xref: /openbmc/linux/fs/btrfs/backref.c (revision 1c2f87c2)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27 
28 struct extent_inode_elem {
29 	u64 inum;
30 	u64 offset;
31 	struct extent_inode_elem *next;
32 };
33 
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 				struct btrfs_file_extent_item *fi,
36 				u64 extent_item_pos,
37 				struct extent_inode_elem **eie)
38 {
39 	u64 offset = 0;
40 	struct extent_inode_elem *e;
41 
42 	if (!btrfs_file_extent_compression(eb, fi) &&
43 	    !btrfs_file_extent_encryption(eb, fi) &&
44 	    !btrfs_file_extent_other_encoding(eb, fi)) {
45 		u64 data_offset;
46 		u64 data_len;
47 
48 		data_offset = btrfs_file_extent_offset(eb, fi);
49 		data_len = btrfs_file_extent_num_bytes(eb, fi);
50 
51 		if (extent_item_pos < data_offset ||
52 		    extent_item_pos >= data_offset + data_len)
53 			return 1;
54 		offset = extent_item_pos - data_offset;
55 	}
56 
57 	e = kmalloc(sizeof(*e), GFP_NOFS);
58 	if (!e)
59 		return -ENOMEM;
60 
61 	e->next = *eie;
62 	e->inum = key->objectid;
63 	e->offset = key->offset + offset;
64 	*eie = e;
65 
66 	return 0;
67 }
68 
69 static void free_inode_elem_list(struct extent_inode_elem *eie)
70 {
71 	struct extent_inode_elem *eie_next;
72 
73 	for (; eie; eie = eie_next) {
74 		eie_next = eie->next;
75 		kfree(eie);
76 	}
77 }
78 
79 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
80 				u64 extent_item_pos,
81 				struct extent_inode_elem **eie)
82 {
83 	u64 disk_byte;
84 	struct btrfs_key key;
85 	struct btrfs_file_extent_item *fi;
86 	int slot;
87 	int nritems;
88 	int extent_type;
89 	int ret;
90 
91 	/*
92 	 * from the shared data ref, we only have the leaf but we need
93 	 * the key. thus, we must look into all items and see that we
94 	 * find one (some) with a reference to our extent item.
95 	 */
96 	nritems = btrfs_header_nritems(eb);
97 	for (slot = 0; slot < nritems; ++slot) {
98 		btrfs_item_key_to_cpu(eb, &key, slot);
99 		if (key.type != BTRFS_EXTENT_DATA_KEY)
100 			continue;
101 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
102 		extent_type = btrfs_file_extent_type(eb, fi);
103 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
104 			continue;
105 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
106 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
107 		if (disk_byte != wanted_disk_byte)
108 			continue;
109 
110 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
111 		if (ret < 0)
112 			return ret;
113 	}
114 
115 	return 0;
116 }
117 
118 /*
119  * this structure records all encountered refs on the way up to the root
120  */
121 struct __prelim_ref {
122 	struct list_head list;
123 	u64 root_id;
124 	struct btrfs_key key_for_search;
125 	int level;
126 	int count;
127 	struct extent_inode_elem *inode_list;
128 	u64 parent;
129 	u64 wanted_disk_byte;
130 };
131 
132 static struct kmem_cache *btrfs_prelim_ref_cache;
133 
134 int __init btrfs_prelim_ref_init(void)
135 {
136 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
137 					sizeof(struct __prelim_ref),
138 					0,
139 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
140 					NULL);
141 	if (!btrfs_prelim_ref_cache)
142 		return -ENOMEM;
143 	return 0;
144 }
145 
146 void btrfs_prelim_ref_exit(void)
147 {
148 	if (btrfs_prelim_ref_cache)
149 		kmem_cache_destroy(btrfs_prelim_ref_cache);
150 }
151 
152 /*
153  * the rules for all callers of this function are:
154  * - obtaining the parent is the goal
155  * - if you add a key, you must know that it is a correct key
156  * - if you cannot add the parent or a correct key, then we will look into the
157  *   block later to set a correct key
158  *
159  * delayed refs
160  * ============
161  *        backref type | shared | indirect | shared | indirect
162  * information         |   tree |     tree |   data |     data
163  * --------------------+--------+----------+--------+----------
164  *      parent logical |    y   |     -    |    -   |     -
165  *      key to resolve |    -   |     y    |    y   |     y
166  *  tree block logical |    -   |     -    |    -   |     -
167  *  root for resolving |    y   |     y    |    y   |     y
168  *
169  * - column 1:       we've the parent -> done
170  * - column 2, 3, 4: we use the key to find the parent
171  *
172  * on disk refs (inline or keyed)
173  * ==============================
174  *        backref type | shared | indirect | shared | indirect
175  * information         |   tree |     tree |   data |     data
176  * --------------------+--------+----------+--------+----------
177  *      parent logical |    y   |     -    |    y   |     -
178  *      key to resolve |    -   |     -    |    -   |     y
179  *  tree block logical |    y   |     y    |    y   |     y
180  *  root for resolving |    -   |     y    |    y   |     y
181  *
182  * - column 1, 3: we've the parent -> done
183  * - column 2:    we take the first key from the block to find the parent
184  *                (see __add_missing_keys)
185  * - column 4:    we use the key to find the parent
186  *
187  * additional information that's available but not required to find the parent
188  * block might help in merging entries to gain some speed.
189  */
190 
191 static int __add_prelim_ref(struct list_head *head, u64 root_id,
192 			    struct btrfs_key *key, int level,
193 			    u64 parent, u64 wanted_disk_byte, int count,
194 			    gfp_t gfp_mask)
195 {
196 	struct __prelim_ref *ref;
197 
198 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
199 		return 0;
200 
201 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
202 	if (!ref)
203 		return -ENOMEM;
204 
205 	ref->root_id = root_id;
206 	if (key)
207 		ref->key_for_search = *key;
208 	else
209 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
210 
211 	ref->inode_list = NULL;
212 	ref->level = level;
213 	ref->count = count;
214 	ref->parent = parent;
215 	ref->wanted_disk_byte = wanted_disk_byte;
216 	list_add_tail(&ref->list, head);
217 
218 	return 0;
219 }
220 
221 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
222 			   struct ulist *parents, struct __prelim_ref *ref,
223 			   int level, u64 time_seq, const u64 *extent_item_pos,
224 			   u64 total_refs)
225 {
226 	int ret = 0;
227 	int slot;
228 	struct extent_buffer *eb;
229 	struct btrfs_key key;
230 	struct btrfs_key *key_for_search = &ref->key_for_search;
231 	struct btrfs_file_extent_item *fi;
232 	struct extent_inode_elem *eie = NULL, *old = NULL;
233 	u64 disk_byte;
234 	u64 wanted_disk_byte = ref->wanted_disk_byte;
235 	u64 count = 0;
236 
237 	if (level != 0) {
238 		eb = path->nodes[level];
239 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
240 		if (ret < 0)
241 			return ret;
242 		return 0;
243 	}
244 
245 	/*
246 	 * We normally enter this function with the path already pointing to
247 	 * the first item to check. But sometimes, we may enter it with
248 	 * slot==nritems. In that case, go to the next leaf before we continue.
