xref: /openbmc/linux/fs/btrfs/backref.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 
17 /* Just an arbitrary number so we can be sure this happened */
18 #define BACKREF_FOUND_SHARED 6
19 
20 struct extent_inode_elem {
21 	u64 inum;
22 	u64 offset;
23 	struct extent_inode_elem *next;
24 };
25 
26 static int check_extent_in_eb(const struct btrfs_key *key,
27 			      const struct extent_buffer *eb,
28 			      const struct btrfs_file_extent_item *fi,
29 			      u64 extent_item_pos,
30 			      struct extent_inode_elem **eie,
31 			      bool ignore_offset)
32 {
33 	u64 offset = 0;
34 	struct extent_inode_elem *e;
35 
36 	if (!ignore_offset &&
37 	    !btrfs_file_extent_compression(eb, fi) &&
38 	    !btrfs_file_extent_encryption(eb, fi) &&
39 	    !btrfs_file_extent_other_encoding(eb, fi)) {
40 		u64 data_offset;
41 		u64 data_len;
42 
43 		data_offset = btrfs_file_extent_offset(eb, fi);
44 		data_len = btrfs_file_extent_num_bytes(eb, fi);
45 
46 		if (extent_item_pos < data_offset ||
47 		    extent_item_pos >= data_offset + data_len)
48 			return 1;
49 		offset = extent_item_pos - data_offset;
50 	}
51 
52 	e = kmalloc(sizeof(*e), GFP_NOFS);
53 	if (!e)
54 		return -ENOMEM;
55 
56 	e->next = *eie;
57 	e->inum = key->objectid;
58 	e->offset = key->offset + offset;
59 	*eie = e;
60 
61 	return 0;
62 }
63 
64 static void free_inode_elem_list(struct extent_inode_elem *eie)
65 {
66 	struct extent_inode_elem *eie_next;
67 
68 	for (; eie; eie = eie_next) {
69 		eie_next = eie->next;
70 		kfree(eie);
71 	}
72 }
73 
74 static int find_extent_in_eb(const struct extent_buffer *eb,
75 			     u64 wanted_disk_byte, u64 extent_item_pos,
76 			     struct extent_inode_elem **eie,
77 			     bool ignore_offset)
78 {
79 	u64 disk_byte;
80 	struct btrfs_key key;
81 	struct btrfs_file_extent_item *fi;
82 	int slot;
83 	int nritems;
84 	int extent_type;
85 	int ret;
86 
87 	/*
88 	 * from the shared data ref, we only have the leaf but we need
89 	 * the key. thus, we must look into all items and see that we
90 	 * find one (some) with a reference to our extent item.
91 	 */
92 	nritems = btrfs_header_nritems(eb);
93 	for (slot = 0; slot < nritems; ++slot) {
94 		btrfs_item_key_to_cpu(eb, &key, slot);
95 		if (key.type != BTRFS_EXTENT_DATA_KEY)
96 			continue;
97 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
98 		extent_type = btrfs_file_extent_type(eb, fi);
99 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
100 			continue;
101 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
102 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
103 		if (disk_byte != wanted_disk_byte)
104 			continue;
105 
106 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
107 		if (ret < 0)
108 			return ret;
109 	}
110 
111 	return 0;
112 }
113 
114 struct preftree {
115 	struct rb_root_cached root;
116 	unsigned int count;
117 };
118 
119 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
120 
121 struct preftrees {
122 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
123 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
124 	struct preftree indirect_missing_keys;
125 };
126 
127 /*
128  * Checks for a shared extent during backref search.
129  *
130  * The share_count tracks prelim_refs (direct and indirect) having a
131  * ref->count >0:
132  *  - incremented when a ref->count transitions to >0
133  *  - decremented when a ref->count transitions to <1
134  */
135 struct share_check {
136 	u64 root_objectid;
137 	u64 inum;
138 	int share_count;
139 };
140 
141 static inline int extent_is_shared(struct share_check *sc)
142 {
143 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
144 }
145 
146 static struct kmem_cache *btrfs_prelim_ref_cache;
147 
148 int __init btrfs_prelim_ref_init(void)
149 {
150 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
151 					sizeof(struct prelim_ref),
152 					0,
153 					SLAB_MEM_SPREAD,
154 					NULL);
155 	if (!btrfs_prelim_ref_cache)
156 		return -ENOMEM;
157 	return 0;
158 }
159 
160 void __cold btrfs_prelim_ref_exit(void)
161 {
162 	kmem_cache_destroy(btrfs_prelim_ref_cache);
163 }
164 
165 static void free_pref(struct prelim_ref *ref)
166 {
167 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
168 }
169 
170 /*
171  * Return 0 when both refs are for the same block (and can be merged).
172  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
173  * indicates a 'higher' block.
174  */
175 static int prelim_ref_compare(struct prelim_ref *ref1,
176 			      struct prelim_ref *ref2)
177 {
178 	if (ref1->level < ref2->level)
179 		return -1;
180 	if (ref1->level > ref2->level)
181 		return 1;
182 	if (ref1->root_id < ref2->root_id)
183 		return -1;
184 	if (ref1->root_id > ref2->root_id)
185 		return 1;
186 	if (ref1->key_for_search.type < ref2->key_for_search.type)
187 		return -1;
188 	if (ref1->key_for_search.type > ref2->key_for_search.type)
189 		return 1;
190 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
191 		return -1;
192 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
193 		return 1;
194 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
195 		return -1;
196 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
197 		return 1;
198 	if (ref1->parent < ref2->parent)
199 		return -1;
200 	if (ref1->parent > ref2->parent)
201 		return 1;
202 
203 	return 0;
204 }
205 
206 static void update_share_count(struct share_check *sc, int oldcount,
207 			       int newcount)
208 {
209 	if ((!sc) || (oldcount == 0 && newcount < 1))
210 		return;
211 
212 	if (oldcount > 0 && newcount < 1)
213 		sc->share_count--;
214 	else if (oldcount < 1 && newcount > 0)
215 		sc->share_count++;
216 }
217 
218 /*
219  * Add @newref to the @root rbtree, merging identical refs.
220  *
221  * Callers should assume that newref has been freed after calling.
222  */
223 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
224 			      struct preftree *preftree,
225 			      struct prelim_ref *newref,
226 			      struct share_check *sc)
227 {
228 	struct rb_root_cached *root;
229 	struct rb_node **p;
230 	struct rb_node *parent = NULL;
231 	struct prelim_ref *ref;
232 	int result;
233 	bool leftmost = true;
234 
235 	root = &preftree->root;
236 	p = &root->rb_root.rb_node;
237 
238 	while (*p) {
239 		parent = *p;
240 		ref = rb_entry(parent, struct prelim_ref, rbnode);
241 		result = prelim_ref_compare(ref, newref);
242 		if (result < 0) {
243 			p = &(*p)->rb_left;
244 		} else if (result > 0) {
245 			p = &(*p)->rb_right;
246 			leftmost = false;
247 		} else {
248 			/* Identical refs, merge them and free @newref */
249 			struct extent_inode_elem *eie = ref->inode_list;
250 
251 			while (eie && eie->next)
252 				eie = eie->next;
253 
254 			if (!eie)
255 				ref->inode_list = newref->inode_list;
256 			else
257 				eie->next = newref->inode_list;
258 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
259 						     preftree->count);
260 			/*
261 			 * A delayed ref can have newref->count < 0.
262 			 * The ref->count is updated to follow any
263 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
264 			 */
265 			update_share_count(sc, ref->count,
266 					   ref->count + newref->count);
267 			ref->count += newref->count;
268 			free_pref(newref);
269 			return;
270 		}
271 	}
272 
273 	update_share_count(sc, 0, newref->count);
274 	preftree->count++;
275 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
276 	rb_link_node(&newref->rbnode, parent, p);
277 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
278 }
279 
280 /*
281  * Release the entire tree.  We don't care about internal consistency so
282  * just free everything and then reset the tree root.
283  */
284 static void prelim_release(struct preftree *preftree)
285 {
286 	struct prelim_ref *ref, *next_ref;
287 
288 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
289 					     &preftree->root.rb_root, rbnode)
290 		free_pref(ref);
291 
292 	preftree->root = RB_ROOT_CACHED;
293 	preftree->count = 0;
294 }
295 
296 /*
297  * the rules for all callers of this function are:
298  * - obtaining the parent is the goal
299  * - if you add a key, you must know that it is a correct key
300  * - if you cannot add the parent or a correct key, then we will look into the
301  *   block later to set a correct key
302  *
303  * delayed refs
304  * ============
305  *        backref type | shared | indirect | shared | indirect
306  * information         |   tree |     tree |   data |     data
307  * --------------------+--------+----------+--------+----------
308  *      parent logical |    y   |     -    |    -   |     -
309  *      key to resolve |    -   |     y    |    y   |     y
310  *  tree block logical |    -   |     -    |    -   |     -
311  *  root for resolving |    y   |     y    |    y   |     y
312  *
313  * - column 1:       we've the parent -> done
314  * - column 2, 3, 4: we use the key to find the parent
315  *
316  * on disk refs (inline or keyed)
317  * ==============================
318  *        backref type | shared | indirect | shared | indirect
319  * information         |   tree |     tree |   data |     data
320  * --------------------+--------+----------+--------+----------
321  *      parent logical |    y   |     -    |    y   |     -
322  *      key to resolve |    -   |     -    |    -   |     y
323  *  tree block logical |    y   |     y    |    y   |     y
324  *  root for resolving |    -   |     y    |    y   |     y
325  *
326  * - column 1, 3: we've the parent -> done
327  * - column 2:    we take the first key from the block to find the parent
328  *                (see add_missing_keys)
329  * - column 4:    we use the key to find the parent
330  *
331  * additional information that's available but not required to find the parent
332  * block might help in merging entries to gain some speed.
