xref: /openbmc/linux/fs/btrfs/backref.c (revision 06ff634c0dae791c17ceeeb60c74e14470d76898)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 
17 /* Just an arbitrary number so we can be sure this happened */
18 #define BACKREF_FOUND_SHARED 6
19 
20 struct extent_inode_elem {
21 	u64 inum;
22 	u64 offset;
23 	struct extent_inode_elem *next;
24 };
25 
26 static int check_extent_in_eb(const struct btrfs_key *key,
27 			      const struct extent_buffer *eb,
28 			      const struct btrfs_file_extent_item *fi,
29 			      u64 extent_item_pos,
30 			      struct extent_inode_elem **eie,
31 			      bool ignore_offset)
32 {
33 	u64 offset = 0;
34 	struct extent_inode_elem *e;
35 
36 	if (!ignore_offset &&
37 	    !btrfs_file_extent_compression(eb, fi) &&
38 	    !btrfs_file_extent_encryption(eb, fi) &&
39 	    !btrfs_file_extent_other_encoding(eb, fi)) {
40 		u64 data_offset;
41 		u64 data_len;
42 
43 		data_offset = btrfs_file_extent_offset(eb, fi);
44 		data_len = btrfs_file_extent_num_bytes(eb, fi);
45 
46 		if (extent_item_pos < data_offset ||
47 		    extent_item_pos >= data_offset + data_len)
48 			return 1;
49 		offset = extent_item_pos - data_offset;
50 	}
51 
52 	e = kmalloc(sizeof(*e), GFP_NOFS);
53 	if (!e)
54 		return -ENOMEM;
55 
56 	e->next = *eie;
57 	e->inum = key->objectid;
58 	e->offset = key->offset + offset;
59 	*eie = e;
60 
61 	return 0;
62 }
63 
64 static void free_inode_elem_list(struct extent_inode_elem *eie)
65 {
66 	struct extent_inode_elem *eie_next;
67 
68 	for (; eie; eie = eie_next) {
69 		eie_next = eie->next;
70 		kfree(eie);
71 	}
72 }
73 
74 static int find_extent_in_eb(const struct extent_buffer *eb,
75 			     u64 wanted_disk_byte, u64 extent_item_pos,
76 			     struct extent_inode_elem **eie,
77 			     bool ignore_offset)
78 {
79 	u64 disk_byte;
80 	struct btrfs_key key;
81 	struct btrfs_file_extent_item *fi;
82 	int slot;
83 	int nritems;
84 	int extent_type;
85 	int ret;
86 
87 	/*
88 	 * from the shared data ref, we only have the leaf but we need
89 	 * the key. thus, we must look into all items and see that we
90 	 * find one (some) with a reference to our extent item.
91 	 */
92 	nritems = btrfs_header_nritems(eb);
93 	for (slot = 0; slot < nritems; ++slot) {
94 		btrfs_item_key_to_cpu(eb, &key, slot);
95 		if (key.type != BTRFS_EXTENT_DATA_KEY)
96 			continue;
97 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
98 		extent_type = btrfs_file_extent_type(eb, fi);
99 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
100 			continue;
101 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
102 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
103 		if (disk_byte != wanted_disk_byte)
104 			continue;
105 
106 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
107 		if (ret < 0)
108 			return ret;
109 	}
110 
111 	return 0;
112 }
113 
114 struct preftree {
115 	struct rb_root_cached root;
116 	unsigned int count;
117 };
118 
119 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
120 
121 struct preftrees {
122 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
123 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
124 	struct preftree indirect_missing_keys;
125 };
126 
127 /*
128  * Checks for a shared extent during backref search.
129  *
130  * The share_count tracks prelim_refs (direct and indirect) having a
131  * ref->count >0:
132  *  - incremented when a ref->count transitions to >0
133  *  - decremented when a ref->count transitions to <1
134  */
135 struct share_check {
136 	u64 root_objectid;
137 	u64 inum;
138 	int share_count;
139 };
140 
141 static inline int extent_is_shared(struct share_check *sc)
142 {
143 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
144 }
145 
146 static struct kmem_cache *btrfs_prelim_ref_cache;
147 
148 int __init btrfs_prelim_ref_init(void)
149 {
150 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
151 					sizeof(struct prelim_ref),
152 					0,
153 					SLAB_MEM_SPREAD,
154 					NULL);
155 	if (!btrfs_prelim_ref_cache)
156 		return -ENOMEM;
157 	return 0;
158 }
159 
160 void __cold btrfs_prelim_ref_exit(void)
161 {
162 	kmem_cache_destroy(btrfs_prelim_ref_cache);
163 }
164 
165 static void free_pref(struct prelim_ref *ref)
166 {
167 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
168 }
169 
170 /*
171  * Return 0 when both refs are for the same block (and can be merged).
172  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
173  * indicates a 'higher' block.
174  */
175 static int prelim_ref_compare(struct prelim_ref *ref1,
176 			      struct prelim_ref *ref2)
177 {
178 	if (ref1->level < ref2->level)
179 		return -1;
180 	if (ref1->level > ref2->level)
181 		return 1;
182 	if (ref1->root_id < ref2->root_id)
183 		return -1;
184 	if (ref1->root_id > ref2->root_id)
185 		return 1;
186 	if (ref1->key_for_search.type < ref2->key_for_search.type)
187 		return -1;
188 	if (ref1->key_for_search.type > ref2->key_for_search.type)
189 		return 1;
190 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
191 		return -1;
192 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
193 		return 1;
194 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
195 		return -1;
196 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
197 		return 1;
198 	if (ref1->parent < ref2->parent)
199 		return -1;
200 	if (ref1->parent > ref2->parent)
201 		return 1;
202 
203 	return 0;
204 }
205 
206 static void update_share_count(struct share_check *sc, int oldcount,
207 			       int newcount)
208 {
209 	if ((!sc) || (oldcount == 0 && newcount < 1))
210 		return;
211 
212 	if (oldcount > 0 && newcount < 1)
213 		sc->share_count--;
214 	else if (oldcount < 1 && newcount > 0)
215 		sc->share_count++;
216 }
217 
218 /*
219  * Add @newref to the @root rbtree, merging identical refs.
220  *
221  * Callers should assume that newref has been freed after calling.
222  */
223 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
224 			      struct preftree *preftree,
225 			      struct prelim_ref *newref,
226 			      struct share_check *sc)
227 {
228 	struct rb_root_cached *root;
229 	struct rb_node **p;
230 	struct rb_node *parent = NULL;
231 	struct prelim_ref *ref;
232 	int result;
233 	bool leftmost = true;
234 
235 	root = &preftree->root;
236 	p = &root->rb_root.rb_node;
237 
238 	while (*p) {
239 		parent = *p;
240 		ref = rb_entry(parent, struct prelim_ref, rbnode);
241 		result = prelim_ref_compare(ref, newref);
242 		if (result < 0) {
243 			p = &(*p)->rb_left;
244 		} else if (result > 0) {
245 			p = &(*p)->rb_right;
246 			leftmost = false;
247 		} else {
248 			/* Identical refs, merge them and free @newref */
249 			struct extent_inode_elem *eie = ref->inode_list;
250 
251 			while (eie && eie->next)
252 				eie = eie->next;
253 
254 			if (!eie)
255 				ref->inode_list = newref->inode_list;
256 			else
257 				eie->next = newref->inode_list;
258 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
259 						     preftree->count);
260 			/*
261 			 * A delayed ref can have newref->count < 0.
262 			 * The ref->count is updated to follow any
263 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
264 			 */
265 			update_share_count(sc, ref->count,
266 					   ref->count + newref->count);
267 			ref->count += newref->count;
268 			free_pref(newref);
269 			return;
270 		}
271 	}
272 
273 	update_share_count(sc, 0, newref->count);
274 	preftree->count++;
275 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
276 	rb_link_node(&newref->rbnode, parent, p);
277 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
278 }
279 
280 /*
281  * Release the entire tree.  We don't care about internal consistency so
282  * just free everything and then reset the tree root.
283  */
284 static void prelim_release(struct preftree *preftree)
285 {
286 	struct prelim_ref *ref, *next_ref;
287 
288 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
289 					     &preftree->root.rb_root, rbnode)
290 		free_pref(ref);
291 
292 	preftree->root = RB_ROOT_CACHED;
293 	preftree->count = 0;
294 }
295 
296 /*
297  * the rules for all callers of this function are:
298  * - obtaining the parent is the goal
299  * - if you add a key, you must know that it is a correct key
300  * - if you cannot add the parent or a correct key, then we will look into the
301  *   block later to set a correct key
302  *
303  * delayed refs
304  * ============
305  *        backref type | shared | indirect | shared | indirect
306  * information         |   tree |     tree |   data |     data
307  * --------------------+--------+----------+--------+----------
308  *      parent logical |    y   |     -    |    -   |     -
309  *      key to resolve |    -   |     y    |    y   |     y
310  *  tree block logical |    -   |     -    |    -   |     -
311  *  root for resolving |    y   |     y    |    y   |     y
312  *
313  * - column 1:       we've the parent -> done
314  * - column 2, 3, 4: we use the key to find the parent
315  *
316  * on disk refs (inline or keyed)
317  * ==============================
318  *        backref type | shared | indirect | shared | indirect
319  * information         |   tree |     tree |   data |     data
320  * --------------------+--------+----------+--------+----------
321  *      parent logical |    y   |     -    |    y   |     -
322  *      key to resolve |    -   |     -    |    -   |     y
323  *  tree block logical |    y   |     y    |    y   |     y
324  *  root for resolving |    -   |     y    |    y   |     y
325  *
326  * - column 1, 3: we've the parent -> done
327  * - column 2:    we take the first key from the block to find the parent
328  *                (see add_missing_keys)
329  * - column 4:    we use the key to find the parent
330  *
331  * additional information that's available but not required to find the parent
332  * block might help in merging entries to gain some speed.
