xref: /openbmc/linux/fs/btrfs/backref.c (revision 020c5260)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include <linux/rbtree.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "backref.h"
24 #include "ulist.h"
25 #include "transaction.h"
26 #include "delayed-ref.h"
27 #include "locking.h"
28 
29 enum merge_mode {
30 	MERGE_IDENTICAL_KEYS = 1,
31 	MERGE_IDENTICAL_PARENTS,
32 };
33 
34 /* Just an arbitrary number so we can be sure this happened */
35 #define BACKREF_FOUND_SHARED 6
36 
37 struct extent_inode_elem {
38 	u64 inum;
39 	u64 offset;
40 	struct extent_inode_elem *next;
41 };
42 
43 /*
44  * ref_root is used as the root of the ref tree that hold a collection
45  * of unique references.
46  */
47 struct ref_root {
48 	struct rb_root rb_root;
49 
50 	/*
51 	 * The unique_refs represents the number of ref_nodes with a positive
52 	 * count stored in the tree. Even if a ref_node (the count is greater
53 	 * than one) is added, the unique_refs will only increase by one.
54 	 */
55 	unsigned int unique_refs;
56 };
57 
58 /* ref_node is used to store a unique reference to the ref tree. */
59 struct ref_node {
60 	struct rb_node rb_node;
61 
62 	/* For NORMAL_REF, otherwise all these fields should be set to 0 */
63 	u64 root_id;
64 	u64 object_id;
65 	u64 offset;
66 
67 	/* For SHARED_REF, otherwise parent field should be set to 0 */
68 	u64 parent;
69 
70 	/* Ref to the ref_mod of btrfs_delayed_ref_node */
71 	int ref_mod;
72 };
73 
74 /* Dynamically allocate and initialize a ref_root */
75 static struct ref_root *ref_root_alloc(void)
76 {
77 	struct ref_root *ref_tree;
78 
79 	ref_tree = kmalloc(sizeof(*ref_tree), GFP_NOFS);
80 	if (!ref_tree)
81 		return NULL;
82 
83 	ref_tree->rb_root = RB_ROOT;
84 	ref_tree->unique_refs = 0;
85 
86 	return ref_tree;
87 }
88 
89 /* Free all nodes in the ref tree, and reinit ref_root */
90 static void ref_root_fini(struct ref_root *ref_tree)
91 {
92 	struct ref_node *node;
93 	struct rb_node *next;
94 
95 	while ((next = rb_first(&ref_tree->rb_root)) != NULL) {
96 		node = rb_entry(next, struct ref_node, rb_node);
97 		rb_erase(next, &ref_tree->rb_root);
98 		kfree(node);
99 	}
100 
101 	ref_tree->rb_root = RB_ROOT;
102 	ref_tree->unique_refs = 0;
103 }
104 
105 static void ref_root_free(struct ref_root *ref_tree)
106 {
107 	if (!ref_tree)
108 		return;
109 
110 	ref_root_fini(ref_tree);
111 	kfree(ref_tree);
112 }
113 
114 /*
115  * Compare ref_node with (root_id, object_id, offset, parent)
116  *
117  * The function compares two ref_node a and b. It returns an integer less
118  * than, equal to, or greater than zero , respectively, to be less than, to
119  * equal, or be greater than b.
120  */
121 static int ref_node_cmp(struct ref_node *a, struct ref_node *b)
122 {
123 	if (a->root_id < b->root_id)
124 		return -1;
125 	else if (a->root_id > b->root_id)
126 		return 1;
127 
128 	if (a->object_id < b->object_id)
129 		return -1;
130 	else if (a->object_id > b->object_id)
131 		return 1;
132 
133 	if (a->offset < b->offset)
134 		return -1;
135 	else if (a->offset > b->offset)
136 		return 1;
137 
138 	if (a->parent < b->parent)
139 		return -1;
140 	else if (a->parent > b->parent)
141 		return 1;
142 
143 	return 0;
144 }
145 
146 /*
147  * Search ref_node with (root_id, object_id, offset, parent) in the tree
148  *
149  * if found, the pointer of the ref_node will be returned;
150  * if not found, NULL will be returned and pos will point to the rb_node for
151  * insert, pos_parent will point to pos'parent for insert;
152 */
153 static struct ref_node *__ref_tree_search(struct ref_root *ref_tree,
154 					  struct rb_node ***pos,
155 					  struct rb_node **pos_parent,
156 					  u64 root_id, u64 object_id,
157 					  u64 offset, u64 parent)
158 {
159 	struct ref_node *cur = NULL;
160 	struct ref_node entry;
161 	int ret;
162 
163 	entry.root_id = root_id;
164 	entry.object_id = object_id;
165 	entry.offset = offset;
166 	entry.parent = parent;
167 
168 	*pos = &ref_tree->rb_root.rb_node;
169 
170 	while (**pos) {
171 		*pos_parent = **pos;
172 		cur = rb_entry(*pos_parent, struct ref_node, rb_node);
173 
174 		ret = ref_node_cmp(cur, &entry);
175 		if (ret > 0)
176 			*pos = &(**pos)->rb_left;
177 		else if (ret < 0)
178 			*pos = &(**pos)->rb_right;
179 		else
180 			return cur;
181 	}
182 
183 	return NULL;
184 }
185 
186 /*
187  * Insert a ref_node to the ref tree
188  * @pos used for specifiy the position to insert
189  * @pos_parent for specifiy pos's parent
190  *
191  * success, return 0;
192  * ref_node already exists, return -EEXIST;
193 */
194 static int ref_tree_insert(struct ref_root *ref_tree, struct rb_node **pos,
195 			   struct rb_node *pos_parent, struct ref_node *ins)
196 {
197 	struct rb_node **p = NULL;
198 	struct rb_node *parent = NULL;
199 	struct ref_node *cur = NULL;
200 
201 	if (!pos) {
202 		cur = __ref_tree_search(ref_tree, &p, &parent, ins->root_id,
203 					ins->object_id, ins->offset,
204 					ins->parent);
205 		if (cur)
206 			return -EEXIST;
207 	} else {
208 		p = pos;
209 		parent = pos_parent;
210 	}
211 
212 	rb_link_node(&ins->rb_node, parent, p);
213 	rb_insert_color(&ins->rb_node, &ref_tree->rb_root);
214 
215 	return 0;
216 }
217 
218 /* Erase and free ref_node, caller should update ref_root->unique_refs */
219 static void ref_tree_remove(struct ref_root *ref_tree, struct ref_node *node)
220 {
221 	rb_erase(&node->rb_node, &ref_tree->rb_root);
222 	kfree(node);
223 }
224 
225 /*
226  * Update ref_root->unique_refs
227  *
228  * Call __ref_tree_search
229  *	1. if ref_node doesn't exist, ref_tree_insert this node, and update
230  *	ref_root->unique_refs:
231  *		if ref_node->ref_mod > 0, ref_root->unique_refs++;
232  *		if ref_node->ref_mod < 0, do noting;
233  *
234  *	2. if ref_node is found, then get origin ref_node->ref_mod, and update
235  *	ref_node->ref_mod.
236  *		if ref_node->ref_mod is equal to 0,then call ref_tree_remove
237  *
238  *		according to origin_mod and new_mod, update ref_root->items
239  *		+----------------+--------------+-------------+
240  *		|		 |new_count <= 0|new_count > 0|
241  *		+----------------+--------------+-------------+
242  *		|origin_count < 0|       0      |      1      |
243  *		+----------------+--------------+-------------+
244  *		|origin_count > 0|      -1      |      0      |
245  *		+----------------+--------------+-------------+
246  *
247  * In case of allocation failure, -ENOMEM is returned and the ref_tree stays
248  * unaltered.
249  * Success, return 0
250  */
251 static int ref_tree_add(struct ref_root *ref_tree, u64 root_id, u64 object_id,
252 			u64 offset, u64 parent, int count)
253 {
254 	struct ref_node *node = NULL;
255 	struct rb_node **pos = NULL;
256 	struct rb_node *pos_parent = NULL;
257 	int origin_count;
258 	int ret;
259 
260 	if (!count)
261 		return 0;
262 
263 	node = __ref_tree_search(ref_tree, &pos, &pos_parent, root_id,
264 				 object_id, offset, parent);
265 	if (node == NULL) {
266 		node = kmalloc(sizeof(*node), GFP_NOFS);
267 		if (!node)
268 			return -ENOMEM;
269 
270 		node->root_id = root_id;
271 		node->object_id = object_id;
272 		node->offset = offset;
273 		node->parent = parent;
274 		node->ref_mod = count;
275 
276 		ret = ref_tree_insert(ref_tree, pos, pos_parent, node);
277 		ASSERT(!ret);
278 		if (ret) {
279 			kfree(node);
280 			return ret;
281 		}
282 
283 		ref_tree->unique_refs += node->ref_mod > 0 ? 1 : 0;
284 
285 		return 0;
286 	}
287 
288 	origin_count = node->ref_mod;
289 	node->ref_mod += count;
290 
291 	if (node->ref_mod > 0)
292 		ref_tree->unique_refs += origin_count > 0 ? 0 : 1;
293 	else if (node->ref_mod <= 0)
294 		ref_tree->unique_refs += origin_count > 0 ? -1 : 0;
295 
296 	if (!node->ref_mod)
297 		ref_tree_remove(ref_tree, node);
298 
299 	return 0;
300 }
301 
302 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
303 				struct btrfs_file_extent_item *fi,
304 				u64 extent_item_pos,
305 				struct extent_inode_elem **eie)
306 {
307 	u64 offset = 0;
308 	struct extent_inode_elem *e;
309 
310 	if (!btrfs_file_extent_compression(eb, fi) &&
311 	    !btrfs_file_extent_encryption(eb, fi) &&
312 	    !btrfs_file_extent_other_encoding(eb, fi)) {
313 		u64 data_offset;
314 		u64 data_len;
315 
316 		data_offset = btrfs_file_extent_offset(eb, fi);
317 		data_len = btrfs_file_extent_num_bytes(eb, fi);
318 
319 		if (extent_item_pos < data_offset ||
320 		    extent_item_pos >= data_offset + data_len)
321 			return 1;
322 		offset = extent_item_pos - data_offset;
323 	}
324 
325 	e = kmalloc(sizeof(*e), GFP_NOFS);
326 	if (!e)
327 		return -ENOMEM;
328 
329 	e->next = *eie;
330 	e->inum = key->objectid;
331 	e->offset = key->offset + offset;
332 	*eie = e;
333 
334 	return 0;
335 }
336 
337 static void free_inode_elem_list(struct extent_inode_elem *eie)
338 {
339 	struct extent_inode_elem *eie_next;
340 
341 	for (; eie; eie = eie_next) {
342 		eie_next = eie->next;
343 		kfree(eie);
344 	}
345 }
346 
347 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
348 				u64 extent_item_pos,
349 				struct extent_inode_elem **eie)
350 {
351 	u64 disk_byte;
352 	struct btrfs_key key;
353 	struct btrfs_file_extent_item *fi;
354 	int slot;
355 	int nritems;
356 	int extent_type;
357 	int ret;
358 
359 	/*
360 	 * from the shared data ref, we only have the leaf but we need
361 	 * the key. thus, we must look into all items and see that we
362 	 * find one (some) with a reference to our extent item.
