_pos, ignore_offset); 1918 if (ret) 1919 goto out; 1920 1921 ULIST_ITER_INIT(&ref_uiter); 1922 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1923 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 1924 tree_mod_seq_elem.seq, &roots, 1925 ignore_offset); 1926 if (ret) 1927 break; 1928 ULIST_ITER_INIT(&root_uiter); 1929 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1930 btrfs_debug(fs_info, 1931 "root %llu references leaf %llu, data list %#llx", 1932 root_node->val, ref_node->val, 1933 ref_node->aux); 1934 ret = iterate_leaf_refs(fs_info, 1935 (struct extent_inode_elem *) 1936 (uintptr_t)ref_node->aux, 1937 root_node->val, 1938 extent_item_objectid, 1939 iterate, ctx); 1940 } 1941 ulist_free(roots); 1942 } 1943 1944 free_leaf_list(refs); 1945 out: 1946 if (!search_commit_root) { 1947 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1948 btrfs_end_transaction(trans); 1949 } else { 1950 up_read(&fs_info->commit_root_sem); 1951 } 1952 1953 return ret; 1954 } 1955 1956 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1957 struct btrfs_path *path, 1958 iterate_extent_inodes_t *iterate, void *ctx, 1959 bool ignore_offset) 1960 { 1961 int ret; 1962 u64 extent_item_pos; 1963 u64 flags = 0; 1964 struct btrfs_key found_key; 1965 int search_commit_root = path->search_commit_root; 1966 1967 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1968 btrfs_release_path(path); 1969 if (ret < 0) 1970 return ret; 1971 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1972 return -EINVAL; 1973 1974 extent_item_pos = logical - found_key.objectid; 1975 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1976 extent_item_pos, search_commit_root, 1977 iterate, ctx, ignore_offset); 1978 1979 return ret; 1980 } 1981 1982 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1983 struct extent_buffer *eb, void *ctx); 1984 1985 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1986 struct btrfs_path *path, 1987 iterate_irefs_t *iterate, void *ctx) 1988 { 1989 int ret = 0; 1990 int slot; 1991 u32 cur; 1992 u32 len; 1993 u32 name_len; 1994 u64 parent = 0; 1995 int found = 0; 1996 struct extent_buffer *eb; 1997 struct btrfs_item *item; 1998 struct btrfs_inode_ref *iref; 1999 struct btrfs_key found_key; 2000 2001 while (!ret) { 2002 ret = btrfs_find_item(fs_root, path, inum, 2003 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2004 &found_key); 2005 2006 if (ret < 0) 2007 break; 2008 if (ret) { 2009 ret = found ? 0 : -ENOENT; 2010 break; 2011 } 2012 ++found; 2013 2014 parent = found_key.offset; 2015 slot = path->slots[0]; 2016 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2017 if (!eb) { 2018 ret = -ENOMEM; 2019 break; 2020 } 2021 extent_buffer_get(eb); 2022 btrfs_tree_read_lock(eb); 2023 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 2024 btrfs_release_path(path); 2025 2026 item = btrfs_item_nr(slot); 2027 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2028 2029 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 2030 name_len = btrfs_inode_ref_name_len(eb, iref); 2031 /* path must be released before calling iterate()! */ 2032 btrfs_debug(fs_root->fs_info, 2033 "following ref at offset %u for inode %llu in tree %llu", 2034 cur, found_key.objectid, fs_root->objectid); 2035 ret = iterate(parent, name_len, 2036 (unsigned long)(iref + 1), eb, ctx); 2037 if (ret) 2038 break; 2039 len = sizeof(*iref) + name_len; 2040 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2041 } 2042 btrfs_tree_read_unlock_blocking(eb); 2043 free_extent_buffer(eb); 2044 } 2045 2046 btrfs_release_path(path); 2047 2048 return ret; 2049 } 2050 2051 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2052 struct btrfs_path *path, 2053 iterate_irefs_t *iterate, void *ctx) 2054 { 2055 int ret; 2056 int slot; 2057 u64 offset = 0; 2058 u64 parent; 2059 int found = 0; 2060 struct extent_buffer *eb; 2061 struct btrfs_inode_extref *extref; 2062 u32 item_size; 2063 u32 cur_offset; 2064 unsigned long ptr; 2065 2066 while (1) { 2067 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2068 &offset); 2069 if (ret < 0) 2070 break; 2071 if (ret) { 2072 ret = found ? 