xref: /openbmc/linux/fs/btrfs/async-thread.c (revision e190bfe5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kthread.h>
20 #include <linux/slab.h>
21 #include <linux/list.h>
22 #include <linux/spinlock.h>
23 #include <linux/freezer.h>
24 #include "async-thread.h"
25 
26 #define WORK_QUEUED_BIT 0
27 #define WORK_DONE_BIT 1
28 #define WORK_ORDER_DONE_BIT 2
29 #define WORK_HIGH_PRIO_BIT 3
30 
31 /*
32  * container for the kthread task pointer and the list of pending work
33  * One of these is allocated per thread.
34  */
35 struct btrfs_worker_thread {
36 	/* pool we belong to */
37 	struct btrfs_workers *workers;
38 
39 	/* list of struct btrfs_work that are waiting for service */
40 	struct list_head pending;
41 	struct list_head prio_pending;
42 
43 	/* list of worker threads from struct btrfs_workers */
44 	struct list_head worker_list;
45 
46 	/* kthread */
47 	struct task_struct *task;
48 
49 	/* number of things on the pending list */
50 	atomic_t num_pending;
51 
52 	/* reference counter for this struct */
53 	atomic_t refs;
54 
55 	unsigned long sequence;
56 
57 	/* protects the pending list. */
58 	spinlock_t lock;
59 
60 	/* set to non-zero when this thread is already awake and kicking */
61 	int working;
62 
63 	/* are we currently idle */
64 	int idle;
65 };
66 
67 /*
68  * btrfs_start_workers uses kthread_run, which can block waiting for memory
69  * for a very long time.  It will actually throttle on page writeback,
70  * and so it may not make progress until after our btrfs worker threads
71  * process all of the pending work structs in their queue
72  *
73  * This means we can't use btrfs_start_workers from inside a btrfs worker
74  * thread that is used as part of cleaning dirty memory, which pretty much
75  * involves all of the worker threads.
76  *
77  * Instead we have a helper queue who never has more than one thread
78  * where we scheduler thread start operations.  This worker_start struct
79  * is used to contain the work and hold a pointer to the queue that needs
80  * another worker.
81  */
82 struct worker_start {
83 	struct btrfs_work work;
84 	struct btrfs_workers *queue;
85 };
86 
87 static void start_new_worker_func(struct btrfs_work *work)
88 {
89 	struct worker_start *start;
90 	start = container_of(work, struct worker_start, work);
91 	btrfs_start_workers(start->queue, 1);
92 	kfree(start);
93 }
94 
95 static int start_new_worker(struct btrfs_workers *queue)
96 {
97 	struct worker_start *start;
98 	int ret;
99 
100 	start = kzalloc(sizeof(*start), GFP_NOFS);
101 	if (!start)
102 		return -ENOMEM;
103 
104 	start->work.func = start_new_worker_func;
105 	start->queue = queue;
106 	ret = btrfs_queue_worker(queue->atomic_worker_start, &start->work);
107 	if (ret)
108 		kfree(start);
109 	return ret;
110 }
111 
112 /*
113  * helper function to move a thread onto the idle list after it
114  * has finished some requests.
115  */
116 static void check_idle_worker(struct btrfs_worker_thread *worker)
117 {
118 	if (!worker->idle && atomic_read(&worker->num_pending) <
119 	    worker->workers->idle_thresh / 2) {
120 		unsigned long flags;
121 		spin_lock_irqsave(&worker->workers->lock, flags);
122 		worker->idle = 1;
123 
124 		/* the list may be empty if the worker is just starting */
125 		if (!list_empty(&worker->worker_list)) {
126 			list_move(&worker->worker_list,
127 				 &worker->workers->idle_list);
128 		}
129 		spin_unlock_irqrestore(&worker->workers->lock, flags);
130 	}
131 }
132 
133 /*
134  * helper function to move a thread off the idle list after new
135  * pending work is added.
