1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kthread.h> 20 #include <linux/list.h> 21 #include <linux/spinlock.h> 22 #include <linux/freezer.h> 23 #include "async-thread.h" 24 25 #define WORK_QUEUED_BIT 0 26 #define WORK_DONE_BIT 1 27 #define WORK_ORDER_DONE_BIT 2 28 #define WORK_HIGH_PRIO_BIT 3 29 30 /* 31 * container for the kthread task pointer and the list of pending work 32 * One of these is allocated per thread. 33 */ 34 struct btrfs_worker_thread { 35 /* pool we belong to */ 36 struct btrfs_workers *workers; 37 38 /* list of struct btrfs_work that are waiting for service */ 39 struct list_head pending; 40 struct list_head prio_pending; 41 42 /* list of worker threads from struct btrfs_workers */ 43 struct list_head worker_list; 44 45 /* kthread */ 46 struct task_struct *task; 47 48 /* number of things on the pending list */ 49 atomic_t num_pending; 50 51 /* reference counter for this struct */ 52 atomic_t refs; 53 54 unsigned long sequence; 55 56 /* protects the pending list. */ 57 spinlock_t lock; 58 59 /* set to non-zero when this thread is already awake and kicking */ 60 int working; 61 62 /* are we currently idle */ 63 int idle; 64 }; 65 66 /* 67 * btrfs_start_workers uses kthread_run, which can block waiting for memory 68 * for a very long time. It will actually throttle on page writeback, 69 * and so it may not make progress until after our btrfs worker threads 70 * process all of the pending work structs in their queue 71 * 72 * This means we can't use btrfs_start_workers from inside a btrfs worker 73 * thread that is used as part of cleaning dirty memory, which pretty much 74 * involves all of the worker threads. 75 * 76 * Instead we have a helper queue who never has more than one thread 77 * where we scheduler thread start operations. This worker_start struct 78 * is used to contain the work and hold a pointer to the queue that needs 79 * another worker. 80 */ 81 struct worker_start { 82 struct btrfs_work work; 83 struct btrfs_workers *queue; 84 }; 85 86 static void start_new_worker_func(struct btrfs_work *work) 87 { 88 struct worker_start *start; 89 start = container_of(work, struct worker_start, work); 90 btrfs_start_workers(start->queue, 1); 91 kfree(start); 92 } 93 94 static int start_new_worker(struct btrfs_workers *queue) 95 { 96 struct worker_start *start; 97 int ret; 98 99 start = kzalloc(sizeof(*start), GFP_NOFS); 100 if (!start) 101 return -ENOMEM; 102 103 start->work.func = start_new_worker_func; 104 start->queue = queue; 105 ret = btrfs_queue_worker(queue->atomic_worker_start, &start->work); 106 if (ret) 107 kfree(start); 108 return ret; 109 } 110 111 /* 112 * helper function to move a thread onto the idle list after it 113 * has finished some requests. 114 */ 115 static void check_idle_worker(struct btrfs_worker_thread *worker) 116 { 117 if (!worker->idle && atomic_read(&worker->num_pending) < 118 worker->workers->idle_thresh / 2) { 119 unsigned long flags; 120 spin_lock_irqsave(&worker->workers->lock, flags); 121 worker->idle = 1; 122 123 /* the list may be empty if the worker is just starting */ 124 if (!list_empty(&worker->worker_list)) { 125 list_move(&worker->worker_list, 126 &worker->workers->idle_list); 127 } 128 spin_unlock_irqrestore(&worker->workers->lock, flags); 129 } 130 } 131 132 /* 133 * helper function to move a thread off the idle list after new 134 * pending work is added. 