333  */
334 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
335 			  struct preftree *preftree, u64 root_id,
336 			  const struct btrfs_key *key, int level, u64 parent,
337 			  u64 wanted_disk_byte, int count,
338 			  struct share_check *sc, gfp_t gfp_mask)
339 {
340 	struct prelim_ref *ref;
341 
342 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
343 		return 0;
344 
345 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
346 	if (!ref)
347 		return -ENOMEM;
348 
349 	ref->root_id = root_id;
350 	if (key)
351 		ref->key_for_search = *key;
352 	else
353 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
354 
355 	ref->inode_list = NULL;
356 	ref->level = level;
357 	ref->count = count;
358 	ref->parent = parent;
359 	ref->wanted_disk_byte = wanted_disk_byte;
360 	prelim_ref_insert(fs_info, preftree, ref, sc);
361 	return extent_is_shared(sc);
362 }
363 
364 /* direct refs use root == 0, key == NULL */
365 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
366 			  struct preftrees *preftrees, int level, u64 parent,
367 			  u64 wanted_disk_byte, int count,
368 			  struct share_check *sc, gfp_t gfp_mask)
369 {
370 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
371 			      parent, wanted_disk_byte, count, sc, gfp_mask);
372 }
373 
374 /* indirect refs use parent == 0 */
375 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
376 			    struct preftrees *preftrees, u64 root_id,
377 			    const struct btrfs_key *key, int level,
378 			    u64 wanted_disk_byte, int count,
379 			    struct share_check *sc, gfp_t gfp_mask)
380 {
381 	struct preftree *tree = &preftrees->indirect;
382 
383 	if (!key)
384 		tree = &preftrees->indirect_missing_keys;
385 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
386 			      wanted_disk_byte, count, sc, gfp_mask);
387 }
388 
389 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
390 {
391 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
392 	struct rb_node *parent = NULL;
393 	struct prelim_ref *ref = NULL;
394 	struct prelim_ref target = {0};
395 	int result;
396 
397 	target.parent = bytenr;
398 
399 	while (*p) {
400 		parent = *p;
401 		ref = rb_entry(parent, struct prelim_ref, rbnode);
402 		result = prelim_ref_compare(ref, &target);
403 
404 		if (result < 0)
405 			p = &(*p)->rb_left;
406 		else if (result > 0)
407 			p = &(*p)->rb_right;
408 		else
409 			return 1;
410 	}
411 	return 0;
412 }
413 
414 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
415 			   struct ulist *parents,
416 			   struct preftrees *preftrees, struct prelim_ref *ref,
417 			   int level, u64 time_seq, const u64 *extent_item_pos,
418 			   bool ignore_offset)
419 {
420 	int ret = 0;
421 	int slot;
422 	struct extent_buffer *eb;
423 	struct btrfs_key key;
424 	struct btrfs_key *key_for_search = &ref->key_for_search;
425 	struct btrfs_file_extent_item *fi;
426 	struct extent_inode_elem *eie = NULL, *old = NULL;
427 	u64 disk_byte;
428 	u64 wanted_disk_byte = ref->wanted_disk_byte;
429 	u64 count = 0;
430 	u64 data_offset;
431 
432 	if (level != 0) {
433 		eb = path->nodes[level];
434 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
435 		if (ret < 0)
436 			return ret;
437 		return 0;
438 	}
439 
440 	/*
441 	 * 1. We normally enter this function with the path already pointing to
442 	 *    the first item to check. But sometimes, we may enter it with
443 	 *    slot == nritems.
444 	 * 2. We are searching for normal backref but bytenr of this leaf
445 	 *    matches shared data backref
446 	 * 3. The leaf owner is not equal to the root we are searching
447 	 *
448 	 * For these cases, go to the next leaf before we continue.
449 	 */
450 	eb = path->nodes[0];
451 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
452 	    is_shared_data_backref(preftrees, eb->start) ||
453 	    ref->root_id != btrfs_header_owner(eb)) {
454 		if (time_seq == SEQ_LAST)
455 			ret = btrfs_next_leaf(root, path);
456 		else
457 			ret = btrfs_next_old_leaf(root, path, time_seq);
458 	}
459 
460 	while (!ret && count < ref->count) {
461 		eb = path->nodes[0];
462 		slot = path->slots[0];
463 
464 		btrfs_item_key_to_cpu(eb, &key, slot);
465 
466 		if (key.objectid != key_for_search->objectid ||
467 		    key.type != BTRFS_EXTENT_DATA_KEY)
468 			break;
469 
470 		/*
471 		 * We are searching for normal backref but bytenr of this leaf
472 		 * matches shared data backref, OR
473 		 * the leaf owner is not equal to the root we are searching for
474 		 */
475 		if (slot == 0 &&
476 		    (is_shared_data_backref(preftrees, eb->start) ||
477 		     ref->root_id != btrfs_header_owner(eb))) {
478 			if (time_seq == SEQ_LAST)
479 				ret = btrfs_next_leaf(root, path);
480 			else
481 				ret = btrfs_next_old_leaf(root, path, time_seq);
482 			continue;
483 		}
484 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
485 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
486 		data_offset = btrfs_file_extent_offset(eb, fi);
487 
488 		if (disk_byte == wanted_disk_byte) {
489 			eie = NULL;
490 			old = NULL;
491 			if (ref->key_for_search.offset == key.offset - data_offset)
492 				count++;
493 			else
494 				goto next;
495 			if (extent_item_pos) {
496 				ret = check_extent_in_eb(&key, eb, fi,
497 						*extent_item_pos,
498 						&eie, ignore_offset);
499 				if (ret < 0)
500 					break;
501 			}
502 			if (ret > 0)
503 				goto next;
504 			ret = ulist_add_merge_ptr(parents, eb->start,
505 						  eie, (void **)&old, GFP_NOFS);
506 			if (ret < 0)
507 				break;
508 			if (!ret && extent_item_pos) {
509 				while (old->next)
510 					old = old->next;
511 				old->next = eie;
512 			}
513 			eie = NULL;
514 		}
515 next:
516 		if (time_seq == SEQ_LAST)
517 			ret = btrfs_next_item(root, path);
518 		else
519 			ret = btrfs_next_old_item(root, path, time_seq);
520 	}
521 
522 	if (ret > 0)
523 		ret = 0;
524 	else if (ret < 0)
525 		free_inode_elem_list(eie);
526 	return ret;
527 }
528 
529 /*
530  * resolve an indirect backref in the form (root_id, key, level)
531  * to a logical address
532  */
533 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
534 				struct btrfs_path *path, u64 time_seq,
535 				struct preftrees *preftrees,
536 				struct prelim_ref *ref, struct ulist *parents,
537 				const u64 *extent_item_pos, bool ignore_offset)
538 {
539 	struct btrfs_root *root;
540 	struct btrfs_key root_key;
541 	struct extent_buffer *eb;
542 	int ret = 0;
543 	int root_level;
544 	int level = ref->level;
545 	struct btrfs_key search_key = ref->key_for_search;
546 
547 	root_key.objectid = ref->root_id;
548 	root_key.type = BTRFS_ROOT_ITEM_KEY;
549 	root_key.offset = (u64)-1;
550 
551 	root = btrfs_get_fs_root(fs_info, &root_key, false);
552 	if (IS_ERR(root)) {
553 		ret = PTR_ERR(root);
554 		goto out_free;
555 	}
556 
557 	if (!path->search_commit_root &&
558 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
559 		ret = -ENOENT;
560 		goto out;
561 	}
562 
563 	if (btrfs_is_testing(fs_info)) {
564 		ret = -ENOENT;
565 		goto out;
566 	}
567 
568 	if (path->search_commit_root)
569 		root_level = btrfs_header_level(root->commit_root);
570 	else if (time_seq == SEQ_LAST)
571 		root_level = btrfs_header_level(root->node);
572 	else
573 		root_level = btrfs_old_root_level(root, time_seq);
574 
575 	if (root_level + 1 == level)
576 		goto out;
577 
578 	/*
579 	 * We can often find data backrefs with an offset that is too large
580 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
581 	 * subtracting a file's offset with the data offset of its
582 	 * corresponding extent data item. This can happen for example in the
583 	 * clone ioctl.
584 	 *
585 	 * So if we detect such case we set the search key's offset to zero to
586 	 * make sure we will find the matching file extent item at
587 	 * add_all_parents(), otherwise we will miss it because the offset
588 	 * taken form the backref is much larger then the offset of the file
589 	 * extent item. This can make us scan a very large number of file
590 	 * extent items, but at least it will not make us miss any.