136  */
137 static void check_busy_worker(struct btrfs_worker_thread *worker)
138 {
139 	if (worker->idle && atomic_read(&worker->num_pending) >=
140 	    worker->workers->idle_thresh) {
141 		unsigned long flags;
142 		spin_lock_irqsave(&worker->workers->lock, flags);
143 		worker->idle = 0;
144 
145 		if (!list_empty(&worker->worker_list)) {
146 			list_move_tail(&worker->worker_list,
147 				      &worker->workers->worker_list);
148 		}
149 		spin_unlock_irqrestore(&worker->workers->lock, flags);
150 	}
151 }
152 
153 static void check_pending_worker_creates(struct btrfs_worker_thread *worker)
154 {
155 	struct btrfs_workers *workers = worker->workers;
156 	unsigned long flags;
157 
158 	rmb();
159 	if (!workers->atomic_start_pending)
160 		return;
161 
162 	spin_lock_irqsave(&workers->lock, flags);
163 	if (!workers->atomic_start_pending)
164 		goto out;
165 
166 	workers->atomic_start_pending = 0;
167 	if (workers->num_workers + workers->num_workers_starting >=
168 	    workers->max_workers)
169 		goto out;
170 
171 	workers->num_workers_starting += 1;
172 	spin_unlock_irqrestore(&workers->lock, flags);
173 	start_new_worker(workers);
174 	return;
175 
176 out:
177 	spin_unlock_irqrestore(&workers->lock, flags);
178 }
179 
180 static noinline int run_ordered_completions(struct btrfs_workers *workers,
181 					    struct btrfs_work *work)
182 {
183 	if (!workers->ordered)
184 		return 0;
185 
186 	set_bit(WORK_DONE_BIT, &work->flags);
187 
188 	spin_lock(&workers->order_lock);
189 
190 	while (1) {
191 		if (!list_empty(&workers->prio_order_list)) {
192 			work = list_entry(workers->prio_order_list.next,
193 					  struct btrfs_work, order_list);
194 		} else if (!list_empty(&workers->order_list)) {
195 			work = list_entry(workers->order_list.next,
196 					  struct btrfs_work, order_list);
197 		} else {
198 			break;
199 		}
200 		if (!test_bit(WORK_DONE_BIT, &work->flags))
201 			break;
202 
203 		/* we are going to call the ordered done function, but
204 		 * we leave the work item on the list as a barrier so
205 		 * that later work items that are done don't have their
206 		 * functions called before this one returns
207 		 */
208 		if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
209 			break;
210 
211 		spin_unlock(&workers->order_lock);
212 
213 		work->ordered_func(work);
214 
215 		/* now take the lock again and call the freeing code */
216 		spin_lock(&workers->order_lock);
217 		list_del(&work->order_list);
218 		work->ordered_free(work);
219 	}
220 
221 	spin_unlock(&workers->order_lock);
222 	return 0;
223 }
224 
225 static void put_worker(struct btrfs_worker_thread *worker)
226 {
227 	if (atomic_dec_and_test(&worker->refs))
228 		kfree(worker);
229 }
230 
231 static int try_worker_shutdown(struct btrfs_worker_thread *worker)
232 {
233 	int freeit = 0;
234 
235 	spin_lock_irq(&worker->lock);
236 	spin_lock(&worker->workers->lock);
237 	if (worker->workers->num_workers > 1 &&
238 	    worker->idle &&
239 	    !worker->working &&
240 	    !list_empty(&worker->worker_list) &&
241 	    list_empty(&worker->prio_pending) &&
242 	    list_empty(&worker->pending) &&
243 	    atomic_read(&worker->num_pending) == 0) {
244 		freeit = 1;
245 		list_del_init(&worker->worker_list);
246 		worker->workers->num_workers--;
247 	}
248 	spin_unlock(&worker->workers->lock);
249 	spin_unlock_irq(&worker->lock);
250 
251 	if (freeit)
252 		put_worker(worker);
253 	return freeit;
254 }
255 
256 static struct btrfs_work *get_next_work(struct btrfs_worker_thread *worker,
257 					struct list_head *prio_head,
258 					struct list_head *head)
259 {
260 	struct btrfs_work *work = NULL;
261 	struct list_head *cur = NULL;
262 
263 	if(!list_empty(prio_head))
264 		cur = prio_head->next;
265 
266 	smp_mb();
267 	if (!list_empty(&worker->prio_pending))
268 		goto refill;
269 
270 	if (!list_empty(head))
271 		cur = head->next;
272 
273 	if (cur)
274 		goto out;
275 
276 refill:
277 	spin_lock_irq(&worker->lock);
278 	list_splice_tail_init(&worker->prio_pending, prio_head);
279 	list_splice_tail_init(&worker->pending, head);
280 
281 	if (!list_empty(prio_head))
282 		cur = prio_head->next;
283 	else if (!list_empty(head))
284 		cur = head->next;
285 	spin_unlock_irq(&worker->lock);
286 
287 	if (!cur)
288 		goto out_fail;
289 
290 out:
291 	work = list_entry(cur, struct btrfs_work, list);
292 
293 out_fail:
294 	return work;
295 }
296 
297 /*
298  * main loop for servicing work items
299  */
300 static int worker_loop(void *arg)
301 {
302 	struct btrfs_worker_thread *worker = arg;
303 	struct list_head head;
304 	struct list_head prio_head;
305 	struct btrfs_work *work;
306 
307 	INIT_LIST_HEAD(&head);
308 	INIT_LIST_HEAD(&prio_head);
309 
310 	do {
311 again:
312 		while (1) {
313 
314 
315 			work = get_next_work(worker, &prio_head, &head);
316 			if (!work)
317 				break;
318 
319 			list_del(&work->list);
320 			clear_bit(WORK_QUEUED_BIT, &work->flags);
321 
322 			work->worker = worker;
323 
324 			work->func(work);
325 
326 			atomic_dec(&worker->num_pending);
327 			/*
328 			 * unless this is an ordered work queue,
329 			 * 'work' was probably freed by func above.