249 	 */
250 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
251 		ret = btrfs_next_old_leaf(root, path, time_seq);
252 
253 	while (!ret && count < total_refs) {
254 		eb = path->nodes[0];
255 		slot = path->slots[0];
256 
257 		btrfs_item_key_to_cpu(eb, &key, slot);
258 
259 		if (key.objectid != key_for_search->objectid ||
260 		    key.type != BTRFS_EXTENT_DATA_KEY)
261 			break;
262 
263 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
264 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
265 
266 		if (disk_byte == wanted_disk_byte) {
267 			eie = NULL;
268 			old = NULL;
269 			count++;
270 			if (extent_item_pos) {
271 				ret = check_extent_in_eb(&key, eb, fi,
272 						*extent_item_pos,
273 						&eie);
274 				if (ret < 0)
275 					break;
276 			}
277 			if (ret > 0)
278 				goto next;
279 			ret = ulist_add_merge(parents, eb->start,
280 					      (uintptr_t)eie,
281 					      (u64 *)&old, GFP_NOFS);
282 			if (ret < 0)
283 				break;
284 			if (!ret && extent_item_pos) {
285 				while (old->next)
286 					old = old->next;
287 				old->next = eie;
288 			}
289 			eie = NULL;
290 		}
291 next:
292 		ret = btrfs_next_old_item(root, path, time_seq);
293 	}
294 
295 	if (ret > 0)
296 		ret = 0;
297 	else if (ret < 0)
298 		free_inode_elem_list(eie);
299 	return ret;
300 }
301 
302 /*
303  * resolve an indirect backref in the form (root_id, key, level)
304  * to a logical address
305  */
306 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
307 				  struct btrfs_path *path, u64 time_seq,
308 				  struct __prelim_ref *ref,
309 				  struct ulist *parents,
310 				  const u64 *extent_item_pos, u64 total_refs)
311 {
312 	struct btrfs_root *root;
313 	struct btrfs_key root_key;
314 	struct extent_buffer *eb;
315 	int ret = 0;
316 	int root_level;
317 	int level = ref->level;
318 	int index;
319 
320 	root_key.objectid = ref->root_id;
321 	root_key.type = BTRFS_ROOT_ITEM_KEY;
322 	root_key.offset = (u64)-1;
323 
324 	index = srcu_read_lock(&fs_info->subvol_srcu);
325 
326 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
327 	if (IS_ERR(root)) {
328 		srcu_read_unlock(&fs_info->subvol_srcu, index);
329 		ret = PTR_ERR(root);
330 		goto out;
331 	}
332 
333 	if (path->search_commit_root)
334 		root_level = btrfs_header_level(root->commit_root);
335 	else
336 		root_level = btrfs_old_root_level(root, time_seq);
337 
338 	if (root_level + 1 == level) {
339 		srcu_read_unlock(&fs_info->subvol_srcu, index);
340 		goto out;
341 	}
342 
343 	path->lowest_level = level;
344 	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
345 
346 	/* root node has been locked, we can release @subvol_srcu safely here */
347 	srcu_read_unlock(&fs_info->subvol_srcu, index);
348 
349 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
350 		 "%d for key (%llu %u %llu)\n",
351 		 ref->root_id, level, ref->count, ret,
352 		 ref->key_for_search.objectid, ref->key_for_search.type,
353 		 ref->key_for_search.offset);
354 	if (ret < 0)
355 		goto out;
356 
357 	eb = path->nodes[level];
358 	while (!eb) {
359 		if (WARN_ON(!level)) {
360 			ret = 1;
361 			goto out;
362 		}
363 		level--;
364 		eb = path->nodes[level];
365 	}
366 
367 	ret = add_all_parents(root, path, parents, ref, level, time_seq,
368 			      extent_item_pos, total_refs);
369 out:
370 	path->lowest_level = 0;
371 	btrfs_release_path(path);
372 	return ret;
373 }
374 
375 /*
376  * resolve all indirect backrefs from the list
377  */
378 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
379 				   struct btrfs_path *path, u64 time_seq,
380 				   struct list_head *head,
381 				   const u64 *extent_item_pos, u64 total_refs)
382 {
383 	int err;
384 	int ret = 0;
385 	struct __prelim_ref *ref;
386 	struct __prelim_ref *ref_safe;
387 	struct __prelim_ref *new_ref;
388 	struct ulist *parents;
389 	struct ulist_node *node;
390 	struct ulist_iterator uiter;
391 
392 	parents = ulist_alloc(GFP_NOFS);
393 	if (!parents)
394 		return -ENOMEM;
395 
396 	/*
397 	 * _safe allows us to insert directly after the current item without
398 	 * iterating over the newly inserted items.
399 	 * we're also allowed to re-assign ref during iteration.
400 	 */
401 	list_for_each_entry_safe(ref, ref_safe, head, list) {
402 		if (ref->parent)	/* already direct */
403 			continue;
404 		if (ref->count == 0)
405 			continue;
406 		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
407 					     parents, extent_item_pos,
408 					     total_refs);
409 		/*
410 		 * we can only tolerate ENOENT,otherwise,we should catch error
411 		 * and return directly.
412 		 */
413 		if (err == -ENOENT) {
414 			continue;
415 		} else if (err) {
416 			ret = err;
417 			goto out;
418 		}
419 
420 		/* we put the first parent into the ref at hand */
421 		ULIST_ITER_INIT(&uiter);
422 		node = ulist_next(parents, &uiter);
423 		ref->parent = node ? node->val : 0;
424 		ref->inode_list = node ?
425 			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
426 
427 		/* additional parents require new refs being added here */
428 		while ((node = ulist_next(parents, &uiter))) {
429 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
430 						   GFP_NOFS);
431 			if (!new_ref) {
432 				ret = -ENOMEM;
433 				goto out;
434 			}
435 			memcpy(new_ref, ref, sizeof(*ref));
436 			new_ref->parent = node->val;
437 			new_ref->inode_list = (struct extent_inode_elem *)
438 							(uintptr_t)node->aux;
439 			list_add(&new_ref->list, &ref->list);
440 		}
441 		ulist_reinit(parents);
442 	}
443 out:
444 	ulist_free(parents);
445 	return ret;
446 }
447 
448 static inline int ref_for_same_block(struct __prelim_ref *ref1,
449 				     struct __prelim_ref *ref2)
450 {
451 	if (ref1->level != ref2->level)
452 		return 0;
453 	if (ref1->root_id != ref2->root_id)
454 		return 0;
455 	if (ref1->key_for_search.type != ref2->key_for_search.type)
456 		return 0;
457 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
458 		return 0;
459 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
460 		return 0;
461 	if (ref1->parent != ref2->parent)
462 		return 0;
463 
464 	return 1;
465 }
466 
467 /*
468  * read tree blocks and add keys where required.
469  */
470 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
471 			      struct list_head *head)
472 {
473 	struct list_head *pos;
474 	struct extent_buffer *eb;
475 
476 	list_for_each(pos, head) {
477 		struct __prelim_ref *ref;
478 		ref = list_entry(pos, struct __prelim_ref, list);
479 
480 		if (ref->parent)
481 			continue;
482 		if (ref->key_for_search.type)
483 			continue;
484 		BUG_ON(!ref->wanted_disk_byte);
485 		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
486 				     fs_info->tree_root->leafsize, 0);
487 		if (!eb || !extent_buffer_uptodate(eb)) {
488 			free_extent_buffer(eb);
489 			return -EIO;
490 		}
491 		btrfs_tree_read_lock(eb);
492 		if (btrfs_header_level(eb) == 0)
493 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
494 		else
495 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
496 		btrfs_tree_read_unlock(eb);
497 		free_extent_buffer(eb);
498 	}
499 	return 0;
500 }
501 
502 /*
503  * merge two lists of backrefs and adjust counts accordingly
504  *
505  * mode = 1: merge identical keys, if key is set
506  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
507  *           additionally, we could even add a key range for the blocks we
508  *           looked into to merge even more (-> replace unresolved refs by those
509  *           having a parent).