363 	 */
364 	nritems = btrfs_header_nritems(eb);
365 	for (slot = 0; slot < nritems; ++slot) {
366 		btrfs_item_key_to_cpu(eb, &key, slot);
367 		if (key.type != BTRFS_EXTENT_DATA_KEY)
368 			continue;
369 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
370 		extent_type = btrfs_file_extent_type(eb, fi);
371 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
372 			continue;
373 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
374 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
375 		if (disk_byte != wanted_disk_byte)
376 			continue;
377 
378 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
379 		if (ret < 0)
380 			return ret;
381 	}
382 
383 	return 0;
384 }
385 
386 /*
387  * this structure records all encountered refs on the way up to the root
388  */
389 struct __prelim_ref {
390 	struct list_head list;
391 	u64 root_id;
392 	struct btrfs_key key_for_search;
393 	int level;
394 	int count;
395 	struct extent_inode_elem *inode_list;
396 	u64 parent;
397 	u64 wanted_disk_byte;
398 };
399 
400 static struct kmem_cache *btrfs_prelim_ref_cache;
401 
402 int __init btrfs_prelim_ref_init(void)
403 {
404 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
405 					sizeof(struct __prelim_ref),
406 					0,
407 					SLAB_MEM_SPREAD,
408 					NULL);
409 	if (!btrfs_prelim_ref_cache)
410 		return -ENOMEM;
411 	return 0;
412 }
413 
414 void btrfs_prelim_ref_exit(void)
415 {
416 	kmem_cache_destroy(btrfs_prelim_ref_cache);
417 }
418 
419 /*
420  * the rules for all callers of this function are:
421  * - obtaining the parent is the goal
422  * - if you add a key, you must know that it is a correct key
423  * - if you cannot add the parent or a correct key, then we will look into the
424  *   block later to set a correct key
425  *
426  * delayed refs
427  * ============
428  *        backref type | shared | indirect | shared | indirect
429  * information         |   tree |     tree |   data |     data
430  * --------------------+--------+----------+--------+----------
431  *      parent logical |    y   |     -    |    -   |     -
432  *      key to resolve |    -   |     y    |    y   |     y
433  *  tree block logical |    -   |     -    |    -   |     -
434  *  root for resolving |    y   |     y    |    y   |     y
435  *
436  * - column 1:       we've the parent -> done
437  * - column 2, 3, 4: we use the key to find the parent
438  *
439  * on disk refs (inline or keyed)
440  * ==============================
441  *        backref type | shared | indirect | shared | indirect
442  * information         |   tree |     tree |   data |     data
443  * --------------------+--------+----------+--------+----------
444  *      parent logical |    y   |     -    |    y   |     -
445  *      key to resolve |    -   |     -    |    -   |     y
446  *  tree block logical |    y   |     y    |    y   |     y
447  *  root for resolving |    -   |     y    |    y   |     y
448  *
449  * - column 1, 3: we've the parent -> done
450  * - column 2:    we take the first key from the block to find the parent
451  *                (see __add_missing_keys)
452  * - column 4:    we use the key to find the parent
453  *
454  * additional information that's available but not required to find the parent
455  * block might help in merging entries to gain some speed.
456  */
457 
458 static int __add_prelim_ref(struct list_head *head, u64 root_id,
459 			    struct btrfs_key *key, int level,
460 			    u64 parent, u64 wanted_disk_byte, int count,
461 			    gfp_t gfp_mask)
462 {
463 	struct __prelim_ref *ref;
464 
465 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
466 		return 0;
467 
468 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
469 	if (!ref)
470 		return -ENOMEM;
471 
472 	ref->root_id = root_id;
473 	if (key) {
474 		ref->key_for_search = *key;
475 		/*
476 		 * We can often find data backrefs with an offset that is too
477 		 * large (>= LLONG_MAX, maximum allowed file offset) due to
478 		 * underflows when subtracting a file's offset with the data
479 		 * offset of its corresponding extent data item. This can
480 		 * happen for example in the clone ioctl.
481 		 * So if we detect such case we set the search key's offset to
482 		 * zero to make sure we will find the matching file extent item
483 		 * at add_all_parents(), otherwise we will miss it because the
484 		 * offset taken form the backref is much larger then the offset
485 		 * of the file extent item. This can make us scan a very large
486 		 * number of file extent items, but at least it will not make
487 		 * us miss any.
488 		 * This is an ugly workaround for a behaviour that should have
489 		 * never existed, but it does and a fix for the clone ioctl
490 		 * would touch a lot of places, cause backwards incompatibility
491 		 * and would not fix the problem for extents cloned with older
492 		 * kernels.
493 		 */
494 		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
495 		    ref->key_for_search.offset >= LLONG_MAX)
496 			ref->key_for_search.offset = 0;
497 	} else {
498 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
499 	}
500 
501 	ref->inode_list = NULL;
502 	ref->level = level;
503 	ref->count = count;
504 	ref->parent = parent;
505 	ref->wanted_disk_byte = wanted_disk_byte;
506 	list_add_tail(&ref->list, head);
507 
508 	return 0;
509 }
510 
511 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
512 			   struct ulist *parents, struct __prelim_ref *ref,
513 			   int level, u64 time_seq, const u64 *extent_item_pos,
514 			   u64 total_refs)
515 {
516 	int ret = 0;
517 	int slot;
518 	struct extent_buffer *eb;
519 	struct btrfs_key key;
520 	struct btrfs_key *key_for_search = &ref->key_for_search;
521 	struct btrfs_file_extent_item *fi;
522 	struct extent_inode_elem *eie = NULL, *old = NULL;
523 	u64 disk_byte;
524 	u64 wanted_disk_byte = ref->wanted_disk_byte;
525 	u64 count = 0;
526 
527 	if (level != 0) {
528 		eb = path->nodes[level];
529 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
530 		if (ret < 0)
531 			return ret;
532 		return 0;
533 	}
534 
535 	/*
536 	 * We normally enter this function with the path already pointing to
537 	 * the first item to check. But sometimes, we may enter it with
538 	 * slot==nritems. In that case, go to the next leaf before we continue.