330 			 */
331 			run_ordered_completions(worker->workers, work);
332 
333 			check_pending_worker_creates(worker);
334 
335 		}
336 
337 		spin_lock_irq(&worker->lock);
338 		check_idle_worker(worker);
339 
340 		if (freezing(current)) {
341 			worker->working = 0;
342 			spin_unlock_irq(&worker->lock);
343 			refrigerator();
344 		} else {
345 			spin_unlock_irq(&worker->lock);
346 			if (!kthread_should_stop()) {
347 				cpu_relax();
348 				/*
349 				 * we've dropped the lock, did someone else
350 				 * jump_in?
351 				 */
352 				smp_mb();
353 				if (!list_empty(&worker->pending) ||
354 				    !list_empty(&worker->prio_pending))
355 					continue;
356 
357 				/*
358 				 * this short schedule allows more work to
359 				 * come in without the queue functions
360 				 * needing to go through wake_up_process()
361 				 *
362 				 * worker->working is still 1, so nobody
363 				 * is going to try and wake us up
364 				 */
365 				schedule_timeout(1);
366 				smp_mb();
367 				if (!list_empty(&worker->pending) ||
368 				    !list_empty(&worker->prio_pending))
369 					continue;
370 
371 				if (kthread_should_stop())
372 					break;
373 
374 				/* still no more work?, sleep for real */
375 				spin_lock_irq(&worker->lock);
376 				set_current_state(TASK_INTERRUPTIBLE);
377 				if (!list_empty(&worker->pending) ||
378 				    !list_empty(&worker->prio_pending)) {
379 					spin_unlock_irq(&worker->lock);
380 					set_current_state(TASK_RUNNING);
381 					goto again;
382 				}
383 
384 				/*
385 				 * this makes sure we get a wakeup when someone
386 				 * adds something new to the queue
387 				 */
388 				worker->working = 0;
389 				spin_unlock_irq(&worker->lock);
390 
391 				if (!kthread_should_stop()) {
392 					schedule_timeout(HZ * 120);
393 					if (!worker->working &&
394 					    try_worker_shutdown(worker)) {
395 						return 0;
396 					}
397 				}
398 			}
399 			__set_current_state(TASK_RUNNING);
400 		}
401 	} while (!kthread_should_stop());
402 	return 0;
403 }
404 
405 /*
406  * this will wait for all the worker threads to shutdown
407  */
408 int btrfs_stop_workers(struct btrfs_workers *workers)
409 {
410 	struct list_head *cur;
411 	struct btrfs_worker_thread *worker;
412 	int can_stop;
413 
414 	spin_lock_irq(&workers->lock);
415 	list_splice_init(&workers->idle_list, &workers->worker_list);
416 	while (!list_empty(&workers->worker_list)) {
417 		cur = workers->worker_list.next;
418 		worker = list_entry(cur, struct btrfs_worker_thread,
419 				    worker_list);
420 
421 		atomic_inc(&worker->refs);
422 		workers->num_workers -= 1;
423 		if (!list_empty(&worker->worker_list)) {
424 			list_del_init(&worker->worker_list);
425 			put_worker(worker);
426 			can_stop = 1;
427 		} else
428 			can_stop = 0;
429 		spin_unlock_irq(&workers->lock);
430 		if (can_stop)
431 			kthread_stop(worker->task);
432 		spin_lock_irq(&workers->lock);
433 		put_worker(worker);
434 	}
435 	spin_unlock_irq(&workers->lock);
436 	return 0;
437 }
438 
439 /*
440  * simple init on struct btrfs_workers
441  */
442 void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max,
443 			struct btrfs_workers *async_helper)
444 {
445 	workers->num_workers = 0;
446 	workers->num_workers_starting = 0;
447 	INIT_LIST_HEAD(&workers->worker_list);
448 	INIT_LIST_HEAD(&workers->idle_list);
449 	INIT_LIST_HEAD(&workers->order_list);
450 	INIT_LIST_HEAD(&workers->prio_order_list);
451 	spin_lock_init(&workers->lock);
452 	spin_lock_init(&workers->order_lock);
453 	workers->max_workers = max;
454 	workers->idle_thresh = 32;
455 	workers->name = name;
456 	workers->ordered = 0;
457 	workers->atomic_start_pending = 0;
458 	workers->atomic_worker_start = async_helper;
459 }
460 
461 /*
462  * starts new worker threads.  This does not enforce the max worker
463  * count in case you need to temporarily go past it.