510  * mode = 2: merge identical parents
511  */
512 static void __merge_refs(struct list_head *head, int mode)
513 {
514 	struct list_head *pos1;
515 
516 	list_for_each(pos1, head) {
517 		struct list_head *n2;
518 		struct list_head *pos2;
519 		struct __prelim_ref *ref1;
520 
521 		ref1 = list_entry(pos1, struct __prelim_ref, list);
522 
523 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
524 		     pos2 = n2, n2 = pos2->next) {
525 			struct __prelim_ref *ref2;
526 			struct __prelim_ref *xchg;
527 			struct extent_inode_elem *eie;
528 
529 			ref2 = list_entry(pos2, struct __prelim_ref, list);
530 
531 			if (mode == 1) {
532 				if (!ref_for_same_block(ref1, ref2))
533 					continue;
534 				if (!ref1->parent && ref2->parent) {
535 					xchg = ref1;
536 					ref1 = ref2;
537 					ref2 = xchg;
538 				}
539 			} else {
540 				if (ref1->parent != ref2->parent)
541 					continue;
542 			}
543 
544 			eie = ref1->inode_list;
545 			while (eie && eie->next)
546 				eie = eie->next;
547 			if (eie)
548 				eie->next = ref2->inode_list;
549 			else
550 				ref1->inode_list = ref2->inode_list;
551 			ref1->count += ref2->count;
552 
553 			list_del(&ref2->list);
554 			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
555 		}
556 
557 	}
558 }
559 
560 /*
561  * add all currently queued delayed refs from this head whose seq nr is
562  * smaller or equal that seq to the list
563  */
564 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
565 			      struct list_head *prefs, u64 *total_refs)
566 {
567 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
568 	struct rb_node *n = &head->node.rb_node;
569 	struct btrfs_key key;
570 	struct btrfs_key op_key = {0};
571 	int sgn;
572 	int ret = 0;
573 
574 	if (extent_op && extent_op->update_key)
575 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
576 
577 	spin_lock(&head->lock);
578 	n = rb_first(&head->ref_root);
579 	while (n) {
580 		struct btrfs_delayed_ref_node *node;
581 		node = rb_entry(n, struct btrfs_delayed_ref_node,
582 				rb_node);
583 		n = rb_next(n);
584 		if (node->seq > seq)
585 			continue;
586 
587 		switch (node->action) {
588 		case BTRFS_ADD_DELAYED_EXTENT:
589 		case BTRFS_UPDATE_DELAYED_HEAD:
590 			WARN_ON(1);
591 			continue;
592 		case BTRFS_ADD_DELAYED_REF:
593 			sgn = 1;
594 			break;
595 		case BTRFS_DROP_DELAYED_REF:
596 			sgn = -1;
597 			break;
598 		default:
599 			BUG_ON(1);
600 		}
601 		*total_refs += (node->ref_mod * sgn);
602 		switch (node->type) {
603 		case BTRFS_TREE_BLOCK_REF_KEY: {
604 			struct btrfs_delayed_tree_ref *ref;
605 
606 			ref = btrfs_delayed_node_to_tree_ref(node);
607 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
608 					       ref->level + 1, 0, node->bytenr,
609 					       node->ref_mod * sgn, GFP_ATOMIC);
610 			break;
611 		}
612 		case BTRFS_SHARED_BLOCK_REF_KEY: {
613 			struct btrfs_delayed_tree_ref *ref;
614 
615 			ref = btrfs_delayed_node_to_tree_ref(node);
616 			ret = __add_prelim_ref(prefs, ref->root, NULL,
617 					       ref->level + 1, ref->parent,
618 					       node->bytenr,
619 					       node->ref_mod * sgn, GFP_ATOMIC);
620 			break;
621 		}
622 		case BTRFS_EXTENT_DATA_REF_KEY: {
623 			struct btrfs_delayed_data_ref *ref;
624 			ref = btrfs_delayed_node_to_data_ref(node);
625 
626 			key.objectid = ref->objectid;
627 			key.type = BTRFS_EXTENT_DATA_KEY;
628 			key.offset = ref->offset;
629 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
630 					       node->bytenr,
631 					       node->ref_mod * sgn, GFP_ATOMIC);
632 			break;
633 		}
634 		case BTRFS_SHARED_DATA_REF_KEY: {
635 			struct btrfs_delayed_data_ref *ref;
636 
637 			ref = btrfs_delayed_node_to_data_ref(node);
638 
639 			key.objectid = ref->objectid;
640 			key.type = BTRFS_EXTENT_DATA_KEY;
641 			key.offset = ref->offset;
642 			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
643 					       ref->parent, node->bytenr,
644 					       node->ref_mod * sgn, GFP_ATOMIC);
645 			break;
646 		}
647 		default:
648 			WARN_ON(1);
649 		}
650 		if (ret)
651 			break;
652 	}
653 	spin_unlock(&head->lock);
654 	return ret;
655 }
656 
657 /*
658  * add all inline backrefs for bytenr to the list
659  */
660 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
661 			     struct btrfs_path *path, u64 bytenr,
662 			     int *info_level, struct list_head *prefs,
663 			     u64 *total_refs)
664 {
665 	int ret = 0;
666 	int slot;
667 	struct extent_buffer *leaf;
668 	struct btrfs_key key;
669 	struct btrfs_key found_key;
670 	unsigned long ptr;
671 	unsigned long end;
672 	struct btrfs_extent_item *ei;
673 	u64 flags;
674 	u64 item_size;
675 
676 	/*
677 	 * enumerate all inline refs
678 	 */
679 	leaf = path->nodes[0];
680 	slot = path->slots[0];
681 
682 	item_size = btrfs_item_size_nr(leaf, slot);
683 	BUG_ON(item_size < sizeof(*ei));
684 
685 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
686 	flags = btrfs_extent_flags(leaf, ei);
687 	*total_refs += btrfs_extent_refs(leaf, ei);
688 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
689 
690 	ptr = (unsigned long)(ei + 1);
691 	end = (unsigned long)ei + item_size;
692 
693 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
694 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
695 		struct btrfs_tree_block_info *info;
696 
697 		info = (struct btrfs_tree_block_info *)ptr;
698 		*info_level = btrfs_tree_block_level(leaf, info);
699 		ptr += sizeof(struct btrfs_tree_block_info);
700 		BUG_ON(ptr > end);
701 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
702 		*info_level = found_key.offset;
703 	} else {
