xref: /openbmc/linux/fs/btrfs/backref.c (revision 0679d29d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 
18 /* Just an arbitrary number so we can be sure this happened */
19 #define BACKREF_FOUND_SHARED 6
20 
21 struct extent_inode_elem {
22 	u64 inum;
23 	u64 offset;
24 	struct extent_inode_elem *next;
25 };
26 
27 static int check_extent_in_eb(const struct btrfs_key *key,
28 			      const struct extent_buffer *eb,
29 			      const struct btrfs_file_extent_item *fi,
30 			      u64 extent_item_pos,
31 			      struct extent_inode_elem **eie,
32 			      bool ignore_offset)
33 {
34 	u64 offset = 0;
35 	struct extent_inode_elem *e;
36 
37 	if (!ignore_offset &&
38 	    !btrfs_file_extent_compression(eb, fi) &&
39 	    !btrfs_file_extent_encryption(eb, fi) &&
40 	    !btrfs_file_extent_other_encoding(eb, fi)) {
41 		u64 data_offset;
42 		u64 data_len;
43 
44 		data_offset = btrfs_file_extent_offset(eb, fi);
45 		data_len = btrfs_file_extent_num_bytes(eb, fi);
46 
47 		if (extent_item_pos < data_offset ||
48 		    extent_item_pos >= data_offset + data_len)
49 			return 1;
50 		offset = extent_item_pos - data_offset;
51 	}
52 
53 	e = kmalloc(sizeof(*e), GFP_NOFS);
54 	if (!e)
55 		return -ENOMEM;
56 
57 	e->next = *eie;
58 	e->inum = key->objectid;
59 	e->offset = key->offset + offset;
60 	*eie = e;
61 
62 	return 0;
63 }
64 
65 static void free_inode_elem_list(struct extent_inode_elem *eie)
66 {
67 	struct extent_inode_elem *eie_next;
68 
69 	for (; eie; eie = eie_next) {
70 		eie_next = eie->next;
71 		kfree(eie);
72 	}
73 }
74 
75 static int find_extent_in_eb(const struct extent_buffer *eb,
76 			     u64 wanted_disk_byte, u64 extent_item_pos,
77 			     struct extent_inode_elem **eie,
78 			     bool ignore_offset)
79 {
80 	u64 disk_byte;
81 	struct btrfs_key key;
82 	struct btrfs_file_extent_item *fi;
83 	int slot;
84 	int nritems;
85 	int extent_type;
86 	int ret;
87 
88 	/*
89 	 * from the shared data ref, we only have the leaf but we need
90 	 * the key. thus, we must look into all items and see that we
91 	 * find one (some) with a reference to our extent item.
92 	 */
93 	nritems = btrfs_header_nritems(eb);
94 	for (slot = 0; slot < nritems; ++slot) {
95 		btrfs_item_key_to_cpu(eb, &key, slot);
96 		if (key.type != BTRFS_EXTENT_DATA_KEY)
97 			continue;
98 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
99 		extent_type = btrfs_file_extent_type(eb, fi);
100 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
101 			continue;
102 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
103 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
104 		if (disk_byte != wanted_disk_byte)
105 			continue;
106 
107 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
108 		if (ret < 0)
109 			return ret;
110 	}
111 
112 	return 0;
113 }
114 
115 struct preftree {
116 	struct rb_root_cached root;
117 	unsigned int count;
118 };
119 
120 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
121 
122 struct preftrees {
123 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
124 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
125 	struct preftree indirect_missing_keys;
126 };
127 
128 /*
129  * Checks for a shared extent during backref search.
130  *
131  * The share_count tracks prelim_refs (direct and indirect) having a
132  * ref->count >0:
133  *  - incremented when a ref->count transitions to >0
134  *  - decremented when a ref->count transitions to <1
135  */
136 struct share_check {
137 	u64 root_objectid;
138 	u64 inum;
139 	int share_count;
140 };
141 
142 static inline int extent_is_shared(struct share_check *sc)
143 {
144 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
145 }
146 
147 static struct kmem_cache *btrfs_prelim_ref_cache;
148 
149 int __init btrfs_prelim_ref_init(void)
150 {
151 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
152 					sizeof(struct prelim_ref),
153 					0,
154 					SLAB_MEM_SPREAD,
155 					NULL);
156 	if (!btrfs_prelim_ref_cache)
157 		return -ENOMEM;
158 	return 0;
159 }
160 
161 void __cold btrfs_prelim_ref_exit(void)
162 {
163 	kmem_cache_destroy(btrfs_prelim_ref_cache);
164 }
165 
166 static void free_pref(struct prelim_ref *ref)
167 {
168 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
169 }
170 
171 /*
172  * Return 0 when both refs are for the same block (and can be merged).
173  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
174  * indicates a 'higher' block.
175  */
176 static int prelim_ref_compare(struct prelim_ref *ref1,
177 			      struct prelim_ref *ref2)
178 {
179 	if (ref1->level < ref2->level)
180 		return -1;
181 	if (ref1->level > ref2->level)
182 		return 1;
183 	if (ref1->root_id < ref2->root_id)
184 		return -1;
185 	if (ref1->root_id > ref2->root_id)
186 		return 1;
187 	if (ref1->key_for_search.type < ref2->key_for_search.type)
188 		return -1;
189 	if (ref1->key_for_search.type > ref2->key_for_search.type)
190 		return 1;
191 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
192 		return -1;
193 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
194 		return 1;
195 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
196 		return -1;
197 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
198 		return 1;
199 	if (ref1->parent < ref2->parent)
200 		return -1;
201 	if (ref1->parent > ref2->parent)
202 		return 1;
203 
204 	return 0;
205 }
206 
207 static void update_share_count(struct share_check *sc, int oldcount,
208 			       int newcount)
209 {
210 	if ((!sc) || (oldcount == 0 && newcount < 1))
211 		return;
212 
213 	if (oldcount > 0 && newcount < 1)
214 		sc->share_count--;
215 	else if (oldcount < 1 && newcount > 0)
216 		sc->share_count++;
217 }
218 
219 /*
220  * Add @newref to the @root rbtree, merging identical refs.
221  *
222  * Callers should assume that newref has been freed after calling.
223  */
224 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
225 			      struct preftree *preftree,
226 			      struct prelim_ref *newref,
227 			      struct share_check *sc)
228 {
229 	struct rb_root_cached *root;
230 	struct rb_node **p;
231 	struct rb_node *parent = NULL;
232 	struct prelim_ref *ref;
233 	int result;
234 	bool leftmost = true;
235 
236 	root = &preftree->root;
237 	p = &root->rb_root.rb_node;
238 
239 	while (*p) {
240 		parent = *p;
241 		ref = rb_entry(parent, struct prelim_ref, rbnode);
242 		result = prelim_ref_compare(ref, newref);
243 		if (result < 0) {
244 			p = &(*p)->rb_left;
245 		} else if (result > 0) {
246 			p = &(*p)->rb_right;
247 			leftmost = false;
248 		} else {
249 			/* Identical refs, merge them and free @newref */
250 			struct extent_inode_elem *eie = ref->inode_list;
251 
252 			while (eie && eie->next)
253 				eie = eie->next;
254 
255 			if (!eie)
256 				ref->inode_list = newref->inode_list;
257 			else
258 				eie->next = newref->inode_list;
259 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
260 						     preftree->count);
261 			/*
262 			 * A delayed ref can have newref->count < 0.
263 			 * The ref->count is updated to follow any
264 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
265 			 */
266 			update_share_count(sc, ref->count,
267 					   ref->count + newref->count);
268 			ref->count += newref->count;
269 			free_pref(newref);
270 			return;
271 		}
272 	}
273 
274 	update_share_count(sc, 0, newref->count);
275 	preftree->count++;
276 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
277 	rb_link_node(&newref->rbnode, parent, p);
278 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
279 }
280 
281 /*
282  * Release the entire tree.  We don't care about internal consistency so
283  * just free everything and then reset the tree root.
284  */
285 static void prelim_release(struct preftree *preftree)
286 {
287 	struct prelim_ref *ref, *next_ref;
288 
289 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
290 					     &preftree->root.rb_root, rbnode)
291 		free_pref(ref);
292 
293 	preftree->root = RB_ROOT_CACHED;
294 	preftree->count = 0;
295 }
296 
297 /*
298  * the rules for all callers of this function are:
299  * - obtaining the parent is the goal
300  * - if you add a key, you must know that it is a correct key
301  * - if you cannot add the parent or a correct key, then we will look into the
302  *   block later to set a correct key
303  *
304  * delayed refs
305  * ============
306  *        backref type | shared | indirect | shared | indirect
307  * information         |   tree |     tree |   data |     data
308  * --------------------+--------+----------+--------+----------
309  *      parent logical |    y   |     -    |    -   |     -
310  *      key to resolve |    -   |     y    |    y   |     y
311  *  tree block logical |    -   |     -    |    -   |     -
312  *  root for resolving |    y   |     y    |    y   |     y
313  *
314  * - column 1:       we've the parent -> done
315  * - column 2, 3, 4: we use the key to find the parent
316  *
317  * on disk refs (inline or keyed)
318  * ==============================
319  *        backref type | shared | indirect | shared | indirect
320  * information         |   tree |     tree |   data |     data
321  * --------------------+--------+----------+--------+----------
322  *      parent logical |    y   |     -    |    y   |     -
323  *      key to resolve |    -   |     -    |    -   |     y
324  *  tree block logical |    y   |     y    |    y   |     y
325  *  root for resolving |    -   |     y    |    y   |     y
326  *
327  * - column 1, 3: we've the parent -> done
328  * - column 2:    we take the first key from the block to find the parent
329  *                (see add_missing_keys)
330  * - column 4:    we use the key to find the parent
331  *
332  * additional information that's available but not required to find the parent
333  * block might help in merging entries to gain some speed.
334  */
335 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
336 			  struct preftree *preftree, u64 root_id,
337 			  const struct btrfs_key *key, int level, u64 parent,
338 			  u64 wanted_disk_byte, int count,
339 			  struct share_check *sc, gfp_t gfp_mask)
340 {
341 	struct prelim_ref *ref;
342 
343 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
344 		return 0;
345 
346 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
347 	if (!ref)
348 		return -ENOMEM;
349 
350 	ref->root_id = root_id;
351 	if (key)
352 		ref->key_for_search = *key;
353 	else
354 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
355 
356 	ref->inode_list = NULL;
357 	ref->level = level;
358 	ref->count = count;
359 	ref->parent = parent;
360 	ref->wanted_disk_byte = wanted_disk_byte;
361 	prelim_ref_insert(fs_info, preftree, ref, sc);
362 	return extent_is_shared(sc);
363 }
364 
365 /* direct refs use root == 0, key == NULL */
366 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
367 			  struct preftrees *preftrees, int level, u64 parent,
368 			  u64 wanted_disk_byte, int count,
369 			  struct share_check *sc, gfp_t gfp_mask)
370 {
371 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
372 			      parent, wanted_disk_byte, count, sc, gfp_mask);
373 }
374 
375 /* indirect refs use parent == 0 */
376 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
377 			    struct preftrees *preftrees, u64 root_id,
378 			    const struct btrfs_key *key, int level,
379 			    u64 wanted_disk_byte, int count,
380 			    struct share_check *sc, gfp_t gfp_mask)
381 {
382 	struct preftree *tree = &preftrees->indirect;
383 
384 	if (!key)
385 		tree = &preftrees->indirect_missing_keys;
386 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
387 			      wanted_disk_byte, count, sc, gfp_mask);
388 }
389 
390 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
391 {
392 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
393 	struct rb_node *parent = NULL;
394 	struct prelim_ref *ref = NULL;
395 	struct prelim_ref target = {};
396 	int result;
397 
398 	target.parent = bytenr;
399 
400 	while (*p) {
401 		parent = *p;
402 		ref = rb_entry(parent, struct prelim_ref, rbnode);
403 		result = prelim_ref_compare(ref, &target);
404 
405 		if (result < 0)
406 			p = &(*p)->rb_left;
407 		else if (result > 0)
408 			p = &(*p)->rb_right;
409 		else
410 			return 1;
411 	}
412 	return 0;
413 }
414 
415 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
416 			   struct ulist *parents,
417 			   struct preftrees *preftrees, struct prelim_ref *ref,
418 			   int level, u64 time_seq, const u64 *extent_item_pos,
419 			   bool ignore_offset)
420 {
421 	int ret = 0;
422 	int slot;
423 	struct extent_buffer *eb;
424 	struct btrfs_key key;
425 	struct btrfs_key *key_for_search = &ref->key_for_search;
426 	struct btrfs_file_extent_item *fi;
427 	struct extent_inode_elem *eie = NULL, *old = NULL;
428 	u64 disk_byte;
429 	u64 wanted_disk_byte = ref->wanted_disk_byte;
430 	u64 count = 0;
431 	u64 data_offset;
432 
433 	if (level != 0) {
434 		eb = path->nodes[level];
435 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
436 		if (ret < 0)
437 			return ret;
438 		return 0;
439 	}
440 
441 	/*
442 	 * 1. We normally enter this function with the path already pointing to
443 	 *    the first item to check. But sometimes, we may enter it with
444 	 *    slot == nritems.