135 */ 136 static void check_busy_worker(struct btrfs_worker_thread *worker) 137 { 138 if (worker->idle && atomic_read(&worker->num_pending) >= 139 worker->workers->idle_thresh) { 140 unsigned long flags; 141 spin_lock_irqsave(&worker->workers->lock, flags); 142 worker->idle = 0; 143 144 if (!list_empty(&worker->worker_list)) { 145 list_move_tail(&worker->worker_list, 146 &worker->workers->worker_list); 147 } 148 spin_unlock_irqrestore(&worker->workers->lock, flags); 149 } 150 } 151 152 static void check_pending_worker_creates(struct btrfs_worker_thread *worker) 153 { 154 struct btrfs_workers *workers = worker->workers; 155 unsigned long flags; 156 157 rmb(); 158 if (!workers->atomic_start_pending) 159 return; 160 161 spin_lock_irqsave(&workers->lock, flags); 162 if (!workers->atomic_start_pending) 163 goto out; 164 165 workers->atomic_start_pending = 0; 166 if (workers->num_workers + workers->num_workers_starting >= 167 workers->max_workers) 168 goto out; 169 170 workers->num_workers_starting += 1; 171 spin_unlock_irqrestore(&workers->lock, flags); 172 start_new_worker(workers); 173 return; 174 175 out: 176 spin_unlock_irqrestore(&workers->lock, flags); 177 } 178 179 static noinline int run_ordered_completions(struct btrfs_workers *workers, 180 struct btrfs_work *work) 181 { 182 if (!workers->ordered) 183 return 0; 184 185 set_bit(WORK_DONE_BIT, &work->flags); 186 187 spin_lock(&workers->order_lock); 188 189 while (1) { 190 if (!list_empty(&workers->prio_order_list)) { 191 work = list_entry(workers->prio_order_list.next, 192 struct btrfs_work, order_list); 193 } else if (!list_empty(&workers->order_list)) { 194 work = list_entry(workers->order_list.next, 195 struct btrfs_work, order_list); 196 } else { 197 break; 198 } 199 if (!test_bit(WORK_DONE_BIT, &work->flags)) 200 break; 201 202 /* we are going to call the ordered done function, but 203 * we leave the work item on the list as a barrier so 204 * that later work items that are done don't have their 205 * functions called before this one returns 206 */ 207 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags)) 208 break; 209 210 spin_unlock(&workers->order_lock); 211 212 work->ordered_func(work); 213 214 /* now take the lock again and call the freeing code */ 215 spin_lock(&workers->order_lock); 216 list_del(&work->order_list); 217 work->ordered_free(work); 218 } 219 220 spin_unlock(&workers->order_lock); 221 return 0; 222 } 223 224 static void put_worker(struct btrfs_worker_thread *worker) 225 { 226 if (atomic_dec_and_test(&worker->refs)) 227 kfree(worker); 228 } 229 230 static int try_worker_shutdown(struct btrfs_worker_thread *worker) 231 { 232 int freeit = 0; 233 234 spin_lock_irq(&worker->lock); 235 spin_lock(&worker->workers->lock); 236 if (worker->workers->num_workers > 1 && 237 worker->idle && 238 !worker->working && 239 !list_empty(&worker->worker_list) && 240 list_empty(&worker->prio_pending) && 241 list_empty(&worker->pending) && 242 atomic_read(&worker->num_pending) == 0) { 243 freeit = 1; 244 list_del_init(&worker->worker_list); 245 worker->workers->num_workers--; 246 } 247 spin_unlock(&worker->workers->lock); 248 spin_unlock_irq(&worker->lock); 249 250 if (freeit) 251 put_worker(worker); 252 return freeit; 253 } 254 255 static struct btrfs_work *get_next_work(struct btrfs_worker_thread *worker, 256 struct list_head *prio_head, 257 struct list_head *head) 258 { 259 struct btrfs_work *work = NULL; 260 struct list_head *cur = NULL; 261 262 if(!list_empty(prio_head)) 263 cur = prio_head->next; 264 265 smp_mb(); 266 if (!list_empty(&worker->prio_pending)) 267 goto refill; 268 269 if (!list_empty(head)) 270 cur = head->next; 271 272 if (cur) 273 goto out; 274 275 refill: 276 spin_lock_irq(&worker->lock); 277 list_splice_tail_init(&worker->prio_pending, prio_head); 278 list_splice_tail_init(&worker->pending, head); 279 280 if (!list_empty(prio_head)) 281 cur = prio_head->next; 282 else if (!list_empty(head)) 283 cur = head->next; 284 spin_unlock_irq(&worker->lock); 285 286 if (!cur) 287 goto out_fail; 288 289 out: 290 work = list_entry(cur, struct btrfs_work, list); 291 292 out_fail: 293 return work; 294 } 295 296 /* 297 * main loop for servicing work items 298 */ 299 static int worker_loop(void *arg) 300 { 301 struct