1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kthread.h> 20 #include <linux/slab.h> 21 #include <linux/list.h> 22 #include <linux/spinlock.h> 23 #include <linux/freezer.h> 24 #include "async-thread.h" 25 26 #define WORK_QUEUED_BIT 0 27 #define WORK_DONE_BIT 1 28 #define WORK_ORDER_DONE_BIT 2 29 #define WORK_HIGH_PRIO_BIT 3 30 31 /* 32 * container for the kthread task pointer and the list of pending work 33 * One of these is allocated per thread. 34 */ 35 struct btrfs_worker_thread { 36 /* pool we belong to */ 37 struct btrfs_workers *workers; 38 39 /* list of struct btrfs_work that are waiting for service */ 40 struct list_head pending; 41 struct list_head prio_pending; 42 43 /* list of worker threads from struct btrfs_workers */ 44 struct list_head worker_list; 45 46 /* kthread */ 47 struct task_struct *task; 48 49 /* number of things on the pending list */ 50 atomic_t num_pending; 51 52 /* reference counter for this struct */ 53 atomic_t refs; 54 55 unsigned long sequence; 56 57 /* protects the pending list. */ 58 spinlock_t lock; 59 60 /* set to non-zero when this thread is already awake and kicking */ 61 int working; 62 63 /* are we currently idle */ 64 int idle; 65 }; 66 67 static int __btrfs_start_workers(struct btrfs_workers *workers); 68 69 /* 70 * btrfs_start_workers uses kthread_run, which can block waiting for memory 71 * for a very long time. It will actually throttle on page writeback, 72 * and so it may not make progress until after our btrfs worker threads 73 * process all of the pending work structs in their queue 74 * 75 * This means we can't use btrfs_start_workers from inside a btrfs worker 76 * thread that is used as part of cleaning dirty memory, which pretty much 77 * involves all of the worker threads. 78 * 79 * Instead we have a helper queue who never has more than one thread 80 * where we scheduler thread start operations. This worker_start struct 81 * is used to contain the work and hold a pointer to the queue that needs 82 * another worker. 83 */ 84 struct worker_start { 85 struct btrfs_work work; 86 struct btrfs_workers *queue; 87 }; 88 89 static void start_new_worker_func(struct btrfs_work *work) 90 { 91 struct worker_start *start; 92 start = container_of(work, struct worker_start, work); 93 __btrfs_start_workers(start->queue); 94 kfree(start); 95 } 96 97 /* 98 * helper function to move a thread onto the idle list after it 99 * has finished some requests. 100 */ 101 static void check_idle_worker(struct btrfs_worker_thread *worker) 102 { 103 if (!worker->idle && atomic_read(&worker->num_pending) < 104 worker->workers->idle_thresh / 2) { 105 unsigned long flags; 106 spin_lock_irqsave(&worker->workers->lock, flags); 107 worker->idle = 1; 108 109 /* the list may be empty if the worker is just starting */ 110 if (!list_empty(&worker->worker_list) && 111 !worker->workers->stopping) { 112 list_move(&worker->worker_list, 113 &worker->workers->idle_list); 114 } 115 spin_unlock_irqrestore(&worker->workers->lock, flags); 116 } 117 } 118 119 /* 120 * helper function to move a thread off the idle list after new 121 * pending work is added. 122 */ 123 static void check_busy_worker(struct btrfs_worker_thread *worker) 124 { 125 if (worker->idle && atomic_read(&worker->num_pending) >= 126 worker->workers->idle_thresh) { 127 unsigned long flags; 128 spin_lock_irqsave(&worker->workers->lock, flags); 129 worker->idle = 0; 130 131 if (!list_empty(&worker->worker_list) && 132 !worker->workers->stopping) { 133 list_move_tail(&worker->worker_list, 134 &worker->workers->worker_list); 135 } 136 spin_unlock_irqrestore(&worker->workers->lock, flags); 137 } 138 } 139 140 static void check_pending_worker_creates(struct btrfs_worker_thread *worker) 141 { 142 struct btrfs_workers *workers = worker->workers; 143 struct worker_start *start; 144 unsigned long flags; 145 146 rmb(); 147 if (!workers->atomic_start_pending) 148 return; 149 150 start = kzalloc(sizeof(*start), GFP_NOFS); 151 if (!start) 152 return; 153 154 start->work.func = start_new_worker_func; 155 start->queue = workers; 156 157 spin_lock_irqsave(&workers->lock, flags); 158 if (!workers->atomic_start_pending) 159 goto out; 160 161 workers->atomic_start_pending = 0; 162 if (workers->num_workers + workers->num_workers_starting >= 163 workers->max_workers) 164 goto out; 165 166 workers->num_workers_starting += 1; 167 spin_unlock_irqrestore(&workers->lock, flags); 168 btrfs_queue_worker(workers->atomic_worker_start, &start->work); 169 return; 170 171 out: 172 kfree(start); 173 spin_unlock_irqrestore(&workers->lock, flags); 174 } 175 176 static noinline void run_ordered_completions(struct btrfs_workers *workers, 177 struct btrfs_work *work) 178 { 179 if (!workers->ordered) 180 return; 181 182 set_bit(WORK_DONE_BIT, &work->flags); 183 184 spin_lock(&workers->order_lock); 185 186 while (1) { 187 if (!list_empty(&workers->prio_order_list)) { 188 work = list_entry(workers->prio_order_list.next, 189 struct btrfs_work, order_list); 190 } else if (!list_empty(&workers->order_list)) { 191 work = list_entry(workers->order_list.next, 192 struct btrfs_work, order_list); 193 } else { 194 break; 195 } 196 if (!test_bit(WORK_DONE_BIT, &work->flags)) 197 break; 198 199 /* we are going to call the ordered done function, but 200 * we leave the work item on the list as a barrier so 201 * that later work items that are done don't have their 202 * functions called before this one returns 203 */ 204 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags)) 205 break; 206 207 spin_unlock(&workers->order_lock); 208 209 work->ordered_func(work); 210 211 /* now take the lock again and drop our item from the list */ 212 spin_lock(&workers->order_lock); 213 list_del(&work->order_list); 214 spin_unlock(&workers->order_lock); 215 216 /* 217 * we don't want to call the ordered free functions 218 * with the lock held though 219 */ 220 work->ordered_free(work); 221 spin_lock(&workers->order_lock); 222 } 223 224 spin_unlock(&workers->order_lock); 225 } 226 227 static void put_worker(struct btrfs_worker_thread *worker) 228 { 229 if (atomic_dec_and_test(&worker->refs)) 230 kfree(worker); 231 } 232 233 static int try_worker_shutdown(struct btrfs_worker_thread *worker) 234 { 235 int freeit = 0; 236 237 spin_lock_irq(&worker->lock); 238 spin_lock(&worker->workers->lock); 239 if (worker->workers->num_workers > 1 && 240 worker->idle && 241 !worker->working && 242 !list_empty(&worker->worker_list) && 243 list_empty(&worker->prio_pending) && 244 list_empty(&worker->pending) && 245 atomic_read(&worker->num_pending) == 0) { 246 freeit = 1; 247 list_del_init(&worker->worker_list); 248 worker->workers->num_workers--; 249 } 250 spin_unlock(&worker->workers->lock); 251 spin_unlock_irq(&worker->lock); 252 253 if (freeit) 254 put_worker(worker); 255 return freeit; 256 } 257 258 static struct btrfs_work *get_next_work(struct btrfs_worker_thread *worker, 259 struct list_head *prio_head, 260 struct list_head *head) 261 { 262 struct btrfs_work *work = NULL; 263 struct list_head *cur = NULL; 264 265 if(!list_empty(prio_head)) 266 cur = prio_head->next; 267 268 smp_mb(); 269 if (!list_empty(&worker->prio_pending)) 270 goto refill; 271 272 if (!list_empty(head)) 273 cur = head->next; 274 275 if (cur) 276 goto out; 277 278 refill: 279 spin_lock_irq(&worker->lock); 280 list_splice_tail_init(&worker->prio_pending, prio_head); 281 list_splice_tail_init(&worker->pending, head); 282 283 if (!list_empty(prio_head)) 284 cur = prio_head->next; 285 else if (!list_empty(head)) 286 cur = head->next; 287 spin_unlock_irq(&worker->lock); 288 289 if (!cur) 290 goto out_fail; 291 292 out: 293 work = list_entry(cur, struct btrfs_work, list); 294 295 out_fail: 296 return work; 297 } 298 299 /* 300 * main loop for servicing work items 301 */ 302 static int worker_loop(void *arg) 303 { 304 struct btrfs_worker_thread *worker = arg; 305 struct list_head head; 306 struct list_head prio_head; 307 struct btrfs_work *work; 308 309 INIT_LIST_HEAD(&head); 310 INIT_LIST_HEAD(&prio_head); 311 312 do { 313 again: 314 while (1) { 315 316 317 work = get_next_work(worker, &prio_head, &head); 318 if (!work) 319 break; 320 321 list_del(&work->list); 322 clear_bit(WORK_QUEUED_BIT, &work->flags); 323 324 work->worker = worker; 325 326 work->func(work); 327 328 atomic_dec(&worker->num_pending); 329 /* 330 * unless this is an ordered work queue, 331 * 'work' was probably freed by func above. 