445 	 * 2. We are searching for normal backref but bytenr of this leaf
446 	 *    matches shared data backref
447 	 * 3. The leaf owner is not equal to the root we are searching
448 	 *
449 	 * For these cases, go to the next leaf before we continue.
450 	 */
451 	eb = path->nodes[0];
452 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
453 	    is_shared_data_backref(preftrees, eb->start) ||
454 	    ref->root_id != btrfs_header_owner(eb)) {
455 		if (time_seq == SEQ_LAST)
456 			ret = btrfs_next_leaf(root, path);
457 		else
458 			ret = btrfs_next_old_leaf(root, path, time_seq);
459 	}
460 
461 	while (!ret && count < ref->count) {
462 		eb = path->nodes[0];
463 		slot = path->slots[0];
464 
465 		btrfs_item_key_to_cpu(eb, &key, slot);
466 
467 		if (key.objectid != key_for_search->objectid ||
468 		    key.type != BTRFS_EXTENT_DATA_KEY)
469 			break;
470 
471 		/*
472 		 * We are searching for normal backref but bytenr of this leaf
473 		 * matches shared data backref, OR
474 		 * the leaf owner is not equal to the root we are searching for
475 		 */
476 		if (slot == 0 &&
477 		    (is_shared_data_backref(preftrees, eb->start) ||
478 		     ref->root_id != btrfs_header_owner(eb))) {
479 			if (time_seq == SEQ_LAST)
480 				ret = btrfs_next_leaf(root, path);
481 			else
482 				ret = btrfs_next_old_leaf(root, path, time_seq);
483 			continue;
484 		}
485 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
486 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
487 		data_offset = btrfs_file_extent_offset(eb, fi);
488 
489 		if (disk_byte == wanted_disk_byte) {
490 			eie = NULL;
491 			old = NULL;
492 			if (ref->key_for_search.offset == key.offset - data_offset)
493 				count++;
494 			else
495 				goto next;
496 			if (extent_item_pos) {
497 				ret = check_extent_in_eb(&key, eb, fi,
498 						*extent_item_pos,
499 						&eie, ignore_offset);
500 				if (ret < 0)
501 					break;
502 			}
503 			if (ret > 0)
504 				goto next;
505 			ret = ulist_add_merge_ptr(parents, eb->start,
506 						  eie, (void **)&old, GFP_NOFS);
507 			if (ret < 0)
508 				break;
509 			if (!ret && extent_item_pos) {
510 				while (old->next)
511 					old = old->next;
512 				old->next = eie;
513 			}
514 			eie = NULL;
515 		}
516 next:
517 		if (time_seq == SEQ_LAST)
518 			ret = btrfs_next_item(root, path);
519 		else
520 			ret = btrfs_next_old_item(root, path, time_seq);
521 	}
522 
523 	if (ret > 0)
524 		ret = 0;
525 	else if (ret < 0)
526 		free_inode_elem_list(eie);
527 	return ret;
528 }
529 
530 /*
531  * resolve an indirect backref in the form (root_id, key, level)
532  * to a logical address
533  */
534 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
535 				struct btrfs_path *path, u64 time_seq,
536 				struct preftrees *preftrees,
537 				struct prelim_ref *ref, struct ulist *parents,
538 				const u64 *extent_item_pos, bool ignore_offset)
539 {
540 	struct btrfs_root *root;
541 	struct extent_buffer *eb;
542 	int ret = 0;
543 	int root_level;
544 	int level = ref->level;
545 	struct btrfs_key search_key = ref->key_for_search;
546 
547 	/*
548 	 * If we're search_commit_root we could possibly be holding locks on
549 	 * other tree nodes.  This happens when qgroups does backref walks when
550 	 * adding new delayed refs.  To deal with this we need to look in cache
551 	 * for the root, and if we don't find it then we need to search the
552 	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
553 	 * here.
554 	 */
555 	if (path->search_commit_root)
556 		root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
557 	else
558 		root = btrfs_get_fs_root(fs_info, ref->root_id, false);
559 	if (IS_ERR(root)) {
560 		ret = PTR_ERR(root);
561 		goto out_free;
562 	}
563 
564 	if (!path->search_commit_root &&
565 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
566 		ret = -ENOENT;
567 		goto out;
568 	}
569 
570 	if (btrfs_is_testing(fs_info)) {
571 		ret = -ENOENT;
572 		goto out;
573 	}
574 
575 	if (path->search_commit_root)
576 		root_level = btrfs_header_level(root->commit_root);
577 	else if (time_seq == SEQ_LAST)
578 		root_level = btrfs_header_level(root->node);
579 	else
580 		root_level = btrfs_old_root_level(root, time_seq);
581 
582 	if (root_level + 1 == level)
583 		goto out;
584 
585 	/*
586 	 * We can often find data backrefs with an offset that is too large
587 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
588 	 * subtracting a file's offset with the data offset of its
589 	 * corresponding extent data item. This can happen for example in the
590 	 * clone ioctl.
591 	 *
592 	 * So if we detect such case we set the search key's offset to zero to
593 	 * make sure we will find the matching file extent item at
594 	 * add_all_parents(), otherwise we will miss it because the offset
595 	 * taken form the backref is much larger then the offset of the file
596 	 * extent item. This can make us scan a very large number of file
597 	 * extent items, but at least it will not make us miss any.
598 	 *
599 	 * This is an ugly workaround for a behaviour that should have never
600 	 * existed, but it does and a fix for the clone ioctl would touch a lot
601 	 * of places, cause backwards incompatibility and would not fix the
602 	 * problem for extents cloned with older kernels.
603 	 */
604 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
605 	    search_key.offset >= LLONG_MAX)
606 		search_key.offset = 0;
607 	path->lowest_level = level;
608 	if (time_seq == SEQ_LAST)
609 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
610 	else
611 		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
612 
613 	btrfs_debug(fs_info,
614 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
615 		 ref->root_id, level, ref->count, ret,
616 		 ref->key_for_search.objectid, ref->key_for_search.type,
617 		 ref->key_for_search.offset);
618 	if (ret < 0)
619 		goto out;
620 
621 	eb = path->nodes[level];
622 	while (!eb) {
623 		if (WARN_ON(!level)) {
624 			ret = 1;
625 			goto out;
626 		}
627 		level--;
628 		eb = path->nodes[level];
629 	}
630 
631 	ret = add_all_parents(root, path, parents, preftrees, ref, level,
632 			      time_seq, extent_item_pos, ignore_offset);
633 out:
634 	btrfs_put_root(root);
635 out_free:
636 	path->lowest_level = 0;
637 	btrfs_release_path(path);
638 	return ret;
639 }
640 
641 static struct extent_inode_elem *
642 unode_aux_to_inode_list(struct ulist_node *node)
643 {
644 	if (!node)
645 		return NULL;
646 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
647 }
648 
649 /*
650  * We maintain three separate rbtrees: one for direct refs, one for
651  * indirect refs which have a key, and one for indirect refs which do not
652  * have a key. Each tree does merge on insertion.
653  *
654  * Once all of the references are located, we iterate over the tree of
655  * indirect refs with missing keys. An appropriate key is located and
656  * the ref is moved onto the tree for indirect refs. After all missing
657  * keys are thus located, we iterate over the indirect ref tree, resolve
658  * each reference, and then insert the resolved reference onto the
659  * direct tree (merging there too).
660  *
661  * New backrefs (i.e., for parent nodes) are added to the appropriate
662  * rbtree as they are encountered. The new backrefs are subsequently
663  * resolved as above.
664  */
665 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
666 				 struct btrfs_path *path, u64 time_seq,
667 				 struct preftrees *preftrees,
668 				 const u64 *extent_item_pos,
669 				 struct share_check *sc, bool ignore_offset)
670 {
671 	int err;
672 	int ret = 0;
673 	struct ulist *parents;
674 	struct ulist_node *node;
675 	struct ulist_iterator uiter;
676 	struct rb_node *rnode;
677 
678 	parents = ulist_alloc(GFP_NOFS);
679 	if (!parents)
680 		return -ENOMEM;
681 
682 	/*
683 	 * We could trade memory usage for performance here by iterating
684 	 * the tree, allocating new refs for each insertion, and then
685 	 * freeing the entire indirect tree when we're done.  In some test
686 	 * cases, the tree can grow quite large (~200k objects).
687 	 */
688 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
689 		struct prelim_ref *ref;
690 
691 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
692 		if (WARN(ref->parent,
693 			 "BUG: direct ref found in indirect tree")) {
694 			ret = -EINVAL;
695 			goto out;
696 		}
697 
698 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
699 		preftrees->indirect.count--;
700 
701 		if (ref->count == 0) {
702 			free_pref(ref);
703 			continue;
704 		}
705 
706 		if (sc && sc->root_objectid &&
707 		    ref->root_id != sc->root_objectid) {
708 			free_pref(ref);
709 			ret = BACKREF_FOUND_SHARED;
710 			goto out;
711 		}
712 		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
713 					   ref, parents, extent_item_pos,
714 					   ignore_offset);
715 		/*
716 		 * we can only tolerate ENOENT,otherwise,we should catch error
717 		 * and return directly.
718 		 */
719 		if (err == -ENOENT) {
720 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
721 					  NULL);
722 			continue;
723 		} else if (err) {
724 			free_pref(ref);
725 			ret = err;
726 			goto out;
727 		}
728 
729 		/* we put the first parent into the ref at hand */
730 		ULIST_ITER_INIT(&uiter);
731 		node = ulist_next(parents, &uiter);
732 		ref->parent = node ? node->val : 0;
733 		ref->inode_list = unode_aux_to_inode_list(node);
734 
735 		/* Add a prelim_ref(s) for any other parent(s). */
736 		while ((node = ulist_next(parents, &uiter))) {
737 			struct prelim_ref *new_ref;
738 
739 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
740 						   GFP_NOFS);
741 			if (!new_ref) {
742 				free_pref(ref);
743 				ret = -ENOMEM;
744 				goto out;
745 			}
746 			memcpy(new_ref, ref, sizeof(*ref));
747 			new_ref->parent = node->val;
748 			new_ref->inode_list = unode_aux_to_inode_list(node);
749 			prelim_ref_insert(fs_info, &preftrees->direct,
750 					  new_ref, NULL);
751 		}
752 
753 		/*
754 		 * Now it's a direct ref, put it in the direct tree. We must
755 		 * do this last because the ref could be merged/freed here.
756 		 */
757 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
758 
759 		ulist_reinit(parents);
760 		cond_resched();
761 	}
762 out:
763 	ulist_free(parents);
764 	return ret;
765 }
766 
767 /*
768  * read tree blocks and add keys where required.