btrfs_worker_thread *worker = arg; 302 struct list_head head; 303 struct list_head prio_head; 304 struct btrfs_work *work; 305 306 INIT_LIST_HEAD(&head); 307 INIT_LIST_HEAD(&prio_head); 308 309 do { 310 again: 311 while (1) { 312 313 314 work = get_next_work(worker, &prio_head, &head); 315 if (!work) 316 break; 317 318 list_del(&work->list); 319 clear_bit(WORK_QUEUED_BIT, &work->flags); 320 321 work->worker = worker; 322 323 work->func(work); 324 325 atomic_dec(&worker->num_pending); 326 /* 327 * unless this is an ordered work queue, 328 * 'work' was probably freed by func above. 329 */ 330 run_ordered_completions(worker->workers, work); 331 332 check_pending_worker_creates(worker); 333 334 } 335 336 spin_lock_irq(&worker->lock); 337 check_idle_worker(worker); 338 339 if (freezing(current)) { 340 worker->working = 0; 341 spin_unlock_irq(&worker->lock); 342 refrigerator(); 343 } else { 344 spin_unlock_irq(&worker->lock); 345 if (!kthread_should_stop()) { 346 cpu_relax(); 347 /* 348 * we've dropped the lock, did someone else 349 * jump_in? 350 */ 351 smp_mb(); 352 if (!list_empty(&worker->pending) || 353 !list_empty(&worker->prio_pending)) 354 continue; 355 356 /* 357 * this short schedule allows more work to 358 * come in without the queue functions 359 * needing to go through wake_up_process() 360 * 361 * worker->working is still 1, so nobody 362 * is going to try and wake us up 363 */ 364 schedule_timeout(1); 365 smp_mb(); 366 if (!list_empty(&worker->pending) || 367 !list_empty(&worker->prio_pending)) 368 continue; 369 370 if (kthread_should_stop()) 371 break; 372 373 /* still no more work?, sleep for real */ 374 spin_lock_irq(&worker->lock); 375 set_current_state(TASK_INTERRUPTIBLE); 376 if (!list_empty(&worker->pending) || 377 !list_empty(&worker->prio_pending)) { 378 spin_unlock_irq(&worker->lock); 379 goto again; 380 } 381 382 /* 383 * this makes sure we get a wakeup when someone 384 * adds something new to the queue 385 */ 386 worker->working = 0; 387 spin_unlock_irq(&worker->lock); 388 389 if (!kthread_should_stop()) { 390 schedule_timeout(HZ * 120); 391 if (!worker->working && 392 try_worker_shutdown(worker)) { 393 return 0; 394 } 395 } 396 } 397 __set_current_state(TASK_RUNNING); 398 } 399 } while (!kthread_should_stop()); 400 return 0; 401 } 402 403 /* 404 * this will wait for all the worker threads to shutdown 405 */ 406 int btrfs_stop_workers(struct btrfs_workers *workers) 407 { 408 struct list_head *cur; 409 struct btrfs_worker_thread *worker; 410 int can_stop; 411 412 spin_lock_irq(&workers->lock); 413 list_splice_init(&workers->idle_list, &workers->worker_list); 414 while (!list_empty(&workers->worker_list)) { 415 cur = workers->worker_list.next; 416 worker = list_entry(cur, struct btrfs_worker_thread, 417 worker_list); 418 419 atomic_inc(&worker->refs); 420 workers->num_workers -= 1; 421 if (!list_empty(&worker->worker_list)) { 422 list_del_init(&worker->worker_list); 423 put_worker(worker); 424 can_stop = 1; 425 } else 426 can_stop = 0; 427 spin_unlock_irq(&workers->lock); 428 if (can_stop) 429 kthread_stop(worker->task); 430 spin_lock_irq(&workers->lock); 431 put_worker(worker); 432 } 433 spin_unlock_irq(&workers->lock); 434 return 0; 435 } 436 437 /* 438 * simple init on struct btrfs_workers 439 */ 440 void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max, 441 struct btrfs_workers *async_helper) 442 { 443 workers->num_workers = 0; 444 workers->num_workers_starting = 0; 445 INIT_LIST_HEAD(&workers->worker_list); 446 INIT_LIST_HEAD(&workers->idle_list); 447 INIT_LIST_HEAD(&workers->order_list); 448 INIT_LIST_HEAD(&workers->prio_order_list); 449 spin_lock_init(&workers->lock); 450 spin_lock_init(&workers->order_lock); 451 workers->max_workers = max; 452 workers->idle_thresh = 32; 453 workers->name = name; 454 workers->ordered = 0; 455 