591 	 *
592 	 * This is an ugly workaround for a behaviour that should have never
593 	 * existed, but it does and a fix for the clone ioctl would touch a lot
594 	 * of places, cause backwards incompatibility and would not fix the
595 	 * problem for extents cloned with older kernels.
596 	 */
597 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
598 	    search_key.offset >= LLONG_MAX)
599 		search_key.offset = 0;
600 	path->lowest_level = level;
601 	if (time_seq == SEQ_LAST)
602 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
603 	else
604 		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
605 
606 	btrfs_debug(fs_info,
607 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
608 		 ref->root_id, level, ref->count, ret,
609 		 ref->key_for_search.objectid, ref->key_for_search.type,
610 		 ref->key_for_search.offset);
611 	if (ret < 0)
612 		goto out;
613 
614 	eb = path->nodes[level];
615 	while (!eb) {
616 		if (WARN_ON(!level)) {
617 			ret = 1;
618 			goto out;
619 		}
620 		level--;
621 		eb = path->nodes[level];
622 	}
623 
624 	ret = add_all_parents(root, path, parents, preftrees, ref, level,
625 			      time_seq, extent_item_pos, ignore_offset);
626 out:
627 	btrfs_put_root(root);
628 out_free:
629 	path->lowest_level = 0;
630 	btrfs_release_path(path);
631 	return ret;
632 }
633 
634 static struct extent_inode_elem *
635 unode_aux_to_inode_list(struct ulist_node *node)
636 {
637 	if (!node)
638 		return NULL;
639 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
640 }
641 
642 /*
643  * We maintain three separate rbtrees: one for direct refs, one for
644  * indirect refs which have a key, and one for indirect refs which do not
645  * have a key. Each tree does merge on insertion.
646  *
647  * Once all of the references are located, we iterate over the tree of
648  * indirect refs with missing keys. An appropriate key is located and
649  * the ref is moved onto the tree for indirect refs. After all missing
650  * keys are thus located, we iterate over the indirect ref tree, resolve
651  * each reference, and then insert the resolved reference onto the
652  * direct tree (merging there too).
653  *
654  * New backrefs (i.e., for parent nodes) are added to the appropriate
655  * rbtree as they are encountered. The new backrefs are subsequently
656  * resolved as above.
657  */
658 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
659 				 struct btrfs_path *path, u64 time_seq,
660 				 struct preftrees *preftrees,
661 				 const u64 *extent_item_pos,
662 				 struct share_check *sc, bool ignore_offset)
663 {
664 	int err;
665 	int ret = 0;
666 	struct ulist *parents;
667 	struct ulist_node *node;
668 	struct ulist_iterator uiter;
669 	struct rb_node *rnode;
670 
671 	parents = ulist_alloc(GFP_NOFS);
672 	if (!parents)
673 		return -ENOMEM;
674 
675 	/*
676 	 * We could trade memory usage for performance here by iterating
677 	 * the tree, allocating new refs for each insertion, and then
678 	 * freeing the entire indirect tree when we're done.  In some test
679 	 * cases, the tree can grow quite large (~200k objects).
680 	 */
681 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
682 		struct prelim_ref *ref;
683 
684 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
685 		if (WARN(ref->parent,
686 			 "BUG: direct ref found in indirect tree")) {
687 			ret = -EINVAL;
688 			goto out;
689 		}
690 
691 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
692 		preftrees->indirect.count--;
693 
694 		if (ref->count == 0) {
695 			free_pref(ref);
696 			continue;
697 		}
698 
699 		if (sc && sc->root_objectid &&
700 		    ref->root_id != sc->root_objectid) {
701 			free_pref(ref);
702 			ret = BACKREF_FOUND_SHARED;
703 			goto out;
704 		}
705 		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
706 					   ref, parents, extent_item_pos,
707 					   ignore_offset);
708 		/*
709 		 * we can only tolerate ENOENT,otherwise,we should catch error
710 		 * and return directly.
711 		 */
712 		if (err == -ENOENT) {
713 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
714 					  NULL);
715 			continue;
716 		} else if (err) {
717 			free_pref(ref);
718 			ret = err;
719 			goto out;
720 		}
721 
722 		/* we put the first parent into the ref at hand */
723 		ULIST_ITER_INIT(&uiter);
724 		node = ulist_next(parents, &uiter);
725 		ref->parent = node ? node->val : 0;
726 		ref->inode_list = unode_aux_to_inode_list(node);
727 
728 		/* Add a prelim_ref(s) for any other parent(s). */
729 		while ((node = ulist_next(parents, &uiter))) {
730 			struct prelim_ref *new_ref;
731 
732 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
733 						   GFP_NOFS);
734 			if (!new_ref) {
735 				free_pref(ref);
736 				ret = -ENOMEM;
737 				goto out;
738 			}
739 			memcpy(new_ref, ref, sizeof(*ref));
740 			new_ref->parent = node->val;
741 			new_ref->inode_list = unode_aux_to_inode_list(node);
742 			prelim_ref_insert(fs_info, &preftrees->direct,
743 					  new_ref, NULL);
744 		}
745 
746 		/*
747 		 * Now it's a direct ref, put it in the direct tree. We must
748 		 * do this last because the ref could be merged/freed here.
749 		 */
750 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
751 
752 		ulist_reinit(parents);
753 		cond_resched();
754 	}
755 out:
756 	ulist_free(parents);
757 	return ret;
758 }
759 
760 /*
761  * read tree blocks and add keys where required.
762  */
763 static int add_missing_keys(struct btrfs_fs_info *fs_info,
764 			    struct preftrees *preftrees, bool lock)
765 {
766 	struct prelim_ref *ref;
767 	struct extent_buffer *eb;
768 	struct preftree *tree = &preftrees->indirect_missing_keys;
769 	struct rb_node *node;
770 
771 	while ((node = rb_first_cached(&tree->root))) {
772 		ref = rb_entry(node, struct prelim_ref, rbnode);
773 		rb_erase_cached(node, &tree->root);
774 
775 		BUG_ON(ref->parent);	/* should not be a direct ref */
776 		BUG_ON(ref->key_for_search.type);
777 		BUG_ON(!ref->wanted_disk_byte);
778 
779 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
780 				     ref->level - 1, NULL);
781 		if (IS_ERR(eb)) {
782 			free_pref(ref);
783 			return PTR_ERR(eb);
784 		} else if (!extent_buffer_uptodate(eb)) {
785 			free_pref(ref);
786 			free_extent_buffer(eb);
787 			return -EIO;
788 		}
789 		if (lock)
790 			btrfs_tree_read_lock(eb);
791 		if (btrfs_header_level(eb) == 0)
792 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
793 		else
794 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
795 		if (lock)
796 			btrfs_tree_read_unlock(eb);
797 		free_extent_buffer(eb);
798 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
799 		cond_resched();
800 	}
801 	return 0;
802 }
803 
804 /*
805  * add all currently queued delayed refs from this head whose seq nr is
806  * smaller or equal that seq to the list
807  */
808 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
809 			    struct btrfs_delayed_ref_head *head, u64 seq,
810 			    struct preftrees *preftrees, struct share_check *sc)
811 {
812 	struct btrfs_delayed_ref_node *node;
813 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
814 	struct btrfs_key key;
815 	struct btrfs_key tmp_op_key;
816 	struct rb_node *n;
817 	int count;
818 	int ret = 0;
819 
820 	if (extent_op && extent_op->update_key)
821 		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
822 
823 	spin_lock(&head->lock);
824 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
825 		node = rb_entry(n, struct btrfs_delayed_ref_node,
826 				ref_node);
827 		if (node->seq > seq)
828 			continue;
829 
830 		switch (node->action) {
831 		case BTRFS_ADD_DELAYED_EXTENT:
832 		case BTRFS_UPDATE_DELAYED_HEAD:
833 			WARN_ON(1);
834 			continue;
835 		case BTRFS_ADD_DELAYED_REF:
836 			count = node->ref_mod;
837 			break;
838 		case BTRFS_DROP_DELAYED_REF:
839 			count = node->ref_mod * -1;
840 			break;
841 		default:
842 			BUG();
843 		}
844 		switch (node->type) {
845 		case BTRFS_TREE_BLOCK_REF_KEY: {
846 			/* NORMAL INDIRECT METADATA backref */
847 			struct btrfs_delayed_tree_ref *ref;
848 
849 			ref = btrfs_delayed_node_to_tree_ref(node);
850 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
851 					       &tmp_op_key, ref->level + 1,
852 					       node->bytenr, count, sc,
853 					       GFP_ATOMIC);
854 			break;
855 		}
856 		case BTRFS_SHARED_BLOCK_REF_KEY: {
857 			/* SHARED DIRECT METADATA backref */
858 			struct btrfs_delayed_tree_ref *ref;
859 
860 			ref = btrfs_delayed_node_to_tree_ref(node);
861 
862 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
863 					     ref->parent, node->bytenr, count,
864 					     sc, GFP_ATOMIC);
865 			break;
866 		}
867 		case BTRFS_EXTENT_DATA_REF_KEY: {
868 			/* NORMAL INDIRECT DATA backref */
869 			struct btrfs_delayed_data_ref *ref;
870 			ref = btrfs_delayed_node_to_data_ref(node);
871 
872 			key.objectid = ref->objectid;
873 			key.type = BTRFS_EXTENT_DATA_KEY;
874 			key.offset = ref->offset;
875 
876 			/*
877 			 * Found a inum that doesn't match our known inum, we
878 			 * know it's shared.