769  */
770 static int add_missing_keys(struct btrfs_fs_info *fs_info,
771 			    struct preftrees *preftrees, bool lock)
772 {
773 	struct prelim_ref *ref;
774 	struct extent_buffer *eb;
775 	struct preftree *tree = &preftrees->indirect_missing_keys;
776 	struct rb_node *node;
777 
778 	while ((node = rb_first_cached(&tree->root))) {
779 		ref = rb_entry(node, struct prelim_ref, rbnode);
780 		rb_erase_cached(node, &tree->root);
781 
782 		BUG_ON(ref->parent);	/* should not be a direct ref */
783 		BUG_ON(ref->key_for_search.type);
784 		BUG_ON(!ref->wanted_disk_byte);
785 
786 		eb = read_tree_block(fs_info, ref->wanted_disk_byte,
787 				     ref->root_id, 0, ref->level - 1, NULL);
788 		if (IS_ERR(eb)) {
789 			free_pref(ref);
790 			return PTR_ERR(eb);
791 		} else if (!extent_buffer_uptodate(eb)) {
792 			free_pref(ref);
793 			free_extent_buffer(eb);
794 			return -EIO;
795 		}
796 		if (lock)
797 			btrfs_tree_read_lock(eb);
798 		if (btrfs_header_level(eb) == 0)
799 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
800 		else
801 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
802 		if (lock)
803 			btrfs_tree_read_unlock(eb);
804 		free_extent_buffer(eb);
805 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
806 		cond_resched();
807 	}
808 	return 0;
809 }
810 
811 /*
812  * add all currently queued delayed refs from this head whose seq nr is
813  * smaller or equal that seq to the list
814  */
815 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
816 			    struct btrfs_delayed_ref_head *head, u64 seq,
817 			    struct preftrees *preftrees, struct share_check *sc)
818 {
819 	struct btrfs_delayed_ref_node *node;
820 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
821 	struct btrfs_key key;
822 	struct btrfs_key tmp_op_key;
823 	struct rb_node *n;
824 	int count;
825 	int ret = 0;
826 
827 	if (extent_op && extent_op->update_key)
828 		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
829 
830 	spin_lock(&head->lock);
831 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
832 		node = rb_entry(n, struct btrfs_delayed_ref_node,
833 				ref_node);
834 		if (node->seq > seq)
835 			continue;
836 
837 		switch (node->action) {
838 		case BTRFS_ADD_DELAYED_EXTENT:
839 		case BTRFS_UPDATE_DELAYED_HEAD:
840 			WARN_ON(1);
841 			continue;
842 		case BTRFS_ADD_DELAYED_REF:
843 			count = node->ref_mod;
844 			break;
845 		case BTRFS_DROP_DELAYED_REF:
846 			count = node->ref_mod * -1;
847 			break;
848 		default:
849 			BUG();
850 		}
851 		switch (node->type) {
852 		case BTRFS_TREE_BLOCK_REF_KEY: {
853 			/* NORMAL INDIRECT METADATA backref */
854 			struct btrfs_delayed_tree_ref *ref;
855 
856 			ref = btrfs_delayed_node_to_tree_ref(node);
857 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
858 					       &tmp_op_key, ref->level + 1,
859 					       node->bytenr, count, sc,
860 					       GFP_ATOMIC);
861 			break;
862 		}
863 		case BTRFS_SHARED_BLOCK_REF_KEY: {
864 			/* SHARED DIRECT METADATA backref */
865 			struct btrfs_delayed_tree_ref *ref;
866 
867 			ref = btrfs_delayed_node_to_tree_ref(node);
868 
869 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
870 					     ref->parent, node->bytenr, count,
871 					     sc, GFP_ATOMIC);
872 			break;
873 		}
874 		case BTRFS_EXTENT_DATA_REF_KEY: {
875 			/* NORMAL INDIRECT DATA backref */
876 			struct btrfs_delayed_data_ref *ref;
877 			ref = btrfs_delayed_node_to_data_ref(node);
878 
879 			key.objectid = ref->objectid;
880 			key.type = BTRFS_EXTENT_DATA_KEY;
881 			key.offset = ref->offset;
882 
883 			/*
884 			 * Found a inum that doesn't match our known inum, we
885 			 * know it's shared.
886 			 */
887 			if (sc && sc->inum && ref->objectid != sc->inum) {
888 				ret = BACKREF_FOUND_SHARED;
889 				goto out;
890 			}
891 
892 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
893 					       &key, 0, node->bytenr, count, sc,
894 					       GFP_ATOMIC);
895 			break;
896 		}
897 		case BTRFS_SHARED_DATA_REF_KEY: {
898 			/* SHARED DIRECT FULL backref */
899 			struct btrfs_delayed_data_ref *ref;
900 
901 			ref = btrfs_delayed_node_to_data_ref(node);
902 
903 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
904 					     node->bytenr, count, sc,
905 					     GFP_ATOMIC);
906 			break;
907 		}
908 		default:
909 			WARN_ON(1);
910 		}
911 		/*
912 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
913 		 * refs have been checked.
914 		 */
915 		if (ret && (ret != BACKREF_FOUND_SHARED))
916 			break;
917 	}
918 	if (!ret)
919 		ret = extent_is_shared(sc);
920 out:
921 	spin_unlock(&head->lock);
922 	return ret;
923 }
924 
925 /*
926  * add all inline backrefs for bytenr to the list
927  *
928  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
929  */
930 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
931 			   struct btrfs_path *path, u64 bytenr,
932 			   int *info_level, struct preftrees *preftrees,
933 			   struct share_check *sc)
934 {
935 	int ret = 0;
936 	int slot;
937 	struct extent_buffer *leaf;
938 	struct btrfs_key key;
939 	struct btrfs_key found_key;
940 	unsigned long ptr;
941 	unsigned long end;
942 	struct btrfs_extent_item *ei;
943 	u64 flags;
944 	u64 item_size;
945 
946 	/*
947 	 * enumerate all inline refs
948 	 */
949 	leaf = path->nodes[0];
950 	slot = path->slots[0];
951 
952 	item_size = btrfs_item_size_nr(leaf, slot);
953 	BUG_ON(item_size < sizeof(*ei));
954 
955 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
956 	flags = btrfs_extent_flags(leaf, ei);
957 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
958 
959 	ptr = (unsigned long)(ei + 1);
960 	end = (unsigned long)ei + item_size;
961 
962 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
963 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
964 		struct btrfs_tree_block_info *info;
965 
966 		info = (struct btrfs_tree_block_info *)ptr;
967 		*info_level = btrfs_tree_block_level(leaf, info);
968 		ptr += sizeof(struct btrfs_tree_block_info);
969 		BUG_ON(ptr > end);
970 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
971 		*info_level = found_key.offset;
972 	} else {
973 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
974 	}
975 
976 	while (ptr < end) {
977 		struct btrfs_extent_inline_ref *iref;
978 		u64 offset;
979 		int type;
980 
981 		iref = (struct btrfs_extent_inline_ref *)ptr;
982 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
983 							BTRFS_REF_TYPE_ANY);
984 		if (type == BTRFS_REF_TYPE_INVALID)
985 			return -EUCLEAN;
986 
987 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
988 
989 		switch (type) {
990 		case BTRFS_SHARED_BLOCK_REF_KEY:
991 			ret = add_direct_ref(fs_info, preftrees,
992 					     *info_level + 1, offset,
993 					     bytenr, 1, NULL, GFP_NOFS);
994 			break;
995 		case BTRFS_SHARED_DATA_REF_KEY: {
996 			struct btrfs_shared_data_ref *sdref;
997 			int count;
998 
999 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1000 			count = btrfs_shared_data_ref_count(leaf, sdref);
1001 
1002 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
1003 					     bytenr, count, sc, GFP_NOFS);
1004 			break;
1005 		}
1006 		case BTRFS_TREE_BLOCK_REF_KEY:
1007 			ret = add_indirect_ref(fs_info, preftrees, offset,
1008 					       NULL, *info_level + 1,
1009 					       bytenr, 1, NULL, GFP_NOFS);
1010 			break;
1011 		case BTRFS_EXTENT_DATA_REF_KEY: {
1012 			struct btrfs_extent_data_ref *dref;
1013 			int count;
1014 			u64 root;
1015 
1016 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1017 			count = btrfs_extent_data_ref_count(leaf, dref);
1018 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1019 								      dref);
1020 			key.type = BTRFS_EXTENT_DATA_KEY;
1021 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1022 
1023 			if (sc && sc->inum && key.objectid != sc->inum) {
1024 				ret = BACKREF_FOUND_SHARED;
1025 				break;
1026 			}
1027 
1028 			root = btrfs_extent_data_ref_root(leaf, dref);
1029 
1030 			ret = add_indirect_ref(fs_info, preftrees, root,
1031 					       &key, 0, bytenr, count,
1032 					       sc, GFP_NOFS);
1033 			break;
1034 		}
1035 		default:
1036 			WARN_ON(1);
1037 		}
1038 		if (ret)
1039 			return ret;
1040 		ptr += btrfs_extent_inline_ref_size(type);
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 /*
1047  * add all non-inline backrefs for bytenr to the list
1048  *
1049  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1050  */
1051 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1052 			  struct btrfs_path *path, u64 bytenr,
1053 			  int info_level, struct preftrees *preftrees,
1054 			  struct share_check *sc)
1055 {
1056 	struct btrfs_root *extent_root = fs_info->extent_root;
1057 	int ret;
1058 	int slot;
1059 	struct extent_buffer *leaf;
1060 	struct btrfs_key key;
1061 
1062 	while (1) {
1063 		ret = btrfs_next_item(extent_root, path);
1064 		if (ret < 0)
1065 			break;
1066 		if (ret) {
1067 			ret = 0;
1068 			break;
1069 		}
1070 
1071 		slot = path->slots[0];
1072 		leaf = path->nodes[0];
1073 		btrfs_item_key_to_cpu(leaf, &key, slot);
1074 
1075 		if (key.objectid != bytenr)
1076 			break;
1077 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1078 			continue;
1079 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1080 			break;
1081 
1082 		switch (key.type) {
1083 		case BTRFS_SHARED_BLOCK_REF_KEY:
1084 			/* SHARED DIRECT METADATA backref */
1085 			ret = add_direct_ref(fs_info, preftrees,
1086 					     info_level + 1, key.offset,
1087 					     bytenr, 1, NULL, GFP_NOFS);
1088 			break;
1089 		case BTRFS_SHARED_DATA_REF_KEY: {
1090 			/* SHARED DIRECT FULL backref */
1091 			struct btrfs_shared_data_ref *sdref;
1092 			int count;
1093 
1094 			sdref = btrfs_item_ptr(leaf, slot,
1095 					      struct btrfs_shared_data_ref);
1096 			count = btrfs_shared_data_ref_count(leaf, sdref);
1097 			ret = add_direct_ref(fs_info, preftrees, 0,
1098 					     key.offset, bytenr, count,
1099 					     sc, GFP_NOFS);
1100 			break;
1101 		}
1102 		case BTRFS_TREE_BLOCK_REF_KEY:
1103 			/* NORMAL INDIRECT METADATA backref */
1104 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1105 					       NULL, info_level + 1, bytenr,
1106 					       1, NULL, GFP_NOFS);
1107 			break;
1108 		case BTRFS_EXTENT_DATA_REF_KEY: {
1109 			/* NORMAL INDIRECT DATA backref */
1110 			struct btrfs_extent_data_ref *dref;
1111 			int count;
1112 			u64 root;
1113 
1114 			dref = btrfs_item_ptr(leaf, slot,
1115 					      struct btrfs_extent_data_ref);
1116 			count = btrfs_extent_data_ref_count(leaf, dref);
1117 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1118 								      dref);
1119 			key.type = BTRFS_EXTENT_DATA_KEY;
1120 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1121 
1122 			if (sc && sc->inum && key.objectid != sc->inum) {
1123 				ret = BACKREF_FOUND_SHARED;
1124 				break;
1125 			}
1126 
1127 			root = btrfs_extent_data_ref_root(leaf, dref);
1128 			ret = add_indirect_ref(fs_info, preftrees, root,
1129 					       &key, 0, bytenr, count,
1130 					       sc, GFP_NOFS);
1131 			break;
1132 		}
1133 		default:
1134 			WARN_ON(1);
1135 		}
1136 		if (ret)
1137 			return ret;
1138 
1139 	}
1140 
1141 	return ret;
1142 }
1143 
1144 /*
1145  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1146  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1147  * indirect refs to their parent bytenr.
1148  * When roots are found, they're added to the roots list
1149  *
1150  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1151  * much like trans == NULL case, the difference only lies in it will not
1152  * commit root.
1153  * The special case is for qgroup to search roots in commit_transaction().
1154  *
1155  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1156  * shared extent is detected.
1157  *
1158  * Otherwise this returns 0 for success and <0 for an error.
1159  *
1160  * If ignore_offset is set to false, only extent refs whose offsets match
1161  * extent_item_pos are returned.  If true, every extent ref is returned
1162  * and extent_item_pos is ignored.
1163  *
1164  * FIXME some caching might speed things up
1165  */
1166 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1167 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1168 			     u64 time_seq, struct ulist *refs,
1169 			     struct ulist *roots, const u64 *extent_item_pos,
1170 			     struct share_check *sc, bool ignore_offset)
1171 {
1172 	struct btrfs_key key;
1173 	struct btrfs_path *path;
1174 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1175 	struct btrfs_delayed_ref_head *head;
1176 	int info_level = 0;
1177 	int ret;
1178 	struct prelim_ref *ref;
1179 	struct rb_node *node;
1180 	struct extent_inode_elem *eie = NULL;
1181 	struct preftrees preftrees = {
1182 		.direct = PREFTREE_INIT,
1183 		.indirect = PREFTREE_INIT,
1184 		.indirect_missing_keys = PREFTREE_INIT
1185 	};
1186 
1187 	key.objectid = bytenr;
1188 	key.offset = (u64)-1;
1189 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1190 		key.type = BTRFS_METADATA_ITEM_KEY;
1191 	else
1192 		key.type = BTRFS_EXTENT_ITEM_KEY;
1193 
1194 	path = btrfs_alloc_path();
1195 	if (!path)
1196 		return -ENOMEM;
1197 	if (!trans) {
1198 		path->search_commit_root = 1;
1199 		path->skip_locking = 1;
1200 	}
1201 
1202 	if (time_seq == SEQ_LAST)
1203 		path->skip_locking = 1;
1204 
1205 	/*
1206 	 * grab both a lock on the path and a lock on the delayed ref head.