539 	 */
540 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
541 		if (time_seq == SEQ_LAST)
542 			ret = btrfs_next_leaf(root, path);
543 		else
544 			ret = btrfs_next_old_leaf(root, path, time_seq);
545 	}
546 
547 	while (!ret && count < total_refs) {
548 		eb = path->nodes[0];
549 		slot = path->slots[0];
550 
551 		btrfs_item_key_to_cpu(eb, &key, slot);
552 
553 		if (key.objectid != key_for_search->objectid ||
554 		    key.type != BTRFS_EXTENT_DATA_KEY)
555 			break;
556 
557 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
558 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
559 
560 		if (disk_byte == wanted_disk_byte) {
561 			eie = NULL;
562 			old = NULL;
563 			count++;
564 			if (extent_item_pos) {
565 				ret = check_extent_in_eb(&key, eb, fi,
566 						*extent_item_pos,
567 						&eie);
568 				if (ret < 0)
569 					break;
570 			}
571 			if (ret > 0)
572 				goto next;
573 			ret = ulist_add_merge_ptr(parents, eb->start,
574 						  eie, (void **)&old, GFP_NOFS);
575 			if (ret < 0)
576 				break;
577 			if (!ret && extent_item_pos) {
578 				while (old->next)
579 					old = old->next;
580 				old->next = eie;
581 			}
582 			eie = NULL;
583 		}
584 next:
585 		if (time_seq == SEQ_LAST)
586 			ret = btrfs_next_item(root, path);
587 		else
588 			ret = btrfs_next_old_item(root, path, time_seq);
589 	}
590 
591 	if (ret > 0)
592 		ret = 0;
593 	else if (ret < 0)
594 		free_inode_elem_list(eie);
595 	return ret;
596 }
597 
598 /*
599  * resolve an indirect backref in the form (root_id, key, level)
600  * to a logical address
601  */
602 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
603 				  struct btrfs_path *path, u64 time_seq,
604 				  struct __prelim_ref *ref,
605 				  struct ulist *parents,
606 				  const u64 *extent_item_pos, u64 total_refs)
607 {
608 	struct btrfs_root *root;
609 	struct btrfs_key root_key;
610 	struct extent_buffer *eb;
611 	int ret = 0;
612 	int root_level;
613 	int level = ref->level;
614 	int index;
615 
616 	root_key.objectid = ref->root_id;
617 	root_key.type = BTRFS_ROOT_ITEM_KEY;
618 	root_key.offset = (u64)-1;
619 
620 	index = srcu_read_lock(&fs_info->subvol_srcu);
621 
622 	root = btrfs_get_fs_root(fs_info, &root_key, false);
623 	if (IS_ERR(root)) {
624 		srcu_read_unlock(&fs_info->subvol_srcu, index);
625 		ret = PTR_ERR(root);
626 		goto out;
627 	}
628 
629 	if (btrfs_is_testing(fs_info)) {
630 		srcu_read_unlock(&fs_info->subvol_srcu, index);
631 		ret = -ENOENT;
632 		goto out;
633 	}
634 
635 	if (path->search_commit_root)
636 		root_level = btrfs_header_level(root->commit_root);
637 	else if (time_seq == SEQ_LAST)
638 		root_level = btrfs_header_level(root->node);
639 	else
640 		root_level = btrfs_old_root_level(root, time_seq);
641 
642 	if (root_level + 1 == level) {
643 		srcu_read_unlock(&fs_info->subvol_srcu, index);
644 		goto out;
645 	}
646 
647 	path->lowest_level = level;
648 	if (time_seq == SEQ_LAST)
649 		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
650 					0, 0);
651 	else
652 		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
653 					    time_seq);
654 
655 	/* root node has been locked, we can release @subvol_srcu safely here */
656 	srcu_read_unlock(&fs_info->subvol_srcu, index);
657 
658 	btrfs_debug(fs_info,
659 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
660 		 ref->root_id, level, ref->count, ret,
661 		 ref->key_for_search.objectid, ref->key_for_search.type,
662 		 ref->key_for_search.offset);
663 	if (ret < 0)
664 		goto out;
665 
666 	eb = path->nodes[level];
667 	while (!eb) {
668 		if (WARN_ON(!level)) {
669 			ret = 1;
670 			goto out;
671 		}
672 		level--;
673 		eb = path->nodes[level];
674 	}
675 
676 	ret = add_all_parents(root, path, parents, ref, level, time_seq,
677 			      extent_item_pos, total_refs);
678 out:
679 	path->lowest_level = 0;
680 	btrfs_release_path(path);
681 	return ret;
682 }
683 
684 /*
685  * resolve all indirect backrefs from the list
686  */
687 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
688 				   struct btrfs_path *path, u64 time_seq,
689 				   struct list_head *head,
690 				   const u64 *extent_item_pos, u64 total_refs,
691 				   u64 root_objectid)
692 {
693 	int err;
694 	int ret = 0;
695 	struct __prelim_ref *ref;
696 	struct __prelim_ref *ref_safe;
697 	struct __prelim_ref *new_ref;
698 	struct ulist *parents;
699 	struct ulist_node *node;
700 	struct ulist_iterator uiter;
701 
702 	parents = ulist_alloc(GFP_NOFS);
703 	if (!parents)
704 		return -ENOMEM;
705 
706 	/*
707 	 * _safe allows us to insert directly after the current item without
708 	 * iterating over the newly inserted items.
709 	 * we're also allowed to re-assign ref during iteration.
710 	 */
711 	list_for_each_entry_safe(ref, ref_safe, head, list) {
712 		if (ref->parent)	/* already direct */
713 			continue;
714 		if (ref->count == 0)
715 			continue;
716 		if (root_objectid && ref->root_id != root_objectid) {
717 			ret = BACKREF_FOUND_SHARED;
718 			goto out;
719 		}
720 		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
721 					     parents, extent_item_pos,
722 					     total_refs);
723 		/*
724 		 * we can only tolerate ENOENT,otherwise,we should catch error
725 		 * and return directly.
726 		 */
727 		if (err == -ENOENT) {
728 			continue;
729 		} else if (err) {
730 			ret = err;
731 			goto out;
732 		}
733 
734 		/* we put the first parent into the ref at hand */
735 		ULIST_ITER_INIT(&uiter);
736 		node = ulist_next(parents, &uiter);
737 		ref->parent = node ? node->val : 0;
738 		ref->inode_list = node ?
739 			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
740 
741 		/* additional parents require new refs being added here */
742 		while ((node = ulist_next(parents, &uiter))) {
743 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
744 						   GFP_NOFS);
745 			if (!new_ref) {
746 				ret = -ENOMEM;
747 				goto out;
748 			}
749 			memcpy(new_ref, ref, sizeof(*ref));
750 			new_ref->parent = node->val;
751 			new_ref->inode_list = (struct extent_inode_elem *)
752 							(uintptr_t)node->aux;
753 			list_add(&new_ref->list, &ref->list);
754 		}
755 		ulist_reinit(parents);
756 	}
757 out:
758 	ulist_free(parents);
759 	return ret;
760 }
761 
762 static inline int ref_for_same_block(struct __prelim_ref *ref1,
763 				     struct __prelim_ref *ref2)
764 {
765 	if (ref1->level != ref2->level)
766 		return 0;
767 	if (ref1->root_id != ref2->root_id)
768 		return 0;
769 	if (ref1->key_for_search.type != ref2->key_for_search.type)
770 		return 0;
771 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
772 		return 0;
773 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
774 		return 0;
775 	if (ref1->parent != ref2->parent)
776 		return 0;
777 
778 	return 1;
779 }
780 
781 /*
782  * read tree blocks and add keys where required.
783  */
784 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
785 			      struct list_head *head)
786 {
787 	struct __prelim_ref *ref;
788 	struct extent_buffer *eb;
789 
790 	list_for_each_entry(ref, head, list) {
791 		if (ref->parent)
792 			continue;
793 		if (ref->key_for_search.type)
794 			continue;
795 		BUG_ON(!ref->wanted_disk_byte);
796 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
797 		if (IS_ERR(eb)) {
798 			return PTR_ERR(eb);
799 		} else if (!extent_buffer_uptodate(eb)) {
800 			free_extent_buffer(eb);
801 			return -EIO;
802 		}
803 		btrfs_tree_read_lock(eb);
804 		if (btrfs_header_level(eb) == 0)
805 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
806 		else
807 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
808 		btrfs_tree_read_unlock(eb);
809 		free_extent_buffer(eb);
810 	}
811 	return 0;
812 }
813 
814 /*
815  * merge backrefs and adjust counts accordingly
816  *
817  *    FIXME: For MERGE_IDENTICAL_KEYS, if we add more keys in __add_prelim_ref
818  *           then we can merge more here. Additionally, we could even add a key
819  *           range for the blocks we looked into to merge even more (-> replace
820  *           unresolved refs by those having a parent).
821  */
822 static void __merge_refs(struct list_head *head, enum merge_mode mode)
823 {
824 	struct __prelim_ref *pos1;
825 
826 	list_for_each_entry(pos1, head, list) {
827 		struct __prelim_ref *pos2 = pos1, *tmp;
828 
829 		list_for_each_entry_safe_continue(pos2, tmp, head, list) {
830 			struct __prelim_ref *ref1 = pos1, *ref2 = pos2;
831 			struct extent_inode_elem *eie;
832 
833 			if (!ref_for_same_block(ref1, ref2))
834 				continue;
835 			if (mode == MERGE_IDENTICAL_KEYS) {
836 				if (!ref1->parent && ref2->parent)
837 					swap(ref1, ref2);
838 			} else {
839 				if (ref1->parent != ref2->parent)
840 					continue;
841 			}
842 
843 			eie = ref1->inode_list;
844 			while (eie && eie->next)
845 				eie = eie->next;
846 			if (eie)
847 				eie->next = ref2->inode_list;
848 			else
849 				ref1->inode_list = ref2->inode_list;
850 			ref1->count += ref2->count;
851 
852 			list_del(&ref2->list);
853 			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
854 			cond_resched();
855 		}
856 
857 	}
858 }
859 
860 /*
861  * add all currently queued delayed refs from this head whose seq nr is
862  * smaller or equal that seq to the list
863  */
864 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
865 			      struct list_head *prefs, u64 *total_refs,
866 			      u64 inum)
867 {
868 	struct btrfs_delayed_ref_node *node;
869 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
870 	struct btrfs_key key;
871 	struct btrfs_key op_key = {0};
872 	int sgn;
873 	int ret = 0;
874 
875 	if (extent_op && extent_op->update_key)
876 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
877 
878 	spin_lock(&head->lock);
879 	list_for_each_entry(node, &head->ref_list, list) {
880 		if (node->seq > seq)
881 			continue;
882 
883 		switch (node->action) {
884 		case BTRFS_ADD_DELAYED_EXTENT:
885 		case BTRFS_UPDATE_DELAYED_HEAD:
886 			WARN_ON(1);
887 			continue;
888 		case BTRFS_ADD_DELAYED_REF:
889 			sgn = 1;
890 			break;
891 		case BTRFS_DROP_DELAYED_REF:
892 			sgn = -1;
893 			break;
894 		default:
895 			BUG_ON(1);
896 		}
897 		*total_refs += (node->ref_mod * sgn);
898 		switch (node->type) {
899 		case BTRFS_TREE_BLOCK_REF_KEY: {
900 			struct btrfs_delayed_tree_ref *ref;
901 
902 			ref = btrfs_delayed_node_to_tree_ref(node);
903 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
904 					       ref->level + 1, 0, node->bytenr,
905 					       node->ref_mod * sgn, GFP_ATOMIC);
906 			break;
907 		}
908 		case BTRFS_SHARED_BLOCK_REF_KEY: {
909 			struct btrfs_delayed_tree_ref *ref;
910 
911 			ref = btrfs_delayed_node_to_tree_ref(node);
912 			ret = __add_prelim_ref(prefs, 0, NULL,
913 					       ref->level + 1, ref->parent,
914 					       node->bytenr,
915 					       node->ref_mod * sgn, GFP_ATOMIC);
916 			break;
917 		}
918 		case BTRFS_EXTENT_DATA_REF_KEY: {
919 			struct btrfs_delayed_data_ref *ref;
920 			ref = btrfs_delayed_node_to_data_ref(node);
921 
922 			key.objectid = ref->objectid;
923 			key.type = BTRFS_EXTENT_DATA_KEY;
924 			key.offset = ref->offset;
925 
926 			/*
927 			 * Found a inum that doesn't match our known inum, we
928 			 * know it's shared.