879 			 */
880 			if (sc && sc->inum && ref->objectid != sc->inum) {
881 				ret = BACKREF_FOUND_SHARED;
882 				goto out;
883 			}
884 
885 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
886 					       &key, 0, node->bytenr, count, sc,
887 					       GFP_ATOMIC);
888 			break;
889 		}
890 		case BTRFS_SHARED_DATA_REF_KEY: {
891 			/* SHARED DIRECT FULL backref */
892 			struct btrfs_delayed_data_ref *ref;
893 
894 			ref = btrfs_delayed_node_to_data_ref(node);
895 
896 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
897 					     node->bytenr, count, sc,
898 					     GFP_ATOMIC);
899 			break;
900 		}
901 		default:
902 			WARN_ON(1);
903 		}
904 		/*
905 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
906 		 * refs have been checked.
907 		 */
908 		if (ret && (ret != BACKREF_FOUND_SHARED))
909 			break;
910 	}
911 	if (!ret)
912 		ret = extent_is_shared(sc);
913 out:
914 	spin_unlock(&head->lock);
915 	return ret;
916 }
917 
918 /*
919  * add all inline backrefs for bytenr to the list
920  *
921  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
922  */
923 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
924 			   struct btrfs_path *path, u64 bytenr,
925 			   int *info_level, struct preftrees *preftrees,
926 			   struct share_check *sc)
927 {
928 	int ret = 0;
929 	int slot;
930 	struct extent_buffer *leaf;
931 	struct btrfs_key key;
932 	struct btrfs_key found_key;
933 	unsigned long ptr;
934 	unsigned long end;
935 	struct btrfs_extent_item *ei;
936 	u64 flags;
937 	u64 item_size;
938 
939 	/*
940 	 * enumerate all inline refs
941 	 */
942 	leaf = path->nodes[0];
943 	slot = path->slots[0];
944 
945 	item_size = btrfs_item_size_nr(leaf, slot);
946 	BUG_ON(item_size < sizeof(*ei));
947 
948 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
949 	flags = btrfs_extent_flags(leaf, ei);
950 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
951 
952 	ptr = (unsigned long)(ei + 1);
953 	end = (unsigned long)ei + item_size;
954 
955 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
956 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
957 		struct btrfs_tree_block_info *info;
958 
959 		info = (struct btrfs_tree_block_info *)ptr;
960 		*info_level = btrfs_tree_block_level(leaf, info);
961 		ptr += sizeof(struct btrfs_tree_block_info);
962 		BUG_ON(ptr > end);
963 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
964 		*info_level = found_key.offset;
965 	} else {
966 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
967 	}
968 
969 	while (ptr < end) {
970 		struct btrfs_extent_inline_ref *iref;
971 		u64 offset;
972 		int type;
973 
974 		iref = (struct btrfs_extent_inline_ref *)ptr;
975 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
976 							BTRFS_REF_TYPE_ANY);
977 		if (type == BTRFS_REF_TYPE_INVALID)
978 			return -EUCLEAN;
979 
980 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
981 
982 		switch (type) {
983 		case BTRFS_SHARED_BLOCK_REF_KEY:
984 			ret = add_direct_ref(fs_info, preftrees,
985 					     *info_level + 1, offset,
986 					     bytenr, 1, NULL, GFP_NOFS);
987 			break;
988 		case BTRFS_SHARED_DATA_REF_KEY: {
989 			struct btrfs_shared_data_ref *sdref;
990 			int count;
991 
992 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
993 			count = btrfs_shared_data_ref_count(leaf, sdref);
994 
995 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
996 					     bytenr, count, sc, GFP_NOFS);
997 			break;
998 		}
999 		case BTRFS_TREE_BLOCK_REF_KEY:
1000 			ret = add_indirect_ref(fs_info, preftrees, offset,
1001 					       NULL, *info_level + 1,
1002 					       bytenr, 1, NULL, GFP_NOFS);
1003 			break;
1004 		case BTRFS_EXTENT_DATA_REF_KEY: {
1005 			struct btrfs_extent_data_ref *dref;
1006 			int count;
1007 			u64 root;
1008 
1009 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1010 			count = btrfs_extent_data_ref_count(leaf, dref);
1011 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1012 								      dref);
1013 			key.type = BTRFS_EXTENT_DATA_KEY;
1014 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1015 
1016 			if (sc && sc->inum && key.objectid != sc->inum) {
1017 				ret = BACKREF_FOUND_SHARED;
1018 				break;
1019 			}
1020 
1021 			root = btrfs_extent_data_ref_root(leaf, dref);
1022 
1023 			ret = add_indirect_ref(fs_info, preftrees, root,
1024 					       &key, 0, bytenr, count,
1025 					       sc, GFP_NOFS);
1026 			break;
1027 		}
1028 		default:
1029 			WARN_ON(1);
1030 		}
1031 		if (ret)
1032 			return ret;
1033 		ptr += btrfs_extent_inline_ref_size(type);
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 /*
1040  * add all non-inline backrefs for bytenr to the list
1041  *
1042  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1043  */
1044 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1045 			  struct btrfs_path *path, u64 bytenr,
1046 			  int info_level, struct preftrees *preftrees,
1047 			  struct share_check *sc)
1048 {
1049 	struct btrfs_root *extent_root = fs_info->extent_root;
1050 	int ret;
1051 	int slot;
1052 	struct extent_buffer *leaf;
1053 	struct btrfs_key key;
1054 
1055 	while (1) {
1056 		ret = btrfs_next_item(extent_root, path);
1057 		if (ret < 0)
1058 			break;
1059 		if (ret) {
1060 			ret = 0;
1061 			break;
1062 		}
1063 
1064 		slot = path->slots[0];
1065 		leaf = path->nodes[0];
1066 		btrfs_item_key_to_cpu(leaf, &key, slot);
1067 
1068 		if (key.objectid != bytenr)
1069 			break;
1070 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1071 			continue;
1072 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1073 			break;
1074 
1075 		switch (key.type) {
1076 		case BTRFS_SHARED_BLOCK_REF_KEY:
1077 			/* SHARED DIRECT METADATA backref */
1078 			ret = add_direct_ref(fs_info, preftrees,
1079 					     info_level + 1, key.offset,
1080 					     bytenr, 1, NULL, GFP_NOFS);
1081 			break;
1082 		case BTRFS_SHARED_DATA_REF_KEY: {
1083 			/* SHARED DIRECT FULL backref */
1084 			struct btrfs_shared_data_ref *sdref;
1085 			int count;
1086 
1087 			sdref = btrfs_item_ptr(leaf, slot,
1088 					      struct btrfs_shared_data_ref);
1089 			count = btrfs_shared_data_ref_count(leaf, sdref);
1090 			ret = add_direct_ref(fs_info, preftrees, 0,
1091 					     key.offset, bytenr, count,
1092 					     sc, GFP_NOFS);
1093 			break;
1094 		}
1095 		case BTRFS_TREE_BLOCK_REF_KEY:
1096 			/* NORMAL INDIRECT METADATA backref */
1097 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1098 					       NULL, info_level + 1, bytenr,
1099 					       1, NULL, GFP_NOFS);
1100 			break;
1101 		case BTRFS_EXTENT_DATA_REF_KEY: {
1102 			/* NORMAL INDIRECT DATA backref */
1103 			struct btrfs_extent_data_ref *dref;
1104 			int count;
1105 			u64 root;
1106 
1107 			dref = btrfs_item_ptr(leaf, slot,
1108 					      struct btrfs_extent_data_ref);
1109 			count = btrfs_extent_data_ref_count(leaf, dref);
1110 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1111 								      dref);
1112 			key.type = BTRFS_EXTENT_DATA_KEY;
1113 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1114 
1115 			if (sc && sc->inum && key.objectid != sc->inum) {
1116 				ret = BACKREF_FOUND_SHARED;
1117 				break;
1118 			}
1119 
1120 			root = btrfs_extent_data_ref_root(leaf, dref);
1121 			ret = add_indirect_ref(fs_info, preftrees, root,
1122 					       &key, 0, bytenr, count,
1123 					       sc, GFP_NOFS);
1124 			break;
1125 		}
1126 		default:
1127 			WARN_ON(1);
1128 		}
1129 		if (ret)
1130 			return ret;
1131 
1132 	}
1133 
1134 	return ret;
1135 }
1136 
1137 /*
1138  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1139  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1140  * indirect refs to their parent bytenr.
1141  * When roots are found, they're added to the roots list
1142  *
1143  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1144  * much like trans == NULL case, the difference only lies in it will not
1145  * commit root.
1146  * The special case is for qgroup to search roots in commit_transaction().
1147  *
1148  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1149  * shared extent is detected.
1150  *
1151  * Otherwise this returns 0 for success and <0 for an error.