1207 	 * We need both to get a consistent picture of how the refs look
1208 	 * at a specified point in time
1209 	 */
1210 again:
1211 	head = NULL;
1212 
1213 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1214 	if (ret < 0)
1215 		goto out;
1216 	BUG_ON(ret == 0);
1217 
1218 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1219 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1220 	    time_seq != SEQ_LAST) {
1221 #else
1222 	if (trans && time_seq != SEQ_LAST) {
1223 #endif
1224 		/*
1225 		 * look if there are updates for this ref queued and lock the
1226 		 * head
1227 		 */
1228 		delayed_refs = &trans->transaction->delayed_refs;
1229 		spin_lock(&delayed_refs->lock);
1230 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1231 		if (head) {
1232 			if (!mutex_trylock(&head->mutex)) {
1233 				refcount_inc(&head->refs);
1234 				spin_unlock(&delayed_refs->lock);
1235 
1236 				btrfs_release_path(path);
1237 
1238 				/*
1239 				 * Mutex was contended, block until it's
1240 				 * released and try again
1241 				 */
1242 				mutex_lock(&head->mutex);
1243 				mutex_unlock(&head->mutex);
1244 				btrfs_put_delayed_ref_head(head);
1245 				goto again;
1246 			}
1247 			spin_unlock(&delayed_refs->lock);
1248 			ret = add_delayed_refs(fs_info, head, time_seq,
1249 					       &preftrees, sc);
1250 			mutex_unlock(&head->mutex);
1251 			if (ret)
1252 				goto out;
1253 		} else {
1254 			spin_unlock(&delayed_refs->lock);
1255 		}
1256 	}
1257 
1258 	if (path->slots[0]) {
1259 		struct extent_buffer *leaf;
1260 		int slot;
1261 
1262 		path->slots[0]--;
1263 		leaf = path->nodes[0];
1264 		slot = path->slots[0];
1265 		btrfs_item_key_to_cpu(leaf, &key, slot);
1266 		if (key.objectid == bytenr &&
1267 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1268 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1269 			ret = add_inline_refs(fs_info, path, bytenr,
1270 					      &info_level, &preftrees, sc);
1271 			if (ret)
1272 				goto out;
1273 			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1274 					     &preftrees, sc);
1275 			if (ret)
1276 				goto out;
1277 		}
1278 	}
1279 
1280 	btrfs_release_path(path);
1281 
1282 	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1283 	if (ret)
1284 		goto out;
1285 
1286 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1287 
1288 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1289 				    extent_item_pos, sc, ignore_offset);
1290 	if (ret)
1291 		goto out;
1292 
1293 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1294 
1295 	/*
1296 	 * This walks the tree of merged and resolved refs. Tree blocks are
1297 	 * read in as needed. Unique entries are added to the ulist, and
1298 	 * the list of found roots is updated.
1299 	 *
1300 	 * We release the entire tree in one go before returning.
1301 	 */
1302 	node = rb_first_cached(&preftrees.direct.root);
1303 	while (node) {
1304 		ref = rb_entry(node, struct prelim_ref, rbnode);
1305 		node = rb_next(&ref->rbnode);
1306 		/*
1307 		 * ref->count < 0 can happen here if there are delayed
1308 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1309 		 * prelim_ref_insert() relies on this when merging
1310 		 * identical refs to keep the overall count correct.
1311 		 * prelim_ref_insert() will merge only those refs
1312 		 * which compare identically.  Any refs having
1313 		 * e.g. different offsets would not be merged,
1314 		 * and would retain their original ref->count < 0.
1315 		 */
1316 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1317 			if (sc && sc->root_objectid &&
1318 			    ref->root_id != sc->root_objectid) {
1319 				ret = BACKREF_FOUND_SHARED;
1320 				goto out;
1321 			}
1322 
1323 			/* no parent == root of tree */
1324 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1325 			if (ret < 0)
1326 				goto out;
1327 		}
1328 		if (ref->count && ref->parent) {
1329 			if (extent_item_pos && !ref->inode_list &&
1330 			    ref->level == 0) {
1331 				struct extent_buffer *eb;
1332 
1333 				eb = read_tree_block(fs_info, ref->parent, 0,
1334 						     0, ref->level, NULL);
1335 				if (IS_ERR(eb)) {
1336 					ret = PTR_ERR(eb);
1337 					goto out;
1338 				} else if (!extent_buffer_uptodate(eb)) {
1339 					free_extent_buffer(eb);
1340 					ret = -EIO;
1341 					goto out;
1342 				}
1343 
1344 				if (!path->skip_locking)
1345 					btrfs_tree_read_lock(eb);
1346 				ret = find_extent_in_eb(eb, bytenr,
1347 							*extent_item_pos, &eie, ignore_offset);
1348 				if (!path->skip_locking)
1349 					btrfs_tree_read_unlock(eb);
1350 				free_extent_buffer(eb);
1351 				if (ret < 0)
1352 					goto out;
1353 				ref->inode_list = eie;
1354 			}
1355 			ret = ulist_add_merge_ptr(refs, ref->parent,
1356 						  ref->inode_list,
1357 						  (void **)&eie, GFP_NOFS);
1358 			if (ret < 0)
1359 				goto out;
1360 			if (!ret && extent_item_pos) {
1361 				/*
1362 				 * we've recorded that parent, so we must extend
1363 				 * its inode list here
1364 				 */
1365 				BUG_ON(!eie);
1366 				while (eie->next)
1367 					eie = eie->next;
1368 				eie->next = ref->inode_list;
1369 			}
1370 			eie = NULL;
1371 		}
1372 		cond_resched();
1373 	}
1374 
1375 out:
1376 	btrfs_free_path(path);
1377 
1378 	prelim_release(&preftrees.direct);
1379 	prelim_release(&preftrees.indirect);
1380 	prelim_release(&preftrees.indirect_missing_keys);
1381 
1382 	if (ret < 0)
1383 		free_inode_elem_list(eie);
1384 	return ret;
1385 }
1386 
1387 static void free_leaf_list(struct ulist *blocks)
1388 {
1389 	struct ulist_node *node = NULL;
1390 	struct extent_inode_elem *eie;
1391 	struct ulist_iterator uiter;
1392 
1393 	ULIST_ITER_INIT(&uiter);
1394 	while ((node = ulist_next(blocks, &uiter))) {
1395 		if (!node->aux)
1396 			continue;
1397 		eie = unode_aux_to_inode_list(node);
1398 		free_inode_elem_list(eie);
1399 		node->aux = 0;
1400 	}
1401 
1402 	ulist_free(blocks);
1403 }
1404 
1405 /*
1406  * Finds all leafs with a reference to the specified combination of bytenr and
1407  * offset. key_list_head will point to a list of corresponding keys (caller must
1408  * free each list element). The leafs will be stored in the leafs ulist, which
1409  * must be freed with ulist_free.
1410  *
1411  * returns 0 on success, <0 on error
1412  */
1413 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1414 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1415 			 u64 time_seq, struct ulist **leafs,
1416 			 const u64 *extent_item_pos, bool ignore_offset)
1417 {
1418 	int ret;
1419 
1420 	*leafs = ulist_alloc(GFP_NOFS);
1421 	if (!*leafs)
1422 		return -ENOMEM;
1423 
1424 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1425 				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1426 	if (ret < 0 && ret != -ENOENT) {
1427 		free_leaf_list(*leafs);
1428 		return ret;
1429 	}
1430 
1431 	return 0;
1432 }
1433 
1434 /*
1435  * walk all backrefs for a given extent to find all roots that reference this
1436  * extent. Walking a backref means finding all extents that reference this
1437  * extent and in turn walk the backrefs of those, too. Naturally this is a
1438  * recursive process, but here it is implemented in an iterative fashion: We
1439  * find all referencing extents for the extent in question and put them on a
1440  * list. In turn, we find all referencing extents for those, further appending
1441  * to the list. The way we iterate the list allows adding more elements after
1442  * the current while iterating. The process stops when we reach the end of the
1443  * list. Found roots are added to the roots list.
1444  *
1445  * returns 0 on success, < 0 on error.
1446  */
1447 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1448 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1449 				     u64 time_seq, struct ulist **roots,
1450 				     bool ignore_offset)
1451 {
1452 	struct ulist *tmp;
1453 	struct ulist_node *node = NULL;
1454 	struct ulist_iterator uiter;
1455 	int ret;
1456 
1457 	tmp = ulist_alloc(GFP_NOFS);
1458 	if (!tmp)
1459 		return -ENOMEM;
1460 	*roots = ulist_alloc(GFP_NOFS);
1461 	if (!*roots) {
1462 		ulist_free(tmp);
1463 		return -ENOMEM;
1464 	}
1465 
1466 	ULIST_ITER_INIT(&uiter);
1467 	while (1) {
1468 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1469 					tmp, *roots, NULL, NULL, ignore_offset);
1470 		if (ret < 0 && ret != -ENOENT) {
1471 			ulist_free(tmp);
1472 			ulist_free(*roots);
1473 			*roots = NULL;
1474 			return ret;
1475 		}
1476 		node = ulist_next(tmp, &uiter);
1477 		if (!node)
1478 			break;
1479 		bytenr = node->val;
1480 		cond_resched();
1481 	}
1482 
1483 	ulist_free(tmp);
1484 	return 0;
1485 }
1486 
1487 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1488 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1489 			 u64 time_seq, struct ulist **roots,
1490 			 bool ignore_offset)
1491 {
1492 	int ret;
1493 
1494 	if (!trans)
1495 		down_read(&fs_info->commit_root_sem);
1496 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1497 					time_seq, roots, ignore_offset);
1498 	if (!trans)
1499 		up_read(&fs_info->commit_root_sem);
1500 	return ret;
1501 }
1502 
1503 /**
1504  * Check if an extent is shared or not
1505  *
1506  * @root:   root inode belongs to
1507  * @inum:   inode number of the inode whose extent we are checking
1508  * @bytenr: logical bytenr of the extent we are checking
1509  * @roots:  list of roots this extent is shared among
1510  * @tmp:    temporary list used for iteration
1511  *
1512  * btrfs_check_shared uses the backref walking code but will short
1513  * circuit as soon as it finds a root or inode that doesn't match the
1514  * one passed in. This provides a significant performance benefit for
1515  * callers (such as fiemap) which want to know whether the extent is
1516  * shared but do not need a ref count.
1517  *
1518  * This attempts to attach to the running transaction in order to account for
1519  * delayed refs, but continues on even when no running transaction exists.