464  */
465 static int __btrfs_start_workers(struct btrfs_workers *workers,
466 				 int num_workers)
467 {
468 	struct btrfs_worker_thread *worker;
469 	int ret = 0;
470 	int i;
471 
472 	for (i = 0; i < num_workers; i++) {
473 		worker = kzalloc(sizeof(*worker), GFP_NOFS);
474 		if (!worker) {
475 			ret = -ENOMEM;
476 			goto fail;
477 		}
478 
479 		INIT_LIST_HEAD(&worker->pending);
480 		INIT_LIST_HEAD(&worker->prio_pending);
481 		INIT_LIST_HEAD(&worker->worker_list);
482 		spin_lock_init(&worker->lock);
483 
484 		atomic_set(&worker->num_pending, 0);
485 		atomic_set(&worker->refs, 1);
486 		worker->workers = workers;
487 		worker->task = kthread_run(worker_loop, worker,
488 					   "btrfs-%s-%d", workers->name,
489 					   workers->num_workers + i);
490 		if (IS_ERR(worker->task)) {
491 			ret = PTR_ERR(worker->task);
492 			kfree(worker);
493 			goto fail;
494 		}
495 		spin_lock_irq(&workers->lock);
496 		list_add_tail(&worker->worker_list, &workers->idle_list);
497 		worker->idle = 1;
498 		workers->num_workers++;
499 		workers->num_workers_starting--;
500 		WARN_ON(workers->num_workers_starting < 0);
501 		spin_unlock_irq(&workers->lock);
502 	}
503 	return 0;
504 fail:
505 	btrfs_stop_workers(workers);
506 	return ret;
507 }
508 
509 int btrfs_start_workers(struct btrfs_workers *workers, int num_workers)
510 {
511 	spin_lock_irq(&workers->lock);
512 	workers->num_workers_starting += num_workers;
513 	spin_unlock_irq(&workers->lock);
514 	return __btrfs_start_workers(workers, num_workers);
515 }
516 
517 /*
518  * run through the list and find a worker thread that doesn't have a lot
519  * to do right now.  This can return null if we aren't yet at the thread
520  * count limit and all of the threads are busy.
521  */
522 static struct btrfs_worker_thread *next_worker(struct btrfs_workers *workers)
523 {
524 	struct btrfs_worker_thread *worker;
525 	struct list_head *next;
526 	int enforce_min;
527 
528 	enforce_min = (workers->num_workers + workers->num_workers_starting) <
529 		workers->max_workers;
530 
531 	/*
532 	 * if we find an idle thread, don't move it to the end of the
533 	 * idle list.  This improves the chance that the next submission
534 	 * will reuse the same thread, and maybe catch it while it is still
535 	 * working
536 	 */
537 	if (!list_empty(&workers->idle_list)) {
538 		next = workers->idle_list.next;
539 		worker = list_entry(next, struct btrfs_worker_thread,
540 				    worker_list);
541 		return worker;
542 	}
543 	if (enforce_min || list_empty(&workers->worker_list))
544 		return NULL;
545 
546 	/*
547 	 * if we pick a busy task, move the task to the end of the list.
548 	 * hopefully this will keep things somewhat evenly balanced.
549 	 * Do the move in batches based on the sequence number.  This groups
550 	 * requests submitted at roughly the same time onto the same worker.
551 	 */
552 	next = workers->worker_list.next;
553 	worker = list_entry(next, struct btrfs_worker_thread, worker_list);
554 	worker->sequence++;
555 
556 	if (worker->sequence % workers->idle_thresh == 0)
557 		list_move_tail(next, &workers->worker_list);
558 	return worker;
559 }
560 
561 /*
562  * selects a worker thread to take the next job.  This will either find
563  * an idle worker, start a new worker up to the max count, or just return
564  * one of the existing busy workers.