704 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
705 	}
706 
707 	while (ptr < end) {
708 		struct btrfs_extent_inline_ref *iref;
709 		u64 offset;
710 		int type;
711 
712 		iref = (struct btrfs_extent_inline_ref *)ptr;
713 		type = btrfs_extent_inline_ref_type(leaf, iref);
714 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
715 
716 		switch (type) {
717 		case BTRFS_SHARED_BLOCK_REF_KEY:
718 			ret = __add_prelim_ref(prefs, 0, NULL,
719 						*info_level + 1, offset,
720 						bytenr, 1, GFP_NOFS);
721 			break;
722 		case BTRFS_SHARED_DATA_REF_KEY: {
723 			struct btrfs_shared_data_ref *sdref;
724 			int count;
725 
726 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
727 			count = btrfs_shared_data_ref_count(leaf, sdref);
728 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
729 					       bytenr, count, GFP_NOFS);
730 			break;
731 		}
732 		case BTRFS_TREE_BLOCK_REF_KEY:
733 			ret = __add_prelim_ref(prefs, offset, NULL,
734 					       *info_level + 1, 0,
735 					       bytenr, 1, GFP_NOFS);
736 			break;
737 		case BTRFS_EXTENT_DATA_REF_KEY: {
738 			struct btrfs_extent_data_ref *dref;
739 			int count;
740 			u64 root;
741 
742 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
743 			count = btrfs_extent_data_ref_count(leaf, dref);
744 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
745 								      dref);
746 			key.type = BTRFS_EXTENT_DATA_KEY;
747 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
748 			root = btrfs_extent_data_ref_root(leaf, dref);
749 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
750 					       bytenr, count, GFP_NOFS);
751 			break;
752 		}
753 		default:
754 			WARN_ON(1);
755 		}
756 		if (ret)
757 			return ret;
758 		ptr += btrfs_extent_inline_ref_size(type);
759 	}
760 
761 	return 0;
762 }
763 
764 /*
765  * add all non-inline backrefs for bytenr to the list
766  */
767 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
768 			    struct btrfs_path *path, u64 bytenr,
769 			    int info_level, struct list_head *prefs)
770 {
771 	struct btrfs_root *extent_root = fs_info->extent_root;
772 	int ret;
773 	int slot;
774 	struct extent_buffer *leaf;
775 	struct btrfs_key key;
776 
777 	while (1) {
778 		ret = btrfs_next_item(extent_root, path);
779 		if (ret < 0)
780 			break;
781 		if (ret) {
782 			ret = 0;
783 			break;
784 		}
785 
786 		slot = path->slots[0];
787 		leaf = path->nodes[0];
788 		btrfs_item_key_to_cpu(leaf, &key, slot);
789 
790 		if (key.objectid != bytenr)
791 			break;
792 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
793 			continue;
794 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
795 			break;
796 
797 		switch (key.type) {
798 		case BTRFS_SHARED_BLOCK_REF_KEY:
799 			ret = __add_prelim_ref(prefs, 0, NULL,
800 						info_level + 1, key.offset,
801 						bytenr, 1, GFP_NOFS);
802 			break;
803 		case BTRFS_SHARED_DATA_REF_KEY: {
804 			struct btrfs_shared_data_ref *sdref;
805 			int count;
806 
807 			sdref = btrfs_item_ptr(leaf, slot,
808 					      struct btrfs_shared_data_ref);
809 			count = btrfs_shared_data_ref_count(leaf, sdref);
810 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
811 						bytenr, count, GFP_NOFS);
812 			break;
813 		}
814 		case BTRFS_TREE_BLOCK_REF_KEY:
815 			ret = __add_prelim_ref(prefs, key.offset, NULL,
816 					       info_level + 1, 0,
817 					       bytenr, 1, GFP_NOFS);
818 			break;
819 		case BTRFS_EXTENT_DATA_REF_KEY: {
820 			struct btrfs_extent_data_ref *dref;
821 			int count;
822 			u64 root;
823 
824 			dref = btrfs_item_ptr(leaf, slot,
825 					      struct btrfs_extent_data_ref);
826 			count = btrfs_extent_data_ref_count(leaf, dref);
827 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
828 								      dref);
829 			key.type = BTRFS_EXTENT_DATA_KEY;
830 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
831 			root = btrfs_extent_data_ref_root(leaf, dref);
832 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
833 					       bytenr, count, GFP_NOFS);
834 			break;
835 		}
836 		default:
837 			WARN_ON(1);
838 		}
839 		if (ret)
840 			return ret;
841 
842 	}
843 
844 	return ret;
845 }
846 
847 /*
848  * this adds all existing backrefs (inline backrefs, backrefs and delayed
849  * refs) for the given bytenr to the refs list, merges duplicates and resolves
850  * indirect refs to their parent bytenr.
851  * When roots are found, they're added to the roots list
852  *
853  * FIXME some caching might speed things up
854  */
855 static int find_parent_nodes(struct btrfs_trans_handle *trans,
856 			     struct btrfs_fs_info *fs_info, u64 bytenr,
857 			     u64 time_seq, struct ulist *refs,
858 			     struct ulist *roots, const u64 *extent_item_pos)
859 {
860 	struct btrfs_key key;
861 	struct btrfs_path *path;
862 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
863 	struct btrfs_delayed_ref_head *head;
864 	int info_level = 0;
865 	int ret;
866 	struct list_head prefs_delayed;
867 	struct list_head prefs;
868 	struct __prelim_ref *ref;
869 	struct extent_inode_elem *eie = NULL;
870 	u64 total_refs = 0;
871 
872 	INIT_LIST_HEAD(&prefs);
873 	INIT_LIST_HEAD(&prefs_delayed);
874 
875 	key.objectid = bytenr;
876 	key.offset = (u64)-1;
877 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
878 		key.type = BTRFS_METADATA_ITEM_KEY;
879 	else
880 		key.type = BTRFS_EXTENT_ITEM_KEY;
881 
882 	path = btrfs_alloc_path();
883 	if (!path)
884 		return -ENOMEM;
885 	if (!trans) {
886 		path->search_commit_root = 1;
887 		path->skip_locking = 1;
888 	}
889 
890 	/*
891 	 * grab both a lock on the path and a lock on the delayed ref head.