1520  *
1521  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1522  */
1523 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1524 		struct ulist *roots, struct ulist *tmp)
1525 {
1526 	struct btrfs_fs_info *fs_info = root->fs_info;
1527 	struct btrfs_trans_handle *trans;
1528 	struct ulist_iterator uiter;
1529 	struct ulist_node *node;
1530 	struct seq_list elem = SEQ_LIST_INIT(elem);
1531 	int ret = 0;
1532 	struct share_check shared = {
1533 		.root_objectid = root->root_key.objectid,
1534 		.inum = inum,
1535 		.share_count = 0,
1536 	};
1537 
1538 	ulist_init(roots);
1539 	ulist_init(tmp);
1540 
1541 	trans = btrfs_join_transaction_nostart(root);
1542 	if (IS_ERR(trans)) {
1543 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1544 			ret = PTR_ERR(trans);
1545 			goto out;
1546 		}
1547 		trans = NULL;
1548 		down_read(&fs_info->commit_root_sem);
1549 	} else {
1550 		btrfs_get_tree_mod_seq(fs_info, &elem);
1551 	}
1552 
1553 	ULIST_ITER_INIT(&uiter);
1554 	while (1) {
1555 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1556 					roots, NULL, &shared, false);
1557 		if (ret == BACKREF_FOUND_SHARED) {
1558 			/* this is the only condition under which we return 1 */
1559 			ret = 1;
1560 			break;
1561 		}
1562 		if (ret < 0 && ret != -ENOENT)
1563 			break;
1564 		ret = 0;
1565 		node = ulist_next(tmp, &uiter);
1566 		if (!node)
1567 			break;
1568 		bytenr = node->val;
1569 		shared.share_count = 0;
1570 		cond_resched();
1571 	}
1572 
1573 	if (trans) {
1574 		btrfs_put_tree_mod_seq(fs_info, &elem);
1575 		btrfs_end_transaction(trans);
1576 	} else {
1577 		up_read(&fs_info->commit_root_sem);
1578 	}
1579 out:
1580 	ulist_release(roots);
1581 	ulist_release(tmp);
1582 	return ret;
1583 }
1584 
1585 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1586 			  u64 start_off, struct btrfs_path *path,
1587 			  struct btrfs_inode_extref **ret_extref,
1588 			  u64 *found_off)
1589 {
1590 	int ret, slot;
1591 	struct btrfs_key key;
1592 	struct btrfs_key found_key;
1593 	struct btrfs_inode_extref *extref;
1594 	const struct extent_buffer *leaf;
1595 	unsigned long ptr;
1596 
1597 	key.objectid = inode_objectid;
1598 	key.type = BTRFS_INODE_EXTREF_KEY;
1599 	key.offset = start_off;
1600 
1601 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1602 	if (ret < 0)
1603 		return ret;
1604 
1605 	while (1) {
1606 		leaf = path->nodes[0];
1607 		slot = path->slots[0];
1608 		if (slot >= btrfs_header_nritems(leaf)) {
1609 			/*
1610 			 * If the item at offset is not found,
1611 			 * btrfs_search_slot will point us to the slot
1612 			 * where it should be inserted. In our case
1613 			 * that will be the slot directly before the
1614 			 * next INODE_REF_KEY_V2 item. In the case
1615 			 * that we're pointing to the last slot in a
1616 			 * leaf, we must move one leaf over.
1617 			 */
1618 			ret = btrfs_next_leaf(root, path);
1619 			if (ret) {
1620 				if (ret >= 1)
1621 					ret = -ENOENT;
1622 				break;
1623 			}
1624 			continue;
1625 		}
1626 
1627 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1628 
1629 		/*
1630 		 * Check that we're still looking at an extended ref key for
1631 		 * this particular objectid. If we have different
1632 		 * objectid or type then there are no more to be found
1633 		 * in the tree and we can exit.
1634 		 */
1635 		ret = -ENOENT;
1636 		if (found_key.objectid != inode_objectid)
1637 			break;
1638 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1639 			break;
1640 
1641 		ret = 0;
1642 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1643 		extref = (struct btrfs_inode_extref *)ptr;
1644 		*ret_extref = extref;
1645 		if (found_off)
1646 			*found_off = found_key.offset;
1647 		break;
1648 	}
1649 
1650 	return ret;
1651 }
1652 
1653 /*
1654  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1655  * Elements of the path are separated by '/' and the path is guaranteed to be
1656  * 0-terminated. the path is only given within the current file system.
1657  * Therefore, it never starts with a '/'. the caller is responsible to provide
1658  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1659  * the start point of the resulting string is returned. this pointer is within
1660  * dest, normally.
1661  * in case the path buffer would overflow, the pointer is decremented further
1662  * as if output was written to the buffer, though no more output is actually
1663  * generated. that way, the caller can determine how much space would be
1664  * required for the path to fit into the buffer. in that case, the returned
1665  * value will be smaller than dest. callers must check this!
1666  */
1667 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1668 			u32 name_len, unsigned long name_off,
1669 			struct extent_buffer *eb_in, u64 parent,
1670 			char *dest, u32 size)
1671 {
1672 	int slot;
1673 	u64 next_inum;
1674 	int ret;
1675 	s64 bytes_left = ((s64)size) - 1;
1676 	struct extent_buffer *eb = eb_in;
1677 	struct btrfs_key found_key;
1678 	struct btrfs_inode_ref *iref;
1679 
1680 	if (bytes_left >= 0)
1681 		dest[bytes_left] = '\0';
1682 
1683 	while (1) {
1684 		bytes_left -= name_len;
1685 		if (bytes_left >= 0)
1686 			read_extent_buffer(eb, dest + bytes_left,
1687 					   name_off, name_len);
1688 		if (eb != eb_in) {
1689 			if (!path->skip_locking)
1690 				btrfs_tree_read_unlock(eb);
1691 			free_extent_buffer(eb);
1692 		}
1693 		ret = btrfs_find_item(fs_root, path, parent, 0,
1694 				BTRFS_INODE_REF_KEY, &found_key);
1695 		if (ret > 0)
1696 			ret = -ENOENT;
1697 		if (ret)
1698 			break;
1699 
1700 		next_inum = found_key.offset;
1701 
1702 		/* regular exit ahead */
1703 		if (parent == next_inum)
1704 			break;
1705 
1706 		slot = path->slots[0];
1707 		eb = path->nodes[0];
1708 		/* make sure we can use eb after releasing the path */
1709 		if (eb != eb_in) {
1710 			path->nodes[0] = NULL;
1711 			path->locks[0] = 0;
1712 		}
1713 		btrfs_release_path(path);
1714 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1715 
1716 		name_len = btrfs_inode_ref_name_len(eb, iref);
1717 		name_off = (unsigned long)(iref + 1);
1718 
1719 		parent = next_inum;
1720 		--bytes_left;
1721 		if (bytes_left >= 0)
1722 			dest[bytes_left] = '/';
1723 	}
1724 
1725 	btrfs_release_path(path);
1726 
1727 	if (ret)
1728 		return ERR_PTR(ret);
1729 
1730 	return dest + bytes_left;
1731 }
1732 
1733 /*
1734  * this makes the path point to (logical EXTENT_ITEM *)
1735  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1736  * tree blocks and <0 on error.
1737  */
1738 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1739 			struct btrfs_path *path, struct btrfs_key *found_key,
1740 			u64 *flags_ret)
1741 {
1742 	int ret;
1743 	u64 flags;
1744 	u64 size = 0;
1745 	u32 item_size;
1746 	const struct extent_buffer *eb;
1747 	struct btrfs_extent_item *ei;
1748 	struct btrfs_key key;
1749 
1750 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1751 		key.type = BTRFS_METADATA_ITEM_KEY;
1752 	else
1753 		key.type = BTRFS_EXTENT_ITEM_KEY;
1754 	key.objectid = logical;
1755 	key.offset = (u64)-1;
1756 
1757 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1758 	if (ret < 0)
1759 		return ret;
1760 
1761 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1762 	if (ret) {
1763 		if (ret > 0)
1764 			ret = -ENOENT;
1765 		return ret;
1766 	}
1767 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1768 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1769 		size = fs_info->nodesize;
1770 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1771 		size = found_key->offset;
1772 
1773 	if (found_key->objectid > logical ||
1774 	    found_key->objectid + size <= logical) {
1775 		btrfs_debug(fs_info,
1776 			"logical %llu is not within any extent", logical);
1777 		return -ENOENT;
1778 	}
1779 
1780 	eb = path->nodes[0];
1781 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1782 	BUG_ON(item_size < sizeof(*ei));
1783 
1784 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1785 	flags = btrfs_extent_flags(eb, ei);
1786 
1787 	btrfs_debug(fs_info,
1788 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1789 		 logical, logical - found_key->objectid, found_key->objectid,
1790 		 found_key->offset, flags, item_size);
1791 
1792 	WARN_ON(!flags_ret);
1793 	if (flags_ret) {
1794 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1795 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1796 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1797 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1798 		else
1799 			BUG();
1800 		return 0;
1801 	}
1802 
1803 	return -EIO;
1804 }
1805 
1806 /*
1807  * helper function to iterate extent inline refs. ptr must point to a 0 value
1808  * for the first call and may be modified. it is used to track state.
1809  * if more refs exist, 0 is returned and the next call to
1810  * get_extent_inline_ref must pass the modified ptr parameter to get the
1811  * next ref. after the last ref was processed, 1 is returned.
1812  * returns <0 on error
1813  */
1814 static int get_extent_inline_ref(unsigned long *ptr,
1815 				 const struct extent_buffer *eb,
1816 				 const struct btrfs_key *key,
1817 				 const struct btrfs_extent_item *ei,
1818 				 u32 item_size,
1819 				 struct btrfs_extent_inline_ref **out_eiref,
1820 				 int *out_type)
1821 {
1822 	unsigned long end;
1823 	u64 flags;
1824 	struct btrfs_tree_block_info *info;
1825 
1826 	if (!*ptr) {
1827 		/* first call */
1828 		flags = btrfs_extent_flags(eb, ei);
1829 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1830 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1831 				/* a skinny metadata extent */
1832 				*out_eiref =
1833 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1834 			} else {
1835 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1836 				info = (struct btrfs_tree_block_info *)(ei + 1);
1837 				*out_eiref =
1838 				   (struct btrfs_extent_inline_ref *)(info + 1);
1839 			}
1840 		} else {
1841 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1842 		}
1843 		*ptr = (unsigned long)*out_eiref;
1844 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1845 			return -ENOENT;
1846 	}
1847 
1848 	end = (unsigned long)ei + item_size;
1849 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1850 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1851 						     BTRFS_REF_TYPE_ANY);
1852 	if (*out_type == BTRFS_REF_TYPE_INVALID)
1853 		return -EUCLEAN;
1854 
1855 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1856 	WARN_ON(*ptr > end);
1857 	if (*ptr == end)
1858 		return 1; /* last */
1859 
1860 	return 0;
1861 }
1862 
1863 /*
1864  * reads the tree block backref for an extent. tree level and root are returned
1865  * through out_level and out_root. ptr must point to a 0 value for the first
1866  * call and may be modified (see get_extent_inline_ref comment).
1867  * returns 0 if data was provided, 1 if there was no more data to provide or
1868  * <0 on error.
1869  */
1870 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1871 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1872 			    u32 item_size, u64 *out_root, u8 *out_level)
1873 {
1874 	int ret;
1875 	int type;
1876 	struct btrfs_extent_inline_ref *eiref;
1877 
1878 	if (*ptr == (unsigned long)-1)
1879 		return 1;
1880 
1881 	while (1) {
1882 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1883 					      &eiref, &type);
1884 		if (ret < 0)
1885 			return ret;
1886 
1887 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1888 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1889 			break;
1890 
1891 		if (ret == 1)
1892 			return 1;
1893 	}
1894 
1895 	/* we can treat both ref types equally here */
1896 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1897 
1898 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1899 		struct btrfs_tree_block_info *info;
1900 
1901 		info = (struct btrfs_tree_block_info *)(ei + 1);
1902 		*out_level = btrfs_tree_block_level(eb, info);
1903 	} else {
1904 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1905 		*out_level = (u8)key->offset;
1906 	}
1907 
1908 	if (ret == 1)
1909 		*ptr = (unsigned long)-1;
1910 
1911 	return 0;
1912 }
1913 
1914 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1915 			     struct extent_inode_elem *inode_list,
1916 			     u64 root, u64 extent_item_objectid,
1917 			     iterate_extent_inodes_t *iterate, void *ctx)
1918 {
1919 	struct extent_inode_elem *eie;
1920 	int ret = 0;
1921 
1922 	for (eie = inode_list; eie; eie = eie->next) {
1923 		btrfs_debug(fs_info,
1924 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1925 			    extent_item_objectid, eie->inum,
1926 			    eie->offset, root);
1927 		ret = iterate(eie->inum, eie->offset, root, ctx);
1928 		if (ret) {
1929 			btrfs_debug(fs_info,
1930 				    "stopping iteration for %llu due to ret=%d",
1931 				    extent_item_objectid, ret);
1932 			break;
1933 		}
1934 	}
1935 
1936 	return ret;
1937 }
1938 
1939 /*
1940  * calls iterate() for every inode that references the extent identified by
1941  * the given parameters.
1942  * when the iterator function returns a non-zero value, iteration stops.
