xref: /openbmc/linux/fs/btrfs/async-thread.c (revision e23feb16)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kthread.h>
20 #include <linux/slab.h>
21 #include <linux/list.h>
22 #include <linux/spinlock.h>
23 #include <linux/freezer.h>
24 #include "async-thread.h"
25 
26 #define WORK_QUEUED_BIT 0
27 #define WORK_DONE_BIT 1
28 #define WORK_ORDER_DONE_BIT 2
29 #define WORK_HIGH_PRIO_BIT 3
30 
31 /*
32  * container for the kthread task pointer and the list of pending work
33  * One of these is allocated per thread.
34  */
35 struct btrfs_worker_thread {
36 	/* pool we belong to */
37 	struct btrfs_workers *workers;
38 
39 	/* list of struct btrfs_work that are waiting for service */
40 	struct list_head pending;
41 	struct list_head prio_pending;
42 
43 	/* list of worker threads from struct btrfs_workers */
44 	struct list_head worker_list;
45 
46 	/* kthread */
47 	struct task_struct *task;
48 
49 	/* number of things on the pending list */
50 	atomic_t num_pending;
51 
52 	/* reference counter for this struct */
53 	atomic_t refs;
54 
55 	unsigned long sequence;
56 
57 	/* protects the pending list. */
58 	spinlock_t lock;
59 
60 	/* set to non-zero when this thread is already awake and kicking */
61 	int working;
62 
63 	/* are we currently idle */
64 	int idle;
65 };
66 
67 static int __btrfs_start_workers(struct btrfs_workers *workers);
68 
69 /*
70  * btrfs_start_workers uses kthread_run, which can block waiting for memory
71  * for a very long time.  It will actually throttle on page writeback,
72  * and so it may not make progress until after our btrfs worker threads
73  * process all of the pending work structs in their queue
74  *
75  * This means we can't use btrfs_start_workers from inside a btrfs worker
76  * thread that is used as part of cleaning dirty memory, which pretty much
77  * involves all of the worker threads.
78  *
79  * Instead we have a helper queue who never has more than one thread
80  * where we scheduler thread start operations.  This worker_start struct
81  * is used to contain the work and hold a pointer to the queue that needs
82  * another worker.
83  */
84 struct worker_start {
85 	struct btrfs_work work;
86 	struct btrfs_workers *queue;
87 };
88 
89 static void start_new_worker_func(struct btrfs_work *work)
90 {
91 	struct worker_start *start;
92 	start = container_of(work, struct worker_start, work);
93 	__btrfs_start_workers(start->queue);
94 	kfree(start);
95 }
96 
97 /*
98  * helper function to move a thread onto the idle list after it
99  * has finished some requests.
100  */
101 static void check_idle_worker(struct btrfs_worker_thread *worker)
102 {
103 	if (!worker->idle && atomic_read(&worker->num_pending) <
104 	    worker->workers->idle_thresh / 2) {
105 		unsigned long flags;
106 		spin_lock_irqsave(&worker->workers->lock, flags);
107 		worker->idle = 1;
108 
109 		/* the list may be empty if the worker is just starting */
110 		if (!list_empty(&worker->worker_list) &&
111 		    !worker->workers->stopping) {
112 			list_move(&worker->worker_list,
113 				 &worker->workers->idle_list);
114 		}
115 		spin_unlock_irqrestore(&worker->workers->lock, flags);
116 	}
117 }
118 
119 /*
120  * helper function to move a thread off the idle list after new
121  * pending work is added.