333  */
334 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
335 			  struct preftree *preftree, u64 root_id,
336 			  const struct btrfs_key *key, int level, u64 parent,
337 			  u64 wanted_disk_byte, int count,
338 			  struct share_check *sc, gfp_t gfp_mask)
339 {
340 	struct prelim_ref *ref;
341 
342 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
343 		return 0;
344 
345 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
346 	if (!ref)
347 		return -ENOMEM;
348 
349 	ref->root_id = root_id;
350 	if (key) {
351 		ref->key_for_search = *key;
352 		/*
353 		 * We can often find data backrefs with an offset that is too
354 		 * large (>= LLONG_MAX, maximum allowed file offset) due to
355 		 * underflows when subtracting a file's offset with the data
356 		 * offset of its corresponding extent data item. This can
357 		 * happen for example in the clone ioctl.
358 		 * So if we detect such case we set the search key's offset to
359 		 * zero to make sure we will find the matching file extent item
360 		 * at add_all_parents(), otherwise we will miss it because the
361 		 * offset taken form the backref is much larger then the offset
362 		 * of the file extent item. This can make us scan a very large
363 		 * number of file extent items, but at least it will not make
364 		 * us miss any.
365 		 * This is an ugly workaround for a behaviour that should have
366 		 * never existed, but it does and a fix for the clone ioctl
367 		 * would touch a lot of places, cause backwards incompatibility
368 		 * and would not fix the problem for extents cloned with older
369 		 * kernels.
370 		 */
371 		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
372 		    ref->key_for_search.offset >= LLONG_MAX)
373 			ref->key_for_search.offset = 0;
374 	} else {
375 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
376 	}
377 
378 	ref->inode_list = NULL;
379 	ref->level = level;
380 	ref->count = count;
381 	ref->parent = parent;
382 	ref->wanted_disk_byte = wanted_disk_byte;
383 	prelim_ref_insert(fs_info, preftree, ref, sc);
384 	return extent_is_shared(sc);
385 }
386 
387 /* direct refs use root == 0, key == NULL */
388 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
389 			  struct preftrees *preftrees, int level, u64 parent,
390 			  u64 wanted_disk_byte, int count,
391 			  struct share_check *sc, gfp_t gfp_mask)
392 {
393 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
394 			      parent, wanted_disk_byte, count, sc, gfp_mask);
395 }
396 
397 /* indirect refs use parent == 0 */
398 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
399 			    struct preftrees *preftrees, u64 root_id,
400 			    const struct btrfs_key *key, int level,
401 			    u64 wanted_disk_byte, int count,
402 			    struct share_check *sc, gfp_t gfp_mask)
403 {
404 	struct preftree *tree = &preftrees->indirect;
405 
406 	if (!key)
407 		tree = &preftrees->indirect_missing_keys;
408 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
409 			      wanted_disk_byte, count, sc, gfp_mask);
410 }
411 
412 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
413 			   struct ulist *parents, struct prelim_ref *ref,
414 			   int level, u64 time_seq, const u64 *extent_item_pos,
415 			   u64 total_refs, bool ignore_offset)
416 {
417 	int ret = 0;
418 	int slot;
419 	struct extent_buffer *eb;
420 	struct btrfs_key key;
421 	struct btrfs_key *key_for_search = &ref->key_for_search;
422 	struct btrfs_file_extent_item *fi;
423 	struct extent_inode_elem *eie = NULL, *old = NULL;
424 	u64 disk_byte;
425 	u64 wanted_disk_byte = ref->wanted_disk_byte;
426 	u64 count = 0;
427 
428 	if (level != 0) {
429 		eb = path->nodes[level];
430 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
431 		if (ret < 0)
432 			return ret;
433 		return 0;
434 	}
435 
436 	/*
437 	 * We normally enter this function with the path already pointing to
438 	 * the first item to check. But sometimes, we may enter it with
439 	 * slot==nritems. In that case, go to the next leaf before we continue.
440 	 */
441 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
442 		if (time_seq == SEQ_LAST)
443 			ret = btrfs_next_leaf(root, path);
444 		else
445 			ret = btrfs_next_old_leaf(root, path, time_seq);
446 	}
447 
448 	while (!ret && count < total_refs) {
449 		eb = path->nodes[0];
450 		slot = path->slots[0];
451 
452 		btrfs_item_key_to_cpu(eb, &key, slot);
453 
454 		if (key.objectid != key_for_search->objectid ||
455 		    key.type != BTRFS_EXTENT_DATA_KEY)
456 			break;
457 
458 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
459 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
460 
461 		if (disk_byte == wanted_disk_byte) {
462 			eie = NULL;
463 			old = NULL;
464 			count++;
465 			if (extent_item_pos) {
466 				ret = check_extent_in_eb(&key, eb, fi,
467 						*extent_item_pos,
468 						&eie, ignore_offset);
469 				if (ret < 0)
470 					break;
471 			}
472 			if (ret > 0)
473 				goto next;
474 			ret = ulist_add_merge_ptr(parents, eb->start,
475 						  eie, (void **)&old, GFP_NOFS);
476 			if (ret < 0)
477 				break;
478 			if (!ret && extent_item_pos) {
479 				while (old->next)
480 					old = old->next;
481 				old->next = eie;
482 			}
483 			eie = NULL;
484 		}
485 next:
486 		if (time_seq == SEQ_LAST)
487 			ret = btrfs_next_item(root, path);
488 		else
489 			ret = btrfs_next_old_item(root, path, time_seq);
490 	}
491 
492 	if (ret > 0)
493 		ret = 0;
494 	else if (ret < 0)
495 		free_inode_elem_list(eie);
496 	return ret;
497 }
498 
499 /*
500  * resolve an indirect backref in the form (root_id, key, level)
501  * to a logical address
502  */
503 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
504 				struct btrfs_path *path, u64 time_seq,
505 				struct prelim_ref *ref, struct ulist *parents,
506 				const u64 *extent_item_pos, u64 total_refs,
507 				bool ignore_offset)
508 {
509 	struct btrfs_root *root;
510 	struct btrfs_key root_key;
511 	struct extent_buffer *eb;
512 	int ret = 0;
513 	int root_level;
514 	int level = ref->level;
515 	int index;
516 
517 	root_key.objectid = ref->root_id;
518 	root_key.type = BTRFS_ROOT_ITEM_KEY;
519 	root_key.offset = (u64)-1;
520 
521 	index = srcu_read_lock(&fs_info->subvol_srcu);
522 
523 	root = btrfs_get_fs_root(fs_info, &root_key, false);
524 	if (IS_ERR(root)) {
525 		srcu_read_unlock(&fs_info->subvol_srcu, index);
526 		ret = PTR_ERR(root);
527 		goto out;
528 	}
529 
530 	if (btrfs_is_testing(fs_info)) {
531 		srcu_read_unlock(&fs_info->subvol_srcu, index);
532 		ret = -ENOENT;
533 		goto out;
534 	}
535 
536 	if (path->search_commit_root)
537 		root_level = btrfs_header_level(root->commit_root);
538 	else if (time_seq == SEQ_LAST)
539 		root_level = btrfs_header_level(root->node);
540 	else
541 		root_level = btrfs_old_root_level(root, time_seq);
542 
543 	if (root_level + 1 == level) {
544 		srcu_read_unlock(&fs_info->subvol_srcu, index);
545 		goto out;
546 	}
547 
548 	path->lowest_level = level;
549 	if (time_seq == SEQ_LAST)
550 		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
551 					0, 0);
552 	else
553 		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
554 					    time_seq);
555 
556 	/* root node has been locked, we can release @subvol_srcu safely here */
557 	srcu_read_unlock(&fs_info->subvol_srcu, index);
558 
559 	btrfs_debug(fs_info,
560 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
561 		 ref->root_id, level, ref->count, ret,
562 		 ref->key_for_search.objectid, ref->key_for_search.type,
563 		 ref->key_for_search.offset);
564 	if (ret < 0)
565 		goto out;
566 
567 	eb = path->nodes[level];
568 	while (!eb) {
569 		if (WARN_ON(!level)) {
570 			ret = 1;
571 			goto out;
572 		}
573 		level--;
574 		eb = path->nodes[level];
575 	}
576 
577 	ret = add_all_parents(root, path, parents, ref, level, time_seq,
578 			      extent_item_pos, total_refs, ignore_offset);
579 out:
580 	path->lowest_level = 0;
581 	btrfs_release_path(path);
582 	return ret;
583 }
584 
585 static struct extent_inode_elem *
586 unode_aux_to_inode_list(struct ulist_node *node)
587 {
588 	if (!node)
589 		return NULL;
590 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
591 }
592 
593 /*
594  * We maintain three seperate rbtrees: one for direct refs, one for
595  * indirect refs which have a key, and one for indirect refs which do not
596  * have a key. Each tree does merge on insertion.