1943  */
1944 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1945 				u64 extent_item_objectid, u64 extent_item_pos,
1946 				int search_commit_root,
1947 				iterate_extent_inodes_t *iterate, void *ctx,
1948 				bool ignore_offset)
1949 {
1950 	int ret;
1951 	struct btrfs_trans_handle *trans = NULL;
1952 	struct ulist *refs = NULL;
1953 	struct ulist *roots = NULL;
1954 	struct ulist_node *ref_node = NULL;
1955 	struct ulist_node *root_node = NULL;
1956 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1957 	struct ulist_iterator ref_uiter;
1958 	struct ulist_iterator root_uiter;
1959 
1960 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1961 			extent_item_objectid);
1962 
1963 	if (!search_commit_root) {
1964 		trans = btrfs_attach_transaction(fs_info->extent_root);
1965 		if (IS_ERR(trans)) {
1966 			if (PTR_ERR(trans) != -ENOENT &&
1967 			    PTR_ERR(trans) != -EROFS)
1968 				return PTR_ERR(trans);
1969 			trans = NULL;
1970 		}
1971 	}
1972 
1973 	if (trans)
1974 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1975 	else
1976 		down_read(&fs_info->commit_root_sem);
1977 
1978 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1979 				   tree_mod_seq_elem.seq, &refs,
1980 				   &extent_item_pos, ignore_offset);
1981 	if (ret)
1982 		goto out;
1983 
1984 	ULIST_ITER_INIT(&ref_uiter);
1985 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1986 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1987 						tree_mod_seq_elem.seq, &roots,
1988 						ignore_offset);
1989 		if (ret)
1990 			break;
1991 		ULIST_ITER_INIT(&root_uiter);
1992 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1993 			btrfs_debug(fs_info,
1994 				    "root %llu references leaf %llu, data list %#llx",
1995 				    root_node->val, ref_node->val,
1996 				    ref_node->aux);
1997 			ret = iterate_leaf_refs(fs_info,
1998 						(struct extent_inode_elem *)
1999 						(uintptr_t)ref_node->aux,
2000 						root_node->val,
2001 						extent_item_objectid,
2002 						iterate, ctx);
2003 		}
2004 		ulist_free(roots);
2005 	}
2006 
2007 	free_leaf_list(refs);
2008 out:
2009 	if (trans) {
2010 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2011 		btrfs_end_transaction(trans);
2012 	} else {
2013 		up_read(&fs_info->commit_root_sem);
2014 	}
2015 
2016 	return ret;
2017 }
2018 
2019 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2020 				struct btrfs_path *path,
2021 				iterate_extent_inodes_t *iterate, void *ctx,
2022 				bool ignore_offset)
2023 {
2024 	int ret;
2025 	u64 extent_item_pos;
2026 	u64 flags = 0;
2027 	struct btrfs_key found_key;
2028 	int search_commit_root = path->search_commit_root;
2029 
2030 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2031 	btrfs_release_path(path);
2032 	if (ret < 0)
2033 		return ret;
2034 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2035 		return -EINVAL;
2036 
2037 	extent_item_pos = logical - found_key.objectid;
2038 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2039 					extent_item_pos, search_commit_root,
2040 					iterate, ctx, ignore_offset);
2041 
2042 	return ret;
2043 }
2044 
2045 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2046 			      struct extent_buffer *eb, void *ctx);
2047 
2048 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2049 			      struct btrfs_path *path,
2050 			      iterate_irefs_t *iterate, void *ctx)
2051 {
2052 	int ret = 0;
2053 	int slot;
2054 	u32 cur;
2055 	u32 len;
2056 	u32 name_len;
2057 	u64 parent = 0;
2058 	int found = 0;
2059 	struct extent_buffer *eb;
2060 	struct btrfs_item *item;
2061 	struct btrfs_inode_ref *iref;
2062 	struct btrfs_key found_key;
2063 
2064 	while (!ret) {
2065 		ret = btrfs_find_item(fs_root, path, inum,
2066 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2067 				&found_key);
2068 
2069 		if (ret < 0)
2070 			break;
2071 		if (ret) {
2072 			ret = found ? 0 : -ENOENT;
2073 			break;
2074 		}
2075 		++found;
2076 
2077 		parent = found_key.offset;
2078 		slot = path->slots[0];
2079 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2080 		if (!eb) {
2081 			ret = -ENOMEM;
2082 			break;
2083 		}
2084 		btrfs_release_path(path);
2085 
2086 		item = btrfs_item_nr(slot);
2087 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2088 
2089 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2090 			name_len = btrfs_inode_ref_name_len(eb, iref);
2091 			/* path must be released before calling iterate()! */
2092 			btrfs_debug(fs_root->fs_info,
2093 				"following ref at offset %u for inode %llu in tree %llu",
2094 				cur, found_key.objectid,
2095 				fs_root->root_key.objectid);
2096 			ret = iterate(parent, name_len,
2097 				      (unsigned long)(iref + 1), eb, ctx);
2098 			if (ret)
2099 				break;
2100 			len = sizeof(*iref) + name_len;
2101 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2102 		}
2103 		free_extent_buffer(eb);
2104 	}
2105 
2106 	btrfs_release_path(path);
2107 
2108 	return ret;
2109 }
2110 
2111 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2112 				 struct btrfs_path *path,
2113 				 iterate_irefs_t *iterate, void *ctx)
2114 {
2115 	int ret;
2116 	int slot;
2117 	u64 offset = 0;
2118 	u64 parent;
2119 	int found = 0;
2120 	struct extent_buffer *eb;
2121 	struct btrfs_inode_extref *extref;
2122 	u32 item_size;
2123 	u32 cur_offset;
2124 	unsigned long ptr;
2125 
2126 	while (1) {
2127 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2128 					    &offset);
2129 		if (ret < 0)
2130 			break;
2131 		if (ret) {
2132 			ret = found ? 0 : -ENOENT;
2133 			break;
2134 		}
2135 		++found;
2136 
2137 		slot = path->slots[0];
2138 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2139 		if (!eb) {
2140 			ret = -ENOMEM;
2141 			break;
2142 		}
2143 		btrfs_release_path(path);
2144 
2145 		item_size = btrfs_item_size_nr(eb, slot);
2146 		ptr = btrfs_item_ptr_offset(eb, slot);
2147 		cur_offset = 0;
2148 
2149 		while (cur_offset < item_size) {
2150 			u32 name_len;
2151 
2152 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2153 			parent = btrfs_inode_extref_parent(eb, extref);
2154 			name_len = btrfs_inode_extref_name_len(eb, extref);
2155 			ret = iterate(parent, name_len,
2156 				      (unsigned long)&extref->name, eb, ctx);
2157 			if (ret)
2158 				break;
2159 
2160 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2161 			cur_offset += sizeof(*extref);
2162 		}
2163 		free_extent_buffer(eb);
2164 
2165 		offset++;
2166 	}
2167 
2168 	btrfs_release_path(path);
2169 
2170 	return ret;
2171 }
2172 
2173 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2174 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2175 			 void *ctx)
2176 {
2177 	int ret;
2178 	int found_refs = 0;
2179 
2180 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2181 	if (!ret)
2182 		++found_refs;
2183 	else if (ret != -ENOENT)
2184 		return ret;
2185 
2186 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2187 	if (ret == -ENOENT && found_refs)
2188 		return 0;
2189 
2190 	return ret;
2191 }
2192 
2193 /*
2194  * returns 0 if the path could be dumped (probably truncated)
2195  * returns <0 in case of an error
2196  */
2197 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2198 			 struct extent_buffer *eb, void *ctx)
2199 {
2200 	struct inode_fs_paths *ipath = ctx;
2201 	char *fspath;
2202 	char *fspath_min;
2203 	int i = ipath->fspath->elem_cnt;
2204 	const int s_ptr = sizeof(char *);
2205 	u32 bytes_left;
2206 
2207 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2208 					ipath->fspath->bytes_left - s_ptr : 0;
2209 
2210 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2211 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2212 				   name_off, eb, inum, fspath_min, bytes_left);
2213 	if (IS_ERR(fspath))
2214 		return PTR_ERR(fspath);
2215 
2216 	if (fspath > fspath_min) {
2217 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2218 		++ipath->fspath->elem_cnt;
2219 		ipath->fspath->bytes_left = fspath - fspath_min;
2220 	} else {
2221 		++ipath->fspath->elem_missed;
2222 		ipath->fspath->bytes_missing += fspath_min - fspath;
2223 		ipath->fspath->bytes_left = 0;
2224 	}
2225 
2226 	return 0;
2227 }
2228 
2229 /*
2230  * this dumps all file system paths to the inode into the ipath struct, provided
2231  * is has been created large enough. each path is zero-terminated and accessed
2232  * from ipath->fspath->val[i].
2233  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2234  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2235  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2236  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2237  * have been needed to return all paths.
2238  */
2239 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2240 {
2241 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2242 			     inode_to_path, ipath);
2243 }
2244 
2245 struct btrfs_data_container *init_data_container(u32 total_bytes)
2246 {
2247 	struct btrfs_data_container *data;
2248 	size_t alloc_bytes;
2249 
2250 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2251 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2252 	if (!data)
2253 		return ERR_PTR(-ENOMEM);
2254 
2255 	if (total_bytes >= sizeof(*data)) {
2256 		data->bytes_left = total_bytes - sizeof(*data);
2257 		data->bytes_missing = 0;
2258 	} else {
2259 		data->bytes_missing = sizeof(*data) - total_bytes;
2260 		data->bytes_left = 0;
2261 	}
2262 
2263 	data->elem_cnt = 0;
2264 	data->elem_missed = 0;
2265 
2266 	return data;
2267 }
2268 
2269 /*
2270  * allocates space to return multiple file system paths for an inode.
2271  * total_bytes to allocate are passed, note that space usable for actual path
2272  * information will be total_bytes - sizeof(struct inode_fs_paths).
2273  * the returned pointer must be freed with free_ipath() in the end.
2274  */
2275 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2276 					struct btrfs_path *path)
2277 {
2278 	struct inode_fs_paths *ifp;
2279 	struct btrfs_data_container *fspath;
2280 
2281 	fspath = init_data_container(total_bytes);
2282 	if (IS_ERR(fspath))
2283 		return ERR_CAST(fspath);
2284 
2285 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2286 	if (!ifp) {
2287 		kvfree(fspath);
2288 		return ERR_PTR(-ENOMEM);
2289 	}
2290 
2291 	ifp->btrfs_path = path;
2292 	ifp->fspath = fspath;
2293 	ifp->fs_root = fs_root;
2294 
2295 	return ifp;
2296 }
2297 
2298 void free_ipath(struct inode_fs_paths *ipath)
2299 {
2300 	if (!ipath)
2301 		return;
2302 	kvfree(ipath->fspath);
2303 	kfree(ipath);
2304 }
2305 
2306 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2307 		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2308 {
2309 	struct btrfs_backref_iter *ret;
2310 
2311 	ret = kzalloc(sizeof(*ret), gfp_flag);
2312 	if (!ret)
2313 		return NULL;
2314 
2315 	ret->path = btrfs_alloc_path();
2316 	if (!ret->path) {
2317 		kfree(ret);
2318 		return NULL;
2319 	}
2320 
2321 	/* Current backref iterator only supports iteration in commit root */
2322 	ret->path->search_commit_root = 1;
2323 	ret->path->skip_locking = 1;
2324 	ret->fs_info = fs_info;
2325 
2326 	return ret;
2327 }
2328 
2329 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2330 {
2331 	struct btrfs_fs_info *fs_info = iter->fs_info;
2332 	struct btrfs_path *path = iter->path;
2333 	struct btrfs_extent_item *ei;
2334 	struct btrfs_key key;
2335 	int ret;
2336 
2337 	key.objectid = bytenr;
2338 	key.type = BTRFS_METADATA_ITEM_KEY;
2339 	key.offset = (u64)-1;
2340 	iter->bytenr = bytenr;
2341 
2342 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2343 	if (ret < 0)
2344 		return ret;
2345 	if (ret == 0) {
2346 		ret = -EUCLEAN;
2347 		goto release;
2348 	}
2349 	if (path->slots[0] == 0) {
2350 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2351 		ret = -EUCLEAN;
2352 		goto release;
2353 	}
2354 	path->slots[0]--;
2355 
2356 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2357 	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2358 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2359 		ret = -ENOENT;
2360 		goto release;
2361 	}
2362 	memcpy(&iter->cur_key, &key, sizeof(key));
2363 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2364 						    path->slots[0]);
2365 	iter->end_ptr = (u32)(iter->item_ptr +
2366 			btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2367 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2368 			    struct btrfs_extent_item);
2369 
2370 	/*
2371 	 * Only support iteration on tree backref yet.
2372 	 *
2373 	 * This is an extra precaution for non skinny-metadata, where
2374 	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2375 	 * extent flags to determine if it's a tree block.