929 			 */
930 			if (inum && ref->objectid != inum) {
931 				ret = BACKREF_FOUND_SHARED;
932 				break;
933 			}
934 
935 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
936 					       node->bytenr,
937 					       node->ref_mod * sgn, GFP_ATOMIC);
938 			break;
939 		}
940 		case BTRFS_SHARED_DATA_REF_KEY: {
941 			struct btrfs_delayed_data_ref *ref;
942 
943 			ref = btrfs_delayed_node_to_data_ref(node);
944 			ret = __add_prelim_ref(prefs, 0, NULL, 0,
945 					       ref->parent, node->bytenr,
946 					       node->ref_mod * sgn, GFP_ATOMIC);
947 			break;
948 		}
949 		default:
950 			WARN_ON(1);
951 		}
952 		if (ret)
953 			break;
954 	}
955 	spin_unlock(&head->lock);
956 	return ret;
957 }
958 
959 /*
960  * add all inline backrefs for bytenr to the list
961  */
962 static int __add_inline_refs(struct btrfs_path *path, u64 bytenr,
963 			     int *info_level, struct list_head *prefs,
964 			     struct ref_root *ref_tree,
965 			     u64 *total_refs, u64 inum)
966 {
967 	int ret = 0;
968 	int slot;
969 	struct extent_buffer *leaf;
970 	struct btrfs_key key;
971 	struct btrfs_key found_key;
972 	unsigned long ptr;
973 	unsigned long end;
974 	struct btrfs_extent_item *ei;
975 	u64 flags;
976 	u64 item_size;
977 
978 	/*
979 	 * enumerate all inline refs
980 	 */
981 	leaf = path->nodes[0];
982 	slot = path->slots[0];
983 
984 	item_size = btrfs_item_size_nr(leaf, slot);
985 	BUG_ON(item_size < sizeof(*ei));
986 
987 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
988 	flags = btrfs_extent_flags(leaf, ei);
989 	*total_refs += btrfs_extent_refs(leaf, ei);
990 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
991 
992 	ptr = (unsigned long)(ei + 1);
993 	end = (unsigned long)ei + item_size;
994 
995 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
996 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
997 		struct btrfs_tree_block_info *info;
998 
999 		info = (struct btrfs_tree_block_info *)ptr;
1000 		*info_level = btrfs_tree_block_level(leaf, info);
1001 		ptr += sizeof(struct btrfs_tree_block_info);
1002 		BUG_ON(ptr > end);
1003 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1004 		*info_level = found_key.offset;
1005 	} else {
1006 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1007 	}
1008 
1009 	while (ptr < end) {
1010 		struct btrfs_extent_inline_ref *iref;
1011 		u64 offset;
1012 		int type;
1013 
1014 		iref = (struct btrfs_extent_inline_ref *)ptr;
1015 		type = btrfs_extent_inline_ref_type(leaf, iref);
1016 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
1017 
1018 		switch (type) {
1019 		case BTRFS_SHARED_BLOCK_REF_KEY:
1020 			ret = __add_prelim_ref(prefs, 0, NULL,
1021 						*info_level + 1, offset,
1022 						bytenr, 1, GFP_NOFS);
1023 			break;
1024 		case BTRFS_SHARED_DATA_REF_KEY: {
1025 			struct btrfs_shared_data_ref *sdref;
1026 			int count;
1027 
1028 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1029 			count = btrfs_shared_data_ref_count(leaf, sdref);
1030 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
1031 					       bytenr, count, GFP_NOFS);
1032 			if (ref_tree) {
1033 				if (!ret)
1034 					ret = ref_tree_add(ref_tree, 0, 0, 0,
1035 							   bytenr, count);
1036 				if (!ret && ref_tree->unique_refs > 1)
1037 					ret = BACKREF_FOUND_SHARED;
1038 			}
1039 			break;
1040 		}
1041 		case BTRFS_TREE_BLOCK_REF_KEY:
1042 			ret = __add_prelim_ref(prefs, offset, NULL,
1043 					       *info_level + 1, 0,
1044 					       bytenr, 1, GFP_NOFS);
1045 			break;
1046 		case BTRFS_EXTENT_DATA_REF_KEY: {
1047 			struct btrfs_extent_data_ref *dref;
1048 			int count;
1049 			u64 root;
1050 
1051 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1052 			count = btrfs_extent_data_ref_count(leaf, dref);
1053 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1054 								      dref);
1055 			key.type = BTRFS_EXTENT_DATA_KEY;
1056 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1057 
1058 			if (inum && key.objectid != inum) {
1059 				ret = BACKREF_FOUND_SHARED;
1060 				break;
1061 			}
1062 
1063 			root = btrfs_extent_data_ref_root(leaf, dref);
1064 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
1065 					       bytenr, count, GFP_NOFS);
1066 			if (ref_tree) {
1067 				if (!ret)
1068 					ret = ref_tree_add(ref_tree, root,
1069 							   key.objectid,
1070 							   key.offset, 0,
1071 							   count);
1072 				if (!ret && ref_tree->unique_refs > 1)
1073 					ret = BACKREF_FOUND_SHARED;
1074 			}
1075 			break;
1076 		}
1077 		default:
1078 			WARN_ON(1);
1079 		}
1080 		if (ret)
1081 			return ret;
1082 		ptr += btrfs_extent_inline_ref_size(type);
1083 	}
1084 
1085 	return 0;
1086 }
1087 
1088 /*
1089  * add all non-inline backrefs for bytenr to the list
1090  */
1091 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
1092 			    struct btrfs_path *path, u64 bytenr,
1093 			    int info_level, struct list_head *prefs,
1094 			    struct ref_root *ref_tree, u64 inum)
1095 {
1096 	struct btrfs_root *extent_root = fs_info->extent_root;
1097 	int ret;
1098 	int slot;
1099 	struct extent_buffer *leaf;
1100 	struct btrfs_key key;
1101 
1102 	while (1) {
1103 		ret = btrfs_next_item(extent_root, path);
1104 		if (ret < 0)
1105 			break;
1106 		if (ret) {
1107 			ret = 0;
1108 			break;
1109 		}
1110 
1111 		slot = path->slots[0];
1112 		leaf = path->nodes[0];
1113 		btrfs_item_key_to_cpu(leaf, &key, slot);
1114 
1115 		if (key.objectid != bytenr)
1116 			break;
1117 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1118 			continue;
1119 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1120 			break;
1121 
1122 		switch (key.type) {
1123 		case BTRFS_SHARED_BLOCK_REF_KEY:
1124 			ret = __add_prelim_ref(prefs, 0, NULL,
1125 						info_level + 1, key.offset,
1126 						bytenr, 1, GFP_NOFS);
1127 			break;
1128 		case BTRFS_SHARED_DATA_REF_KEY: {
1129 			struct btrfs_shared_data_ref *sdref;
1130 			int count;
1131 
1132 			sdref = btrfs_item_ptr(leaf, slot,
1133 					      struct btrfs_shared_data_ref);
1134 			count = btrfs_shared_data_ref_count(leaf, sdref);
1135 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
1136 						bytenr, count, GFP_NOFS);
1137 			if (ref_tree) {
1138 				if (!ret)
1139 					ret = ref_tree_add(ref_tree, 0, 0, 0,
1140 							   bytenr, count);
1141 				if (!ret && ref_tree->unique_refs > 1)
1142 					ret = BACKREF_FOUND_SHARED;
1143 			}
1144 			break;
1145 		}
1146 		case BTRFS_TREE_BLOCK_REF_KEY:
1147 			ret = __add_prelim_ref(prefs, key.offset, NULL,
1148 					       info_level + 1, 0,
1149 					       bytenr, 1, GFP_NOFS);
1150 			break;
1151 		case BTRFS_EXTENT_DATA_REF_KEY: {
1152 			struct btrfs_extent_data_ref *dref;
1153 			int count;
1154 			u64 root;
1155 
1156 			dref = btrfs_item_ptr(leaf, slot,
1157 					      struct btrfs_extent_data_ref);
1158 			count = btrfs_extent_data_ref_count(leaf, dref);
1159 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1160 								      dref);
1161 			key.type = BTRFS_EXTENT_DATA_KEY;
1162 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1163 
1164 			if (inum && key.objectid != inum) {
1165 				ret = BACKREF_FOUND_SHARED;
1166 				break;
1167 			}
1168 
1169 			root = btrfs_extent_data_ref_root(leaf, dref);
1170 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
1171 					       bytenr, count, GFP_NOFS);
1172 			if (ref_tree) {
1173 				if (!ret)
1174 					ret = ref_tree_add(ref_tree, root,
1175 							   key.objectid,
1176 							   key.offset, 0,
1177 							   count);
1178 				if (!ret && ref_tree->unique_refs > 1)
1179 					ret = BACKREF_FOUND_SHARED;
1180 			}
1181 			break;
1182 		}
1183 		default:
1184 			WARN_ON(1);
1185 		}
1186 		if (ret)
1187 			return ret;
1188 
1189 	}
1190 
1191 	return ret;
1192 }
1193 
1194 /*
1195  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1196  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1197  * indirect refs to their parent bytenr.