122  */
123 static void check_busy_worker(struct btrfs_worker_thread *worker)
124 {
125 	if (worker->idle && atomic_read(&worker->num_pending) >=
126 	    worker->workers->idle_thresh) {
127 		unsigned long flags;
128 		spin_lock_irqsave(&worker->workers->lock, flags);
129 		worker->idle = 0;
130 
131 		if (!list_empty(&worker->worker_list) &&
132 		    !worker->workers->stopping) {
133 			list_move_tail(&worker->worker_list,
134 				      &worker->workers->worker_list);
135 		}
136 		spin_unlock_irqrestore(&worker->workers->lock, flags);
137 	}
138 }
139 
140 static void check_pending_worker_creates(struct btrfs_worker_thread *worker)
141 {
142 	struct btrfs_workers *workers = worker->workers;
143 	struct worker_start *start;
144 	unsigned long flags;
145 
146 	rmb();
147 	if (!workers->atomic_start_pending)
148 		return;
149 
150 	start = kzalloc(sizeof(*start), GFP_NOFS);
151 	if (!start)
152 		return;
153 
154 	start->work.func = start_new_worker_func;
155 	start->queue = workers;
156 
157 	spin_lock_irqsave(&workers->lock, flags);
158 	if (!workers->atomic_start_pending)
159 		goto out;
160 
161 	workers->atomic_start_pending = 0;
162 	if (workers->num_workers + workers->num_workers_starting >=
163 	    workers->max_workers)
164 		goto out;
165 
166 	workers->num_workers_starting += 1;
167 	spin_unlock_irqrestore(&workers->lock, flags);
168 	btrfs_queue_worker(workers->atomic_worker_start, &start->work);
169 	return;
170 
171 out:
172 	kfree(start);
173 	spin_unlock_irqrestore(&workers->lock, flags);
174 }
175 
176 static noinline void run_ordered_completions(struct btrfs_workers *workers,
177 					    struct btrfs_work *work)
178 {
179 	if (!workers->ordered)
180 		return;
181 
182 	set_bit(WORK_DONE_BIT, &work->flags);
183 
184 	spin_lock(&workers->order_lock);
185 
186 	while (1) {
187 		if (!list_empty(&workers->prio_order_list)) {
188 			work = list_entry(workers->prio_order_list.next,
189 					  struct btrfs_work, order_list);
190 		} else if (!list_empty(&workers->order_list)) {
191 			work = list_entry(workers->order_list.next,
192 					  struct btrfs_work, order_list);
193 		} else {
194 			break;
195 		}
196 		if (!test_bit(WORK_DONE_BIT, &work->flags))
197 			break;
198 
199 		/* we are going to call the ordered done function, but
200 		 * we leave the work item on the list as a barrier so
201 		 * that later work items that are done don't have their
202 		 * functions called before this one returns
203 		 */
204 		if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
205 			break;
206 
207 		spin_unlock(&workers->order_lock);
208 
209 		work->ordered_func(work);
210 
211 		/* now take the lock again and drop our item from the list */
212 		spin_lock(&workers->order_lock);
213 		list_del(&work->order_list);
214 		spin_unlock(&workers->order_lock);
215 
216 		/*
217 		 * we don't want to call the ordered free functions
218 		 * with the lock held though
219 		 */
220 		work->ordered_free(work);
221 		spin_lock(&workers->order_lock);
222 	}
223 
224 	spin_unlock(&workers->order_lock);
225 }
226 