565  */
566 static struct btrfs_worker_thread *find_worker(struct btrfs_workers *workers)
567 {
568 	struct btrfs_worker_thread *worker;
569 	unsigned long flags;
570 	struct list_head *fallback;
571 
572 again:
573 	spin_lock_irqsave(&workers->lock, flags);
574 	worker = next_worker(workers);
575 
576 	if (!worker) {
577 		if (workers->num_workers + workers->num_workers_starting >=
578 		    workers->max_workers) {
579 			goto fallback;
580 		} else if (workers->atomic_worker_start) {
581 			workers->atomic_start_pending = 1;
582 			goto fallback;
583 		} else {
584 			workers->num_workers_starting++;
585 			spin_unlock_irqrestore(&workers->lock, flags);
586 			/* we're below the limit, start another worker */
587 			__btrfs_start_workers(workers, 1);
588 			goto again;
589 		}
590 	}
591 	goto found;
592 
593 fallback:
594 	fallback = NULL;
595 	/*
596 	 * we have failed to find any workers, just
597 	 * return the first one we can find.
598 	 */
599 	if (!list_empty(&workers->worker_list))
600 		fallback = workers->worker_list.next;
601 	if (!list_empty(&workers->idle_list))
602 		fallback = workers->idle_list.next;
603 	BUG_ON(!fallback);
604 	worker = list_entry(fallback,
605 		  struct btrfs_worker_thread, worker_list);
606 found:
607 	/*
608 	 * this makes sure the worker doesn't exit before it is placed
609 	 * onto a busy/idle list
610 	 */
611 	atomic_inc(&worker->num_pending);
612 	spin_unlock_irqrestore(&workers->lock, flags);
613 	return worker;
614 }
615 
616 /*
617  * btrfs_requeue_work just puts the work item back on the tail of the list
618  * it was taken from.  It is intended for use with long running work functions
619  * that make some progress and want to give the cpu up for others.
620  */
621 int btrfs_requeue_work(struct btrfs_work *work)
622 {
623 	struct btrfs_worker_thread *worker = work->worker;
624 	unsigned long flags;
625 	int wake = 0;
626 
627 	if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
628 		goto out;
629 
630 	spin_lock_irqsave(&worker->lock, flags);
631 	if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
632 		list_add_tail(&work->list, &worker->prio_pending);
633 	else
634 		list_add_tail(&work->list, &worker->pending);
635 	atomic_inc(&worker->num_pending);
636 
637 	/* by definition we're busy, take ourselves off the idle
638 	 * list
639 	 */
640 	if (worker->idle) {
641 		spin_lock(&worker->workers->lock);
642 		worker->idle = 0;
643 		list_move_tail(&worker->worker_list,
644 			      &worker->workers->worker_list);
645 		spin_unlock(&worker->workers->lock);
646 	}
647 	if (!worker->working) {
648 		wake = 1;
649 		worker->working = 1;
650 	}
651 
652 	if (wake)
653 		wake_up_process(worker->task);
654 	spin_unlock_irqrestore(&worker->lock, flags);
655 out:
656 
657 	return 0;
658 }
659 
660 void btrfs_set_work_high_prio(struct btrfs_work *work)
661 {
662 	set_bit(WORK_HIGH_PRIO_BIT, &work->flags);
663 }
664 
665 /*
666  * places a struct btrfs_work into the pending queue of one of the kthreads
667  */
668 int btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work)
669 {
670 	struct btrfs_worker_thread *worker;
671 	unsigned long flags;
672 	int wake = 0;
673 
674 	/* don't requeue something already on a list */
675 	if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
676 		goto out;
677 
678 	worker = find_worker(workers);
679 	if (workers->ordered) {
680 		/*
681 		 * you're not allowed to do ordered queues from an
682 		 * interrupt handler
683 		 */
684 		spin_lock(&workers->order_lock);
685 		if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags)) {
686 			list_add_tail(&work->order_list,
687 				      &workers->prio_order_list);
688 		} else {
689 			list_add_tail(&work->order_list, &workers->order_list);
690 		}
691 		spin_unlock(&workers->order_lock);
692 	} else {
693 		INIT_LIST_HEAD(&work->order_list);
694 	}
695 
696 	spin_lock_irqsave(&worker->lock, flags);
697 
698 	if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
699 		list_add_tail(&work->list, &worker->prio_pending);
700 	else
701 		list_add_tail(&work->list, &worker->pending);
702 	check_busy_worker(worker);
703 
704 	/*
705 	 * avoid calling into wake_up_process if this thread has already
706 	 * been kicked
707 	 */
708 	if (!worker->working)
709 		wake = 1;
710 	worker->working = 1;
711 
712 	if (wake)
713 		wake_up_process(worker->task);
714 	spin_unlock_irqrestore(&worker->lock, flags);
715 
716 out:
717 	return 0;
718 }
719