1198  * When roots are found, they're added to the roots list
1199  *
1200  * NOTE: This can return values > 0
1201  *
1202  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1203  * much like trans == NULL case, the difference only lies in it will not
1204  * commit root.
1205  * The special case is for qgroup to search roots in commit_transaction().
1206  *
1207  * If check_shared is set to 1, any extent has more than one ref item, will
1208  * be returned BACKREF_FOUND_SHARED immediately.
1209  *
1210  * FIXME some caching might speed things up
1211  */
1212 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1213 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1214 			     u64 time_seq, struct ulist *refs,
1215 			     struct ulist *roots, const u64 *extent_item_pos,
1216 			     u64 root_objectid, u64 inum, int check_shared)
1217 {
1218 	struct btrfs_key key;
1219 	struct btrfs_path *path;
1220 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1221 	struct btrfs_delayed_ref_head *head;
1222 	int info_level = 0;
1223 	int ret;
1224 	struct list_head prefs_delayed;
1225 	struct list_head prefs;
1226 	struct __prelim_ref *ref;
1227 	struct extent_inode_elem *eie = NULL;
1228 	struct ref_root *ref_tree = NULL;
1229 	u64 total_refs = 0;
1230 
1231 	INIT_LIST_HEAD(&prefs);
1232 	INIT_LIST_HEAD(&prefs_delayed);
1233 
1234 	key.objectid = bytenr;
1235 	key.offset = (u64)-1;
1236 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1237 		key.type = BTRFS_METADATA_ITEM_KEY;
1238 	else
1239 		key.type = BTRFS_EXTENT_ITEM_KEY;
1240 
1241 	path = btrfs_alloc_path();
1242 	if (!path)
1243 		return -ENOMEM;
1244 	if (!trans) {
1245 		path->search_commit_root = 1;
1246 		path->skip_locking = 1;
1247 	}
1248 
1249 	if (time_seq == SEQ_LAST)
1250 		path->skip_locking = 1;
1251 
1252 	/*
1253 	 * grab both a lock on the path and a lock on the delayed ref head.
1254 	 * We need both to get a consistent picture of how the refs look
1255 	 * at a specified point in time
1256 	 */
1257 again:
1258 	head = NULL;
1259 
1260 	if (check_shared) {
1261 		if (!ref_tree) {
1262 			ref_tree = ref_root_alloc();
1263 			if (!ref_tree) {
1264 				ret = -ENOMEM;
1265 				goto out;
1266 			}
1267 		} else {
1268 			ref_root_fini(ref_tree);
1269 		}
1270 	}
1271 
1272 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1273 	if (ret < 0)
1274 		goto out;
1275 	BUG_ON(ret == 0);
1276 
1277 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1278 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1279 	    time_seq != SEQ_LAST) {
1280 #else
1281 	if (trans && time_seq != SEQ_LAST) {
1282 #endif
1283 		/*
1284 		 * look if there are updates for this ref queued and lock the
1285 		 * head
1286 		 */
1287 		delayed_refs = &trans->transaction->delayed_refs;
1288 		spin_lock(&delayed_refs->lock);
1289 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1290 		if (head) {
1291 			if (!mutex_trylock(&head->mutex)) {
1292 				refcount_inc(&head->node.refs);
1293 				spin_unlock(&delayed_refs->lock);
1294 
1295 				btrfs_release_path(path);
1296 
1297 				/*
1298 				 * Mutex was contended, block until it's
1299 				 * released and try again
1300 				 */
1301 				mutex_lock(&head->mutex);
1302 				mutex_unlock(&head->mutex);
1303 				btrfs_put_delayed_ref(&head->node);
1304 				goto again;
1305 			}
1306 			spin_unlock(&delayed_refs->lock);
1307 			ret = __add_delayed_refs(head, time_seq,
1308 						 &prefs_delayed, &total_refs,
1309 						 inum);
1310 			mutex_unlock(&head->mutex);
1311 			if (ret)
1312 				goto out;
1313 		} else {
1314 			spin_unlock(&delayed_refs->lock);
1315 		}
1316 
1317 		if (check_shared && !list_empty(&prefs_delayed)) {
1318 			/*
1319 			 * Add all delay_ref to the ref_tree and check if there
1320 			 * are multiple ref items added.
1321 			 */
1322 			list_for_each_entry(ref, &prefs_delayed, list) {
1323 				if (ref->key_for_search.type) {
1324 					ret = ref_tree_add(ref_tree,
1325 						ref->root_id,
1326 						ref->key_for_search.objectid,
1327 						ref->key_for_search.offset,
1328 						0, ref->count);
1329 					if (ret)
1330 						goto out;
1331 				} else {
1332 					ret = ref_tree_add(ref_tree, 0, 0, 0,
1333 						     ref->parent, ref->count);
1334 					if (ret)
1335 						goto out;
1336 				}
1337 
1338 			}
1339 
1340 			if (ref_tree->unique_refs > 1) {
1341 				ret = BACKREF_FOUND_SHARED;
1342 				goto out;
1343 			}
1344 
1345 		}
1346 	}
1347 
1348 	if (path->slots[0]) {
1349 		struct extent_buffer *leaf;
1350 		int slot;
1351 
1352 		path->slots[0]--;
1353 		leaf = path->nodes[0];
1354 		slot = path->slots[0];
1355 		btrfs_item_key_to_cpu(leaf, &key, slot);
1356 		if (key.objectid == bytenr &&
1357 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1358 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1359 			ret = __add_inline_refs(path, bytenr,
1360 						&info_level, &prefs,
1361 						ref_tree, &total_refs,
1362 						inum);
1363 			if (ret)
1364 				goto out;
1365 			ret = __add_keyed_refs(fs_info, path, bytenr,
1366 					       info_level, &prefs,
1367 					       ref_tree, inum);
1368 			if (ret)
1369 				goto out;
1370 		}
1371 	}
1372 	btrfs_release_path(path);
1373 
1374 	list_splice_init(&prefs_delayed, &prefs);
1375 
1376 	ret = __add_missing_keys(fs_info, &prefs);
1377 	if (ret)
1378 		goto out;
1379 
1380 	__merge_refs(&prefs, MERGE_IDENTICAL_KEYS);
1381 
1382 	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1383 				      extent_item_pos, total_refs,
1384 				      root_objectid);
1385 	if (ret)
1386 		goto out;
1387 
1388 	__merge_refs(&prefs, MERGE_IDENTICAL_PARENTS);
1389 
1390 	while (!list_empty(&prefs)) {
1391 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1392 		WARN_ON(ref->count < 0);
1393 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1394 			if (root_objectid && ref->root_id != root_objectid) {
1395 				ret = BACKREF_FOUND_SHARED;
1396 				goto out;
1397 			}
1398 
1399 			/* no parent == root of tree */
1400 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1401 			if (ret < 0)
1402 				goto out;
1403 		}
1404 		if (ref->count && ref->parent) {
1405 			if (extent_item_pos && !ref->inode_list &&
1406 			    ref->level == 0) {
1407 				struct extent_buffer *eb;
1408 
1409 				eb = read_tree_block(fs_info, ref->parent, 0);
1410 				if (IS_ERR(eb)) {
1411 					ret = PTR_ERR(eb);
1412 					goto out;
1413 				} else if (!extent_buffer_uptodate(eb)) {
1414 					free_extent_buffer(eb);
1415 					ret = -EIO;
1416 					goto out;
1417 				}
1418 				btrfs_tree_read_lock(eb);
1419 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1420 				ret = find_extent_in_eb(eb, bytenr,
1421 							*extent_item_pos, &eie);
1422 				btrfs_tree_read_unlock_blocking(eb);
1423 				free_extent_buffer(eb);
1424 				if (ret < 0)
1425 					goto out;
1426 				ref->inode_list = eie;
1427 			}
1428 			ret = ulist_add_merge_ptr(refs, ref->parent,
1429 						  ref->inode_list,
1430 						  (void **)&eie, GFP_NOFS);
1431 			if (ret < 0)
1432 				goto out;
1433 			if (!ret && extent_item_pos) {
1434 				/*
1435 				 * we've recorded that parent, so we must extend
1436 				 * its inode list here
1437 				 */
1438 				BUG_ON(!eie);
1439 				while (eie->next)
1440 					eie = eie->next;
1441 				eie->next = ref->inode_list;
1442 			}
1443 			eie = NULL;
1444 		}
1445 		list_del(&ref->list);
1446 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1447 	}
1448 
1449 out:
1450 	btrfs_free_path(path);
1451 	ref_root_free(ref_tree);
1452 	while (!list_empty(&prefs)) {
1453 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1454 		list_del(&ref->list);
1455 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1456 	}
1457 	while (!list_empty(&prefs_delayed)) {
1458 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1459 				       list);
1460 		list_del(&ref->list);
1461 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1462 	}
1463 	if (ret < 0)
1464 		free_inode_elem_list(eie);
1465 	return ret;
1466 }
1467 
1468 static void free_leaf_list(struct ulist *blocks)
1469 {
1470 	struct ulist_node *node = NULL;
1471 	struct extent_inode_elem *eie;
1472 	struct ulist_iterator uiter;
1473 
1474 	ULIST_ITER_INIT(&uiter);
1475 	while ((node = ulist_next(blocks, &uiter))) {
1476 		if (!node->aux)
1477 			continue;
1478 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1479 		free_inode_elem_list(eie);
1480 		node->aux = 0;
1481 	}
1482 
1483 	ulist_free(blocks);
1484 }
1485 
1486 /*
1487  * Finds all leafs with a reference to the specified combination of bytenr and
1488  * offset. key_list_head will point to a list of corresponding keys (caller must
1489  * free each list element). The leafs will be stored in the leafs ulist, which
1490  * must be freed with ulist_free.