227 static void put_worker(struct btrfs_worker_thread *worker)
228 {
229 	if (atomic_dec_and_test(&worker->refs))
230 		kfree(worker);
231 }
232 
233 static int try_worker_shutdown(struct btrfs_worker_thread *worker)
234 {
235 	int freeit = 0;
236 
237 	spin_lock_irq(&worker->lock);
238 	spin_lock(&worker->workers->lock);
239 	if (worker->workers->num_workers > 1 &&
240 	    worker->idle &&
241 	    !worker->working &&
242 	    !list_empty(&worker->worker_list) &&
243 	    list_empty(&worker->prio_pending) &&
244 	    list_empty(&worker->pending) &&
245 	    atomic_read(&worker->num_pending) == 0) {
246 		freeit = 1;
247 		list_del_init(&worker->worker_list);
248 		worker->workers->num_workers--;
249 	}
250 	spin_unlock(&worker->workers->lock);
251 	spin_unlock_irq(&worker->lock);
252 
253 	if (freeit)
254 		put_worker(worker);
255 	return freeit;
256 }
257 
258 static struct btrfs_work *get_next_work(struct btrfs_worker_thread *worker,
259 					struct list_head *prio_head,
260 					struct list_head *head)
261 {
262 	struct btrfs_work *work = NULL;
263 	struct list_head *cur = NULL;
264 
265 	if(!list_empty(prio_head))
266 		cur = prio_head->next;
267 
268 	smp_mb();
269 	if (!list_empty(&worker->prio_pending))
270 		goto refill;
271 
272 	if (!list_empty(head))
273 		cur = head->next;
274 
275 	if (cur)
276 		goto out;
277 
278 refill:
279 	spin_lock_irq(&worker->lock);
280 	list_splice_tail_init(&worker->prio_pending, prio_head);
281 	list_splice_tail_init(&worker->pending, head);
282 
283 	if (!list_empty(prio_head))
284 		cur = prio_head->next;
285 	else if (!list_empty(head))
286 		cur = head->next;
287 	spin_unlock_irq(&worker->lock);
288 
289 	if (!cur)
290 		goto out_fail;
291 
292 out:
293 	work = list_entry(cur, struct btrfs_work, list);
294 
295 out_fail:
296 	return work;
297 }
298 
299 /*
300  * main loop for servicing work items
301  */
302 static int worker_loop(void *arg)
303 {
304 	struct btrfs_worker_thread *worker = arg;
305 	struct list_head head;
306 	struct list_head prio_head;
307 	struct btrfs_work *work;
308 
309 	INIT_LIST_HEAD(&head);
310 	INIT_LIST_HEAD(&prio_head);
311 
312 	do {
313 again:
314 		while (1) {
315 
316 
317 			work = get_next_work(worker, &prio_head, &head);
318 			if (!work)
319 				break;
320 
321 			list_del(&work->list);
322 			clear_bit(WORK_QUEUED_BIT, &work->flags);
323 
324 			work->worker = worker;
325 
326 			work->func(work);
327 
328 			atomic_dec(&worker->num_pending);
329 			/*
330 			 * unless this is an ordered work queue,
331 			 * 'work' was probably freed by func above.
332 			 */
333 			run_ordered_completions(worker->workers, work);
334 
335 			check_pending_worker_creates(worker);
336 			cond_resched();
337 		}
338 
339 		spin_lock_irq(&worker->lock);
340 		check_idle_worker(worker);
341 
342 		if (freezing(current)) {
343 			worker->working = 0;
344 			spin_unlock_irq(&worker->lock);
345 			try_to_freeze();
346 		} else {
347 			spin_unlock_irq(&worker->lock);
348 			if (!kthread_should_stop()) {
349 				cpu_relax();
350 				/*
351 				 * we've dropped the lock, did someone else
352 				 * jump_in?