1152  *
1153  * If ignore_offset is set to false, only extent refs whose offsets match
1154  * extent_item_pos are returned.  If true, every extent ref is returned
1155  * and extent_item_pos is ignored.
1156  *
1157  * FIXME some caching might speed things up
1158  */
1159 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1160 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1161 			     u64 time_seq, struct ulist *refs,
1162 			     struct ulist *roots, const u64 *extent_item_pos,
1163 			     struct share_check *sc, bool ignore_offset)
1164 {
1165 	struct btrfs_key key;
1166 	struct btrfs_path *path;
1167 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1168 	struct btrfs_delayed_ref_head *head;
1169 	int info_level = 0;
1170 	int ret;
1171 	struct prelim_ref *ref;
1172 	struct rb_node *node;
1173 	struct extent_inode_elem *eie = NULL;
1174 	struct preftrees preftrees = {
1175 		.direct = PREFTREE_INIT,
1176 		.indirect = PREFTREE_INIT,
1177 		.indirect_missing_keys = PREFTREE_INIT
1178 	};
1179 
1180 	key.objectid = bytenr;
1181 	key.offset = (u64)-1;
1182 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1183 		key.type = BTRFS_METADATA_ITEM_KEY;
1184 	else
1185 		key.type = BTRFS_EXTENT_ITEM_KEY;
1186 
1187 	path = btrfs_alloc_path();
1188 	if (!path)
1189 		return -ENOMEM;
1190 	if (!trans) {
1191 		path->search_commit_root = 1;
1192 		path->skip_locking = 1;
1193 	}
1194 
1195 	if (time_seq == SEQ_LAST)
1196 		path->skip_locking = 1;
1197 
1198 	/*
1199 	 * grab both a lock on the path and a lock on the delayed ref head.
1200 	 * We need both to get a consistent picture of how the refs look
1201 	 * at a specified point in time
1202 	 */
1203 again:
1204 	head = NULL;
1205 
1206 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1207 	if (ret < 0)
1208 		goto out;
1209 	BUG_ON(ret == 0);
1210 
1211 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1212 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1213 	    time_seq != SEQ_LAST) {
1214 #else
1215 	if (trans && time_seq != SEQ_LAST) {
1216 #endif
1217 		/*
1218 		 * look if there are updates for this ref queued and lock the
1219 		 * head
1220 		 */
1221 		delayed_refs = &trans->transaction->delayed_refs;
1222 		spin_lock(&delayed_refs->lock);
1223 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1224 		if (head) {
1225 			if (!mutex_trylock(&head->mutex)) {
1226 				refcount_inc(&head->refs);
1227 				spin_unlock(&delayed_refs->lock);
1228 
1229 				btrfs_release_path(path);
1230 
1231 				/*
1232 				 * Mutex was contended, block until it's
1233 				 * released and try again
1234 				 */
1235 				mutex_lock(&head->mutex);
1236 				mutex_unlock(&head->mutex);
1237 				btrfs_put_delayed_ref_head(head);
1238 				goto again;
1239 			}
1240 			spin_unlock(&delayed_refs->lock);
1241 			ret = add_delayed_refs(fs_info, head, time_seq,
1242 					       &preftrees, sc);
1243 			mutex_unlock(&head->mutex);
1244 			if (ret)
1245 				goto out;
1246 		} else {
1247 			spin_unlock(&delayed_refs->lock);
1248 		}
1249 	}
1250 
1251 	if (path->slots[0]) {
1252 		struct extent_buffer *leaf;
1253 		int slot;
1254 
1255 		path->slots[0]--;
1256 		leaf = path->nodes[0];
1257 		slot = path->slots[0];
1258 		btrfs_item_key_to_cpu(leaf, &key, slot);
1259 		if (key.objectid == bytenr &&
1260 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1261 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1262 			ret = add_inline_refs(fs_info, path, bytenr,
1263 					      &info_level, &preftrees, sc);
1264 			if (ret)
1265 				goto out;
1266 			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1267 					     &preftrees, sc);
1268 			if (ret)
1269 				goto out;
1270 		}
1271 	}
1272 
1273 	btrfs_release_path(path);
1274 
1275 	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1276 	if (ret)
1277 		goto out;
1278 
1279 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1280 
1281 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1282 				    extent_item_pos, sc, ignore_offset);
1283 	if (ret)
1284 		goto out;
1285 
1286 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1287 
1288 	/*
1289 	 * This walks the tree of merged and resolved refs. Tree blocks are
1290 	 * read in as needed. Unique entries are added to the ulist, and
1291 	 * the list of found roots is updated.
1292 	 *
1293 	 * We release the entire tree in one go before returning.
1294 	 */
1295 	node = rb_first_cached(&preftrees.direct.root);
1296 	while (node) {
1297 		ref = rb_entry(node, struct prelim_ref, rbnode);
1298 		node = rb_next(&ref->rbnode);
1299 		/*
1300 		 * ref->count < 0 can happen here if there are delayed
1301 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1302 		 * prelim_ref_insert() relies on this when merging
1303 		 * identical refs to keep the overall count correct.
1304 		 * prelim_ref_insert() will merge only those refs
1305 		 * which compare identically.  Any refs having
1306 		 * e.g. different offsets would not be merged,
1307 		 * and would retain their original ref->count < 0.
1308 		 */
1309 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1310 			if (sc && sc->root_objectid &&
1311 			    ref->root_id != sc->root_objectid) {
1312 				ret = BACKREF_FOUND_SHARED;
1313 				goto out;
1314 			}
1315 
1316 			/* no parent == root of tree */
1317 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1318 			if (ret < 0)
1319 				goto out;
1320 		}
1321 		if (ref->count && ref->parent) {
1322 			if (extent_item_pos && !ref->inode_list &&
1323 			    ref->level == 0) {
1324 				struct extent_buffer *eb;
1325 
1326 				eb = read_tree_block(fs_info, ref->parent, 0,
1327 						     ref->level, NULL);
1328 				if (IS_ERR(eb)) {
1329 					ret = PTR_ERR(eb);
1330 					goto out;
1331 				} else if (!extent_buffer_uptodate(eb)) {
1332 					free_extent_buffer(eb);
1333 					ret = -EIO;
1334 					goto out;
1335 				}
1336 
1337 				if (!path->skip_locking) {
1338 					btrfs_tree_read_lock(eb);
1339 					btrfs_set_lock_blocking_read(eb);
1340 				}
1341 				ret = find_extent_in_eb(eb, bytenr,
1342 							*extent_item_pos, &eie, ignore_offset);
1343 				if (!path->skip_locking)
1344 					btrfs_tree_read_unlock_blocking(eb);
1345 				free_extent_buffer(eb);
1346 				if (ret < 0)
1347 					goto out;
1348 				ref->inode_list = eie;
1349 			}
1350 			ret = ulist_add_merge_ptr(refs, ref->parent,
1351 						  ref->inode_list,
1352 						  (void **)&eie, GFP_NOFS);
1353 			if (ret < 0)
1354 				goto out;
1355 			if (!ret && extent_item_pos) {
1356 				/*
1357 				 * we've recorded that parent, so we must extend
1358 				 * its inode list here
1359 				 */
1360 				BUG_ON(!eie);
1361 				while (eie->next)
1362 					eie = eie->next;
1363 				eie->next = ref->inode_list;
1364 			}
1365 			eie = NULL;
1366 		}
1367 		cond_resched();
1368 	}
1369 
1370 out:
1371 	btrfs_free_path(path);
1372 
1373 	prelim_release(&preftrees.direct);
1374 	prelim_release(&preftrees.indirect);
1375 	prelim_release(&preftrees.indirect_missing_keys);
1376 
1377 	if (ret < 0)
1378 		free_inode_elem_list(eie);
1379 	return ret;
1380 }
1381 
1382 static void free_leaf_list(struct ulist *blocks)
1383 {
1384 	struct ulist_node *node = NULL;
1385 	struct extent_inode_elem *eie;
1386 	struct ulist_iterator uiter;
1387 
1388 	ULIST_ITER_INIT(&uiter);
1389 	while ((node = ulist_next(blocks, &uiter))) {
1390 		if (!node->aux)
1391 			continue;
1392 		eie = unode_aux_to_inode_list(node);
1393 		free_inode_elem_list(eie);
1394 		node->aux = 0;
1395 	}
1396 
1397 	ulist_free(blocks);
1398 }
1399 
1400 /*
1401  * Finds all leafs with a reference to the specified combination of bytenr and
1402  * offset. key_list_head will point to a list of corresponding keys (caller must
1403  * free each list element). The leafs will be stored in the leafs ulist, which
1404  * must be freed with ulist_free.