332 */ 333 run_ordered_completions(worker->workers, work); 334 335 check_pending_worker_creates(worker); 336 cond_resched(); 337 } 338 339 spin_lock_irq(&worker->lock); 340 check_idle_worker(worker); 341 342 if (freezing(current)) { 343 worker->working = 0; 344 spin_unlock_irq(&worker->lock); 345 try_to_freeze(); 346 } else { 347 spin_unlock_irq(&worker->lock); 348 if (!kthread_should_stop()) { 349 cpu_relax(); 350 /* 351 * we've dropped the lock, did someone else 352 * jump_in? 353 */ 354 smp_mb(); 355 if (!list_empty(&worker->pending) || 356 !list_empty(&worker->prio_pending)) 357 continue; 358 359 /* 360 * this short schedule allows more work to 361 * come in without the queue functions 362 * needing to go through wake_up_process() 363 * 364 * worker->working is still 1, so nobody 365 * is going to try and wake us up 366 */ 367 schedule_timeout(1); 368 smp_mb(); 369 if (!list_empty(&worker->pending) || 370 !list_empty(&worker->prio_pending)) 371 continue; 372 373 if (kthread_should_stop()) 374 break; 375 376 /* still no more work?, sleep for real */ 377 spin_lock_irq(&worker->lock); 378 set_current_state(TASK_INTERRUPTIBLE); 379 if (!list_empty(&worker->pending) || 380 !list_empty(&worker->prio_pending)) { 381 spin_unlock_irq(&worker->lock); 382 set_current_state(TASK_RUNNING); 383 goto again; 384 } 385 386 /* 387 * this makes sure we get a wakeup when someone 388 * adds something new to the queue 389 */ 390 worker->working = 0; 391 spin_unlock_irq(&worker->lock); 392 393 if (!kthread_should_stop()) { 394 schedule_timeout(HZ * 120); 395 if (!worker->working && 396 try_worker_shutdown(worker)) { 397 return 0; 398 } 399 } 400 } 401 __set_current_state(TASK_RUNNING); 402 } 403 } while (!kthread_should_stop()); 404 return 0; 405 } 406 407 /* 408 * this will wait for all the worker threads to shutdown 409 */ 410 void btrfs_stop_workers(struct btrfs_workers *workers) 411 { 412 struct list_head *cur; 413 struct btrfs_worker_thread *worker; 414 int can_stop; 415 416 spin_lock_irq(&workers->lock); 417 workers->stopping = 1; 418 list_splice_init(&workers->idle_list, &workers->worker_list); 419 while (!list_empty(&workers->worker_list)) { 420 cur = workers->worker_list.next; 421 worker = list_entry(cur, struct btrfs_worker_thread, 422 worker_list); 423 424 atomic_inc(&worker->refs); 425 workers->num_workers -= 1; 426 if (!list_empty(&worker->worker_list)) { 427 list_del_init(&worker->worker_list); 428 put_worker(worker); 429 can_stop = 1; 430 } else 431 can_stop = 0; 432 spin_unlock_irq(&workers->lock); 433 if (can_stop) 434 kthread_stop(worker->task); 435 spin_lock_irq(&workers->lock); 436 put_worker(worker); 437 } 438 spin_unlock_irq(&workers->lock); 439 } 440 441 /* 442 * simple init on struct btrfs_workers 443 */ 444 void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max, 445 struct btrfs_workers *async_helper) 446 { 447 workers->num_workers = 0; 448 workers->num_workers_starting = 0; 449 INIT_LIST_HEAD(&workers->worker_list); 450 INIT_LIST_HEAD(&workers->idle_list); 451 INIT_LIST_HEAD(&workers->order_list); 452 INIT_LIST_HEAD(&workers->prio_order_list); 453 spin_lock_init(&workers->lock); 454 spin_lock_init(&workers->order_lock); 455 workers->max_workers = max; 456 workers->idle_thresh = 32; 457 workers->name = name; 458 workers->ordered = 0; 459 workers->atomic_start_pending = 0; 460 