892 	 * We need both to get a consistent picture of how the refs look
893 	 * at a specified point in time
894 	 */
895 again:
896 	head = NULL;
897 
898 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
899 	if (ret < 0)
900 		goto out;
901 	BUG_ON(ret == 0);
902 
903 	if (trans) {
904 		/*
905 		 * look if there are updates for this ref queued and lock the
906 		 * head
907 		 */
908 		delayed_refs = &trans->transaction->delayed_refs;
909 		spin_lock(&delayed_refs->lock);
910 		head = btrfs_find_delayed_ref_head(trans, bytenr);
911 		if (head) {
912 			if (!mutex_trylock(&head->mutex)) {
913 				atomic_inc(&head->node.refs);
914 				spin_unlock(&delayed_refs->lock);
915 
916 				btrfs_release_path(path);
917 
918 				/*
919 				 * Mutex was contended, block until it's
920 				 * released and try again
921 				 */
922 				mutex_lock(&head->mutex);
923 				mutex_unlock(&head->mutex);
924 				btrfs_put_delayed_ref(&head->node);
925 				goto again;
926 			}
927 			spin_unlock(&delayed_refs->lock);
928 			ret = __add_delayed_refs(head, time_seq,
929 						 &prefs_delayed, &total_refs);
930 			mutex_unlock(&head->mutex);
931 			if (ret)
932 				goto out;
933 		} else {
934 			spin_unlock(&delayed_refs->lock);
935 		}
936 	}
937 
938 	if (path->slots[0]) {
939 		struct extent_buffer *leaf;
940 		int slot;
941 
942 		path->slots[0]--;
943 		leaf = path->nodes[0];
944 		slot = path->slots[0];
945 		btrfs_item_key_to_cpu(leaf, &key, slot);
946 		if (key.objectid == bytenr &&
947 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
948 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
949 			ret = __add_inline_refs(fs_info, path, bytenr,
950 						&info_level, &prefs,
951 						&total_refs);
952 			if (ret)
953 				goto out;
954 			ret = __add_keyed_refs(fs_info, path, bytenr,
955 					       info_level, &prefs);
956 			if (ret)
957 				goto out;
958 		}
959 	}
960 	btrfs_release_path(path);
961 
962 	list_splice_init(&prefs_delayed, &prefs);
963 
964 	ret = __add_missing_keys(fs_info, &prefs);
965 	if (ret)
966 		goto out;
967 
968 	__merge_refs(&prefs, 1);
969 
970 	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
971 				      extent_item_pos, total_refs);
972 	if (ret)
973 		goto out;
974 
975 	__merge_refs(&prefs, 2);
976 
977 	while (!list_empty(&prefs)) {
978 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
979 		WARN_ON(ref->count < 0);
980 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
981 			/* no parent == root of tree */
982 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
983 			if (ret < 0)
984 				goto out;
985 		}
986 		if (ref->count && ref->parent) {
987 			if (extent_item_pos && !ref->inode_list) {
988 				u32 bsz;
989 				struct extent_buffer *eb;
990 				bsz = btrfs_level_size(fs_info->extent_root,
991 							info_level);
992 				eb = read_tree_block(fs_info->extent_root,
993 							   ref->parent, bsz, 0);
994 				if (!eb || !extent_buffer_uptodate(eb)) {
995 					free_extent_buffer(eb);
996 					ret = -EIO;
997 					goto out;
998 				}
999 				ret = find_extent_in_eb(eb, bytenr,
1000 							*extent_item_pos, &eie);
1001 				free_extent_buffer(eb);
1002 				if (ret < 0)
1003 					goto out;
1004 				ref->inode_list = eie;
1005 			}
1006 			ret = ulist_add_merge(refs, ref->parent,
1007 					      (uintptr_t)ref->inode_list,
1008 					      (u64 *)&eie, GFP_NOFS);
1009 			if (ret < 0)
1010 				goto out;
1011 			if (!ret && extent_item_pos) {
1012 				/*
1013 				 * we've recorded that parent, so we must extend
1014 				 * its inode list here
1015 				 */
1016 				BUG_ON(!eie);
1017 				while (eie->next)
1018 					eie = eie->next;
1019 				eie->next = ref->inode_list;
1020 			}
1021 			eie = NULL;
1022 		}
1023 		list_del(&ref->list);
1024 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1025 	}
1026 
1027 out:
1028 	btrfs_free_path(path);
1029 	while (!list_empty(&prefs)) {
1030 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1031 		list_del(&ref->list);
1032 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1033 	}
1034 	while (!list_empty(&prefs_delayed)) {
1035 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1036 				       list);
1037 		list_del(&ref->list);
1038 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1039 	}
1040 	if (ret < 0)
1041 		free_inode_elem_list(eie);
1042 	return ret;
1043 }
1044 
1045 static void free_leaf_list(struct ulist *blocks)
1046 {
1047 	struct ulist_node *node = NULL;
1048 	struct extent_inode_elem *eie;
1049 	struct ulist_iterator uiter;
1050 
1051 	ULIST_ITER_INIT(&uiter);
1052 	while ((node = ulist_next(blocks, &uiter))) {
1053 		if (!node->aux)
1054 			continue;
1055 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1056 		free_inode_elem_list(eie);
1057 		node->aux = 0;
1058 	}
1059 
1060 	ulist_free(blocks);
1061 }
1062 
1063 /*
1064  * Finds all leafs with a reference to the specified combination of bytenr and
1065  * offset. key_list_head will point to a list of corresponding keys (caller must
1066  * free each list element). The leafs will be stored in the leafs ulist, which
1067  * must be freed with ulist_free.
1068  *
1069  * returns 0 on success, <0 on error
1070  */
1071 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1072 				struct btrfs_fs_info *fs_info, u64 bytenr,
1073 				u64 time_seq, struct ulist **leafs,
1074 				const u64 *extent_item_pos)
1075 {
1076 	int ret;
1077 
1078 	*leafs = ulist_alloc(GFP_NOFS);
1079 	if (!*leafs)
1080 		return -ENOMEM;
1081 
1082 	ret = find_parent_nodes(trans, fs_info, bytenr,
1083 				time_seq, *leafs, NULL, extent_item_pos);
1084 	if (ret < 0 && ret != -ENOENT) {
1085 		free_leaf_list(*leafs);
1086 		return ret;
1087 	}
1088 
1089 	return 0;
1090 }
1091 
1092 /*
1093  * walk all backrefs for a given extent to find all roots that reference this
1094  * extent. Walking a backref means finding all extents that reference this
1095  * extent and in turn walk the backrefs of those, too. Naturally this is a
1096  * recursive process, but here it is implemented in an iterative fashion: We
1097  * find all referencing extents for the extent in question and put them on a
1098  * list. In turn, we find all referencing extents for those, further appending
1099  * to the list. The way we iterate the list allows adding more elements after
1100  * the current while iterating. The process stops when we reach the end of the
1101  * list. Found roots are added to the roots list.
1102  *
1103  * returns 0 on success, < 0 on error.
1104  */
1105 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1106 				  struct btrfs_fs_info *fs_info, u64 bytenr,
1107 				  u64 time_seq, struct ulist **roots)
1108 {
1109 	struct ulist *tmp;
1110 	struct ulist_node *node = NULL;
1111 	struct ulist_iterator uiter;
1112 	int ret;
1113 
1114 	tmp = ulist_alloc(GFP_NOFS);
1115 	if (!tmp)
1116 		return -ENOMEM;
1117 	*roots = ulist_alloc(GFP_NOFS);
1118 	if (!*roots) {
1119 		ulist_free(tmp);
1120 		return -ENOMEM;
1121 	}
1122 
1123 	ULIST_ITER_INIT(&uiter);
1124 	while (1) {
1125 		ret = find_parent_nodes(trans, fs_info, bytenr,
1126 					time_seq, tmp, *roots, NULL);
1127 		if (ret < 0 && ret != -ENOENT) {
1128 			ulist_free(tmp);
1129 			ulist_free(*roots);
1130 			return ret;
1131 		}
1132 		node = ulist_next(tmp, &uiter);
1133 		if (!node)
1134 			break;
1135 		bytenr = node->val;
1136 		cond_resched();
1137 	}
1138 
1139 	ulist_free(tmp);
1140 	return 0;
1141 }
1142 
1143 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1144 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1145 			 u64 time_seq, struct ulist **roots)
1146 {
1147 	int ret;
1148 
1149 	if (!trans)
1150 		down_read(&fs_info->commit_root_sem);
1151 	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1152 	if (!trans)
1153 		up_read(&fs_info->commit_root_sem);
1154 	return ret;
1155 }
1156 
1157 /*
1158  * this makes the path point to (inum INODE_ITEM ioff)
1159  */
1160 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1161 			struct btrfs_path *path)
1162 {
1163 	struct btrfs_key key;
1164 	return btrfs_find_item(fs_root, path, inum, ioff,
1165 			BTRFS_INODE_ITEM_KEY, &key);
1166 }
1167 
1168 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1169 				struct btrfs_path *path,
1170 				struct btrfs_key *found_key)
1171 {
1172 	return btrfs_find_item(fs_root, path, inum, ioff,
1173 			BTRFS_INODE_REF_KEY, found_key);
1174 }
1175 
1176 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1177 			  u64 start_off, struct btrfs_path *path,
1178 			  struct btrfs_inode_extref **ret_extref,
1179 			  u64 *found_off)
1180 {
1181 	int ret, slot;
1182 	struct btrfs_key key;
1183 	struct btrfs_key found_key;
1184 	struct btrfs_inode_extref *extref;
1185 	struct extent_buffer *leaf;
1186 	unsigned long ptr;
1187 
1188 	key.objectid = inode_objectid;
1189 	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1190 	key.offset = start_off;
1191 
1192 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1193 	if (ret < 0)
1194 		return ret;
1195 
1196 	while (1) {
1197 		leaf = path->nodes[0];
1198 		slot = path->slots[0];
1199 		if (slot >= btrfs_header_nritems(leaf)) {
1200 			/*
1201 			 * If the item at offset is not found,
1202 			 * btrfs_search_slot will point us to the slot
1203 			 * where it should be inserted. In our case
1204 			 * that will be the slot directly before the
1205 			 * next INODE_REF_KEY_V2 item. In the case
1206 			 * that we're pointing to the last slot in a
1207 			 * leaf, we must move one leaf over.