workers->atomic_start_pending = 0; 456 workers->atomic_worker_start = async_helper; 457 } 458 459 /* 460 * starts new worker threads. This does not enforce the max worker 461 * count in case you need to temporarily go past it. 462 */ 463 static int __btrfs_start_workers(struct btrfs_workers *workers, 464 int num_workers) 465 { 466 struct btrfs_worker_thread *worker; 467 int ret = 0; 468 int i; 469 470 for (i = 0; i < num_workers; i++) { 471 worker = kzalloc(sizeof(*worker), GFP_NOFS); 472 if (!worker) { 473 ret = -ENOMEM; 474 goto fail; 475 } 476 477 INIT_LIST_HEAD(&worker->pending); 478 INIT_LIST_HEAD(&worker->prio_pending); 479 INIT_LIST_HEAD(&worker->worker_list); 480 spin_lock_init(&worker->lock); 481 482 atomic_set(&worker->num_pending, 0); 483 atomic_set(&worker->refs, 1); 484 worker->workers = workers; 485 worker->task = kthread_run(worker_loop, worker, 486 "btrfs-%s-%d", workers->name, 487 workers->num_workers + i); 488 if (IS_ERR(worker->task)) { 489 ret = PTR_ERR(worker->task); 490 kfree(worker); 491 goto fail; 492 } 493 spin_lock_irq(&workers->lock); 494 list_add_tail(&worker->worker_list, &workers->idle_list); 495 worker->idle = 1; 496 workers->num_workers++; 497 workers->num_workers_starting--; 498 WARN_ON(workers->num_workers_starting < 0); 499 spin_unlock_irq(&workers->lock); 500 } 501 return 0; 502 fail: 503 btrfs_stop_workers(workers); 504 return ret; 505 } 506 507 int btrfs_start_workers(struct btrfs_workers *workers, int num_workers) 508 { 509 spin_lock_irq(&workers->lock); 510 workers->num_workers_starting += num_workers; 511 spin_unlock_irq(&workers->lock); 512 return __btrfs_start_workers(workers, num_workers); 513 } 514 515 /* 516 * run through the list and find a worker thread that doesn't have a lot 517 * to do right now. This can return null if we aren't yet at the thread 518 * count limit and all of the threads are busy. 519 */ 520 static struct btrfs_worker_thread *next_worker(struct btrfs_workers *workers) 521 { 522 struct btrfs_worker_thread *worker; 523 struct list_head *next; 524 int enforce_min; 525 526 enforce_min = (workers->num_workers + workers->num_workers_starting) < 527 workers->max_workers; 528 529 /* 530 * if we find an idle thread, don't move it to the end of the 531 * idle list. This improves the chance that the next submission 532 * will reuse the same thread, and maybe catch it while it is still 533 * working 534 */ 535 if (!list_empty(&workers->idle_list)) { 536 next = workers->idle_list.next; 537 worker = list_entry(next, struct btrfs_worker_thread, 538 worker_list); 539 return worker; 540 } 541 if (enforce_min || list_empty(&workers->worker_list)) 542 return NULL; 543 544 /* 545 * if we pick a busy task, move the task to the end of the list. 546 * hopefully this will keep things somewhat evenly balanced. 547 * Do the move in batches based on the sequence number. This groups 548 * requests submitted at roughly the same time onto the same worker. 549 */ 550 next = workers->worker_list.next; 551 worker = list_entry(next, struct btrfs_worker_thread, worker_list); 552 worker->sequence++; 553 554 if (worker->sequence % workers->idle_thresh == 0) 555 list_move_tail(next, &workers->worker_list); 556 return worker; 557 } 558 559 /* 560 * selects a worker thread to take the next job. This will either find 561 * an idle worker, start a new worker up to the max count, or just return 562 * one of the existing busy workers. 