1405  *
1406  * returns 0 on success, <0 on error
1407  */
1408 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1409 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1410 			 u64 time_seq, struct ulist **leafs,
1411 			 const u64 *extent_item_pos, bool ignore_offset)
1412 {
1413 	int ret;
1414 
1415 	*leafs = ulist_alloc(GFP_NOFS);
1416 	if (!*leafs)
1417 		return -ENOMEM;
1418 
1419 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1420 				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1421 	if (ret < 0 && ret != -ENOENT) {
1422 		free_leaf_list(*leafs);
1423 		return ret;
1424 	}
1425 
1426 	return 0;
1427 }
1428 
1429 /*
1430  * walk all backrefs for a given extent to find all roots that reference this
1431  * extent. Walking a backref means finding all extents that reference this
1432  * extent and in turn walk the backrefs of those, too. Naturally this is a
1433  * recursive process, but here it is implemented in an iterative fashion: We
1434  * find all referencing extents for the extent in question and put them on a
1435  * list. In turn, we find all referencing extents for those, further appending
1436  * to the list. The way we iterate the list allows adding more elements after
1437  * the current while iterating. The process stops when we reach the end of the
1438  * list. Found roots are added to the roots list.
1439  *
1440  * returns 0 on success, < 0 on error.
1441  */
1442 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1443 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1444 				     u64 time_seq, struct ulist **roots,
1445 				     bool ignore_offset)
1446 {
1447 	struct ulist *tmp;
1448 	struct ulist_node *node = NULL;
1449 	struct ulist_iterator uiter;
1450 	int ret;
1451 
1452 	tmp = ulist_alloc(GFP_NOFS);
1453 	if (!tmp)
1454 		return -ENOMEM;
1455 	*roots = ulist_alloc(GFP_NOFS);
1456 	if (!*roots) {
1457 		ulist_free(tmp);
1458 		return -ENOMEM;
1459 	}
1460 
1461 	ULIST_ITER_INIT(&uiter);
1462 	while (1) {
1463 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1464 					tmp, *roots, NULL, NULL, ignore_offset);
1465 		if (ret < 0 && ret != -ENOENT) {
1466 			ulist_free(tmp);
1467 			ulist_free(*roots);
1468 			return ret;
1469 		}
1470 		node = ulist_next(tmp, &uiter);
1471 		if (!node)
1472 			break;
1473 		bytenr = node->val;
1474 		cond_resched();
1475 	}
1476 
1477 	ulist_free(tmp);
1478 	return 0;
1479 }
1480 
1481 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1482 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1483 			 u64 time_seq, struct ulist **roots,
1484 			 bool ignore_offset)
1485 {
1486 	int ret;
1487 
1488 	if (!trans)
1489 		down_read(&fs_info->commit_root_sem);
1490 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1491 					time_seq, roots, ignore_offset);
1492 	if (!trans)
1493 		up_read(&fs_info->commit_root_sem);
1494 	return ret;
1495 }
1496 
1497 /**
1498  * btrfs_check_shared - tell us whether an extent is shared
1499  *
1500  * btrfs_check_shared uses the backref walking code but will short
1501  * circuit as soon as it finds a root or inode that doesn't match the
1502  * one passed in. This provides a significant performance benefit for
1503  * callers (such as fiemap) which want to know whether the extent is
1504  * shared but do not need a ref count.
1505  *
1506  * This attempts to attach to the running transaction in order to account for
1507  * delayed refs, but continues on even when no running transaction exists.
1508  *
1509  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1510  */
1511 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1512 		struct ulist *roots, struct ulist *tmp)
1513 {
1514 	struct btrfs_fs_info *fs_info = root->fs_info;
1515 	struct btrfs_trans_handle *trans;
1516 	struct ulist_iterator uiter;
1517 	struct ulist_node *node;
1518 	struct seq_list elem = SEQ_LIST_INIT(elem);
1519 	int ret = 0;
1520 	struct share_check shared = {
1521 		.root_objectid = root->root_key.objectid,
1522 		.inum = inum,
1523 		.share_count = 0,
1524 	};
1525 
1526 	ulist_init(roots);
1527 	ulist_init(tmp);
1528 
1529 	trans = btrfs_join_transaction_nostart(root);
1530 	if (IS_ERR(trans)) {
1531 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1532 			ret = PTR_ERR(trans);
1533 			goto out;
1534 		}
1535 		trans = NULL;
1536 		down_read(&fs_info->commit_root_sem);
1537 	} else {
1538 		btrfs_get_tree_mod_seq(fs_info, &elem);
1539 	}
1540 
1541 	ULIST_ITER_INIT(&uiter);
1542 	while (1) {
1543 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1544 					roots, NULL, &shared, false);
1545 		if (ret == BACKREF_FOUND_SHARED) {
1546 			/* this is the only condition under which we return 1 */
1547 			ret = 1;
1548 			break;
1549 		}
1550 		if (ret < 0 && ret != -ENOENT)
1551 			break;
1552 		ret = 0;
1553 		node = ulist_next(tmp, &uiter);
1554 		if (!node)
1555 			break;
1556 		bytenr = node->val;
1557 		shared.share_count = 0;
1558 		cond_resched();
1559 	}
1560 
1561 	if (trans) {
1562 		btrfs_put_tree_mod_seq(fs_info, &elem);
1563 		btrfs_end_transaction(trans);
1564 	} else {
1565 		up_read(&fs_info->commit_root_sem);
1566 	}
1567 out:
1568 	ulist_release(roots);
1569 	ulist_release(tmp);
1570 	return ret;
1571 }
1572 
1573 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1574 			  u64 start_off, struct btrfs_path *path,
1575 			  struct btrfs_inode_extref **ret_extref,
1576 			  u64 *found_off)
1577 {
1578 	int ret, slot;
1579 	struct btrfs_key key;
1580 	struct btrfs_key found_key;
1581 	struct btrfs_inode_extref *extref;
1582 	const struct extent_buffer *leaf;
1583 	unsigned long ptr;
1584 
1585 	key.objectid = inode_objectid;
1586 	key.type = BTRFS_INODE_EXTREF_KEY;
1587 	key.offset = start_off;
1588 
1589 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1590 	if (ret < 0)
1591 		return ret;
1592 
1593 	while (1) {
1594 		leaf = path->nodes[0];
1595 		slot = path->slots[0];
1596 		if (slot >= btrfs_header_nritems(leaf)) {
1597 			/*
1598 			 * If the item at offset is not found,
1599 			 * btrfs_search_slot will point us to the slot
1600 			 * where it should be inserted. In our case
1601 			 * that will be the slot directly before the
1602 			 * next INODE_REF_KEY_V2 item. In the case
1603 			 * that we're pointing to the last slot in a
1604 			 * leaf, we must move one leaf over.
1605 			 */
1606 			ret = btrfs_next_leaf(root, path);
1607 			if (ret) {
1608 				if (ret >= 1)
1609 					ret = -ENOENT;
1610 				break;
1611 			}
1612 			continue;
1613 		}
1614 
1615 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1616 
1617 		/*
1618 		 * Check that we're still looking at an extended ref key for
1619 		 * this particular objectid. If we have different
1620 		 * objectid or type then there are no more to be found
1621 		 * in the tree and we can exit.
1622 		 */
1623 		ret = -ENOENT;
1624 		if (found_key.objectid != inode_objectid)
1625 			break;
1626 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1627 			break;
1628 
1629 		ret = 0;
1630 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1631 		extref = (struct btrfs_inode_extref *)ptr;
1632 		*ret_extref = extref;
1633 		if (found_off)
1634 			*found_off = found_key.offset;
1635 		break;
1636 	}
1637 
1638 	return ret;
1639 }
1640 
1641 /*
1642  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1643  * Elements of the path are separated by '/' and the path is guaranteed to be
1644  * 0-terminated. the path is only given within the current file system.
1645  * Therefore, it never starts with a '/'. the caller is responsible to provide
1646  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1647  * the start point of the resulting string is returned. this pointer is within
1648  * dest, normally.
1649  * in case the path buffer would overflow, the pointer is decremented further
1650  * as if output was written to the buffer, though no more output is actually
1651  * generated. that way, the caller can determine how much space would be
1652  * required for the path to fit into the buffer. in that case, the returned
1653  * value will be smaller than dest. callers must check this!
1654  */
1655 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1656 			u32 name_len, unsigned long name_off,
1657 			struct extent_buffer *eb_in, u64 parent,
1658 			char *dest, u32 size)
1659 {
1660 	int slot;
1661 	u64 next_inum;
1662 	int ret;
1663 	s64 bytes_left = ((s64)size) - 1;
1664 	struct extent_buffer *eb = eb_in;
1665 	struct btrfs_key found_key;
1666 	int leave_spinning = path->leave_spinning;
1667 	struct btrfs_inode_ref *iref;
1668 
1669 	if (bytes_left >= 0)
1670 		dest[bytes_left] = '\0';
1671 
1672 	path->leave_spinning = 1;
1673 	while (1) {
1674 		bytes_left -= name_len;
1675 		if (bytes_left >= 0)
1676 			read_extent_buffer(eb, dest + bytes_left,
1677 					   name_off, name_len);
1678 		if (eb != eb_in) {
1679 			if (!path->skip_locking)
1680 				btrfs_tree_read_unlock_blocking(eb);
1681 			free_extent_buffer(eb);
1682 		}
1683 		ret = btrfs_find_item(fs_root, path, parent, 0,
1684 				BTRFS_INODE_REF_KEY, &found_key);
1685 		if (ret > 0)
1686 			ret = -ENOENT;
1687 		if (ret)
1688 			break;
1689 
1690 		next_inum = found_key.offset;
1691 
1692 		/* regular exit ahead */
1693 		if (parent == next_inum)
1694 			break;
1695 
1696 		slot = path->slots[0];
1697 		eb = path->nodes[0];
1698 		/* make sure we can use eb after releasing the path */
1699 		if (eb != eb_in) {
1700 			if (!path->skip_locking)
1701 				btrfs_set_lock_blocking_read(eb);
1702 			path->nodes[0] = NULL;
1703 			path->locks[0] = 0;
1704 		}
1705 		btrfs_release_path(path);
1706 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1707 
1708 		name_len = btrfs_inode_ref_name_len(eb, iref);
1709 		name_off = (unsigned long)(iref + 1);
1710 
1711 		parent = next_inum;
1712 		--bytes_left;
1713 		if (bytes_left >= 0)
1714 			dest[bytes_left] = '/';
1715 	}
1716 
1717 	btrfs_release_path(path);
1718 	path->leave_spinning = leave_spinning;
1719 
1720 	if (ret)
1721 		return ERR_PTR(ret);
1722 
1723 	return dest + bytes_left;
1724 }
1725 
1726 /*
1727  * this makes the path point to (logical EXTENT_ITEM *)
1728  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1729  * tree blocks and <0 on error.