1208 			 */
1209 			ret = btrfs_next_leaf(root, path);
1210 			if (ret) {
1211 				if (ret >= 1)
1212 					ret = -ENOENT;
1213 				break;
1214 			}
1215 			continue;
1216 		}
1217 
1218 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1219 
1220 		/*
1221 		 * Check that we're still looking at an extended ref key for
1222 		 * this particular objectid. If we have different
1223 		 * objectid or type then there are no more to be found
1224 		 * in the tree and we can exit.
1225 		 */
1226 		ret = -ENOENT;
1227 		if (found_key.objectid != inode_objectid)
1228 			break;
1229 		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1230 			break;
1231 
1232 		ret = 0;
1233 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1234 		extref = (struct btrfs_inode_extref *)ptr;
1235 		*ret_extref = extref;
1236 		if (found_off)
1237 			*found_off = found_key.offset;
1238 		break;
1239 	}
1240 
1241 	return ret;
1242 }
1243 
1244 /*
1245  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1246  * Elements of the path are separated by '/' and the path is guaranteed to be
1247  * 0-terminated. the path is only given within the current file system.
1248  * Therefore, it never starts with a '/'. the caller is responsible to provide
1249  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1250  * the start point of the resulting string is returned. this pointer is within
1251  * dest, normally.
1252  * in case the path buffer would overflow, the pointer is decremented further
1253  * as if output was written to the buffer, though no more output is actually
1254  * generated. that way, the caller can determine how much space would be
1255  * required for the path to fit into the buffer. in that case, the returned
1256  * value will be smaller than dest. callers must check this!
1257  */
1258 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1259 			u32 name_len, unsigned long name_off,
1260 			struct extent_buffer *eb_in, u64 parent,
1261 			char *dest, u32 size)
1262 {
1263 	int slot;
1264 	u64 next_inum;
1265 	int ret;
1266 	s64 bytes_left = ((s64)size) - 1;
1267 	struct extent_buffer *eb = eb_in;
1268 	struct btrfs_key found_key;
1269 	int leave_spinning = path->leave_spinning;
1270 	struct btrfs_inode_ref *iref;
1271 
1272 	if (bytes_left >= 0)
1273 		dest[bytes_left] = '\0';
1274 
1275 	path->leave_spinning = 1;
1276 	while (1) {
1277 		bytes_left -= name_len;
1278 		if (bytes_left >= 0)
1279 			read_extent_buffer(eb, dest + bytes_left,
1280 					   name_off, name_len);
1281 		if (eb != eb_in) {
1282 			btrfs_tree_read_unlock_blocking(eb);
1283 			free_extent_buffer(eb);
1284 		}
1285 		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1286 		if (ret > 0)
1287 			ret = -ENOENT;
1288 		if (ret)
1289 			break;
1290 
1291 		next_inum = found_key.offset;
1292 
1293 		/* regular exit ahead */
1294 		if (parent == next_inum)
1295 			break;
1296 
1297 		slot = path->slots[0];
1298 		eb = path->nodes[0];
1299 		/* make sure we can use eb after releasing the path */
1300 		if (eb != eb_in) {
1301 			atomic_inc(&eb->refs);
1302 			btrfs_tree_read_lock(eb);
1303 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1304 		}
1305 		btrfs_release_path(path);
1306 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1307 
1308 		name_len = btrfs_inode_ref_name_len(eb, iref);
1309 		name_off = (unsigned long)(iref + 1);
1310 
1311 		parent = next_inum;
1312 		--bytes_left;
1313 		if (bytes_left >= 0)
1314 			dest[bytes_left] = '/';
1315 	}
1316 
1317 	btrfs_release_path(path);
1318 	path->leave_spinning = leave_spinning;
1319 
1320 	if (ret)
1321 		return ERR_PTR(ret);
1322 
1323 	return dest + bytes_left;
1324 }
1325 
1326 /*
1327  * this makes the path point to (logical EXTENT_ITEM *)
1328  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1329  * tree blocks and <0 on error.
1330  */
1331 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1332 			struct btrfs_path *path, struct btrfs_key *found_key,
1333 			u64 *flags_ret)
1334 {
1335 	int ret;
1336 	u64 flags;
1337 	u64 size = 0;
1338 	u32 item_size;
1339 	struct extent_buffer *eb;
1340 	struct btrfs_extent_item *ei;
1341 	struct btrfs_key key;
1342 
1343 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1344 		key.type = BTRFS_METADATA_ITEM_KEY;
1345 	else
1346 		key.type = BTRFS_EXTENT_ITEM_KEY;
1347 	key.objectid = logical;
1348 	key.offset = (u64)-1;
1349 
1350 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1351 	if (ret < 0)
1352 		return ret;
1353 
1354 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1355 	if (ret) {
1356 		if (ret > 0)
1357 			ret = -ENOENT;
1358 		return ret;
1359 	}
1360 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1361 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1362 		size = fs_info->extent_root->leafsize;
1363 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1364 		size = found_key->offset;
1365 
1366 	if (found_key->objectid > logical ||
1367 	    found_key->objectid + size <= logical) {
1368 		pr_debug("logical %llu is not within any extent\n", logical);
1369 		return -ENOENT;
1370 	}
1371 
1372 	eb = path->nodes[0];
1373 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1374 	BUG_ON(item_size < sizeof(*ei));
1375 
1376 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1377 	flags = btrfs_extent_flags(eb, ei);
1378 
1379 	pr_debug("logical %llu is at position %llu within the extent (%llu "
1380 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1381 		 logical, logical - found_key->objectid, found_key->objectid,
1382 		 found_key->offset, flags, item_size);
1383 
1384 	WARN_ON(!flags_ret);
1385 	if (flags_ret) {
1386 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1387 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1388 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1389 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1390 		else
1391 			BUG_ON(1);
1392 		return 0;
1393 	}
1394 
1395 	return -EIO;
1396 }
1397 
1398 /*
1399  * helper function to iterate extent inline refs. ptr must point to a 0 value
1400  * for the first call and may be modified. it is used to track state.