597  *
598  * Once all of the references are located, we iterate over the tree of
599  * indirect refs with missing keys. An appropriate key is located and
600  * the ref is moved onto the tree for indirect refs. After all missing
601  * keys are thus located, we iterate over the indirect ref tree, resolve
602  * each reference, and then insert the resolved reference onto the
603  * direct tree (merging there too).
604  *
605  * New backrefs (i.e., for parent nodes) are added to the appropriate
606  * rbtree as they are encountered. The new backrefs are subsequently
607  * resolved as above.
608  */
609 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
610 				 struct btrfs_path *path, u64 time_seq,
611 				 struct preftrees *preftrees,
612 				 const u64 *extent_item_pos, u64 total_refs,
613 				 struct share_check *sc, bool ignore_offset)
614 {
615 	int err;
616 	int ret = 0;
617 	struct ulist *parents;
618 	struct ulist_node *node;
619 	struct ulist_iterator uiter;
620 	struct rb_node *rnode;
621 
622 	parents = ulist_alloc(GFP_NOFS);
623 	if (!parents)
624 		return -ENOMEM;
625 
626 	/*
627 	 * We could trade memory usage for performance here by iterating
628 	 * the tree, allocating new refs for each insertion, and then
629 	 * freeing the entire indirect tree when we're done.  In some test
630 	 * cases, the tree can grow quite large (~200k objects).
631 	 */
632 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
633 		struct prelim_ref *ref;
634 
635 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
636 		if (WARN(ref->parent,
637 			 "BUG: direct ref found in indirect tree")) {
638 			ret = -EINVAL;
639 			goto out;
640 		}
641 
642 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
643 		preftrees->indirect.count--;
644 
645 		if (ref->count == 0) {
646 			free_pref(ref);
647 			continue;
648 		}
649 
650 		if (sc && sc->root_objectid &&
651 		    ref->root_id != sc->root_objectid) {
652 			free_pref(ref);
653 			ret = BACKREF_FOUND_SHARED;
654 			goto out;
655 		}
656 		err = resolve_indirect_ref(fs_info, path, time_seq, ref,
657 					   parents, extent_item_pos,
658 					   total_refs, ignore_offset);
659 		/*
660 		 * we can only tolerate ENOENT,otherwise,we should catch error
661 		 * and return directly.
662 		 */
663 		if (err == -ENOENT) {
664 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
665 					  NULL);
666 			continue;
667 		} else if (err) {
668 			free_pref(ref);
669 			ret = err;
670 			goto out;
671 		}
672 
673 		/* we put the first parent into the ref at hand */
674 		ULIST_ITER_INIT(&uiter);
675 		node = ulist_next(parents, &uiter);
676 		ref->parent = node ? node->val : 0;
677 		ref->inode_list = unode_aux_to_inode_list(node);
678 
679 		/* Add a prelim_ref(s) for any other parent(s). */
680 		while ((node = ulist_next(parents, &uiter))) {
681 			struct prelim_ref *new_ref;
682 
683 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
684 						   GFP_NOFS);
685 			if (!new_ref) {
686 				free_pref(ref);
687 				ret = -ENOMEM;
688 				goto out;
689 			}
690 			memcpy(new_ref, ref, sizeof(*ref));
691 			new_ref->parent = node->val;
692 			new_ref->inode_list = unode_aux_to_inode_list(node);
693 			prelim_ref_insert(fs_info, &preftrees->direct,
694 					  new_ref, NULL);
695 		}
696 
697 		/*
698 		 * Now it's a direct ref, put it in the the direct tree. We must
699 		 * do this last because the ref could be merged/freed here.
700 		 */
701 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
702 
703 		ulist_reinit(parents);
704 		cond_resched();
705 	}
706 out:
707 	ulist_free(parents);
708 	return ret;
709 }
710 
711 /*
712  * read tree blocks and add keys where required.
713  */
714 static int add_missing_keys(struct btrfs_fs_info *fs_info,
715 			    struct preftrees *preftrees)
716 {
717 	struct prelim_ref *ref;
718 	struct extent_buffer *eb;
719 	struct preftree *tree = &preftrees->indirect_missing_keys;
720 	struct rb_node *node;
721 
722 	while ((node = rb_first_cached(&tree->root))) {
723 		ref = rb_entry(node, struct prelim_ref, rbnode);
724 		rb_erase_cached(node, &tree->root);
725 
726 		BUG_ON(ref->parent);	/* should not be a direct ref */
727 		BUG_ON(ref->key_for_search.type);
728 		BUG_ON(!ref->wanted_disk_byte);
729 
730 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
731 				     ref->level - 1, NULL);
732 		if (IS_ERR(eb)) {
733 			free_pref(ref);
734 			return PTR_ERR(eb);
735 		} else if (!extent_buffer_uptodate(eb)) {
736 			free_pref(ref);
737 			free_extent_buffer(eb);
738 			return -EIO;
739 		}
740 		btrfs_tree_read_lock(eb);
741 		if (btrfs_header_level(eb) == 0)
742 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
743 		else
744 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
745 		btrfs_tree_read_unlock(eb);
746 		free_extent_buffer(eb);
747 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
748 		cond_resched();
749 	}
750 	return 0;
751 }
752 
753 /*
754  * add all currently queued delayed refs from this head whose seq nr is
755  * smaller or equal that seq to the list
756  */
757 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
758 			    struct btrfs_delayed_ref_head *head, u64 seq,
759 			    struct preftrees *preftrees, u64 *total_refs,
760 			    struct share_check *sc)
761 {
762 	struct btrfs_delayed_ref_node *node;
763 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
764 	struct btrfs_key key;
765 	struct btrfs_key tmp_op_key;
766 	struct rb_node *n;
767 	int count;
768 	int ret = 0;
769 
770 	if (extent_op && extent_op->update_key)
771 		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
772 
773 	spin_lock(&head->lock);
774 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
775 		node = rb_entry(n, struct btrfs_delayed_ref_node,
776 				ref_node);
777 		if (node->seq > seq)
778 			continue;
779 
780 		switch (node->action) {
781 		case BTRFS_ADD_DELAYED_EXTENT:
782 		case BTRFS_UPDATE_DELAYED_HEAD:
783 			WARN_ON(1);
784 			continue;
785 		case BTRFS_ADD_DELAYED_REF:
786 			count = node->ref_mod;
787 			break;
788 		case BTRFS_DROP_DELAYED_REF:
789 			count = node->ref_mod * -1;
790 			break;
791 		default:
792 			BUG_ON(1);
793 		}
794 		*total_refs += count;
795 		switch (node->type) {
796 		case BTRFS_TREE_BLOCK_REF_KEY: {
797 			/* NORMAL INDIRECT METADATA backref */
798 			struct btrfs_delayed_tree_ref *ref;
799 
800 			ref = btrfs_delayed_node_to_tree_ref(node);
801 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
802 					       &tmp_op_key, ref->level + 1,
803 					       node->bytenr, count, sc,
804 					       GFP_ATOMIC);
805 			break;
806 		}
807 		case BTRFS_SHARED_BLOCK_REF_KEY: {
808 			/* SHARED DIRECT METADATA backref */
809 			struct btrfs_delayed_tree_ref *ref;
810 
811 			ref = btrfs_delayed_node_to_tree_ref(node);
812 
813 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
814 					     ref->parent, node->bytenr, count,
815 					     sc, GFP_ATOMIC);
816 			break;
817 		}
818 		case BTRFS_EXTENT_DATA_REF_KEY: {
819 			/* NORMAL INDIRECT DATA backref */
820 			struct btrfs_delayed_data_ref *ref;
821 			ref = btrfs_delayed_node_to_data_ref(node);
822 
823 			key.objectid = ref->objectid;
824 			key.type = BTRFS_EXTENT_DATA_KEY;
825 			key.offset = ref->offset;
826 
827 			/*
828 			 * Found a inum that doesn't match our known inum, we
829 			 * know it's shared.
830 			 */
831 			if (sc && sc->inum && ref->objectid != sc->inum) {
832 				ret = BACKREF_FOUND_SHARED;
833 				goto out;
834 			}
835 
836 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
837 					       &key, 0, node->bytenr, count, sc,
838 					       GFP_ATOMIC);
839 			break;
840 		}
841 		case BTRFS_SHARED_DATA_REF_KEY: {
842 			/* SHARED DIRECT FULL backref */
843 			struct btrfs_delayed_data_ref *ref;
844 
845 			ref = btrfs_delayed_node_to_data_ref(node);
846 
847 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
848 					     node->bytenr, count, sc,
849 					     GFP_ATOMIC);
850 			break;
851 		}
852 		default:
853 			WARN_ON(1);
854 		}
855 		/*
856 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
857 		 * refs have been checked.