0 : -ENOENT; 2073 break; 2074 } 2075 ++found; 2076 2077 slot = path->slots[0]; 2078 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2079 if (!eb) { 2080 ret = -ENOMEM; 2081 break; 2082 } 2083 extent_buffer_get(eb); 2084 2085 btrfs_tree_read_lock(eb); 2086 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 2087 btrfs_release_path(path); 2088 2089 item_size = btrfs_item_size_nr(eb, slot); 2090 ptr = btrfs_item_ptr_offset(eb, slot); 2091 cur_offset = 0; 2092 2093 while (cur_offset < item_size) { 2094 u32 name_len; 2095 2096 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2097 parent = btrfs_inode_extref_parent(eb, extref); 2098 name_len = btrfs_inode_extref_name_len(eb, extref); 2099 ret = iterate(parent, name_len, 2100 (unsigned long)&extref->name, eb, ctx); 2101 if (ret) 2102 break; 2103 2104 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2105 cur_offset += sizeof(*extref); 2106 } 2107 btrfs_tree_read_unlock_blocking(eb); 2108 free_extent_buffer(eb); 2109 2110 offset++; 2111 } 2112 2113 btrfs_release_path(path); 2114 2115 return ret; 2116 } 2117 2118 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2119 struct btrfs_path *path, iterate_irefs_t *iterate, 2120 void *ctx) 2121 { 2122 int ret; 2123 int found_refs = 0; 2124 2125 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2126 if (!ret) 2127 ++found_refs; 2128 else if (ret != -ENOENT) 2129 return ret; 2130 2131 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2132 if (ret == -ENOENT && found_refs) 2133 return 0; 2134 2135 return ret; 2136 } 2137 2138 /* 2139 * returns 0 if the path could be dumped (probably truncated) 2140 * returns <0 in case of an error 2141 */ 2142 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2143 struct extent_buffer *eb, void *ctx) 2144 { 2145 struct inode_fs_paths *ipath = ctx; 2146 char *fspath; 2147 char *fspath_min; 2148 int i = ipath->fspath->elem_cnt; 2149 const int s_ptr = sizeof(char *); 2150 u32 bytes_left; 2151 2152 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2153 ipath->fspath->bytes_left - s_ptr : 0; 2154 2155 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2156 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2157 name_off, eb, inum, fspath_min, bytes_left); 2158 if (IS_ERR(fspath)) 2159 return PTR_ERR(fspath); 2160 2161 if (fspath > fspath_min) { 2162 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2163 ++ipath->fspath->elem_cnt; 2164 ipath->fspath->bytes_left = fspath - fspath_min; 2165 } else { 2166 ++ipath->fspath->elem_missed; 2167 ipath->fspath->bytes_missing += fspath_min - fspath; 2168 ipath->fspath->bytes_left = 0; 2169 } 2170 2171 return 0; 2172 } 2173 2174 /* 2175 * this dumps all file system paths to the inode into the ipath struct, provided 2176 * is has been created large enough. each path is zero-terminated and accessed 2177 * from ipath->fspath->val[i]. 2178 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2179 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2180 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2181 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2182 * have been needed to return all paths. 2183 */ 2184 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2185 { 2186 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2187 inode_to_path, ipath); 2188 } 2189 2190 struct btrfs_data_container *init_data_container(u32 total_bytes) 2191 { 2192 struct btrfs_data_container *data; 2193 size_t alloc_bytes; 2194 2195 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2196 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2197 if (!data) 2198 return ERR_PTR(-ENOMEM); 2199 2200 if (total_bytes >= sizeof(*data)) { 2201 data->bytes_left = total_bytes - sizeof(*data); 2202 data->bytes_missing = 0; 2203 } else { 2204 data->bytes_missing = sizeof(*data) - total_bytes; 2205 data->bytes_left = 0; 2206 } 2207 2208 data->elem_cnt = 0; 2209 data->elem_missed = 0; 2210 2211 return data; 2212 } 2213 2214 /* 2215 * allocates space to return multiple file system paths for an inode. 2216 * total_bytes to allocate are passed, note that space usable for actual path 2217 * information will be total_bytes - sizeof(struct inode_fs_paths). 2218 * the returned pointer must be freed with free_ipath() in the end. 2219 */ 2220 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2221 struct btrfs_path *path) 2222 { 2223 struct inode_fs_paths *ifp; 2224 struct btrfs_data_container *fspath; 2225 2226 fspath = init_data_container(total_bytes); 2227 if (IS_ERR(fspath)) 2228 return ERR_CAST(fspath); 2229 2230 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2231 if (!ifp) { 2232 kvfree(fspath); 2233 return ERR_PTR(-ENOMEM); 2234 } 2235 2236 ifp->btrfs_path = path; 2237 ifp->fspath = fspath; 2238 ifp->fs_root = fs_root; 2239 2240 return ifp; 2241 } 2242 2243 void free_ipath(struct inode_fs_paths *ipath) 2244 { 2245 if (!ipath) 2246 return; 2247 kvfree(ipath->fspath); 2248 kfree(ipath); 2249 } 2250