563 */ 564 static struct btrfs_worker_thread *find_worker(struct btrfs_workers *workers) 565 { 566 struct btrfs_worker_thread *worker; 567 unsigned long flags; 568 struct list_head *fallback; 569 570 again: 571 spin_lock_irqsave(&workers->lock, flags); 572 worker = next_worker(workers); 573 574 if (!worker) { 575 if (workers->num_workers + workers->num_workers_starting >= 576 workers->max_workers) { 577 goto fallback; 578 } else if (workers->atomic_worker_start) { 579 workers->atomic_start_pending = 1; 580 goto fallback; 581 } else { 582 workers->num_workers_starting++; 583 spin_unlock_irqrestore(&workers->lock, flags); 584 /* we're below the limit, start another worker */ 585 __btrfs_start_workers(workers, 1); 586 goto again; 587 } 588 } 589 goto found; 590 591 fallback: 592 fallback = NULL; 593 /* 594 * we have failed to find any workers, just 595 * return the first one we can find. 596 */ 597 if (!list_empty(&workers->worker_list)) 598 fallback = workers->worker_list.next; 599 if (!list_empty(&workers->idle_list)) 600 fallback = workers->idle_list.next; 601 BUG_ON(!fallback); 602 worker = list_entry(fallback, 603 struct btrfs_worker_thread, worker_list); 604 found: 605 /* 606 * this makes sure the worker doesn't exit before it is placed 607 * onto a busy/idle list 608 */ 609 atomic_inc(&worker->num_pending); 610 spin_unlock_irqrestore(&workers->lock, flags); 611 return worker; 612 } 613 614 /* 615 * btrfs_requeue_work just puts the work item back on the tail of the list 616 * it was taken from. It is intended for use with long running work functions 617 * that make some progress and want to give the cpu up for others. 618 */ 619 int btrfs_requeue_work(struct btrfs_work *work) 620 { 621 struct btrfs_worker_thread *worker = work->worker; 622 unsigned long flags; 623 int wake = 0; 624 625 if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags)) 626 goto out; 627 628 spin_lock_irqsave(&worker->lock, flags); 629 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags)) 630 list_add_tail(&work->list, &worker->prio_pending); 631 else 632 list_add_tail(&work->list, &worker->pending); 633 atomic_inc(&worker->num_pending); 634 635 /* by definition we're busy, take ourselves off the idle 636 * list 637 */ 638 if (worker->idle) { 639 spin_lock(&worker->workers->lock); 640 worker->idle = 0; 641 list_move_tail(&worker->worker_list, 642 &worker->workers->worker_list); 643 spin_unlock(&worker->workers->lock); 644 } 645 if (!worker->working) { 646 wake = 1; 647 worker->working = 1; 648 } 649 650 if (wake) 651 wake_up_process(worker->task); 652 spin_unlock_irqrestore(&worker->lock, flags); 653 out: 654 655 return 0; 656 } 657 658 void btrfs_set_work_high_prio(struct btrfs_work *work) 659 { 660 set_bit(WORK_HIGH_PRIO_BIT, &work->flags); 661 } 662 663 /* 664 * places a struct btrfs_work into the pending queue of one of the kthreads 665 */ 666 int btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work) 667 { 668 struct btrfs_worker_thread *worker; 669 unsigned long flags; 670 int wake = 0; 671 672 /* don't requeue something already on a list */ 673 if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags)) 674 goto out; 675 676 worker = find_worker(workers); 677 if (workers->ordered) { 678 /* 679 * you're not allowed to do ordered queues from an 680 * interrupt handler 681 */ 682 spin_lock(&workers->order_lock); 683 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags)) { 684 list_add_tail(&work->order_list, 685 &workers->prio_order_list); 686 } else { 687 list_add_tail(&work->order_list, &workers->order_list); 688 } 689 spin_unlock(&workers->order_lock); 690 } else { 691 INIT_LIST_HEAD(&work->order_list); 692 } 693 694 spin_lock_irqsave(&worker->lock, flags); 695 696 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags)) 697 list_add_tail(&work->list, &worker->prio_pending); 698 else 699 list_add_tail(&work->list, &worker->pending); 700 check_busy_worker(worker); 701 702 /* 703 * avoid calling into wake_up_process if this thread has already 704 * been kicked 705 */ 706 if (!worker->working) 707 wake = 1; 708 worker->working = 1; 709 710 if (wake) 711 wake_up_process(worker->task); 712 spin_unlock_irqrestore(&worker->lock, flags); 713 714 out: 715 return 0; 716 } 717