858 		 */
859 		if (ret && (ret != BACKREF_FOUND_SHARED))
860 			break;
861 	}
862 	if (!ret)
863 		ret = extent_is_shared(sc);
864 out:
865 	spin_unlock(&head->lock);
866 	return ret;
867 }
868 
869 /*
870  * add all inline backrefs for bytenr to the list
871  *
872  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
873  */
874 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
875 			   struct btrfs_path *path, u64 bytenr,
876 			   int *info_level, struct preftrees *preftrees,
877 			   u64 *total_refs, struct share_check *sc)
878 {
879 	int ret = 0;
880 	int slot;
881 	struct extent_buffer *leaf;
882 	struct btrfs_key key;
883 	struct btrfs_key found_key;
884 	unsigned long ptr;
885 	unsigned long end;
886 	struct btrfs_extent_item *ei;
887 	u64 flags;
888 	u64 item_size;
889 
890 	/*
891 	 * enumerate all inline refs
892 	 */
893 	leaf = path->nodes[0];
894 	slot = path->slots[0];
895 
896 	item_size = btrfs_item_size_nr(leaf, slot);
897 	BUG_ON(item_size < sizeof(*ei));
898 
899 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
900 	flags = btrfs_extent_flags(leaf, ei);
901 	*total_refs += btrfs_extent_refs(leaf, ei);
902 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
903 
904 	ptr = (unsigned long)(ei + 1);
905 	end = (unsigned long)ei + item_size;
906 
907 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
908 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
909 		struct btrfs_tree_block_info *info;
910 
911 		info = (struct btrfs_tree_block_info *)ptr;
912 		*info_level = btrfs_tree_block_level(leaf, info);
913 		ptr += sizeof(struct btrfs_tree_block_info);
914 		BUG_ON(ptr > end);
915 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
916 		*info_level = found_key.offset;
917 	} else {
918 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
919 	}
920 
921 	while (ptr < end) {
922 		struct btrfs_extent_inline_ref *iref;
923 		u64 offset;
924 		int type;
925 
926 		iref = (struct btrfs_extent_inline_ref *)ptr;
927 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
928 							BTRFS_REF_TYPE_ANY);
929 		if (type == BTRFS_REF_TYPE_INVALID)
930 			return -EUCLEAN;
931 
932 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
933 
934 		switch (type) {
935 		case BTRFS_SHARED_BLOCK_REF_KEY:
936 			ret = add_direct_ref(fs_info, preftrees,
937 					     *info_level + 1, offset,
938 					     bytenr, 1, NULL, GFP_NOFS);
939 			break;
940 		case BTRFS_SHARED_DATA_REF_KEY: {
941 			struct btrfs_shared_data_ref *sdref;
942 			int count;
943 
944 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
945 			count = btrfs_shared_data_ref_count(leaf, sdref);
946 
947 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
948 					     bytenr, count, sc, GFP_NOFS);
949 			break;
950 		}
951 		case BTRFS_TREE_BLOCK_REF_KEY:
952 			ret = add_indirect_ref(fs_info, preftrees, offset,
953 					       NULL, *info_level + 1,
954 					       bytenr, 1, NULL, GFP_NOFS);
955 			break;
956 		case BTRFS_EXTENT_DATA_REF_KEY: {
957 			struct btrfs_extent_data_ref *dref;
958 			int count;
959 			u64 root;
960 
961 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
962 			count = btrfs_extent_data_ref_count(leaf, dref);
963 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
964 								      dref);
965 			key.type = BTRFS_EXTENT_DATA_KEY;
966 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
967 
968 			if (sc && sc->inum && key.objectid != sc->inum) {
969 				ret = BACKREF_FOUND_SHARED;
970 				break;
971 			}
972 
973 			root = btrfs_extent_data_ref_root(leaf, dref);
974 
975 			ret = add_indirect_ref(fs_info, preftrees, root,
976 					       &key, 0, bytenr, count,
977 					       sc, GFP_NOFS);
978 			break;
979 		}
980 		default:
981 			WARN_ON(1);
982 		}
983 		if (ret)
984 			return ret;
985 		ptr += btrfs_extent_inline_ref_size(type);
986 	}
987 
988 	return 0;
989 }
990 
991 /*
992  * add all non-inline backrefs for bytenr to the list
993  *
994  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
995  */
996 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
997 			  struct btrfs_path *path, u64 bytenr,
998 			  int info_level, struct preftrees *preftrees,
999 			  struct share_check *sc)
1000 {
1001 	struct btrfs_root *extent_root = fs_info->extent_root;
1002 	int ret;
1003 	int slot;
1004 	struct extent_buffer *leaf;
1005 	struct btrfs_key key;
1006 
1007 	while (1) {
1008 		ret = btrfs_next_item(extent_root, path);
1009 		if (ret < 0)
1010 			break;
1011 		if (ret) {
1012 			ret = 0;
1013 			break;
1014 		}
1015 
1016 		slot = path->slots[0];
1017 		leaf = path->nodes[0];
1018 		btrfs_item_key_to_cpu(leaf, &key, slot);
1019 
1020 		if (key.objectid != bytenr)
1021 			break;
1022 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1023 			continue;
1024 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1025 			break;
1026 
1027 		switch (key.type) {
1028 		case BTRFS_SHARED_BLOCK_REF_KEY:
1029 			/* SHARED DIRECT METADATA backref */
1030 			ret = add_direct_ref(fs_info, preftrees,
1031 					     info_level + 1, key.offset,
1032 					     bytenr, 1, NULL, GFP_NOFS);
1033 			break;
1034 		case BTRFS_SHARED_DATA_REF_KEY: {
1035 			/* SHARED DIRECT FULL backref */
1036 			struct btrfs_shared_data_ref *sdref;
1037 			int count;
1038 
1039 			sdref = btrfs_item_ptr(leaf, slot,
1040 					      struct btrfs_shared_data_ref);
1041 			count = btrfs_shared_data_ref_count(leaf, sdref);
1042 			ret = add_direct_ref(fs_info, preftrees, 0,
1043 					     key.offset, bytenr, count,
1044 					     sc, GFP_NOFS);
1045 			break;
1046 		}
1047 		case BTRFS_TREE_BLOCK_REF_KEY:
1048 			/* NORMAL INDIRECT METADATA backref */
1049 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1050 					       NULL, info_level + 1, bytenr,
1051 					       1, NULL, GFP_NOFS);
1052 			break;
1053 		case BTRFS_EXTENT_DATA_REF_KEY: {
1054 			/* NORMAL INDIRECT DATA backref */
1055 			struct btrfs_extent_data_ref *dref;
1056 			int count;
1057 			u64 root;
1058 
1059 			dref = btrfs_item_ptr(leaf, slot,
1060 					      struct btrfs_extent_data_ref);
1061 			count = btrfs_extent_data_ref_count(leaf, dref);
1062 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1063 								      dref);
1064 			key.type = BTRFS_EXTENT_DATA_KEY;
1065 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1066 
1067 			if (sc && sc->inum && key.objectid != sc->inum) {
1068 				ret = BACKREF_FOUND_SHARED;
1069 				break;
1070 			}
1071 
1072 			root = btrfs_extent_data_ref_root(leaf, dref);
1073 			ret = add_indirect_ref(fs_info, preftrees, root,
1074 					       &key, 0, bytenr, count,
1075 					       sc, GFP_NOFS);
1076 			break;
1077 		}
1078 		default:
1079 			WARN_ON(1);
1080 		}
1081 		if (ret)
1082 			return ret;
1083 
1084 	}
1085 
1086 	return ret;
1087 }
1088 
1089 /*
1090  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1091  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1092  * indirect refs to their parent bytenr.
1093  * When roots are found, they're added to the roots list
1094  *
1095  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1096  * much like trans == NULL case, the difference only lies in it will not
1097  * commit root.
1098  * The special case is for qgroup to search roots in commit_transaction().
1099  *
1100  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1101  * shared extent is detected.
1102  *
1103  * Otherwise this returns 0 for success and <0 for an error.
1104  *
1105  * If ignore_offset is set to false, only extent refs whose offsets match
1106  * extent_item_pos are returned.  If true, every extent ref is returned
1107  * and extent_item_pos is ignored.