353 				 */
354 				smp_mb();
355 				if (!list_empty(&worker->pending) ||
356 				    !list_empty(&worker->prio_pending))
357 					continue;
358 
359 				/*
360 				 * this short schedule allows more work to
361 				 * come in without the queue functions
362 				 * needing to go through wake_up_process()
363 				 *
364 				 * worker->working is still 1, so nobody
365 				 * is going to try and wake us up
366 				 */
367 				schedule_timeout(1);
368 				smp_mb();
369 				if (!list_empty(&worker->pending) ||
370 				    !list_empty(&worker->prio_pending))
371 					continue;
372 
373 				if (kthread_should_stop())
374 					break;
375 
376 				/* still no more work?, sleep for real */
377 				spin_lock_irq(&worker->lock);
378 				set_current_state(TASK_INTERRUPTIBLE);
379 				if (!list_empty(&worker->pending) ||
380 				    !list_empty(&worker->prio_pending)) {
381 					spin_unlock_irq(&worker->lock);
382 					set_current_state(TASK_RUNNING);
383 					goto again;
384 				}
385 
386 				/*
387 				 * this makes sure we get a wakeup when someone
388 				 * adds something new to the queue
389 				 */
390 				worker->working = 0;
391 				spin_unlock_irq(&worker->lock);
392 
393 				if (!kthread_should_stop()) {
394 					schedule_timeout(HZ * 120);
395 					if (!worker->working &&
396 					    try_worker_shutdown(worker)) {
397 						return 0;
398 					}
399 				}
400 			}
401 			__set_current_state(TASK_RUNNING);
402 		}
403 	} while (!kthread_should_stop());
404 	return 0;
405 }
406 
407 /*
408  * this will wait for all the worker threads to shutdown
409  */
410 void btrfs_stop_workers(struct btrfs_workers *workers)
411 {
412 	struct list_head *cur;
413 	struct btrfs_worker_thread *worker;
414 	int can_stop;
415 
416 	spin_lock_irq(&workers->lock);
417 	workers->stopping = 1;
418 	list_splice_init(&workers->idle_list, &workers->worker_list);
419 	while (!list_empty(&workers->worker_list)) {
420 		cur = workers->worker_list.next;
421 		worker = list_entry(cur, struct btrfs_worker_thread,
422 				    worker_list);
423 
424 		atomic_inc(&worker->refs);
425 		workers->num_workers -= 1;
426 		if (!list_empty(&worker->worker_list)) {
427 			list_del_init(&worker->worker_list);
428 			put_worker(worker);
429 			can_stop = 1;
430 		} else
431 			can_stop = 0;
432 		spin_unlock_irq(&workers->lock);
433 		if (can_stop)
434 			kthread_stop(worker->task);
435 		spin_lock_irq(&workers->lock);
436 		put_worker(worker);
437 	}
438 	spin_unlock_irq(&workers->lock);
439 }
440 
441 /*
442  * simple init on struct btrfs_workers
443  */
444 void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max,
445 			struct btrfs_workers *async_helper)
446 {
447 	workers->num_workers = 0;
448 	workers->num_workers_starting = 0;
449 	INIT_LIST_HEAD(&workers->worker_list);
450 	INIT_LIST_HEAD(&workers->idle_list);
451 	INIT_LIST_HEAD(&workers->order_list);
452 	INIT_LIST_HEAD(&workers->prio_order_list);
453 	spin_lock_init(&workers->lock);
454 	spin_lock_init(&workers->order_lock);
455 	workers->max_workers = max;
456 	workers->idle_thresh = 32;
457 	workers->name = name;
458 	workers->ordered = 0;
459 	workers->atomic_start_pending = 0;
460 	workers->atomic_worker_start = async_helper;
461 	workers->stopping = 0;
462 }
463 
464 /*
465  * starts new worker threads.  This does not enforce the max worker
466  * count in case you need to temporarily go past it.