1491  *
1492  * returns 0 on success, <0 on error
1493  */
1494 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1495 				struct btrfs_fs_info *fs_info, u64 bytenr,
1496 				u64 time_seq, struct ulist **leafs,
1497 				const u64 *extent_item_pos)
1498 {
1499 	int ret;
1500 
1501 	*leafs = ulist_alloc(GFP_NOFS);
1502 	if (!*leafs)
1503 		return -ENOMEM;
1504 
1505 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1506 				*leafs, NULL, extent_item_pos, 0, 0, 0);
1507 	if (ret < 0 && ret != -ENOENT) {
1508 		free_leaf_list(*leafs);
1509 		return ret;
1510 	}
1511 
1512 	return 0;
1513 }
1514 
1515 /*
1516  * walk all backrefs for a given extent to find all roots that reference this
1517  * extent. Walking a backref means finding all extents that reference this
1518  * extent and in turn walk the backrefs of those, too. Naturally this is a
1519  * recursive process, but here it is implemented in an iterative fashion: We
1520  * find all referencing extents for the extent in question and put them on a
1521  * list. In turn, we find all referencing extents for those, further appending
1522  * to the list. The way we iterate the list allows adding more elements after
1523  * the current while iterating. The process stops when we reach the end of the
1524  * list. Found roots are added to the roots list.
1525  *
1526  * returns 0 on success, < 0 on error.
1527  */
1528 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1529 				  struct btrfs_fs_info *fs_info, u64 bytenr,
1530 				  u64 time_seq, struct ulist **roots)
1531 {
1532 	struct ulist *tmp;
1533 	struct ulist_node *node = NULL;
1534 	struct ulist_iterator uiter;
1535 	int ret;
1536 
1537 	tmp = ulist_alloc(GFP_NOFS);
1538 	if (!tmp)
1539 		return -ENOMEM;
1540 	*roots = ulist_alloc(GFP_NOFS);
1541 	if (!*roots) {
1542 		ulist_free(tmp);
1543 		return -ENOMEM;
1544 	}
1545 
1546 	ULIST_ITER_INIT(&uiter);
1547 	while (1) {
1548 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1549 					tmp, *roots, NULL, 0, 0, 0);
1550 		if (ret < 0 && ret != -ENOENT) {
1551 			ulist_free(tmp);
1552 			ulist_free(*roots);
1553 			return ret;
1554 		}
1555 		node = ulist_next(tmp, &uiter);
1556 		if (!node)
1557 			break;
1558 		bytenr = node->val;
1559 		cond_resched();
1560 	}
1561 
1562 	ulist_free(tmp);
1563 	return 0;
1564 }
1565 
1566 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1567 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1568 			 u64 time_seq, struct ulist **roots)
1569 {
1570 	int ret;
1571 
1572 	if (!trans)
1573 		down_read(&fs_info->commit_root_sem);
1574 	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1575 	if (!trans)
1576 		up_read(&fs_info->commit_root_sem);
1577 	return ret;
1578 }
1579 
1580 /**
1581  * btrfs_check_shared - tell us whether an extent is shared
1582  *
1583  * @trans: optional trans handle
1584  *
1585  * btrfs_check_shared uses the backref walking code but will short
1586  * circuit as soon as it finds a root or inode that doesn't match the
1587  * one passed in. This provides a significant performance benefit for
1588  * callers (such as fiemap) which want to know whether the extent is
1589  * shared but do not need a ref count.
1590  *
1591  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1592  */
1593 int btrfs_check_shared(struct btrfs_trans_handle *trans,
1594 		       struct btrfs_fs_info *fs_info, u64 root_objectid,
1595 		       u64 inum, u64 bytenr)
1596 {
1597 	struct ulist *tmp = NULL;
1598 	struct ulist *roots = NULL;
1599 	struct ulist_iterator uiter;
1600 	struct ulist_node *node;
1601 	struct seq_list elem = SEQ_LIST_INIT(elem);
1602 	int ret = 0;
1603 
1604 	tmp = ulist_alloc(GFP_NOFS);
1605 	roots = ulist_alloc(GFP_NOFS);
1606 	if (!tmp || !roots) {
1607 		ulist_free(tmp);
1608 		ulist_free(roots);
1609 		return -ENOMEM;
1610 	}
1611 
1612 	if (trans)
1613 		btrfs_get_tree_mod_seq(fs_info, &elem);
1614 	else
1615 		down_read(&fs_info->commit_root_sem);
1616 	ULIST_ITER_INIT(&uiter);
1617 	while (1) {
1618 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1619 					roots, NULL, root_objectid, inum, 1);
1620 		if (ret == BACKREF_FOUND_SHARED) {
1621 			/* this is the only condition under which we return 1 */
1622 			ret = 1;
1623 			break;
1624 		}
1625 		if (ret < 0 && ret != -ENOENT)
1626 			break;
1627 		ret = 0;
1628 		node = ulist_next(tmp, &uiter);
1629 		if (!node)
1630 			break;
1631 		bytenr = node->val;
1632 		cond_resched();
1633 	}
1634 	if (trans)
1635 		btrfs_put_tree_mod_seq(fs_info, &elem);
1636 	else
1637 		up_read(&fs_info->commit_root_sem);
1638 	ulist_free(tmp);
1639 	ulist_free(roots);
1640 	return ret;
1641 }
1642 
1643 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1644 			  u64 start_off, struct btrfs_path *path,
1645 			  struct btrfs_inode_extref **ret_extref,
1646 			  u64 *found_off)
1647 {
1648 	int ret, slot;
1649 	struct btrfs_key key;
1650 	struct btrfs_key found_key;
1651 	struct btrfs_inode_extref *extref;
1652 	struct extent_buffer *leaf;
1653 	unsigned long ptr;
1654 
1655 	key.objectid = inode_objectid;
1656 	key.type = BTRFS_INODE_EXTREF_KEY;
1657 	key.offset = start_off;
1658 
1659 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1660 	if (ret < 0)
1661 		return ret;
1662 
1663 	while (1) {
1664 		leaf = path->nodes[0];
1665 		slot = path->slots[0];
1666 		if (slot >= btrfs_header_nritems(leaf)) {
1667 			/*
1668 			 * If the item at offset is not found,
1669 			 * btrfs_search_slot will point us to the slot
1670 			 * where it should be inserted. In our case
1671 			 * that will be the slot directly before the
1672 			 * next INODE_REF_KEY_V2 item. In the case
1673 			 * that we're pointing to the last slot in a
1674 			 * leaf, we must move one leaf over.
1675 			 */
1676 			ret = btrfs_next_leaf(root, path);
1677 			if (ret) {
1678 				if (ret >= 1)
1679 					ret = -ENOENT;
1680 				break;
1681 			}
1682 			continue;
1683 		}
1684 
1685 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1686 
1687 		/*
1688 		 * Check that we're still looking at an extended ref key for
1689 		 * this particular objectid. If we have different
1690 		 * objectid or type then there are no more to be found
1691 		 * in the tree and we can exit.
1692 		 */
1693 		ret = -ENOENT;
1694 		if (found_key.objectid != inode_objectid)
1695 			break;
1696 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1697 			break;
1698 
1699 		ret = 0;
1700 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1701 		extref = (struct btrfs_inode_extref *)ptr;
1702 		*ret_extref = extref;
1703 		if (found_off)
1704 			*found_off = found_key.offset;
1705 		break;
1706 	}
1707 
1708 	return ret;
1709 }
1710 
1711 /*
1712  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1713  * Elements of the path are separated by '/' and the path is guaranteed to be
1714  * 0-terminated. the path is only given within the current file system.
1715  * Therefore, it never starts with a '/'. the caller is responsible to provide
1716  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1717  * the start point of the resulting string is returned. this pointer is within
1718  * dest, normally.
1719  * in case the path buffer would overflow, the pointer is decremented further
1720  * as if output was written to the buffer, though no more output is actually
1721  * generated. that way, the caller can determine how much space would be
1722  * required for the path to fit into the buffer. in that case, the returned
1723  * value will be smaller than dest. callers must check this!