1108  *
1109  * FIXME some caching might speed things up
1110  */
1111 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1112 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1113 			     u64 time_seq, struct ulist *refs,
1114 			     struct ulist *roots, const u64 *extent_item_pos,
1115 			     struct share_check *sc, bool ignore_offset)
1116 {
1117 	struct btrfs_key key;
1118 	struct btrfs_path *path;
1119 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1120 	struct btrfs_delayed_ref_head *head;
1121 	int info_level = 0;
1122 	int ret;
1123 	struct prelim_ref *ref;
1124 	struct rb_node *node;
1125 	struct extent_inode_elem *eie = NULL;
1126 	/* total of both direct AND indirect refs! */
1127 	u64 total_refs = 0;
1128 	struct preftrees preftrees = {
1129 		.direct = PREFTREE_INIT,
1130 		.indirect = PREFTREE_INIT,
1131 		.indirect_missing_keys = PREFTREE_INIT
1132 	};
1133 
1134 	key.objectid = bytenr;
1135 	key.offset = (u64)-1;
1136 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1137 		key.type = BTRFS_METADATA_ITEM_KEY;
1138 	else
1139 		key.type = BTRFS_EXTENT_ITEM_KEY;
1140 
1141 	path = btrfs_alloc_path();
1142 	if (!path)
1143 		return -ENOMEM;
1144 	if (!trans) {
1145 		path->search_commit_root = 1;
1146 		path->skip_locking = 1;
1147 	}
1148 
1149 	if (time_seq == SEQ_LAST)
1150 		path->skip_locking = 1;
1151 
1152 	/*
1153 	 * grab both a lock on the path and a lock on the delayed ref head.
1154 	 * We need both to get a consistent picture of how the refs look
1155 	 * at a specified point in time
1156 	 */
1157 again:
1158 	head = NULL;
1159 
1160 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1161 	if (ret < 0)
1162 		goto out;
1163 	BUG_ON(ret == 0);
1164 
1165 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1166 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1167 	    time_seq != SEQ_LAST) {
1168 #else
1169 	if (trans && time_seq != SEQ_LAST) {
1170 #endif
1171 		/*
1172 		 * look if there are updates for this ref queued and lock the
1173 		 * head
1174 		 */
1175 		delayed_refs = &trans->transaction->delayed_refs;
1176 		spin_lock(&delayed_refs->lock);
1177 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1178 		if (head) {
1179 			if (!mutex_trylock(&head->mutex)) {
1180 				refcount_inc(&head->refs);
1181 				spin_unlock(&delayed_refs->lock);
1182 
1183 				btrfs_release_path(path);
1184 
1185 				/*
1186 				 * Mutex was contended, block until it's
1187 				 * released and try again
1188 				 */
1189 				mutex_lock(&head->mutex);
1190 				mutex_unlock(&head->mutex);
1191 				btrfs_put_delayed_ref_head(head);
1192 				goto again;
1193 			}
1194 			spin_unlock(&delayed_refs->lock);
1195 			ret = add_delayed_refs(fs_info, head, time_seq,
1196 					       &preftrees, &total_refs, sc);
1197 			mutex_unlock(&head->mutex);
1198 			if (ret)
1199 				goto out;
1200 		} else {
1201 			spin_unlock(&delayed_refs->lock);
1202 		}
1203 	}
1204 
1205 	if (path->slots[0]) {
1206 		struct extent_buffer *leaf;
1207 		int slot;
1208 
1209 		path->slots[0]--;
1210 		leaf = path->nodes[0];
1211 		slot = path->slots[0];
1212 		btrfs_item_key_to_cpu(leaf, &key, slot);
1213 		if (key.objectid == bytenr &&
1214 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1215 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1216 			ret = add_inline_refs(fs_info, path, bytenr,
1217 					      &info_level, &preftrees,
1218 					      &total_refs, sc);
1219 			if (ret)
1220 				goto out;
1221 			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1222 					     &preftrees, sc);
1223 			if (ret)
1224 				goto out;
1225 		}
1226 	}
1227 
1228 	btrfs_release_path(path);
1229 
1230 	ret = add_missing_keys(fs_info, &preftrees);
1231 	if (ret)
1232 		goto out;
1233 
1234 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1235 
1236 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1237 				    extent_item_pos, total_refs, sc, ignore_offset);
1238 	if (ret)
1239 		goto out;
1240 
1241 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1242 
1243 	/*
1244 	 * This walks the tree of merged and resolved refs. Tree blocks are
1245 	 * read in as needed. Unique entries are added to the ulist, and
1246 	 * the list of found roots is updated.
1247 	 *
1248 	 * We release the entire tree in one go before returning.
1249 	 */
1250 	node = rb_first_cached(&preftrees.direct.root);
1251 	while (node) {
1252 		ref = rb_entry(node, struct prelim_ref, rbnode);
1253 		node = rb_next(&ref->rbnode);
1254 		/*
1255 		 * ref->count < 0 can happen here if there are delayed
1256 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1257 		 * prelim_ref_insert() relies on this when merging
1258 		 * identical refs to keep the overall count correct.
1259 		 * prelim_ref_insert() will merge only those refs
1260 		 * which compare identically.  Any refs having
1261 		 * e.g. different offsets would not be merged,
1262 		 * and would retain their original ref->count < 0.
1263 		 */
1264 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1265 			if (sc && sc->root_objectid &&
1266 			    ref->root_id != sc->root_objectid) {
1267 				ret = BACKREF_FOUND_SHARED;
1268 				goto out;
1269 			}
1270 
1271 			/* no parent == root of tree */
1272 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1273 			if (ret < 0)
1274 				goto out;
1275 		}
1276 		if (ref->count && ref->parent) {
1277 			if (extent_item_pos && !ref->inode_list &&
1278 			    ref->level == 0) {
1279 				struct extent_buffer *eb;
1280 
1281 				eb = read_tree_block(fs_info, ref->parent, 0,
1282 						     ref->level, NULL);
1283 				if (IS_ERR(eb)) {
1284 					ret = PTR_ERR(eb);
1285 					goto out;
1286 				} else if (!extent_buffer_uptodate(eb)) {
1287 					free_extent_buffer(eb);
1288 					ret = -EIO;
1289 					goto out;
1290 				}
1291 				btrfs_tree_read_lock(eb);
1292 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1293 				ret = find_extent_in_eb(eb, bytenr,
1294 							*extent_item_pos, &eie, ignore_offset);
1295 				btrfs_tree_read_unlock_blocking(eb);
1296 				free_extent_buffer(eb);
1297 				if (ret < 0)
1298 					goto out;
1299 				ref->inode_list = eie;
1300 			}
1301 			ret = ulist_add_merge_ptr(refs, ref->parent,
1302 						  ref->inode_list,
1303 						  (void **)&eie, GFP_NOFS);
1304 			if (ret < 0)
1305 				goto out;
1306 			if (!ret && extent_item_pos) {
1307 				/*
1308 				 * we've recorded that parent, so we must extend
1309 				 * its inode list here
1310 				 */
1311 				BUG_ON(!eie);
1312 				while (eie->next)
1313 					eie = eie->next;
1314 				eie->next = ref->inode_list;
1315 			}
1316 			eie = NULL;
1317 		}
1318 		cond_resched();
1319 	}
1320 
1321 out:
1322 	btrfs_free_path(path);
1323 
1324 	prelim_release(&preftrees.direct);
1325 	prelim_release(&preftrees.indirect);
1326 	prelim_release(&preftrees.indirect_missing_keys);
1327 
1328 	if (ret < 0)
1329 		free_inode_elem_list(eie);
1330 	return ret;
1331 }
1332 
1333 static void free_leaf_list(struct ulist *blocks)
1334 {
1335 	struct ulist_node *node = NULL;
1336 	struct extent_inode_elem *eie;
1337 	struct ulist_iterator uiter;
1338 
1339 	ULIST_ITER_INIT(&uiter);
1340 	while ((node = ulist_next(blocks, &uiter))) {
1341 		if (!node->aux)
1342 			continue;
1343 		eie = unode_aux_to_inode_list(node);
1344 		free_inode_elem_list(eie);
1345 		node->aux = 0;
1346 	}
1347 
1348 	ulist_free(blocks);
1349 }
1350 
1351 /*
1352  * Finds all leafs with a reference to the specified combination of bytenr and
1353  * offset. key_list_head will point to a list of corresponding keys (caller must
1354  * free each list element). The leafs will be stored in the leafs ulist, which
1355  * must be freed with ulist_free.
1356  *
1357  * returns 0 on success, <0 on error
1358  */
1359 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1360 				struct btrfs_fs_info *fs_info, u64 bytenr,
1361 				u64 time_seq, struct ulist **leafs,
1362 				const u64 *extent_item_pos, bool ignore_offset)
1363 {
1364 	int ret;
1365 
1366 	*leafs = ulist_alloc(GFP_NOFS);
1367 	if (!*leafs)
1368 		return -ENOMEM;
1369 
1370 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1371 				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1372 	if (ret < 0 && ret != -ENOENT) {
1373 		free_leaf_list(*leafs);
1374 		return ret;
1375 	}
1376 
1377 	return 0;
1378 }
1379 
1380 /*
1381  * walk all backrefs for a given extent to find all roots that reference this
1382  * extent. Walking a backref means finding all extents that reference this
1383  * extent and in turn walk the backrefs of those, too. Naturally this is a
1384  * recursive process, but here it is implemented in an iterative fashion: We
1385  * find all referencing extents for the extent in question and put them on a
1386  * list. In turn, we find all referencing extents for those, further appending
1387  * to the list. The way we iterate the list allows adding more elements after
1388  * the current while iterating. The process stops when we reach the end of the
1389  * list. Found roots are added to the roots list.