467  */
468 static int __btrfs_start_workers(struct btrfs_workers *workers)
469 {
470 	struct btrfs_worker_thread *worker;
471 	int ret = 0;
472 
473 	worker = kzalloc(sizeof(*worker), GFP_NOFS);
474 	if (!worker) {
475 		ret = -ENOMEM;
476 		goto fail;
477 	}
478 
479 	INIT_LIST_HEAD(&worker->pending);
480 	INIT_LIST_HEAD(&worker->prio_pending);
481 	INIT_LIST_HEAD(&worker->worker_list);
482 	spin_lock_init(&worker->lock);
483 
484 	atomic_set(&worker->num_pending, 0);
485 	atomic_set(&worker->refs, 1);
486 	worker->workers = workers;
487 	worker->task = kthread_create(worker_loop, worker,
488 				      "btrfs-%s-%d", workers->name,
489 				      workers->num_workers + 1);
490 	if (IS_ERR(worker->task)) {
491 		ret = PTR_ERR(worker->task);
492 		goto fail;
493 	}
494 
495 	spin_lock_irq(&workers->lock);
496 	if (workers->stopping) {
497 		spin_unlock_irq(&workers->lock);
498 		goto fail_kthread;
499 	}
500 	list_add_tail(&worker->worker_list, &workers->idle_list);
501 	worker->idle = 1;
502 	workers->num_workers++;
503 	workers->num_workers_starting--;
504 	WARN_ON(workers->num_workers_starting < 0);
505 	spin_unlock_irq(&workers->lock);
506 
507 	wake_up_process(worker->task);
508 	return 0;
509 
510 fail_kthread:
511 	kthread_stop(worker->task);
512 fail:
513 	kfree(worker);
514 	spin_lock_irq(&workers->lock);
515 	workers->num_workers_starting--;
516 	spin_unlock_irq(&workers->lock);
517 	return ret;
518 }
519 
520 int btrfs_start_workers(struct btrfs_workers *workers)
521 {
522 	spin_lock_irq(&workers->lock);
523 	workers->num_workers_starting++;
524 	spin_unlock_irq(&workers->lock);
525 	return __btrfs_start_workers(workers);
526 }
527 
528 /*
529  * run through the list and find a worker thread that doesn't have a lot
530  * to do right now.  This can return null if we aren't yet at the thread
531  * count limit and all of the threads are busy.
532  */
533 static struct btrfs_worker_thread *next_worker(struct btrfs_workers *workers)
534 {
535 	struct btrfs_worker_thread *worker;
536 	struct list_head *next;
537 	int enforce_min;
538 
539 	enforce_min = (workers->num_workers + workers->num_workers_starting) <
540 		workers->max_workers;
541 
542 	/*
543 	 * if we find an idle thread, don't move it to the end of the
544 	 * idle list.  This improves the chance that the next submission
545 	 * will reuse the same thread, and maybe catch it while it is still
546 	 * working
547 	 */
548 	if (!list_empty(&workers->idle_list)) {
549 		next = workers->idle_list.next;
550 		worker = list_entry(next, struct btrfs_worker_thread,
551 				    worker_list);
552 		return worker;
553 	}
554 	if (enforce_min || list_empty(&workers->worker_list))
555 		return NULL;
556 
557 	/*
558 	 * if we pick a busy task, move the task to the end of the list.
559 	 * hopefully this will keep things somewhat evenly balanced.
560 	 * Do the move in batches based on the sequence number.  This groups
561 	 * requests submitted at roughly the same time onto the same worker.
562 	 */
563 	next = workers->worker_list.next;
564 	worker = list_entry(next, struct btrfs_worker_thread, worker_list);
565 	worker->sequence++;
566 
567 	if (worker->sequence % workers->idle_thresh == 0)
568 		list_move_tail(next, &workers->worker_list);
569 	return worker;
570 }
571 
572 /*
573  * selects a worker thread to take the next job.  This will either find
574  * an idle worker, start a new worker up to the max count, or just return
575  * one of the existing busy workers.
576  */
577 static struct btrfs_worker_thread *find_worker(struct btrfs_workers *workers)
578 {
579 	struct btrfs_worker_thread *worker;
580 	unsigned long flags;
581 	struct list_head *fallback;
582 	int ret;
583 
584 	spin_lock_irqsave(&workers->lock, flags);
585 again:
586 	worker = next_worker(workers);
587 
588 	if (!worker) {
589 		if (workers->num_workers + workers->num_workers_starting >=
590 		    workers->max_workers) {
591 			goto fallback;
592 		} else if (workers->atomic_worker_start) {
593 			workers->atomic_start_pending = 1;
594 			goto fallback;
595 		} else {
596 			workers->num_workers_starting++;
597 			spin_unlock_irqrestore(&workers->lock, flags);
598 			/* we're below the limit, start another worker */
599 			ret = __btrfs_start_workers(workers);
600 			spin_lock_irqsave(&workers->lock, flags);
601 			if (ret)
602 				goto fallback;
603 			goto again;
604 		}
605 	}
606 	goto found;
607 
608 fallback:
609 	fallback = NULL;
610 	/*
611 	 * we have failed to find any workers, just
612 	 * return the first one we can find.