2376 	 */
2377 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2378 		ret = -ENOTSUPP;
2379 		goto release;
2380 	}
2381 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2382 
2383 	/* If there is no inline backref, go search for keyed backref */
2384 	if (iter->cur_ptr >= iter->end_ptr) {
2385 		ret = btrfs_next_item(fs_info->extent_root, path);
2386 
2387 		/* No inline nor keyed ref */
2388 		if (ret > 0) {
2389 			ret = -ENOENT;
2390 			goto release;
2391 		}
2392 		if (ret < 0)
2393 			goto release;
2394 
2395 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2396 				path->slots[0]);
2397 		if (iter->cur_key.objectid != bytenr ||
2398 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2399 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2400 			ret = -ENOENT;
2401 			goto release;
2402 		}
2403 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2404 							   path->slots[0]);
2405 		iter->item_ptr = iter->cur_ptr;
2406 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2407 				      path->nodes[0], path->slots[0]));
2408 	}
2409 
2410 	return 0;
2411 release:
2412 	btrfs_backref_iter_release(iter);
2413 	return ret;
2414 }
2415 
2416 /*
2417  * Go to the next backref item of current bytenr, can be either inlined or
2418  * keyed.
2419  *
2420  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2421  *
2422  * Return 0 if we get next backref without problem.
2423  * Return >0 if there is no extra backref for this bytenr.
2424  * Return <0 if there is something wrong happened.
2425  */
2426 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2427 {
2428 	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2429 	struct btrfs_path *path = iter->path;
2430 	struct btrfs_extent_inline_ref *iref;
2431 	int ret;
2432 	u32 size;
2433 
2434 	if (btrfs_backref_iter_is_inline_ref(iter)) {
2435 		/* We're still inside the inline refs */
2436 		ASSERT(iter->cur_ptr < iter->end_ptr);
2437 
2438 		if (btrfs_backref_has_tree_block_info(iter)) {
2439 			/* First tree block info */
2440 			size = sizeof(struct btrfs_tree_block_info);
2441 		} else {
2442 			/* Use inline ref type to determine the size */
2443 			int type;
2444 
2445 			iref = (struct btrfs_extent_inline_ref *)
2446 				((unsigned long)iter->cur_ptr);
2447 			type = btrfs_extent_inline_ref_type(eb, iref);
2448 
2449 			size = btrfs_extent_inline_ref_size(type);
2450 		}
2451 		iter->cur_ptr += size;
2452 		if (iter->cur_ptr < iter->end_ptr)
2453 			return 0;
2454 
2455 		/* All inline items iterated, fall through */
2456 	}
2457 
2458 	/* We're at keyed items, there is no inline item, go to the next one */
2459 	ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2460 	if (ret)
2461 		return ret;
2462 
2463 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2464 	if (iter->cur_key.objectid != iter->bytenr ||
2465 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2466 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2467 		return 1;
2468 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2469 					path->slots[0]);
2470 	iter->cur_ptr = iter->item_ptr;
2471 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2472 						path->slots[0]);
2473 	return 0;
2474 }
2475 
2476 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2477 			      struct btrfs_backref_cache *cache, int is_reloc)
2478 {
2479 	int i;
2480 
2481 	cache->rb_root = RB_ROOT;
2482 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2483 		INIT_LIST_HEAD(&cache->pending[i]);
2484 	INIT_LIST_HEAD(&cache->changed);
2485 	INIT_LIST_HEAD(&cache->detached);
2486 	INIT_LIST_HEAD(&cache->leaves);
2487 	INIT_LIST_HEAD(&cache->pending_edge);
2488 	INIT_LIST_HEAD(&cache->useless_node);
2489 	cache->fs_info = fs_info;
2490 	cache->is_reloc = is_reloc;
2491 }
2492 
2493 struct btrfs_backref_node *btrfs_backref_alloc_node(
2494 		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2495 {
2496 	struct btrfs_backref_node *node;
2497 
2498 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2499 	node = kzalloc(sizeof(*node), GFP_NOFS);
2500 	if (!node)
2501 		return node;
2502 
2503 	INIT_LIST_HEAD(&node->list);
2504 	INIT_LIST_HEAD(&node->upper);
2505 	INIT_LIST_HEAD(&node->lower);
2506 	RB_CLEAR_NODE(&node->rb_node);
2507 	cache->nr_nodes++;
2508 	node->level = level;
2509 	node->bytenr = bytenr;
2510 
2511 	return node;
2512 }
2513 
2514 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2515 		struct btrfs_backref_cache *cache)
2516 {
2517 	struct btrfs_backref_edge *edge;
2518 
2519 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2520 	if (edge)
2521 		cache->nr_edges++;
2522 	return edge;
2523 }
2524 
2525 /*
2526  * Drop the backref node from cache, also cleaning up all its
2527  * upper edges and any uncached nodes in the path.
2528  *
2529  * This cleanup happens bottom up, thus the node should either
2530  * be the lowest node in the cache or a detached node.
2531  */
2532 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2533 				struct btrfs_backref_node *node)
2534 {
2535 	struct btrfs_backref_node *upper;
2536 	struct btrfs_backref_edge *edge;
2537 
2538 	if (!node)
2539 		return;
2540 
2541 	BUG_ON(!node->lowest && !node->detached);
2542 	while (!list_empty(&node->upper)) {
2543 		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2544 				  list[LOWER]);
2545 		upper = edge->node[UPPER];
2546 		list_del(&edge->list[LOWER]);
2547 		list_del(&edge->list[UPPER]);
2548 		btrfs_backref_free_edge(cache, edge);
2549 
2550 		/*
2551 		 * Add the node to leaf node list if no other child block
2552 		 * cached.
2553 		 */
2554 		if (list_empty(&upper->lower)) {
2555 			list_add_tail(&upper->lower, &cache->leaves);
2556 			upper->lowest = 1;
2557 		}
2558 	}
2559 
2560 	btrfs_backref_drop_node(cache, node);
2561 }
2562 
2563 /*
2564  * Release all nodes/edges from current cache
2565  */
2566 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2567 {
2568 	struct btrfs_backref_node *node;
2569 	int i;
2570 
2571 	while (!list_empty(&cache->detached)) {
2572 		node = list_entry(cache->detached.next,
2573 				  struct btrfs_backref_node, list);
2574 		btrfs_backref_cleanup_node(cache, node);
2575 	}
2576 
2577 	while (!list_empty(&cache->leaves)) {
2578 		node = list_entry(cache->leaves.next,
2579 				  struct btrfs_backref_node, lower);
2580 		btrfs_backref_cleanup_node(cache, node);
2581 	}
2582 
2583 	cache->last_trans = 0;
2584 
2585 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2586 		ASSERT(list_empty(&cache->pending[i]));
2587 	ASSERT(list_empty(&cache->pending_edge));
2588 	ASSERT(list_empty(&cache->useless_node));
2589 	ASSERT(list_empty(&cache->changed));
2590 	ASSERT(list_empty(&cache->detached));
2591 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2592 	ASSERT(!cache->nr_nodes);
2593 	ASSERT(!cache->nr_edges);
2594 }
2595 
2596 /*
2597  * Handle direct tree backref
2598  *
2599  * Direct tree backref means, the backref item shows its parent bytenr
2600  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2601  *
2602  * @ref_key:	The converted backref key.
2603  *		For keyed backref, it's the item key.
2604  *		For inlined backref, objectid is the bytenr,
2605  *		type is btrfs_inline_ref_type, offset is
2606  *		btrfs_inline_ref_offset.
2607  */
2608 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2609 				      struct btrfs_key *ref_key,
2610 				      struct btrfs_backref_node *cur)
2611 {
2612 	struct btrfs_backref_edge *edge;
2613 	struct btrfs_backref_node *upper;
2614 	struct rb_node *rb_node;
2615 
2616 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2617 
2618 	/* Only reloc root uses backref pointing to itself */
2619 	if (ref_key->objectid == ref_key->offset) {
2620 		struct btrfs_root *root;
2621 
2622 		cur->is_reloc_root = 1;
2623 		/* Only reloc backref cache cares about a specific root */
2624 		if (cache->is_reloc) {
2625 			root = find_reloc_root(cache->fs_info, cur->bytenr);
2626 			if (!root)
2627 				return -ENOENT;
2628 			cur->root = root;
2629 		} else {
2630 			/*
2631 			 * For generic purpose backref cache, reloc root node
2632 			 * is useless.
2633 			 */
2634 			list_add(&cur->list, &cache->useless_node);
2635 		}
2636 		return 0;
2637 	}
2638 
2639 	edge = btrfs_backref_alloc_edge(cache);
2640 	if (!edge)
2641 		return -ENOMEM;
2642 
2643 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2644 	if (!rb_node) {
2645 		/* Parent node not yet cached */
2646 		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2647 					   cur->level + 1);
2648 		if (!upper) {
2649 			btrfs_backref_free_edge(cache, edge);
2650 			return -ENOMEM;
2651 		}
2652 
2653 		/*
2654 		 *  Backrefs for the upper level block isn't cached, add the
2655 		 *  block to pending list
2656 		 */
2657 		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2658 	} else {
2659 		/* Parent node already cached */
2660 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2661 		ASSERT(upper->checked);
2662 		INIT_LIST_HEAD(&edge->list[UPPER]);
2663 	}
2664 	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2665 	return 0;
2666 }
2667 
2668 /*
2669  * Handle indirect tree backref
2670  *
2671  * Indirect tree backref means, we only know which tree the node belongs to.
2672  * We still need to do a tree search to find out the parents. This is for
2673  * TREE_BLOCK_REF backref (keyed or inlined).
2674  *
2675  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
2676  * @tree_key:	The first key of this tree block.
2677  * @path:	A clean (released) path, to avoid allocating path everytime
2678  *		the function get called.
2679  */
2680 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2681 					struct btrfs_path *path,
2682 					struct btrfs_key *ref_key,
2683 					struct btrfs_key *tree_key,
2684 					struct btrfs_backref_node *cur)
2685 {
2686 	struct btrfs_fs_info *fs_info = cache->fs_info;
2687 	struct btrfs_backref_node *upper;
2688 	struct btrfs_backref_node *lower;
2689 	struct btrfs_backref_edge *edge;
2690 	struct extent_buffer *eb;
2691 	struct btrfs_root *root;
2692 	struct rb_node *rb_node;
2693 	int level;
2694 	bool need_check = true;
2695 	int ret;
2696 
2697 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2698 	if (IS_ERR(root))
2699 		return PTR_ERR(root);
2700 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2701 		cur->cowonly = 1;
2702 
2703 	if (btrfs_root_level(&root->root_item) == cur->level) {
2704 		/* Tree root */
2705 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2706 		/*
2707 		 * For reloc backref cache, we may ignore reloc root.  But for
2708 		 * general purpose backref cache, we can't rely on
2709 		 * btrfs_should_ignore_reloc_root() as it may conflict with
2710 		 * current running relocation and lead to missing root.
2711 		 *
2712 		 * For general purpose backref cache, reloc root detection is
2713 		 * completely relying on direct backref (key->offset is parent
2714 		 * bytenr), thus only do such check for reloc cache.
2715 		 */
2716 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2717 			btrfs_put_root(root);
2718 			list_add(&cur->list, &cache->useless_node);
2719 		} else {
2720 			cur->root = root;
2721 		}
2722 		return 0;
2723 	}
2724 
2725 	level = cur->level + 1;
2726 
2727 	/* Search the tree to find parent blocks referring to the block */
2728 	path->search_commit_root = 1;
2729 	path->skip_locking = 1;
2730 	path->lowest_level = level;
2731 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2732 	path->lowest_level = 0;
2733 	if (ret < 0) {
2734 		btrfs_put_root(root);
2735 		return ret;
2736 	}
2737 	if (ret > 0 && path->slots[level] > 0)
2738 		path->slots[level]--;
2739 
2740 	eb = path->nodes[level];
2741 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2742 		btrfs_err(fs_info,
2743 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2744 			  cur->bytenr, level - 1, root->root_key.objectid,
2745 			  tree_key->objectid, tree_key->type, tree_key->offset);
2746 		btrfs_put_root(root);
2747 		ret = -ENOENT;
2748 		goto out;
2749 	}
2750 	lower = cur;
2751 
2752 	/* Add all nodes and edges in the path */
2753 	for (; level < BTRFS_MAX_LEVEL; level++) {
2754 		if (!path->nodes[level]) {
2755 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
2756 			       lower->bytenr);
2757 			/* Same as previous should_ignore_reloc_root() call */
2758 			if (btrfs_should_ignore_reloc_root(root) &&
2759 			    cache->is_reloc) {
2760 				btrfs_put_root(root);
2761 				list_add(&lower->list, &cache->useless_node);
2762 			} else {
2763 				lower->root = root;
2764 			}
2765 			break;
2766 		}
2767 
2768 		edge = btrfs_backref_alloc_edge(cache);
2769 		if (!edge) {
2770 			btrfs_put_root(root);
2771 			ret = -ENOMEM;
2772 			goto out;
2773 		}
2774 
2775 		eb = path->nodes[level];
2776 		rb_node = rb_simple_search(&cache->rb_root, eb->start);
2777 		if (!rb_node) {
2778 			upper = btrfs_backref_alloc_node(cache, eb->start,
2779 							 lower->level + 1);
2780 			if (!upper) {
2781 				btrfs_put_root(root);
2782 				btrfs_backref_free_edge(cache, edge);
2783 				ret = -ENOMEM;
2784 				goto out;
2785 			}
2786 			upper->owner = btrfs_header_owner(eb);
2787 			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2788 				upper->cowonly = 1;
2789 
2790 			/*
2791 			 * If we know the block isn't shared we can avoid
2792 			 * checking its backrefs.