1390  *
1391  * returns 0 on success, < 0 on error.
1392  */
1393 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1394 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1395 				     u64 time_seq, struct ulist **roots,
1396 				     bool ignore_offset)
1397 {
1398 	struct ulist *tmp;
1399 	struct ulist_node *node = NULL;
1400 	struct ulist_iterator uiter;
1401 	int ret;
1402 
1403 	tmp = ulist_alloc(GFP_NOFS);
1404 	if (!tmp)
1405 		return -ENOMEM;
1406 	*roots = ulist_alloc(GFP_NOFS);
1407 	if (!*roots) {
1408 		ulist_free(tmp);
1409 		return -ENOMEM;
1410 	}
1411 
1412 	ULIST_ITER_INIT(&uiter);
1413 	while (1) {
1414 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1415 					tmp, *roots, NULL, NULL, ignore_offset);
1416 		if (ret < 0 && ret != -ENOENT) {
1417 			ulist_free(tmp);
1418 			ulist_free(*roots);
1419 			return ret;
1420 		}
1421 		node = ulist_next(tmp, &uiter);
1422 		if (!node)
1423 			break;
1424 		bytenr = node->val;
1425 		cond_resched();
1426 	}
1427 
1428 	ulist_free(tmp);
1429 	return 0;
1430 }
1431 
1432 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1433 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1434 			 u64 time_seq, struct ulist **roots,
1435 			 bool ignore_offset)
1436 {
1437 	int ret;
1438 
1439 	if (!trans)
1440 		down_read(&fs_info->commit_root_sem);
1441 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1442 					time_seq, roots, ignore_offset);
1443 	if (!trans)
1444 		up_read(&fs_info->commit_root_sem);
1445 	return ret;
1446 }
1447 
1448 /**
1449  * btrfs_check_shared - tell us whether an extent is shared
1450  *
1451  * btrfs_check_shared uses the backref walking code but will short
1452  * circuit as soon as it finds a root or inode that doesn't match the
1453  * one passed in. This provides a significant performance benefit for
1454  * callers (such as fiemap) which want to know whether the extent is
1455  * shared but do not need a ref count.
1456  *
1457  * This attempts to allocate a transaction in order to account for
1458  * delayed refs, but continues on even when the alloc fails.
1459  *
1460  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1461  */
1462 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1463 {
1464 	struct btrfs_fs_info *fs_info = root->fs_info;
1465 	struct btrfs_trans_handle *trans;
1466 	struct ulist *tmp = NULL;
1467 	struct ulist *roots = NULL;
1468 	struct ulist_iterator uiter;
1469 	struct ulist_node *node;
1470 	struct seq_list elem = SEQ_LIST_INIT(elem);
1471 	int ret = 0;
1472 	struct share_check shared = {
1473 		.root_objectid = root->root_key.objectid,
1474 		.inum = inum,
1475 		.share_count = 0,
1476 	};
1477 
1478 	tmp = ulist_alloc(GFP_NOFS);
1479 	roots = ulist_alloc(GFP_NOFS);
1480 	if (!tmp || !roots) {
1481 		ulist_free(tmp);
1482 		ulist_free(roots);
1483 		return -ENOMEM;
1484 	}
1485 
1486 	trans = btrfs_join_transaction(root);
1487 	if (IS_ERR(trans)) {
1488 		trans = NULL;
1489 		down_read(&fs_info->commit_root_sem);
1490 	} else {
1491 		btrfs_get_tree_mod_seq(fs_info, &elem);
1492 	}
1493 
1494 	ULIST_ITER_INIT(&uiter);
1495 	while (1) {
1496 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1497 					roots, NULL, &shared, false);
1498 		if (ret == BACKREF_FOUND_SHARED) {
1499 			/* this is the only condition under which we return 1 */
1500 			ret = 1;
1501 			break;
1502 		}
1503 		if (ret < 0 && ret != -ENOENT)
1504 			break;
1505 		ret = 0;
1506 		node = ulist_next(tmp, &uiter);
1507 		if (!node)
1508 			break;
1509 		bytenr = node->val;
1510 		shared.share_count = 0;
1511 		cond_resched();
1512 	}
1513 
1514 	if (trans) {
1515 		btrfs_put_tree_mod_seq(fs_info, &elem);
1516 		btrfs_end_transaction(trans);
1517 	} else {
1518 		up_read(&fs_info->commit_root_sem);
1519 	}
1520 	ulist_free(tmp);
1521 	ulist_free(roots);
1522 	return ret;
1523 }
1524 
1525 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1526 			  u64 start_off, struct btrfs_path *path,
1527 			  struct btrfs_inode_extref **ret_extref,
1528 			  u64 *found_off)
1529 {
1530 	int ret, slot;
1531 	struct btrfs_key key;
1532 	struct btrfs_key found_key;
1533 	struct btrfs_inode_extref *extref;
1534 	const struct extent_buffer *leaf;
1535 	unsigned long ptr;
1536 
1537 	key.objectid = inode_objectid;
1538 	key.type = BTRFS_INODE_EXTREF_KEY;
1539 	key.offset = start_off;
1540 
1541 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1542 	if (ret < 0)
1543 		return ret;
1544 
1545 	while (1) {
1546 		leaf = path->nodes[0];
1547 		slot = path->slots[0];
1548 		if (slot >= btrfs_header_nritems(leaf)) {
1549 			/*
1550 			 * If the item at offset is not found,
1551 			 * btrfs_search_slot will point us to the slot
1552 			 * where it should be inserted. In our case
1553 			 * that will be the slot directly before the
1554 			 * next INODE_REF_KEY_V2 item. In the case
1555 			 * that we're pointing to the last slot in a
1556 			 * leaf, we must move one leaf over.
1557 			 */
1558 			ret = btrfs_next_leaf(root, path);
1559 			if (ret) {
1560 				if (ret >= 1)
1561 					ret = -ENOENT;
1562 				break;
1563 			}
1564 			continue;
1565 		}
1566 
1567 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1568 
1569 		/*
1570 		 * Check that we're still looking at an extended ref key for
1571 		 * this particular objectid. If we have different
1572 		 * objectid or type then there are no more to be found
1573 		 * in the tree and we can exit.
1574 		 */
1575 		ret = -ENOENT;
1576 		if (found_key.objectid != inode_objectid)
1577 			break;
1578 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1579 			break;
1580 
1581 		ret = 0;
1582 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1583 		extref = (struct btrfs_inode_extref *)ptr;
1584 		*ret_extref = extref;
1585 		if (found_off)
1586 			*found_off = found_key.offset;
1587 		break;
1588 	}
1589 
1590 	return ret;
1591 }
1592 
1593 /*
1594  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1595  * Elements of the path are separated by '/' and the path is guaranteed to be
1596  * 0-terminated. the path is only given within the current file system.
1597  * Therefore, it never starts with a '/'. the caller is responsible to provide
1598  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1599  * the start point of the resulting string is returned. this pointer is within
1600  * dest, normally.
1601  * in case the path buffer would overflow, the pointer is decremented further
1602  * as if output was written to the buffer, though no more output is actually
1603  * generated. that way, the caller can determine how much space would be
1604  * required for the path to fit into the buffer. in that case, the returned
1605  * value will be smaller than dest. callers must check this!
1606  */
1607 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1608 			u32 name_len, unsigned long name_off,
1609 			struct extent_buffer *eb_in, u64 parent,
1610 			char *dest, u32 size)
1611 {
1612 	int slot;
1613 	u64 next_inum;
1614 	int ret;
1615 	s64 bytes_left = ((s64)size) - 1;
1616 	struct extent_buffer *eb = eb_in;
1617 	struct btrfs_key found_key;
1618 	int leave_spinning = path->leave_spinning;
1619 	struct btrfs_inode_ref *iref;
1620 
1621 	if (bytes_left >= 0)
1622 		dest[bytes_left] = '\0';
1623 
1624 	path->leave_spinning = 1;
1625 	while (1) {
1626 		bytes_left -= name_len;
1627 		if (bytes_left >= 0)
1628 			read_extent_buffer(eb, dest + bytes_left,
1629 					   name_off, name_len);
1630 		if (eb != eb_in) {
1631 			if (!path->skip_locking)
1632 				btrfs_tree_read_unlock_blocking(eb);
1633 			free_extent_buffer(eb);
1634 		}
1635 		ret = btrfs_find_item(fs_root, path, parent, 0,
1636 				BTRFS_INODE_REF_KEY, &found_key);
1637 		if (ret > 0)
1638 			ret = -ENOENT;
1639 		if (ret)
1640 			break;
1641 
1642 		next_inum = found_key.offset;
1643 
1644 		/* regular exit ahead */
1645 		if (parent == next_inum)
1646 			break;
1647 
1648 		slot = path->slots[0];
1649 		eb = path->nodes[0];
1650 		/* make sure we can use eb after releasing the path */
1651 		if (eb != eb_in) {
1652 			if (!path->skip_locking)
1653 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1654 			path->nodes[0] = NULL;
1655 			path->locks[0] = 0;
1656 		}
1657 		btrfs_release_path(path);
1658 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1659 
1660 		name_len = btrfs_inode_ref_name_len(eb, iref);
1661 		name_off = (unsigned long)(iref + 1);
1662 
1663 		parent = next_inum;
1664 		--bytes_left;
1665 		if (bytes_left >= 0)
1666 			dest[bytes_left] = '/';
1667 	}
1668 
1669 	btrfs_release_path(path);
1670 	path->leave_spinning = leave_spinning;
1671 
1672 	if (ret)
1673 		return ERR_PTR(ret);
1674 
1675 	return dest + bytes_left;
1676 }
1677 
1678 /*
1679  * this makes the path point to (logical EXTENT_ITEM *)
1680  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1681  * tree blocks and <0 on error.