1724  */
1725 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1726 			u32 name_len, unsigned long name_off,
1727 			struct extent_buffer *eb_in, u64 parent,
1728 			char *dest, u32 size)
1729 {
1730 	int slot;
1731 	u64 next_inum;
1732 	int ret;
1733 	s64 bytes_left = ((s64)size) - 1;
1734 	struct extent_buffer *eb = eb_in;
1735 	struct btrfs_key found_key;
1736 	int leave_spinning = path->leave_spinning;
1737 	struct btrfs_inode_ref *iref;
1738 
1739 	if (bytes_left >= 0)
1740 		dest[bytes_left] = '\0';
1741 
1742 	path->leave_spinning = 1;
1743 	while (1) {
1744 		bytes_left -= name_len;
1745 		if (bytes_left >= 0)
1746 			read_extent_buffer(eb, dest + bytes_left,
1747 					   name_off, name_len);
1748 		if (eb != eb_in) {
1749 			if (!path->skip_locking)
1750 				btrfs_tree_read_unlock_blocking(eb);
1751 			free_extent_buffer(eb);
1752 		}
1753 		ret = btrfs_find_item(fs_root, path, parent, 0,
1754 				BTRFS_INODE_REF_KEY, &found_key);
1755 		if (ret > 0)
1756 			ret = -ENOENT;
1757 		if (ret)
1758 			break;
1759 
1760 		next_inum = found_key.offset;
1761 
1762 		/* regular exit ahead */
1763 		if (parent == next_inum)
1764 			break;
1765 
1766 		slot = path->slots[0];
1767 		eb = path->nodes[0];
1768 		/* make sure we can use eb after releasing the path */
1769 		if (eb != eb_in) {
1770 			if (!path->skip_locking)
1771 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1772 			path->nodes[0] = NULL;
1773 			path->locks[0] = 0;
1774 		}
1775 		btrfs_release_path(path);
1776 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1777 
1778 		name_len = btrfs_inode_ref_name_len(eb, iref);
1779 		name_off = (unsigned long)(iref + 1);
1780 
1781 		parent = next_inum;
1782 		--bytes_left;
1783 		if (bytes_left >= 0)
1784 			dest[bytes_left] = '/';
1785 	}
1786 
1787 	btrfs_release_path(path);
1788 	path->leave_spinning = leave_spinning;
1789 
1790 	if (ret)
1791 		return ERR_PTR(ret);
1792 
1793 	return dest + bytes_left;
1794 }
1795 
1796 /*
1797  * this makes the path point to (logical EXTENT_ITEM *)
1798  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1799  * tree blocks and <0 on error.
1800  */
1801 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1802 			struct btrfs_path *path, struct btrfs_key *found_key,
1803 			u64 *flags_ret)
1804 {
1805 	int ret;
1806 	u64 flags;
1807 	u64 size = 0;
1808 	u32 item_size;
1809 	struct extent_buffer *eb;
1810 	struct btrfs_extent_item *ei;
1811 	struct btrfs_key key;
1812 
1813 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1814 		key.type = BTRFS_METADATA_ITEM_KEY;
1815 	else
1816 		key.type = BTRFS_EXTENT_ITEM_KEY;
1817 	key.objectid = logical;
1818 	key.offset = (u64)-1;
1819 
1820 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1821 	if (ret < 0)
1822 		return ret;
1823 
1824 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1825 	if (ret) {
1826 		if (ret > 0)
1827 			ret = -ENOENT;
1828 		return ret;
1829 	}
1830 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1831 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1832 		size = fs_info->nodesize;
1833 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1834 		size = found_key->offset;
1835 
1836 	if (found_key->objectid > logical ||
1837 	    found_key->objectid + size <= logical) {
1838 		btrfs_debug(fs_info,
1839 			"logical %llu is not within any extent", logical);
1840 		return -ENOENT;
1841 	}
1842 
1843 	eb = path->nodes[0];
1844 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1845 	BUG_ON(item_size < sizeof(*ei));
1846 
1847 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1848 	flags = btrfs_extent_flags(eb, ei);
1849 
1850 	btrfs_debug(fs_info,
1851 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1852 		 logical, logical - found_key->objectid, found_key->objectid,
1853 		 found_key->offset, flags, item_size);
1854 
1855 	WARN_ON(!flags_ret);
1856 	if (flags_ret) {
1857 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1858 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1859 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1860 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1861 		else
1862 			BUG_ON(1);
1863 		return 0;
1864 	}
1865 
1866 	return -EIO;
1867 }
1868 
1869 /*
1870  * helper function to iterate extent inline refs. ptr must point to a 0 value
1871  * for the first call and may be modified. it is used to track state.
1872  * if more refs exist, 0 is returned and the next call to
1873  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1874  * next ref. after the last ref was processed, 1 is returned.
1875  * returns <0 on error
1876  */
1877 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1878 				   struct btrfs_key *key,
1879 				   struct btrfs_extent_item *ei, u32 item_size,
1880 				   struct btrfs_extent_inline_ref **out_eiref,
1881 				   int *out_type)
1882 {
1883 	unsigned long end;
1884 	u64 flags;
1885 	struct btrfs_tree_block_info *info;
1886 
1887 	if (!*ptr) {
1888 		/* first call */
1889 		flags = btrfs_extent_flags(eb, ei);
1890 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1891 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1892 				/* a skinny metadata extent */
1893 				*out_eiref =
1894 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1895 			} else {
1896 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1897 				info = (struct btrfs_tree_block_info *)(ei + 1);
1898 				*out_eiref =
1899 				   (struct btrfs_extent_inline_ref *)(info + 1);
1900 			}
1901 		} else {
1902 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1903 		}
1904 		*ptr = (unsigned long)*out_eiref;
1905 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1906 			return -ENOENT;
1907 	}
1908 
1909 	end = (unsigned long)ei + item_size;
1910 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1911 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1912 
1913 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1914 	WARN_ON(*ptr > end);
1915 	if (*ptr == end)
1916 		return 1; /* last */
1917 
1918 	return 0;
1919 }
1920 
1921 /*
1922  * reads the tree block backref for an extent. tree level and root are returned
1923  * through out_level and out_root. ptr must point to a 0 value for the first
1924  * call and may be modified (see __get_extent_inline_ref comment).
1925  * returns 0 if data was provided, 1 if there was no more data to provide or
1926  * <0 on error.
1927  */
1928 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1929 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1930 			    u32 item_size, u64 *out_root, u8 *out_level)
1931 {
1932 	int ret;
1933 	int type;
1934 	struct btrfs_extent_inline_ref *eiref;
1935 
1936 	if (*ptr == (unsigned long)-1)
1937 		return 1;
1938 
1939 	while (1) {
1940 		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1941 					      &eiref, &type);
1942 		if (ret < 0)
1943 			return ret;
1944 
1945 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1946 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1947 			break;
1948 
1949 		if (ret == 1)
1950 			return 1;
1951 	}
1952 
1953 	/* we can treat both ref types equally here */
1954 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1955 
1956 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1957 		struct btrfs_tree_block_info *info;
1958 
1959 		info = (struct btrfs_tree_block_info *)(ei + 1);
1960 		*out_level = btrfs_tree_block_level(eb, info);
1961 	} else {
1962 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1963 		*out_level = (u8)key->offset;
1964 	}
1965 
1966 	if (ret == 1)
1967 		*ptr = (unsigned long)-1;
1968 
1969 	return 0;
1970 }
1971 
1972 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1973 			     struct extent_inode_elem *inode_list,
1974 			     u64 root, u64 extent_item_objectid,
1975 			     iterate_extent_inodes_t *iterate, void *ctx)
1976 {
1977 	struct extent_inode_elem *eie;
1978 	int ret = 0;
1979 
1980 	for (eie = inode_list; eie; eie = eie->next) {
1981 		btrfs_debug(fs_info,
1982 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1983 			    extent_item_objectid, eie->inum,
1984 			    eie->offset, root);
1985 		ret = iterate(eie->inum, eie->offset, root, ctx);
1986 		if (ret) {
1987 			btrfs_debug(fs_info,
1988 				    "stopping iteration for %llu due to ret=%d",
1989 				    extent_item_objectid, ret);
1990 			break;
1991 		}
1992 	}
1993 
1994 	return ret;
1995 }
1996 
1997 /*
1998  * calls iterate() for every inode that references the extent identified by
1999  * the given parameters.
2000  * when the iterator function returns a non-zero value, iteration stops.