1401  * if more refs exist, 0 is returned and the next call to
1402  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1403  * next ref. after the last ref was processed, 1 is returned.
1404  * returns <0 on error
1405  */
1406 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1407 				struct btrfs_extent_item *ei, u32 item_size,
1408 				struct btrfs_extent_inline_ref **out_eiref,
1409 				int *out_type)
1410 {
1411 	unsigned long end;
1412 	u64 flags;
1413 	struct btrfs_tree_block_info *info;
1414 
1415 	if (!*ptr) {
1416 		/* first call */
1417 		flags = btrfs_extent_flags(eb, ei);
1418 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1419 			info = (struct btrfs_tree_block_info *)(ei + 1);
1420 			*out_eiref =
1421 				(struct btrfs_extent_inline_ref *)(info + 1);
1422 		} else {
1423 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1424 		}
1425 		*ptr = (unsigned long)*out_eiref;
1426 		if ((void *)*ptr >= (void *)ei + item_size)
1427 			return -ENOENT;
1428 	}
1429 
1430 	end = (unsigned long)ei + item_size;
1431 	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1432 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1433 
1434 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1435 	WARN_ON(*ptr > end);
1436 	if (*ptr == end)
1437 		return 1; /* last */
1438 
1439 	return 0;
1440 }
1441 
1442 /*
1443  * reads the tree block backref for an extent. tree level and root are returned
1444  * through out_level and out_root. ptr must point to a 0 value for the first
1445  * call and may be modified (see __get_extent_inline_ref comment).
1446  * returns 0 if data was provided, 1 if there was no more data to provide or
1447  * <0 on error.
1448  */
1449 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1450 				struct btrfs_extent_item *ei, u32 item_size,
1451 				u64 *out_root, u8 *out_level)
1452 {
1453 	int ret;
1454 	int type;
1455 	struct btrfs_tree_block_info *info;
1456 	struct btrfs_extent_inline_ref *eiref;
1457 
1458 	if (*ptr == (unsigned long)-1)
1459 		return 1;
1460 
1461 	while (1) {
1462 		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1463 						&eiref, &type);
1464 		if (ret < 0)
1465 			return ret;
1466 
1467 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1468 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1469 			break;
1470 
1471 		if (ret == 1)
1472 			return 1;
1473 	}
1474 
1475 	/* we can treat both ref types equally here */
1476 	info = (struct btrfs_tree_block_info *)(ei + 1);
1477 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1478 	*out_level = btrfs_tree_block_level(eb, info);
1479 
1480 	if (ret == 1)
1481 		*ptr = (unsigned long)-1;
1482 
1483 	return 0;
1484 }
1485 
1486 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1487 				u64 root, u64 extent_item_objectid,
1488 				iterate_extent_inodes_t *iterate, void *ctx)
1489 {
1490 	struct extent_inode_elem *eie;
1491 	int ret = 0;
1492 
1493 	for (eie = inode_list; eie; eie = eie->next) {
1494 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1495 			 "root %llu\n", extent_item_objectid,
1496 			 eie->inum, eie->offset, root);
1497 		ret = iterate(eie->inum, eie->offset, root, ctx);
1498 		if (ret) {
1499 			pr_debug("stopping iteration for %llu due to ret=%d\n",
1500 				 extent_item_objectid, ret);
1501 			break;
1502 		}
1503 	}
1504 
1505 	return ret;
1506 }
1507 
1508 /*
1509  * calls iterate() for every inode that references the extent identified by
1510  * the given parameters.
1511  * when the iterator function returns a non-zero value, iteration stops.
1512  */
1513 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1514 				u64 extent_item_objectid, u64 extent_item_pos,
1515 				int search_commit_root,
1516 				iterate_extent_inodes_t *iterate, void *ctx)
1517 {
1518 	int ret;
1519 	struct btrfs_trans_handle *trans = NULL;
1520 	struct ulist *refs = NULL;
1521 	struct ulist *roots = NULL;
1522 	struct ulist_node *ref_node = NULL;
1523 	struct ulist_node *root_node = NULL;
1524 	struct seq_list tree_mod_seq_elem = {};
1525 	struct ulist_iterator ref_uiter;
1526 	struct ulist_iterator root_uiter;
1527 
1528 	pr_debug("resolving all inodes for extent %llu\n",
1529 			extent_item_objectid);
1530 
1531 	if (!search_commit_root) {
1532 		trans = btrfs_join_transaction(fs_info->extent_root);
1533 		if (IS_ERR(trans))
1534 			return PTR_ERR(trans);
1535 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1536 	} else {
1537 		down_read(&fs_info->commit_root_sem);
1538 	}
1539 
1540 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1541 				   tree_mod_seq_elem.seq, &refs,
1542 				   &extent_item_pos);
1543 	if (ret)
1544 		goto out;
1545 
1546 	ULIST_ITER_INIT(&ref_uiter);
1547 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1548 		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
1549 					     tree_mod_seq_elem.seq, &roots);
1550 		if (ret)
1551 			break;
1552 		ULIST_ITER_INIT(&root_uiter);
1553 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1554 			pr_debug("root %llu references leaf %llu, data list "
1555 				 "%#llx\n", root_node->val, ref_node->val,
1556 				 ref_node->aux);
1557 			ret = iterate_leaf_refs((struct extent_inode_elem *)
1558 						(uintptr_t)ref_node->aux,
1559 						root_node->val,
1560 						extent_item_objectid,
1561 						iterate, ctx);
1562 		}
1563 		ulist_free(roots);
1564 	}
1565 
1566 	free_leaf_list(refs);
1567 out:
1568 	if (!search_commit_root) {
1569 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1570 		btrfs_end_transaction(trans, fs_info->extent_root);
1571 	} else {
1572 		up_read(&fs_info->commit_root_sem);
1573 	}
1574 
1575 	return ret;
1576 }
1577 
1578 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1579 				struct btrfs_path *path,
1580 				iterate_extent_inodes_t *iterate, void *ctx)
1581 {
1582 	int ret;
1583 	u64 extent_item_pos;
1584 	u64 flags = 0;
1585 	struct btrfs_key found_key;
1586 	int search_commit_root = path->search_commit_root;
1587 
1588 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1589 	btrfs_release_path(path);
1590 	if (ret < 0)
1591 		return ret;
1592 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1593 		return -EINVAL;
1594 
1595 	extent_item_pos = logical - found_key.objectid;
1596 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1597 					extent_item_pos, search_commit_root,
1598 					iterate, ctx);
1599 
1600 	return ret;
1601 }
1602 
1603 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1604 			      struct extent_buffer *eb, void *ctx);
1605 
1606 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1607 			      struct btrfs_path *path,
1608 			      iterate_irefs_t *iterate, void *ctx)
1609 {
1610 	int ret = 0;
1611 	int slot;
1612 	u32 cur;
1613 	u32 len;
1614 	u32 name_len;
1615 	u64 parent = 0;
1616 	int found = 0;
1617 	struct extent_buffer *eb;
1618 	struct btrfs_item *item;
1619 	struct btrfs_inode_ref *iref;
1620 	struct btrfs_key found_key;
1621 
1622 	while (!ret) {
1623 		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1624 				     &found_key);
1625 		if (ret < 0)