workers->atomic_worker_start = async_helper; 461 workers->stopping = 0; 462 } 463 464 /* 465 * starts new worker threads. This does not enforce the max worker 466 * count in case you need to temporarily go past it. 467 */ 468 static int __btrfs_start_workers(struct btrfs_workers *workers) 469 { 470 struct btrfs_worker_thread *worker; 471 int ret = 0; 472 473 worker = kzalloc(sizeof(*worker), GFP_NOFS); 474 if (!worker) { 475 ret = -ENOMEM; 476 goto fail; 477 } 478 479 INIT_LIST_HEAD(&worker->pending); 480 INIT_LIST_HEAD(&worker->prio_pending); 481 INIT_LIST_HEAD(&worker->worker_list); 482 spin_lock_init(&worker->lock); 483 484 atomic_set(&worker->num_pending, 0); 485 atomic_set(&worker->refs, 1); 486 worker->workers = workers; 487 worker->task = kthread_create(worker_loop, worker, 488 "btrfs-%s-%d", workers->name, 489 workers->num_workers + 1); 490 if (IS_ERR(worker->task)) { 491 ret = PTR_ERR(worker->task); 492 goto fail; 493 } 494 495 spin_lock_irq(&workers->lock); 496 if (workers->stopping) { 497 spin_unlock_irq(&workers->lock); 498 goto fail_kthread; 499 } 500 list_add_tail(&worker->worker_list, &workers->idle_list); 501 worker->idle = 1; 502 workers->num_workers++; 503 workers->num_workers_starting--; 504 WARN_ON(workers->num_workers_starting < 0); 505 spin_unlock_irq(&workers->lock); 506 507 wake_up_process(worker->task); 508 return 0; 509 510 fail_kthread: 511 kthread_stop(worker->task); 512 fail: 513 kfree(worker); 514 spin_lock_irq(&workers->lock); 515 workers->num_workers_starting--; 516 spin_unlock_irq(&workers->lock); 517 return ret; 518 } 519 520 int btrfs_start_workers(struct btrfs_workers *workers) 521 { 522 spin_lock_irq(&workers->lock); 523 workers->num_workers_starting++; 524 spin_unlock_irq(&workers->lock); 525 return __btrfs_start_workers(workers); 526 } 527 528 /* 529 * run through the list and find a worker thread that doesn't have a lot 530 * to do right now. This can return null if we aren't yet at the thread 531 * count limit and all of the threads are busy. 532 */ 533 static struct btrfs_worker_thread *next_worker(struct btrfs_workers *workers) 534 { 535 struct btrfs_worker_thread *worker; 536 struct list_head *next; 537 int enforce_min; 538 539 enforce_min = (workers->num_workers + workers->num_workers_starting) < 540 workers->max_workers; 541 542 /* 543 * if we find an idle thread, don't move it to the end of the 544 * idle list. This improves the chance that the next submission 545 * will reuse the same thread, and maybe catch it while it is still 546 * working 547 */ 548 if (!list_empty(&workers->idle_list)) { 549 next = workers->idle_list.next; 550 worker = list_entry(next, struct btrfs_worker_thread, 551 worker_list); 552 return worker; 553 } 554 if (enforce_min || list_empty(&workers->worker_list)) 555 return NULL; 556 557 /* 558 * if we pick a busy task, move the task to the end of the list. 559 * hopefully this will keep things somewhat evenly balanced. 560 * Do the move in batches based on the sequence number. This groups 561 * requests submitted at roughly the same time onto the same worker. 562 */ 563 next = workers->worker_list.next; 564 worker = list_entry(next, struct btrfs_worker_thread, worker_list); 565 worker->sequence++; 566 567 if (worker->sequence % workers->idle_thresh == 0) 568 list_move_tail(next, &workers->worker_list); 569 return worker; 570 } 571 572 /* 573 * selects a worker thread to take the next job. This will either find 574 * an idle worker, start a new worker up to the max count, or just return 575 * one of the existing busy workers. 