2793 			 */
2794 			if (btrfs_block_can_be_shared(root, eb))
2795 				upper->checked = 0;
2796 			else
2797 				upper->checked = 1;
2798 
2799 			/*
2800 			 * Add the block to pending list if we need to check its
2801 			 * backrefs, we only do this once while walking up a
2802 			 * tree as we will catch anything else later on.
2803 			 */
2804 			if (!upper->checked && need_check) {
2805 				need_check = false;
2806 				list_add_tail(&edge->list[UPPER],
2807 					      &cache->pending_edge);
2808 			} else {
2809 				if (upper->checked)
2810 					need_check = true;
2811 				INIT_LIST_HEAD(&edge->list[UPPER]);
2812 			}
2813 		} else {
2814 			upper = rb_entry(rb_node, struct btrfs_backref_node,
2815 					 rb_node);
2816 			ASSERT(upper->checked);
2817 			INIT_LIST_HEAD(&edge->list[UPPER]);
2818 			if (!upper->owner)
2819 				upper->owner = btrfs_header_owner(eb);
2820 		}
2821 		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2822 
2823 		if (rb_node) {
2824 			btrfs_put_root(root);
2825 			break;
2826 		}
2827 		lower = upper;
2828 		upper = NULL;
2829 	}
2830 out:
2831 	btrfs_release_path(path);
2832 	return ret;
2833 }
2834 
2835 /*
2836  * Add backref node @cur into @cache.
2837  *
2838  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2839  *	 links aren't yet bi-directional. Needs to finish such links.
2840  *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
2841  *
2842  * @path:	Released path for indirect tree backref lookup
2843  * @iter:	Released backref iter for extent tree search
2844  * @node_key:	The first key of the tree block
2845  */
2846 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2847 				struct btrfs_path *path,
2848 				struct btrfs_backref_iter *iter,
2849 				struct btrfs_key *node_key,
2850 				struct btrfs_backref_node *cur)
2851 {
2852 	struct btrfs_fs_info *fs_info = cache->fs_info;
2853 	struct btrfs_backref_edge *edge;
2854 	struct btrfs_backref_node *exist;
2855 	int ret;
2856 
2857 	ret = btrfs_backref_iter_start(iter, cur->bytenr);
2858 	if (ret < 0)
2859 		return ret;
2860 	/*
2861 	 * We skip the first btrfs_tree_block_info, as we don't use the key
2862 	 * stored in it, but fetch it from the tree block
2863 	 */
2864 	if (btrfs_backref_has_tree_block_info(iter)) {
2865 		ret = btrfs_backref_iter_next(iter);
2866 		if (ret < 0)
2867 			goto out;
2868 		/* No extra backref? This means the tree block is corrupted */
2869 		if (ret > 0) {
2870 			ret = -EUCLEAN;
2871 			goto out;
2872 		}
2873 	}
2874 	WARN_ON(cur->checked);
2875 	if (!list_empty(&cur->upper)) {
2876 		/*
2877 		 * The backref was added previously when processing backref of
2878 		 * type BTRFS_TREE_BLOCK_REF_KEY
2879 		 */
2880 		ASSERT(list_is_singular(&cur->upper));
2881 		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2882 				  list[LOWER]);
2883 		ASSERT(list_empty(&edge->list[UPPER]));
2884 		exist = edge->node[UPPER];
2885 		/*
2886 		 * Add the upper level block to pending list if we need check
2887 		 * its backrefs
2888 		 */
2889 		if (!exist->checked)
2890 			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2891 	} else {
2892 		exist = NULL;
2893 	}
2894 
2895 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2896 		struct extent_buffer *eb;
2897 		struct btrfs_key key;
2898 		int type;
2899 
2900 		cond_resched();
2901 		eb = btrfs_backref_get_eb(iter);
2902 
2903 		key.objectid = iter->bytenr;
2904 		if (btrfs_backref_iter_is_inline_ref(iter)) {
2905 			struct btrfs_extent_inline_ref *iref;
2906 
2907 			/* Update key for inline backref */
2908 			iref = (struct btrfs_extent_inline_ref *)
2909 				((unsigned long)iter->cur_ptr);
2910 			type = btrfs_get_extent_inline_ref_type(eb, iref,
2911 							BTRFS_REF_TYPE_BLOCK);
2912 			if (type == BTRFS_REF_TYPE_INVALID) {
2913 				ret = -EUCLEAN;
2914 				goto out;
2915 			}
2916 			key.type = type;
2917 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2918 		} else {
2919 			key.type = iter->cur_key.type;
2920 			key.offset = iter->cur_key.offset;
2921 		}
2922 
2923 		/*
2924 		 * Parent node found and matches current inline ref, no need to
2925 		 * rebuild this node for this inline ref
2926 		 */
2927 		if (exist &&
2928 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2929 		      exist->owner == key.offset) ||
2930 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2931 		      exist->bytenr == key.offset))) {
2932 			exist = NULL;
2933 			continue;
2934 		}
2935 
2936 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2937 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2938 			ret = handle_direct_tree_backref(cache, &key, cur);
2939 			if (ret < 0)
2940 				goto out;
2941 			continue;
2942 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2943 			ret = -EINVAL;
2944 			btrfs_print_v0_err(fs_info);
2945 			btrfs_handle_fs_error(fs_info, ret, NULL);
2946 			goto out;
2947 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2948 			continue;
2949 		}
2950 
2951 		/*
2952 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2953 		 * means the root objectid. We need to search the tree to get
2954 		 * its parent bytenr.
2955 		 */
2956 		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2957 						   cur);
2958 		if (ret < 0)
2959 			goto out;
2960 	}
2961 	ret = 0;
2962 	cur->checked = 1;
2963 	WARN_ON(exist);
2964 out:
2965 	btrfs_backref_iter_release(iter);
2966 	return ret;
2967 }
2968 
2969 /*
2970  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2971  */
2972 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2973 				     struct btrfs_backref_node *start)
2974 {
2975 	struct list_head *useless_node = &cache->useless_node;
2976 	struct btrfs_backref_edge *edge;
2977 	struct rb_node *rb_node;
2978 	LIST_HEAD(pending_edge);
2979 
2980 	ASSERT(start->checked);
2981 
2982 	/* Insert this node to cache if it's not COW-only */
2983 	if (!start->cowonly) {
2984 		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2985 					   &start->rb_node);
2986 		if (rb_node)
2987 			btrfs_backref_panic(cache->fs_info, start->bytenr,
2988 					    -EEXIST);
2989 		list_add_tail(&start->lower, &cache->leaves);
2990 	}
2991 
2992 	/*
2993 	 * Use breadth first search to iterate all related edges.
2994 	 *
2995 	 * The starting points are all the edges of this node
2996 	 */
2997 	list_for_each_entry(edge, &start->upper, list[LOWER])
2998 		list_add_tail(&edge->list[UPPER], &pending_edge);
2999 
3000 	while (!list_empty(&pending_edge)) {
3001 		struct btrfs_backref_node *upper;
3002 		struct btrfs_backref_node *lower;
3003 
3004 		edge = list_first_entry(&pending_edge,
3005 				struct btrfs_backref_edge, list[UPPER]);
3006 		list_del_init(&edge->list[UPPER]);
3007 		upper = edge->node[UPPER];
3008 		lower = edge->node[LOWER];
3009 
3010 		/* Parent is detached, no need to keep any edges */
3011 		if (upper->detached) {
3012 			list_del(&edge->list[LOWER]);
3013 			btrfs_backref_free_edge(cache, edge);
3014 
3015 			/* Lower node is orphan, queue for cleanup */
3016 			if (list_empty(&lower->upper))
3017 				list_add(&lower->list, useless_node);
3018 			continue;
3019 		}
3020 
3021 		/*
3022 		 * All new nodes added in current build_backref_tree() haven't
3023 		 * been linked to the cache rb tree.
3024 		 * So if we have upper->rb_node populated, this means a cache
3025 		 * hit. We only need to link the edge, as @upper and all its
3026 		 * parents have already been linked.
3027 		 */
3028 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3029 			if (upper->lowest) {
3030 				list_del_init(&upper->lower);
3031 				upper->lowest = 0;
3032 			}
3033 
3034 			list_add_tail(&edge->list[UPPER], &upper->lower);
3035 			continue;
3036 		}
3037 
3038 		/* Sanity check, we shouldn't have any unchecked nodes */
3039 		if (!upper->checked) {
3040 			ASSERT(0);
3041 			return -EUCLEAN;
3042 		}
3043 
3044 		/* Sanity check, COW-only node has non-COW-only parent */
3045 		if (start->cowonly != upper->cowonly) {
3046 			ASSERT(0);
3047 			return -EUCLEAN;
3048 		}
3049 
3050 		/* Only cache non-COW-only (subvolume trees) tree blocks */
3051 		if (!upper->cowonly) {
3052 			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3053 						   &upper->rb_node);
3054 			if (rb_node) {
3055 				btrfs_backref_panic(cache->fs_info,
3056 						upper->bytenr, -EEXIST);
3057 				return -EUCLEAN;
3058 			}
3059 		}
3060 
3061 		list_add_tail(&edge->list[UPPER], &upper->lower);
3062 
3063 		/*
3064 		 * Also queue all the parent edges of this uncached node
3065 		 * to finish the upper linkage
3066 		 */
3067 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3068 			list_add_tail(&edge->list[UPPER], &pending_edge);
3069 	}
3070 	return 0;
3071 }
3072 
3073 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3074 				 struct btrfs_backref_node *node)
3075 {
3076 	struct btrfs_backref_node *lower;
3077 	struct btrfs_backref_node *upper;
3078 	struct btrfs_backref_edge *edge;
3079 
3080 	while (!list_empty(&cache->useless_node)) {
3081 		lower = list_first_entry(&cache->useless_node,
3082 				   struct btrfs_backref_node, list);
3083 		list_del_init(&lower->list);
3084 	}
3085 	while (!list_empty(&cache->pending_edge)) {
3086 		edge = list_first_entry(&cache->pending_edge,
3087 				struct btrfs_backref_edge, list[UPPER]);
3088 		list_del(&edge->list[UPPER]);
3089 		list_del(&edge->list[LOWER]);
3090 		lower = edge->node[LOWER];
3091 		upper = edge->node[UPPER];
3092 		btrfs_backref_free_edge(cache, edge);
3093 
3094 		/*
3095 		 * Lower is no longer linked to any upper backref nodes and
3096 		 * isn't in the cache, we can free it ourselves.
3097 		 */
3098 		if (list_empty(&lower->upper) &&
3099 		    RB_EMPTY_NODE(&lower->rb_node))
3100 			list_add(&lower->list, &cache->useless_node);
3101 
3102 		if (!RB_EMPTY_NODE(&upper->rb_node))
3103 			continue;
3104 
3105 		/* Add this guy's upper edges to the list to process */
3106 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3107 			list_add_tail(&edge->list[UPPER],
3108 				      &cache->pending_edge);
3109 		if (list_empty(&upper->upper))
3110 			list_add(&upper->list, &cache->useless_node);
3111 	}
3112 
3113 	while (!list_empty(&cache->useless_node)) {
3114 		lower = list_first_entry(&cache->useless_node,
3115 				   struct btrfs_backref_node, list);
3116 		list_del_init(&lower->list);
3117 		if (lower == node)
3118 			node = NULL;
3119 		btrfs_backref_drop_node(cache, lower);
3120 	}
3121 
3122 	btrfs_backref_cleanup_node(cache, node);
3123 	ASSERT(list_empty(&cache->useless_node) &&
3124 	       list_empty(&cache->pending_edge));
3125 }
3126