2001  */
2002 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
2003 				u64 extent_item_objectid, u64 extent_item_pos,
2004 				int search_commit_root,
2005 				iterate_extent_inodes_t *iterate, void *ctx)
2006 {
2007 	int ret;
2008 	struct btrfs_trans_handle *trans = NULL;
2009 	struct ulist *refs = NULL;
2010 	struct ulist *roots = NULL;
2011 	struct ulist_node *ref_node = NULL;
2012 	struct ulist_node *root_node = NULL;
2013 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
2014 	struct ulist_iterator ref_uiter;
2015 	struct ulist_iterator root_uiter;
2016 
2017 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
2018 			extent_item_objectid);
2019 
2020 	if (!search_commit_root) {
2021 		trans = btrfs_join_transaction(fs_info->extent_root);
2022 		if (IS_ERR(trans))
2023 			return PTR_ERR(trans);
2024 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2025 	} else {
2026 		down_read(&fs_info->commit_root_sem);
2027 	}
2028 
2029 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
2030 				   tree_mod_seq_elem.seq, &refs,
2031 				   &extent_item_pos);
2032 	if (ret)
2033 		goto out;
2034 
2035 	ULIST_ITER_INIT(&ref_uiter);
2036 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2037 		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
2038 					     tree_mod_seq_elem.seq, &roots);
2039 		if (ret)
2040 			break;
2041 		ULIST_ITER_INIT(&root_uiter);
2042 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2043 			btrfs_debug(fs_info,
2044 				    "root %llu references leaf %llu, data list %#llx",
2045 				    root_node->val, ref_node->val,
2046 				    ref_node->aux);
2047 			ret = iterate_leaf_refs(fs_info,
2048 						(struct extent_inode_elem *)
2049 						(uintptr_t)ref_node->aux,
2050 						root_node->val,
2051 						extent_item_objectid,
2052 						iterate, ctx);
2053 		}
2054 		ulist_free(roots);
2055 	}
2056 
2057 	free_leaf_list(refs);
2058 out:
2059 	if (!search_commit_root) {
2060 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2061 		btrfs_end_transaction(trans);
2062 	} else {
2063 		up_read(&fs_info->commit_root_sem);
2064 	}
2065 
2066 	return ret;
2067 }
2068 
2069 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2070 				struct btrfs_path *path,
2071 				iterate_extent_inodes_t *iterate, void *ctx)
2072 {
2073 	int ret;
2074 	u64 extent_item_pos;
2075 	u64 flags = 0;
2076 	struct btrfs_key found_key;
2077 	int search_commit_root = path->search_commit_root;
2078 
2079 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2080 	btrfs_release_path(path);
2081 	if (ret < 0)
2082 		return ret;
2083 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2084 		return -EINVAL;
2085 
2086 	extent_item_pos = logical - found_key.objectid;
2087 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2088 					extent_item_pos, search_commit_root,
2089 					iterate, ctx);
2090 
2091 	return ret;
2092 }
2093 
2094 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2095 			      struct extent_buffer *eb, void *ctx);
2096 
2097 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2098 			      struct btrfs_path *path,
2099 			      iterate_irefs_t *iterate, void *ctx)
2100 {
2101 	int ret = 0;
2102 	int slot;
2103 	u32 cur;
2104 	u32 len;
2105 	u32 name_len;
2106 	u64 parent = 0;
2107 	int found = 0;
2108 	struct extent_buffer *eb;
2109 	struct btrfs_item *item;
2110 	struct btrfs_inode_ref *iref;
2111 	struct btrfs_key found_key;
2112 
2113 	while (!ret) {
2114 		ret = btrfs_find_item(fs_root, path, inum,
2115 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2116 				&found_key);
2117 
2118 		if (ret < 0)
2119 			break;
2120 		if (ret) {
2121 			ret = found ? 0 : -ENOENT;
2122 			break;
2123 		}
2124 		++found;
2125 
2126 		parent = found_key.offset;
2127 		slot = path->slots[0];
2128 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2129 		if (!eb) {
2130 			ret = -ENOMEM;
2131 			break;
2132 		}
2133 		extent_buffer_get(eb);
2134 		btrfs_tree_read_lock(eb);
2135 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2136 		btrfs_release_path(path);
2137 
2138 		item = btrfs_item_nr(slot);
2139 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2140 
2141 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2142 			name_len = btrfs_inode_ref_name_len(eb, iref);
2143 			/* path must be released before calling iterate()! */
2144 			btrfs_debug(fs_root->fs_info,
2145 				"following ref at offset %u for inode %llu in tree %llu",
2146 				cur, found_key.objectid, fs_root->objectid);
2147 			ret = iterate(parent, name_len,
2148 				      (unsigned long)(iref + 1), eb, ctx);
2149 			if (ret)
2150 				break;
2151 			len = sizeof(*iref) + name_len;
2152 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2153 		}
2154 		btrfs_tree_read_unlock_blocking(eb);
2155 		free_extent_buffer(eb);
2156 	}
2157 
2158 	btrfs_release_path(path);
2159 
2160 	return ret;
2161 }
2162 
2163 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2164 				 struct btrfs_path *path,
2165 				 iterate_irefs_t *iterate, void *ctx)
2166 {
2167 	int ret;
2168 	int slot;
2169 	u64 offset = 0;
2170 	u64 parent;
2171 	int found = 0;
2172 	struct extent_buffer *eb;
2173 	struct btrfs_inode_extref *extref;
2174 	u32 item_size;
2175 	u32 cur_offset;
2176 	unsigned long ptr;
2177 
2178 	while (1) {
2179 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2180 					    &offset);
2181 		if (ret < 0)
2182 			break;
2183 		if (ret) {
2184 			ret = found ? 0 : -ENOENT;
2185 			break;
2186 		}
2187 		++found;
2188 
2189 		slot = path->slots[0];
2190 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2191 		if (!eb) {
2192 			ret = -ENOMEM;
2193 			break;
2194 		}
2195 		extent_buffer_get(eb);
2196 
2197 		btrfs_tree_read_lock(eb);
2198 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2199 		btrfs_release_path(path);
2200 
2201 		item_size = btrfs_item_size_nr(eb, slot);
2202 		ptr = btrfs_item_ptr_offset(eb, slot);
2203 		cur_offset = 0;
2204 
2205 		while (cur_offset < item_size) {
2206 			u32 name_len;
2207 
2208 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2209 			parent = btrfs_inode_extref_parent(eb, extref);
2210 			name_len = btrfs_inode_extref_name_len(eb, extref);
2211 			ret = iterate(parent, name_len,
2212 				      (unsigned long)&extref->name, eb, ctx);
2213 			if (ret)
2214 				break;
2215 
2216 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2217 			cur_offset += sizeof(*extref);
2218 		}
2219 		btrfs_tree_read_unlock_blocking(eb);
2220 		free_extent_buffer(eb);
2221 
2222 		offset++;
2223 	}
2224 
2225 	btrfs_release_path(path);
2226 
2227 	return ret;
2228 }
2229 
2230 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2231 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2232 			 void *ctx)
2233 {
2234 	int ret;
2235 	int found_refs = 0;
2236 
2237 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2238 	if (!ret)
2239 		++found_refs;
2240 	else if (ret != -ENOENT)
2241 		return ret;
2242 
2243 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2244 	if (ret == -ENOENT && found_refs)
2245 		return 0;
2246 
2247 	return ret;
2248 }
2249 
2250 /*
2251  * returns 0 if the path could be dumped (probably truncated)
2252  * returns <0 in case of an error
2253  */
2254 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2255 			 struct extent_buffer *eb, void *ctx)
2256 {
2257 	struct inode_fs_paths *ipath = ctx;
2258 	char *fspath;
2259 	char *fspath_min;
2260 	int i = ipath->fspath->elem_cnt;
2261 	const int s_ptr = sizeof(char *);
2262 	u32 bytes_left;
2263 
2264 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2265 					ipath->fspath->bytes_left - s_ptr : 0;
2266 
2267 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2268 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2269 				   name_off, eb, inum, fspath_min, bytes_left);
2270 	if (IS_ERR(fspath))
2271 		return PTR_ERR(fspath);
2272 
2273 	if (fspath > fspath_min) {
2274 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2275 		++ipath->fspath->elem_cnt;
2276 		ipath->fspath->bytes_left = fspath - fspath_min;
2277 	} else {
2278 		++ipath->fspath->elem_missed;
2279 		ipath->fspath->bytes_missing += fspath_min - fspath;
2280 		ipath->fspath->bytes_left = 0;
2281 	}
2282 
2283 	return 0;
2284 }
2285 
2286 /*
2287  * this dumps all file system paths to the inode into the ipath struct, provided
2288  * is has been created large enough. each path is zero-terminated and accessed
2289  * from ipath->fspath->val[i].
2290  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2291  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2292  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2293  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2294  * have been needed to return all paths.
2295  */
2296 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2297 {
2298 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2299 			     inode_to_path, ipath);
2300 }
2301 
2302 struct btrfs_data_container *init_data_container(u32 total_bytes)
2303 {
2304 	struct btrfs_data_container *data;
2305 	size_t alloc_bytes;
2306 
2307 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2308 	data = vmalloc(alloc_bytes);
2309 	if (!data)
2310 		return ERR_PTR(-ENOMEM);
2311 
2312 	if (total_bytes >= sizeof(*data)) {
2313 		data->bytes_left = total_bytes - sizeof(*data);
2314 		data->bytes_missing = 0;
2315 	} else {
2316 		data->bytes_missing = sizeof(*data) - total_bytes;
2317 		data->bytes_left = 0;
2318 	}
2319 
2320 	data->elem_cnt = 0;
2321 	data->elem_missed = 0;
2322 
2323 	return data;
2324 }
2325 
2326 /*
2327  * allocates space to return multiple file system paths for an inode.
2328  * total_bytes to allocate are passed, note that space usable for actual path
2329  * information will be total_bytes - sizeof(struct inode_fs_paths).
2330  * the returned pointer must be freed with free_ipath() in the end.
2331  */
2332 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2333 					struct btrfs_path *path)
2334 {
2335 	struct inode_fs_paths *ifp;
2336 	struct btrfs_data_container *fspath;
2337 
2338 	fspath = init_data_container(total_bytes);
2339 	if (IS_ERR(fspath))
2340 		return (void *)fspath;
2341 
2342 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
2343 	if (!ifp) {
2344 		vfree(fspath);
2345 		return ERR_PTR(-ENOMEM);
2346 	}
2347 
2348 	ifp->btrfs_path = path;
2349 	ifp->fspath = fspath;
2350 	ifp->fs_root = fs_root;
2351 
2352 	return ifp;
2353 }
2354 
2355 void free_ipath(struct inode_fs_paths *ipath)
2356 {
2357 	if (!ipath)
2358 		return;
2359 	vfree(ipath->fspath);
2360 	kfree(ipath);
2361 }
2362