1626 			break;
1627 		if (ret) {
1628 			ret = found ? 0 : -ENOENT;
1629 			break;
1630 		}
1631 		++found;
1632 
1633 		parent = found_key.offset;
1634 		slot = path->slots[0];
1635 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1636 		if (!eb) {
1637 			ret = -ENOMEM;
1638 			break;
1639 		}
1640 		extent_buffer_get(eb);
1641 		btrfs_tree_read_lock(eb);
1642 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1643 		btrfs_release_path(path);
1644 
1645 		item = btrfs_item_nr(slot);
1646 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1647 
1648 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1649 			name_len = btrfs_inode_ref_name_len(eb, iref);
1650 			/* path must be released before calling iterate()! */
1651 			pr_debug("following ref at offset %u for inode %llu in "
1652 				 "tree %llu\n", cur, found_key.objectid,
1653 				 fs_root->objectid);
1654 			ret = iterate(parent, name_len,
1655 				      (unsigned long)(iref + 1), eb, ctx);
1656 			if (ret)
1657 				break;
1658 			len = sizeof(*iref) + name_len;
1659 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1660 		}
1661 		btrfs_tree_read_unlock_blocking(eb);
1662 		free_extent_buffer(eb);
1663 	}
1664 
1665 	btrfs_release_path(path);
1666 
1667 	return ret;
1668 }
1669 
1670 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1671 				 struct btrfs_path *path,
1672 				 iterate_irefs_t *iterate, void *ctx)
1673 {
1674 	int ret;
1675 	int slot;
1676 	u64 offset = 0;
1677 	u64 parent;
1678 	int found = 0;
1679 	struct extent_buffer *eb;
1680 	struct btrfs_inode_extref *extref;
1681 	struct extent_buffer *leaf;
1682 	u32 item_size;
1683 	u32 cur_offset;
1684 	unsigned long ptr;
1685 
1686 	while (1) {
1687 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1688 					    &offset);
1689 		if (ret < 0)
1690 			break;
1691 		if (ret) {
1692 			ret = found ? 0 : -ENOENT;
1693 			break;
1694 		}
1695 		++found;
1696 
1697 		slot = path->slots[0];
1698 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1699 		if (!eb) {
1700 			ret = -ENOMEM;
1701 			break;
1702 		}
1703 		extent_buffer_get(eb);
1704 
1705 		btrfs_tree_read_lock(eb);
1706 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1707 		btrfs_release_path(path);
1708 
1709 		leaf = path->nodes[0];
1710 		item_size = btrfs_item_size_nr(leaf, slot);
1711 		ptr = btrfs_item_ptr_offset(leaf, slot);
1712 		cur_offset = 0;
1713 
1714 		while (cur_offset < item_size) {
1715 			u32 name_len;
1716 
1717 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1718 			parent = btrfs_inode_extref_parent(eb, extref);
1719 			name_len = btrfs_inode_extref_name_len(eb, extref);
1720 			ret = iterate(parent, name_len,
1721 				      (unsigned long)&extref->name, eb, ctx);
1722 			if (ret)
1723 				break;
1724 
1725 			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1726 			cur_offset += sizeof(*extref);
1727 		}
1728 		btrfs_tree_read_unlock_blocking(eb);
1729 		free_extent_buffer(eb);
1730 
1731 		offset++;
1732 	}
1733 
1734 	btrfs_release_path(path);
1735 
1736 	return ret;
1737 }
1738 
1739 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1740 			 struct btrfs_path *path, iterate_irefs_t *iterate,
1741 			 void *ctx)
1742 {
1743 	int ret;
1744 	int found_refs = 0;
1745 
1746 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1747 	if (!ret)
1748 		++found_refs;
1749 	else if (ret != -ENOENT)
1750 		return ret;
1751 
1752 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1753 	if (ret == -ENOENT && found_refs)
1754 		return 0;
1755 
1756 	return ret;
1757 }
1758 
1759 /*
1760  * returns 0 if the path could be dumped (probably truncated)
1761  * returns <0 in case of an error
1762  */
1763 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1764 			 struct extent_buffer *eb, void *ctx)
1765 {
1766 	struct inode_fs_paths *ipath = ctx;
1767 	char *fspath;
1768 	char *fspath_min;
1769 	int i = ipath->fspath->elem_cnt;
1770 	const int s_ptr = sizeof(char *);
1771 	u32 bytes_left;
1772 
1773 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1774 					ipath->fspath->bytes_left - s_ptr : 0;
1775 
1776 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1777 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1778 				   name_off, eb, inum, fspath_min, bytes_left);
1779 	if (IS_ERR(fspath))
1780 		return PTR_ERR(fspath);
1781 
1782 	if (fspath > fspath_min) {
1783 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1784 		++ipath->fspath->elem_cnt;
1785 		ipath->fspath->bytes_left = fspath - fspath_min;
1786 	} else {
1787 		++ipath->fspath->elem_missed;
1788 		ipath->fspath->bytes_missing += fspath_min - fspath;
1789 		ipath->fspath->bytes_left = 0;
1790 	}
1791 
1792 	return 0;
1793 }
1794 
1795 /*
1796  * this dumps all file system paths to the inode into the ipath struct, provided
1797  * is has been created large enough. each path is zero-terminated and accessed
1798  * from ipath->fspath->val[i].
1799  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1800  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1801  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1802  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1803  * have been needed to return all paths.
1804  */
1805 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1806 {
1807 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1808 			     inode_to_path, ipath);
1809 }
1810 
1811 struct btrfs_data_container *init_data_container(u32 total_bytes)
1812 {
1813 	struct btrfs_data_container *data;
1814 	size_t alloc_bytes;
1815 
1816 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1817 	data = vmalloc(alloc_bytes);
1818 	if (!data)
1819 		return ERR_PTR(-ENOMEM);
1820 
1821 	if (total_bytes >= sizeof(*data)) {
1822 		data->bytes_left = total_bytes - sizeof(*data);
1823 		data->bytes_missing = 0;
1824 	} else {
1825 		data->bytes_missing = sizeof(*data) - total_bytes;
1826 		data->bytes_left = 0;
1827 	}
1828 
1829 	data->elem_cnt = 0;
1830 	data->elem_missed = 0;
1831 
1832 	return data;
1833 }
1834 
1835 /*
1836  * allocates space to return multiple file system paths for an inode.
1837  * total_bytes to allocate are passed, note that space usable for actual path
1838  * information will be total_bytes - sizeof(struct inode_fs_paths).
1839  * the returned pointer must be freed with free_ipath() in the end.
1840  */
1841 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1842 					struct btrfs_path *path)
1843 {
1844 	struct inode_fs_paths *ifp;
1845 	struct btrfs_data_container *fspath;
1846 
1847 	fspath = init_data_container(total_bytes);
1848 	if (IS_ERR(fspath))
1849 		return (void *)fspath;
1850 
1851 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1852 	if (!ifp) {
1853 		kfree(fspath);
1854 		return ERR_PTR(-ENOMEM);
1855 	}
1856 
1857 	ifp->btrfs_path = path;
1858 	ifp->fspath = fspath;
1859 	ifp->fs_root = fs_root;
1860 
1861 	return ifp;
1862 }
1863 
1864 void free_ipath(struct inode_fs_paths *ipath)
1865 {
1866 	if (!ipath)
1867 		return;
1868 	vfree(ipath->fspath);
1869 	kfree(ipath);
1870 }
1871