576 */ 577 static struct btrfs_worker_thread *find_worker(struct btrfs_workers *workers) 578 { 579 struct btrfs_worker_thread *worker; 580 unsigned long flags; 581 struct list_head *fallback; 582 int ret; 583 584 spin_lock_irqsave(&workers->lock, flags); 585 again: 586 worker = next_worker(workers); 587 588 if (!worker) { 589 if (workers->num_workers + workers->num_workers_starting >= 590 workers->max_workers) { 591 goto fallback; 592 } else if (workers->atomic_worker_start) { 593 workers->atomic_start_pending = 1; 594 goto fallback; 595 } else { 596 workers->num_workers_starting++; 597 spin_unlock_irqrestore(&workers->lock, flags); 598 /* we're below the limit, start another worker */ 599 ret = __btrfs_start_workers(workers); 600 spin_lock_irqsave(&workers->lock, flags); 601 if (ret) 602 goto fallback; 603 goto again; 604 } 605 } 606 goto found; 607 608 fallback: 609 fallback = NULL; 610 /* 611 * we have failed to find any workers, just 612 * return the first one we can find. 613 */ 614 if (!list_empty(&workers->worker_list)) 615 fallback = workers->worker_list.next; 616 if (!list_empty(&workers->idle_list)) 617 fallback = workers->idle_list.next; 618 BUG_ON(!fallback); 619 worker = list_entry(fallback, 620 struct btrfs_worker_thread, worker_list); 621 found: 622 /* 623 * this makes sure the worker doesn't exit before it is placed 624 * onto a busy/idle list 625 */ 626 atomic_inc(&worker->num_pending); 627 spin_unlock_irqrestore(&workers->lock, flags); 628 return worker; 629 } 630 631 /* 632 * btrfs_requeue_work just puts the work item back on the tail of the list 633 * it was taken from. It is intended for use with long running work functions 634 * that make some progress and want to give the cpu up for others. 635 */ 636 void btrfs_requeue_work(struct btrfs_work *work) 637 { 638 struct btrfs_worker_thread *worker = work->worker; 639 unsigned long flags; 640 int wake = 0; 641 642 if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags)) 643 return; 644 645 spin_lock_irqsave(&worker->lock, flags); 646 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags)) 647 list_add_tail(&work->list, &worker->prio_pending); 648 else 649 list_add_tail(&work->list, &worker->pending); 650 atomic_inc(&worker->num_pending); 651 652 /* by definition we're busy, take ourselves off the idle 653 * list 654 */ 655 if (worker->idle) { 656 spin_lock(&worker->workers->lock); 657 worker->idle = 0; 658 list_move_tail(&worker->worker_list, 659 &worker->workers->worker_list); 660 spin_unlock(&worker->workers->lock); 661 } 662 if (!worker->working) { 663 wake = 1; 664 worker->working = 1; 665 } 666 667 if (wake) 668 wake_up_process(worker->task); 669 spin_unlock_irqrestore(&worker->lock, flags); 670 } 671 672 void btrfs_set_work_high_prio(struct btrfs_work *work) 673 { 674 set_bit(WORK_HIGH_PRIO_BIT, &work->flags); 675 } 676 677 /* 678 * places a struct btrfs_work into the pending queue of one of the kthreads 679 */ 680 void btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work) 681 { 682 struct btrfs_worker_thread *worker; 683 unsigned long flags; 684 int wake = 0; 685 686 /* don't requeue something already on a list */ 687 if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags)) 688 return; 689 690 worker = find_worker(workers); 691 if (workers->ordered) { 692 /* 693 * you're not allowed to do ordered queues from an 694 * interrupt handler 695 */ 696 spin_lock(&workers->order_lock); 697 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags)) { 698 list_add_tail(&work->order_list, 699 &workers->prio_order_list); 700 } else { 701 list_add_tail(&work->order_list, &workers->order_list); 702 } 703 spin_unlock(&workers->order_lock); 704 } else { 705 INIT_LIST_HEAD(&work->order_list); 706 } 707 708 spin_lock_irqsave(&worker->lock, flags); 709 710 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags)) 711 list_add_tail(&work->list, &worker->prio_pending); 712 else 713 list_add_tail(&work->list, &worker->pending); 714 check_busy_worker(worker); 715 716 /* 717 * avoid calling into wake_up_process if this thread has already 718 * been kicked 719 */ 720 if (!worker->working) 721 wake = 1; 722 worker->working = 1; 723 724 if (wake) 725 wake_up_process(worker->task); 726 spin_unlock_irqrestore(&worker->lock, flags); 727 } 728