1730  */
1731 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1732 			struct btrfs_path *path, struct btrfs_key *found_key,
1733 			u64 *flags_ret)
1734 {
1735 	int ret;
1736 	u64 flags;
1737 	u64 size = 0;
1738 	u32 item_size;
1739 	const struct extent_buffer *eb;
1740 	struct btrfs_extent_item *ei;
1741 	struct btrfs_key key;
1742 
1743 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1744 		key.type = BTRFS_METADATA_ITEM_KEY;
1745 	else
1746 		key.type = BTRFS_EXTENT_ITEM_KEY;
1747 	key.objectid = logical;
1748 	key.offset = (u64)-1;
1749 
1750 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1751 	if (ret < 0)
1752 		return ret;
1753 
1754 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1755 	if (ret) {
1756 		if (ret > 0)
1757 			ret = -ENOENT;
1758 		return ret;
1759 	}
1760 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1761 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1762 		size = fs_info->nodesize;
1763 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1764 		size = found_key->offset;
1765 
1766 	if (found_key->objectid > logical ||
1767 	    found_key->objectid + size <= logical) {
1768 		btrfs_debug(fs_info,
1769 			"logical %llu is not within any extent", logical);
1770 		return -ENOENT;
1771 	}
1772 
1773 	eb = path->nodes[0];
1774 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1775 	BUG_ON(item_size < sizeof(*ei));
1776 
1777 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1778 	flags = btrfs_extent_flags(eb, ei);
1779 
1780 	btrfs_debug(fs_info,
1781 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1782 		 logical, logical - found_key->objectid, found_key->objectid,
1783 		 found_key->offset, flags, item_size);
1784 
1785 	WARN_ON(!flags_ret);
1786 	if (flags_ret) {
1787 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1788 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1789 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1790 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1791 		else
1792 			BUG();
1793 		return 0;
1794 	}
1795 
1796 	return -EIO;
1797 }
1798 
1799 /*
1800  * helper function to iterate extent inline refs. ptr must point to a 0 value
1801  * for the first call and may be modified. it is used to track state.
1802  * if more refs exist, 0 is returned and the next call to
1803  * get_extent_inline_ref must pass the modified ptr parameter to get the
1804  * next ref. after the last ref was processed, 1 is returned.
1805  * returns <0 on error
1806  */
1807 static int get_extent_inline_ref(unsigned long *ptr,
1808 				 const struct extent_buffer *eb,
1809 				 const struct btrfs_key *key,
1810 				 const struct btrfs_extent_item *ei,
1811 				 u32 item_size,
1812 				 struct btrfs_extent_inline_ref **out_eiref,
1813 				 int *out_type)
1814 {
1815 	unsigned long end;
1816 	u64 flags;
1817 	struct btrfs_tree_block_info *info;
1818 
1819 	if (!*ptr) {
1820 		/* first call */
1821 		flags = btrfs_extent_flags(eb, ei);
1822 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1823 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1824 				/* a skinny metadata extent */
1825 				*out_eiref =
1826 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1827 			} else {
1828 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1829 				info = (struct btrfs_tree_block_info *)(ei + 1);
1830 				*out_eiref =
1831 				   (struct btrfs_extent_inline_ref *)(info + 1);
1832 			}
1833 		} else {
1834 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1835 		}
1836 		*ptr = (unsigned long)*out_eiref;
1837 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1838 			return -ENOENT;
1839 	}
1840 
1841 	end = (unsigned long)ei + item_size;
1842 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1843 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1844 						     BTRFS_REF_TYPE_ANY);
1845 	if (*out_type == BTRFS_REF_TYPE_INVALID)
1846 		return -EUCLEAN;
1847 
1848 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1849 	WARN_ON(*ptr > end);
1850 	if (*ptr == end)
1851 		return 1; /* last */
1852 
1853 	return 0;
1854 }
1855 
1856 /*
1857  * reads the tree block backref for an extent. tree level and root are returned
1858  * through out_level and out_root. ptr must point to a 0 value for the first
1859  * call and may be modified (see get_extent_inline_ref comment).
1860  * returns 0 if data was provided, 1 if there was no more data to provide or
1861  * <0 on error.
1862  */
1863 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1864 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1865 			    u32 item_size, u64 *out_root, u8 *out_level)
1866 {
1867 	int ret;
1868 	int type;
1869 	struct btrfs_extent_inline_ref *eiref;
1870 
1871 	if (*ptr == (unsigned long)-1)
1872 		return 1;
1873 
1874 	while (1) {
1875 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1876 					      &eiref, &type);
1877 		if (ret < 0)
1878 			return ret;
1879 
1880 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1881 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1882 			break;
1883 
1884 		if (ret == 1)
1885 			return 1;
1886 	}
1887 
1888 	/* we can treat both ref types equally here */
1889 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1890 
1891 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1892 		struct btrfs_tree_block_info *info;
1893 
1894 		info = (struct btrfs_tree_block_info *)(ei + 1);
1895 		*out_level = btrfs_tree_block_level(eb, info);
1896 	} else {
1897 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1898 		*out_level = (u8)key->offset;
1899 	}
1900 
1901 	if (ret == 1)
1902 		*ptr = (unsigned long)-1;
1903 
1904 	return 0;
1905 }
1906 
1907 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1908 			     struct extent_inode_elem *inode_list,
1909 			     u64 root, u64 extent_item_objectid,
1910 			     iterate_extent_inodes_t *iterate, void *ctx)
1911 {
1912 	struct extent_inode_elem *eie;
1913 	int ret = 0;
1914 
1915 	for (eie = inode_list; eie; eie = eie->next) {
1916 		btrfs_debug(fs_info,
1917 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1918 			    extent_item_objectid, eie->inum,
1919 			    eie->offset, root);
1920 		ret = iterate(eie->inum, eie->offset, root, ctx);
1921 		if (ret) {
1922 			btrfs_debug(fs_info,
1923 				    "stopping iteration for %llu due to ret=%d",
1924 				    extent_item_objectid, ret);
1925 			break;
1926 		}
1927 	}
1928 
1929 	return ret;
1930 }
1931 
1932 /*
1933  * calls iterate() for every inode that references the extent identified by
1934  * the given parameters.
1935  * when the iterator function returns a non-zero value, iteration stops.