1682  */
1683 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1684 			struct btrfs_path *path, struct btrfs_key *found_key,
1685 			u64 *flags_ret)
1686 {
1687 	int ret;
1688 	u64 flags;
1689 	u64 size = 0;
1690 	u32 item_size;
1691 	const struct extent_buffer *eb;
1692 	struct btrfs_extent_item *ei;
1693 	struct btrfs_key key;
1694 
1695 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1696 		key.type = BTRFS_METADATA_ITEM_KEY;
1697 	else
1698 		key.type = BTRFS_EXTENT_ITEM_KEY;
1699 	key.objectid = logical;
1700 	key.offset = (u64)-1;
1701 
1702 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1703 	if (ret < 0)
1704 		return ret;
1705 
1706 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1707 	if (ret) {
1708 		if (ret > 0)
1709 			ret = -ENOENT;
1710 		return ret;
1711 	}
1712 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1713 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1714 		size = fs_info->nodesize;
1715 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1716 		size = found_key->offset;
1717 
1718 	if (found_key->objectid > logical ||
1719 	    found_key->objectid + size <= logical) {
1720 		btrfs_debug(fs_info,
1721 			"logical %llu is not within any extent", logical);
1722 		return -ENOENT;
1723 	}
1724 
1725 	eb = path->nodes[0];
1726 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1727 	BUG_ON(item_size < sizeof(*ei));
1728 
1729 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1730 	flags = btrfs_extent_flags(eb, ei);
1731 
1732 	btrfs_debug(fs_info,
1733 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1734 		 logical, logical - found_key->objectid, found_key->objectid,
1735 		 found_key->offset, flags, item_size);
1736 
1737 	WARN_ON(!flags_ret);
1738 	if (flags_ret) {
1739 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1740 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1741 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1742 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1743 		else
1744 			BUG_ON(1);
1745 		return 0;
1746 	}
1747 
1748 	return -EIO;
1749 }
1750 
1751 /*
1752  * helper function to iterate extent inline refs. ptr must point to a 0 value
1753  * for the first call and may be modified. it is used to track state.
1754  * if more refs exist, 0 is returned and the next call to
1755  * get_extent_inline_ref must pass the modified ptr parameter to get the
1756  * next ref. after the last ref was processed, 1 is returned.
1757  * returns <0 on error
1758  */
1759 static int get_extent_inline_ref(unsigned long *ptr,
1760 				 const struct extent_buffer *eb,
1761 				 const struct btrfs_key *key,
1762 				 const struct btrfs_extent_item *ei,
1763 				 u32 item_size,
1764 				 struct btrfs_extent_inline_ref **out_eiref,
1765 				 int *out_type)
1766 {
1767 	unsigned long end;
1768 	u64 flags;
1769 	struct btrfs_tree_block_info *info;
1770 
1771 	if (!*ptr) {
1772 		/* first call */
1773 		flags = btrfs_extent_flags(eb, ei);
1774 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1775 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1776 				/* a skinny metadata extent */
1777 				*out_eiref =
1778 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1779 			} else {
1780 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1781 				info = (struct btrfs_tree_block_info *)(ei + 1);
1782 				*out_eiref =
1783 				   (struct btrfs_extent_inline_ref *)(info + 1);
1784 			}
1785 		} else {
1786 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1787 		}
1788 		*ptr = (unsigned long)*out_eiref;
1789 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1790 			return -ENOENT;
1791 	}
1792 
1793 	end = (unsigned long)ei + item_size;
1794 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1795 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1796 						     BTRFS_REF_TYPE_ANY);
1797 	if (*out_type == BTRFS_REF_TYPE_INVALID)
1798 		return -EUCLEAN;
1799 
1800 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1801 	WARN_ON(*ptr > end);
1802 	if (*ptr == end)
1803 		return 1; /* last */
1804 
1805 	return 0;
1806 }
1807 
1808 /*
1809  * reads the tree block backref for an extent. tree level and root are returned
1810  * through out_level and out_root. ptr must point to a 0 value for the first
1811  * call and may be modified (see get_extent_inline_ref comment).
1812  * returns 0 if data was provided, 1 if there was no more data to provide or
1813  * <0 on error.
1814  */
1815 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1816 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1817 			    u32 item_size, u64 *out_root, u8 *out_level)
1818 {
1819 	int ret;
1820 	int type;
1821 	struct btrfs_extent_inline_ref *eiref;
1822 
1823 	if (*ptr == (unsigned long)-1)
1824 		return 1;
1825 
1826 	while (1) {
1827 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1828 					      &eiref, &type);
1829 		if (ret < 0)
1830 			return ret;
1831 
1832 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1833 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1834 			break;
1835 
1836 		if (ret == 1)
1837 			return 1;
1838 	}
1839 
1840 	/* we can treat both ref types equally here */
1841 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1842 
1843 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1844 		struct btrfs_tree_block_info *info;
1845 
1846 		info = (struct btrfs_tree_block_info *)(ei + 1);
1847 		*out_level = btrfs_tree_block_level(eb, info);
1848 	} else {
1849 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1850 		*out_level = (u8)key->offset;
1851 	}
1852 
1853 	if (ret == 1)
1854 		*ptr = (unsigned long)-1;
1855 
1856 	return 0;
1857 }
1858 
1859 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1860 			     struct extent_inode_elem *inode_list,
1861 			     u64 root, u64 extent_item_objectid,
1862 			     iterate_extent_inodes_t *iterate, void *ctx)
1863 {
1864 	struct extent_inode_elem *eie;
1865 	int ret = 0;
1866 
1867 	for (eie = inode_list; eie; eie = eie->next) {
1868 		btrfs_debug(fs_info,
1869 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1870 			    extent_item_objectid, eie->inum,
1871 			    eie->offset, root);
1872 		ret = iterate(eie->inum, eie->offset, root, ctx);
1873 		if (ret) {
1874 			btrfs_debug(fs_info,
1875 				    "stopping iteration for %llu due to ret=%d",
1876 				    extent_item_objectid, ret);
1877 			break;
1878 		}
1879 	}
1880 
1881 	return ret;
1882 }
1883 
1884 /*
1885  * calls iterate() for every inode that references the extent identified by
1886  * the given parameters.
1887  * when the iterator function returns a non-zero value, iteration stops.