613 	 */
614 	if (!list_empty(&workers->worker_list))
615 		fallback = workers->worker_list.next;
616 	if (!list_empty(&workers->idle_list))
617 		fallback = workers->idle_list.next;
618 	BUG_ON(!fallback);
619 	worker = list_entry(fallback,
620 		  struct btrfs_worker_thread, worker_list);
621 found:
622 	/*
623 	 * this makes sure the worker doesn't exit before it is placed
624 	 * onto a busy/idle list
625 	 */
626 	atomic_inc(&worker->num_pending);
627 	spin_unlock_irqrestore(&workers->lock, flags);
628 	return worker;
629 }
630 
631 /*
632  * btrfs_requeue_work just puts the work item back on the tail of the list
633  * it was taken from.  It is intended for use with long running work functions
634  * that make some progress and want to give the cpu up for others.
635  */
636 void btrfs_requeue_work(struct btrfs_work *work)
637 {
638 	struct btrfs_worker_thread *worker = work->worker;
639 	unsigned long flags;
640 	int wake = 0;
641 
642 	if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
643 		return;
644 
645 	spin_lock_irqsave(&worker->lock, flags);
646 	if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
647 		list_add_tail(&work->list, &worker->prio_pending);
648 	else
649 		list_add_tail(&work->list, &worker->pending);
650 	atomic_inc(&worker->num_pending);
651 
652 	/* by definition we're busy, take ourselves off the idle
653 	 * list
654 	 */
655 	if (worker->idle) {
656 		spin_lock(&worker->workers->lock);
657 		worker->idle = 0;
658 		list_move_tail(&worker->worker_list,
659 			      &worker->workers->worker_list);
660 		spin_unlock(&worker->workers->lock);
661 	}
662 	if (!worker->working) {
663 		wake = 1;
664 		worker->working = 1;
665 	}
666 
667 	if (wake)
668 		wake_up_process(worker->task);
669 	spin_unlock_irqrestore(&worker->lock, flags);
670 }
671 
672 void btrfs_set_work_high_prio(struct btrfs_work *work)
673 {
674 	set_bit(WORK_HIGH_PRIO_BIT, &work->flags);
675 }
676 
677 /*
678  * places a struct btrfs_work into the pending queue of one of the kthreads
679  */
680 void btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work)
681 {
682 	struct btrfs_worker_thread *worker;
683 	unsigned long flags;
684 	int wake = 0;
685 
686 	/* don't requeue something already on a list */
687 	if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
688 		return;
689 
690 	worker = find_worker(workers);
691 	if (workers->ordered) {
692 		/*
693 		 * you're not allowed to do ordered queues from an
694 		 * interrupt handler
695 		 */
696 		spin_lock(&workers->order_lock);
697 		if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags)) {
698 			list_add_tail(&work->order_list,
699 				      &workers->prio_order_list);
700 		} else {
701 			list_add_tail(&work->order_list, &workers->order_list);
702 		}
703 		spin_unlock(&workers->order_lock);
704 	} else {
705 		INIT_LIST_HEAD(&work->order_list);
706 	}
707 
708 	spin_lock_irqsave(&worker->lock, flags);
709 
710 	if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
711 		list_add_tail(&work->list, &worker->prio_pending);
712 	else
713 		list_add_tail(&work->list, &worker->pending);
714 	check_busy_worker(worker);
715 
716 	/*
717 	 * avoid calling into wake_up_process if this thread has already
718 	 * been kicked
719 	 */
720 	if (!worker->working)
721 		wake = 1;
722 	worker->working = 1;
723 
724 	if (wake)
725 		wake_up_process(worker->task);
726 	spin_unlock_irqrestore(&worker->lock, flags);
727 }
728