1936  */
1937 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1938 				u64 extent_item_objectid, u64 extent_item_pos,
1939 				int search_commit_root,
1940 				iterate_extent_inodes_t *iterate, void *ctx,
1941 				bool ignore_offset)
1942 {
1943 	int ret;
1944 	struct btrfs_trans_handle *trans = NULL;
1945 	struct ulist *refs = NULL;
1946 	struct ulist *roots = NULL;
1947 	struct ulist_node *ref_node = NULL;
1948 	struct ulist_node *root_node = NULL;
1949 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1950 	struct ulist_iterator ref_uiter;
1951 	struct ulist_iterator root_uiter;
1952 
1953 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1954 			extent_item_objectid);
1955 
1956 	if (!search_commit_root) {
1957 		trans = btrfs_attach_transaction(fs_info->extent_root);
1958 		if (IS_ERR(trans)) {
1959 			if (PTR_ERR(trans) != -ENOENT &&
1960 			    PTR_ERR(trans) != -EROFS)
1961 				return PTR_ERR(trans);
1962 			trans = NULL;
1963 		}
1964 	}
1965 
1966 	if (trans)
1967 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1968 	else
1969 		down_read(&fs_info->commit_root_sem);
1970 
1971 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1972 				   tree_mod_seq_elem.seq, &refs,
1973 				   &extent_item_pos, ignore_offset);
1974 	if (ret)
1975 		goto out;
1976 
1977 	ULIST_ITER_INIT(&ref_uiter);
1978 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1979 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1980 						tree_mod_seq_elem.seq, &roots,
1981 						ignore_offset);
1982 		if (ret)
1983 			break;
1984 		ULIST_ITER_INIT(&root_uiter);
1985 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1986 			btrfs_debug(fs_info,
1987 				    "root %llu references leaf %llu, data list %#llx",
1988 				    root_node->val, ref_node->val,
1989 				    ref_node->aux);
1990 			ret = iterate_leaf_refs(fs_info,
1991 						(struct extent_inode_elem *)
1992 						(uintptr_t)ref_node->aux,
1993 						root_node->val,
1994 						extent_item_objectid,
1995 						iterate, ctx);
1996 		}
1997 		ulist_free(roots);
1998 	}
1999 
2000 	free_leaf_list(refs);
2001 out:
2002 	if (trans) {
2003 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2004 		btrfs_end_transaction(trans);
2005 	} else {
2006 		up_read(&fs_info->commit_root_sem);
2007 	}
2008 
2009 	return ret;
2010 }
2011 
2012 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2013 				struct btrfs_path *path,
2014 				iterate_extent_inodes_t *iterate, void *ctx,
2015 				bool ignore_offset)
2016 {
2017 	int ret;
2018 	u64 extent_item_pos;
2019 	u64 flags = 0;
2020 	struct btrfs_key found_key;
2021 	int search_commit_root = path->search_commit_root;
2022 
2023 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2024 	btrfs_release_path(path);
2025 	if (ret < 0)
2026 		return ret;
2027 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2028 		return -EINVAL;
2029 
2030 	extent_item_pos = logical - found_key.objectid;
2031 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2032 					extent_item_pos, search_commit_root,
2033 					iterate, ctx, ignore_offset);
2034 
2035 	return ret;
2036 }
2037 
2038 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2039 			      struct extent_buffer *eb, void *ctx);
2040 
2041 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2042 			      struct btrfs_path *path,
2043 			      iterate_irefs_t *iterate, void *ctx)
2044 {
2045 	int ret = 0;
2046 	int slot;
2047 	u32 cur;
2048 	u32 len;
2049 	u32 name_len;
2050 	u64 parent = 0;
2051 	int found = 0;
2052 	struct extent_buffer *eb;
2053 	struct btrfs_item *item;
2054 	struct btrfs_inode_ref *iref;
2055 	struct btrfs_key found_key;
2056 
2057 	while (!ret) {
2058 		ret = btrfs_find_item(fs_root, path, inum,
2059 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2060 				&found_key);
2061 
2062 		if (ret < 0)
2063 			break;
2064 		if (ret) {
2065 			ret = found ? 0 : -ENOENT;
2066 			break;
2067 		}
2068 		++found;
2069 
2070 		parent = found_key.offset;
2071 		slot = path->slots[0];
2072 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2073 		if (!eb) {
2074 			ret = -ENOMEM;
2075 			break;
2076 		}
2077 		btrfs_release_path(path);
2078 
2079 		item = btrfs_item_nr(slot);
2080 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2081 
2082 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2083 			name_len = btrfs_inode_ref_name_len(eb, iref);
2084 			/* path must be released before calling iterate()! */
2085 			btrfs_debug(fs_root->fs_info,
2086 				"following ref at offset %u for inode %llu in tree %llu",
2087 				cur, found_key.objectid,
2088 				fs_root->root_key.objectid);
2089 			ret = iterate(parent, name_len,
2090 				      (unsigned long)(iref + 1), eb, ctx);
2091 			if (ret)
2092 				break;
2093 			len = sizeof(*iref) + name_len;
2094 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2095 		}
2096 		free_extent_buffer(eb);
2097 	}
2098 
2099 	btrfs_release_path(path);
2100 
2101 	return ret;
2102 }
2103 
2104 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2105 				 struct btrfs_path *path,
2106 				 iterate_irefs_t *iterate, void *ctx)
2107 {
2108 	int ret;
2109 	int slot;
2110 	u64 offset = 0;
2111 	u64 parent;
2112 	int found = 0;
2113 	struct extent_buffer *eb;
2114 	struct btrfs_inode_extref *extref;
2115 	u32 item_size;
2116 	u32 cur_offset;
2117 	unsigned long ptr;
2118 
2119 	while (1) {
2120 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2121 					    &offset);
2122 		if (ret < 0)
2123 			break;
2124 		if (ret) {
2125 			ret = found ? 0 : -ENOENT;
2126 			break;
2127 		}
2128 		++found;
2129 
2130 		slot = path->slots[0];
2131 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2132 		if (!eb) {
2133 			ret = -ENOMEM;
2134 			break;
2135 		}
2136 		btrfs_release_path(path);
2137 
2138 		item_size = btrfs_item_size_nr(eb, slot);
2139 		ptr = btrfs_item_ptr_offset(eb, slot);
2140 		cur_offset = 0;
2141 
2142 		while (cur_offset < item_size) {
2143 			u32 name_len;
2144 
2145 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2146 			parent = btrfs_inode_extref_parent(eb, extref);
2147 			name_len = btrfs_inode_extref_name_len(eb, extref);
2148 			ret = iterate(parent, name_len,
2149 				      (unsigned long)&extref->name, eb, ctx);
2150 			if (ret)
2151 				break;
2152 
2153 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2154 			cur_offset += sizeof(*extref);
2155 		}
2156 		free_extent_buffer(eb);
2157 
2158 		offset++;
2159 	}
2160 
2161 	btrfs_release_path(path);
2162 
2163 	return ret;
2164 }
2165 
2166 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2167 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2168 			 void *ctx)
2169 {
2170 	int ret;
2171 	int found_refs = 0;
2172 
2173 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2174 	if (!ret)
2175 		++found_refs;
2176 	else if (ret != -ENOENT)
2177 		return ret;
2178 
2179 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2180 	if (ret == -ENOENT && found_refs)
2181 		return 0;
2182 
2183 	return ret;
2184 }
2185 
2186 /*
2187  * returns 0 if the path could be dumped (probably truncated)
2188  * returns <0 in case of an error
2189  */
2190 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2191 			 struct extent_buffer *eb, void *ctx)
2192 {
2193 	struct inode_fs_paths *ipath = ctx;
2194 	char *fspath;
2195 	char *fspath_min;
2196 	int i = ipath->fspath->elem_cnt;
2197 	const int s_ptr = sizeof(char *);
2198 	u32 bytes_left;
2199 
2200 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2201 					ipath->fspath->bytes_left - s_ptr : 0;
2202 
2203 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2204 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2205 				   name_off, eb, inum, fspath_min, bytes_left);
2206 	if (IS_ERR(fspath))
2207 		return PTR_ERR(fspath);
2208 
2209 	if (fspath > fspath_min) {
2210 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2211 		++ipath->fspath->elem_cnt;
2212 		ipath->fspath->bytes_left = fspath - fspath_min;
2213 	} else {
2214 		++ipath->fspath->elem_missed;
2215 		ipath->fspath->bytes_missing += fspath_min - fspath;
2216 		ipath->fspath->bytes_left = 0;
2217 	}
2218 
2219 	return 0;
2220 }
2221 
2222 /*
2223  * this dumps all file system paths to the inode into the ipath struct, provided
2224  * is has been created large enough. each path is zero-terminated and accessed
2225  * from ipath->fspath->val[i].
2226  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2227  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2228  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2229  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2230  * have been needed to return all paths.
2231  */
2232 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2233 {
2234 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2235 			     inode_to_path, ipath);
2236 }
2237 
2238 struct btrfs_data_container *init_data_container(u32 total_bytes)
2239 {
2240 	struct btrfs_data_container *data;
2241 	size_t alloc_bytes;
2242 
2243 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2244 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2245 	if (!data)
2246 		return ERR_PTR(-ENOMEM);
2247 
2248 	if (total_bytes >= sizeof(*data)) {
2249 		data->bytes_left = total_bytes - sizeof(*data);
2250 		data->bytes_missing = 0;
2251 	} else {
2252 		data->bytes_missing = sizeof(*data) - total_bytes;
2253 		data->bytes_left = 0;
2254 	}
2255 
2256 	data->elem_cnt = 0;
2257 	data->elem_missed = 0;
2258 
2259 	return data;
2260 }
2261 
2262 /*
2263  * allocates space to return multiple file system paths for an inode.
2264  * total_bytes to allocate are passed, note that space usable for actual path
2265  * information will be total_bytes - sizeof(struct inode_fs_paths).
2266  * the returned pointer must be freed with free_ipath() in the end.
2267  */
2268 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2269 					struct btrfs_path *path)
2270 {
2271 	struct inode_fs_paths *ifp;
2272 	struct btrfs_data_container *fspath;
2273 
2274 	fspath = init_data_container(total_bytes);
2275 	if (IS_ERR(fspath))
2276 		return ERR_CAST(fspath);
2277 
2278 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2279 	if (!ifp) {
2280 		kvfree(fspath);
2281 		return ERR_PTR(-ENOMEM);
2282 	}
2283 
2284 	ifp->btrfs_path = path;
2285 	ifp->fspath = fspath;
2286 	ifp->fs_root = fs_root;
2287 
2288 	return ifp;
2289 }
2290 
2291 void free_ipath(struct inode_fs_paths *ipath)
2292 {
2293 	if (!ipath)
2294 		return;
2295 	kvfree(ipath->fspath);
2296 	kfree(ipath);
2297 }
2298