1888  */
1889 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1890 				u64 extent_item_objectid, u64 extent_item_pos,
1891 				int search_commit_root,
1892 				iterate_extent_inodes_t *iterate, void *ctx,
1893 				bool ignore_offset)
1894 {
1895 	int ret;
1896 	struct btrfs_trans_handle *trans = NULL;
1897 	struct ulist *refs = NULL;
1898 	struct ulist *roots = NULL;
1899 	struct ulist_node *ref_node = NULL;
1900 	struct ulist_node *root_node = NULL;
1901 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1902 	struct ulist_iterator ref_uiter;
1903 	struct ulist_iterator root_uiter;
1904 
1905 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1906 			extent_item_objectid);
1907 
1908 	if (!search_commit_root) {
1909 		trans = btrfs_join_transaction(fs_info->extent_root);
1910 		if (IS_ERR(trans))
1911 			return PTR_ERR(trans);
1912 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1913 	} else {
1914 		down_read(&fs_info->commit_root_sem);
1915 	}
1916 
1917 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1918 				   tree_mod_seq_elem.seq, &refs,
1919 				   &extent_item_pos, ignore_offset);
1920 	if (ret)
1921 		goto out;
1922 
1923 	ULIST_ITER_INIT(&ref_uiter);
1924 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1925 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1926 						tree_mod_seq_elem.seq, &roots,
1927 						ignore_offset);
1928 		if (ret)
1929 			break;
1930 		ULIST_ITER_INIT(&root_uiter);
1931 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1932 			btrfs_debug(fs_info,
1933 				    "root %llu references leaf %llu, data list %#llx",
1934 				    root_node->val, ref_node->val,
1935 				    ref_node->aux);
1936 			ret = iterate_leaf_refs(fs_info,
1937 						(struct extent_inode_elem *)
1938 						(uintptr_t)ref_node->aux,
1939 						root_node->val,
1940 						extent_item_objectid,
1941 						iterate, ctx);
1942 		}
1943 		ulist_free(roots);
1944 	}
1945 
1946 	free_leaf_list(refs);
1947 out:
1948 	if (!search_commit_root) {
1949 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1950 		btrfs_end_transaction(trans);
1951 	} else {
1952 		up_read(&fs_info->commit_root_sem);
1953 	}
1954 
1955 	return ret;
1956 }
1957 
1958 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1959 				struct btrfs_path *path,
1960 				iterate_extent_inodes_t *iterate, void *ctx,
1961 				bool ignore_offset)
1962 {
1963 	int ret;
1964 	u64 extent_item_pos;
1965 	u64 flags = 0;
1966 	struct btrfs_key found_key;
1967 	int search_commit_root = path->search_commit_root;
1968 
1969 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1970 	btrfs_release_path(path);
1971 	if (ret < 0)
1972 		return ret;
1973 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1974 		return -EINVAL;
1975 
1976 	extent_item_pos = logical - found_key.objectid;
1977 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1978 					extent_item_pos, search_commit_root,
1979 					iterate, ctx, ignore_offset);
1980 
1981 	return ret;
1982 }
1983 
1984 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1985 			      struct extent_buffer *eb, void *ctx);
1986 
1987 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1988 			      struct btrfs_path *path,
1989 			      iterate_irefs_t *iterate, void *ctx)
1990 {
1991 	int ret = 0;
1992 	int slot;
1993 	u32 cur;
1994 	u32 len;
1995 	u32 name_len;
1996 	u64 parent = 0;
1997 	int found = 0;
1998 	struct extent_buffer *eb;
1999 	struct btrfs_item *item;
2000 	struct btrfs_inode_ref *iref;
2001 	struct btrfs_key found_key;
2002 
2003 	while (!ret) {
2004 		ret = btrfs_find_item(fs_root, path, inum,
2005 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2006 				&found_key);
2007 
2008 		if (ret < 0)
2009 			break;
2010 		if (ret) {
2011 			ret = found ? 0 : -ENOENT;
2012 			break;
2013 		}
2014 		++found;
2015 
2016 		parent = found_key.offset;
2017 		slot = path->slots[0];
2018 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2019 		if (!eb) {
2020 			ret = -ENOMEM;
2021 			break;
2022 		}
2023 		extent_buffer_get(eb);
2024 		btrfs_tree_read_lock(eb);
2025 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2026 		btrfs_release_path(path);
2027 
2028 		item = btrfs_item_nr(slot);
2029 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2030 
2031 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2032 			name_len = btrfs_inode_ref_name_len(eb, iref);
2033 			/* path must be released before calling iterate()! */
2034 			btrfs_debug(fs_root->fs_info,
2035 				"following ref at offset %u for inode %llu in tree %llu",
2036 				cur, found_key.objectid,
2037 				fs_root->root_key.objectid);
2038 			ret = iterate(parent, name_len,
2039 				      (unsigned long)(iref + 1), eb, ctx);
2040 			if (ret)
2041 				break;
2042 			len = sizeof(*iref) + name_len;
2043 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2044 		}
2045 		btrfs_tree_read_unlock_blocking(eb);
2046 		free_extent_buffer(eb);
2047 	}
2048 
2049 	btrfs_release_path(path);
2050 
2051 	return ret;
2052 }
2053 
2054 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2055 				 struct btrfs_path *path,
2056 				 iterate_irefs_t *iterate, void *ctx)
2057 {
2058 	int ret;
2059 	int slot;
2060 	u64 offset = 0;
2061 	u64 parent;
2062 	int found = 0;
2063 	struct extent_buffer *eb;
2064 	struct btrfs_inode_extref *extref;
2065 	u32 item_size;
2066 	u32 cur_offset;
2067 	unsigned long ptr;
2068 
2069 	while (1) {
2070 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2071 					    &offset);
2072 		if (ret < 0)
2073 			break;
2074 		if (ret) {
2075 			ret = found ? 0 : -ENOENT;
2076 			break;
2077 		}
2078 		++found;
2079 
2080 		slot = path->slots[0];
2081 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2082 		if (!eb) {
2083 			ret = -ENOMEM;
2084 			break;
2085 		}
2086 		extent_buffer_get(eb);
2087 
2088 		btrfs_tree_read_lock(eb);
2089 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2090 		btrfs_release_path(path);
2091 
2092 		item_size = btrfs_item_size_nr(eb, slot);
2093 		ptr = btrfs_item_ptr_offset(eb, slot);
2094 		cur_offset = 0;
2095 
2096 		while (cur_offset < item_size) {
2097 			u32 name_len;
2098 
2099 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2100 			parent = btrfs_inode_extref_parent(eb, extref);
2101 			name_len = btrfs_inode_extref_name_len(eb, extref);
2102 			ret = iterate(parent, name_len,
2103 				      (unsigned long)&extref->name, eb, ctx);
2104 			if (ret)
2105 				break;
2106 
2107 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2108 			cur_offset += sizeof(*extref);
2109 		}
2110 		btrfs_tree_read_unlock_blocking(eb);
2111 		free_extent_buffer(eb);
2112 
2113 		offset++;
2114 	}
2115 
2116 	btrfs_release_path(path);
2117 
2118 	return ret;
2119 }
2120 
2121 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2122 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2123 			 void *ctx)
2124 {
2125 	int ret;
2126 	int found_refs = 0;
2127 
2128 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2129 	if (!ret)
2130 		++found_refs;
2131 	else if (ret != -ENOENT)
2132 		return ret;
2133 
2134 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2135 	if (ret == -ENOENT && found_refs)
2136 		return 0;
2137 
2138 	return ret;
2139 }
2140 
2141 /*
2142  * returns 0 if the path could be dumped (probably truncated)
2143  * returns <0 in case of an error
2144  */
2145 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2146 			 struct extent_buffer *eb, void *ctx)
2147 {
2148 	struct inode_fs_paths *ipath = ctx;
2149 	char *fspath;
2150 	char *fspath_min;
2151 	int i = ipath->fspath->elem_cnt;
2152 	const int s_ptr = sizeof(char *);
2153 	u32 bytes_left;
2154 
2155 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2156 					ipath->fspath->bytes_left - s_ptr : 0;
2157 
2158 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2159 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2160 				   name_off, eb, inum, fspath_min, bytes_left);
2161 	if (IS_ERR(fspath))
2162 		return PTR_ERR(fspath);
2163 
2164 	if (fspath > fspath_min) {
2165 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2166 		++ipath->fspath->elem_cnt;
2167 		ipath->fspath->bytes_left = fspath - fspath_min;
2168 	} else {
2169 		++ipath->fspath->elem_missed;
2170 		ipath->fspath->bytes_missing += fspath_min - fspath;
2171 		ipath->fspath->bytes_left = 0;
2172 	}
2173 
2174 	return 0;
2175 }
2176 
2177 /*
2178  * this dumps all file system paths to the inode into the ipath struct, provided
2179  * is has been created large enough. each path is zero-terminated and accessed
2180  * from ipath->fspath->val[i].
2181  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2182  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2183  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2184  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2185  * have been needed to return all paths.
2186  */
2187 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2188 {
2189 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2190 			     inode_to_path, ipath);
2191 }
2192 
2193 struct btrfs_data_container *init_data_container(u32 total_bytes)
2194 {
2195 	struct btrfs_data_container *data;
2196 	size_t alloc_bytes;
2197 
2198 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2199 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2200 	if (!data)
2201 		return ERR_PTR(-ENOMEM);
2202 
2203 	if (total_bytes >= sizeof(*data)) {
2204 		data->bytes_left = total_bytes - sizeof(*data);
2205 		data->bytes_missing = 0;
2206 	} else {
2207 		data->bytes_missing = sizeof(*data) - total_bytes;
2208 		data->bytes_left = 0;
2209 	}
2210 
2211 	data->elem_cnt = 0;
2212 	data->elem_missed = 0;
2213 
2214 	return data;
2215 }
2216 
2217 /*
2218  * allocates space to return multiple file system paths for an inode.
2219  * total_bytes to allocate are passed, note that space usable for actual path
2220  * information will be total_bytes - sizeof(struct inode_fs_paths).
2221  * the returned pointer must be freed with free_ipath() in the end.
2222  */
2223 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2224 					struct btrfs_path *path)
2225 {
2226 	struct inode_fs_paths *ifp;
2227 	struct btrfs_data_container *fspath;
2228 
2229 	fspath = init_data_container(total_bytes);
2230 	if (IS_ERR(fspath))
2231 		return ERR_CAST(fspath);
2232 
2233 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2234 	if (!ifp) {
2235 		kvfree(fspath);
2236 		return ERR_PTR(-ENOMEM);
2237 	}
2238 
2239 	ifp->btrfs_path = path;
2240 	ifp->fspath = fspath;
2241 	ifp->fs_root = fs_root;
2242 
2243 	return ifp;
2244 }
2245 
2246 void free_ipath(struct inode_fs_paths *ipath)
2247 {
2248 	if (!ipath)
2249 		return;
2250 	kvfree(ipath->fspath);
2251 	kfree(ipath);
2252 }
2253