xref: /openbmc/linux/fs/btrfs/async-thread.c (revision a0cac0ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  * Copyright (C) 2014 Fujitsu.  All rights reserved.
5  */
6 
7 #include <linux/kthread.h>
8 #include <linux/slab.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/freezer.h>
12 #include "async-thread.h"
13 #include "ctree.h"
14 
15 enum {
16 	WORK_DONE_BIT,
17 	WORK_ORDER_DONE_BIT,
18 	WORK_HIGH_PRIO_BIT,
19 };
20 
21 #define NO_THRESHOLD (-1)
22 #define DFT_THRESHOLD (32)
23 
24 struct __btrfs_workqueue {
25 	struct workqueue_struct *normal_wq;
26 
27 	/* File system this workqueue services */
28 	struct btrfs_fs_info *fs_info;
29 
30 	/* List head pointing to ordered work list */
31 	struct list_head ordered_list;
32 
33 	/* Spinlock for ordered_list */
34 	spinlock_t list_lock;
35 
36 	/* Thresholding related variants */
37 	atomic_t pending;
38 
39 	/* Up limit of concurrency workers */
40 	int limit_active;
41 
42 	/* Current number of concurrency workers */
43 	int current_active;
44 
45 	/* Threshold to change current_active */
46 	int thresh;
47 	unsigned int count;
48 	spinlock_t thres_lock;
49 };
50 
51 struct btrfs_workqueue {
52 	struct __btrfs_workqueue *normal;
53 	struct __btrfs_workqueue *high;
54 };
55 
56 struct btrfs_fs_info *
57 btrfs_workqueue_owner(const struct __btrfs_workqueue *wq)
58 {
59 	return wq->fs_info;
60 }
61 
62 struct btrfs_fs_info *
63 btrfs_work_owner(const struct btrfs_work *work)
64 {
65 	return work->wq->fs_info;
66 }
67 
68 bool btrfs_workqueue_normal_congested(const struct btrfs_workqueue *wq)
69 {
70 	/*
71 	 * We could compare wq->normal->pending with num_online_cpus()
72 	 * to support "thresh == NO_THRESHOLD" case, but it requires
73 	 * moving up atomic_inc/dec in thresh_queue/exec_hook. Let's
74 	 * postpone it until someone needs the support of that case.
75 	 */
76 	if (wq->normal->thresh == NO_THRESHOLD)
77 		return false;
78 
79 	return atomic_read(&wq->normal->pending) > wq->normal->thresh * 2;
80 }
81 
82 static struct __btrfs_workqueue *
83 __btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info, const char *name,
84 			unsigned int flags, int limit_active, int thresh)
85 {
86 	struct __btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
87 
88 	if (!ret)
89 		return NULL;
90 
91 	ret->fs_info = fs_info;
92 	ret->limit_active = limit_active;
93 	atomic_set(&ret->pending, 0);
94 	if (thresh == 0)
95 		thresh = DFT_THRESHOLD;
96 	/* For low threshold, disabling threshold is a better choice */
97 	if (thresh < DFT_THRESHOLD) {
98 		ret->current_active = limit_active;
99 		ret->thresh = NO_THRESHOLD;
100 	} else {
101 		/*
102 		 * For threshold-able wq, let its concurrency grow on demand.
103 		 * Use minimal max_active at alloc time to reduce resource
104 		 * usage.
105 		 */
106 		ret->current_active = 1;
107 		ret->thresh = thresh;
108 	}
109 
110 	if (flags & WQ_HIGHPRI)
111 		ret->normal_wq = alloc_workqueue("btrfs-%s-high", flags,
112 						 ret->current_active, name);
113 	else
114 		ret->normal_wq = alloc_workqueue("btrfs-%s", flags,
115 						 ret->current_active, name);
116 	if (!ret->normal_wq) {
117 		kfree(ret);
118 		return NULL;
119 	}
120 
121 	INIT_LIST_HEAD(&ret->ordered_list);
122 	spin_lock_init(&ret->list_lock);
123 	spin_lock_init(&ret->thres_lock);
124 	trace_btrfs_workqueue_alloc(ret, name, flags & WQ_HIGHPRI);
125 	return ret;
126 }
127 
128 static inline void
129 __btrfs_destroy_workqueue(struct __btrfs_workqueue *wq);
130 
131 struct btrfs_workqueue *btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info,
132 					      const char *name,
133 					      unsigned int flags,
134 					      int limit_active,
135 					      int thresh)
136 {
137 	struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
138 
139 	if (!ret)
140 		return NULL;
141 
142 	ret->normal = __btrfs_alloc_workqueue(fs_info, name,
143 					      flags & ~WQ_HIGHPRI,
144 					      limit_active, thresh);
145 	if (!ret->normal) {
146 		kfree(ret);
147 		return NULL;
148 	}
149 
150 	if (flags & WQ_HIGHPRI) {
151 		ret->high = __btrfs_alloc_workqueue(fs_info, name, flags,
152 						    limit_active, thresh);
153 		if (!ret->high) {
154 			__btrfs_destroy_workqueue(ret->normal);
155 			kfree(ret);
156 			return NULL;
157 		}
158 	}
159 	return ret;
160 }
161 
162 /*
163  * Hook for threshold which will be called in btrfs_queue_work.
164  * This hook WILL be called in IRQ handler context,
165  * so workqueue_set_max_active MUST NOT be called in this hook
166  */
167 static inline void thresh_queue_hook(struct __btrfs_workqueue *wq)
168 {
169 	if (wq->thresh == NO_THRESHOLD)
170 		return;
171 	atomic_inc(&wq->pending);
172 }
173 
174 /*
175  * Hook for threshold which will be called before executing the work,
176  * This hook is called in kthread content.
177  * So workqueue_set_max_active is called here.
178  */
179 static inline void thresh_exec_hook(struct __btrfs_workqueue *wq)
180 {
181 	int new_current_active;
182 	long pending;
183 	int need_change = 0;
184 
185 	if (wq->thresh == NO_THRESHOLD)
186 		return;
187 
188 	atomic_dec(&wq->pending);
189 	spin_lock(&wq->thres_lock);
190 	/*
191 	 * Use wq->count to limit the calling frequency of
192 	 * workqueue_set_max_active.
193 	 */
194 	wq->count++;
195 	wq->count %= (wq->thresh / 4);
196 	if (!wq->count)
197 		goto  out;
198 	new_current_active = wq->current_active;
199 
200 	/*
201 	 * pending may be changed later, but it's OK since we really
202 	 * don't need it so accurate to calculate new_max_active.
203 	 */
204 	pending = atomic_read(&wq->pending);
205 	if (pending > wq->thresh)
206 		new_current_active++;
207 	if (pending < wq->thresh / 2)
208 		new_current_active--;
209 	new_current_active = clamp_val(new_current_active, 1, wq->limit_active);
210 	if (new_current_active != wq->current_active)  {
211 		need_change = 1;
212 		wq->current_active = new_current_active;
213 	}
214 out:
215 	spin_unlock(&wq->thres_lock);
216 
217 	if (need_change) {
218 		workqueue_set_max_active(wq->normal_wq, wq->current_active);
219 	}
220 }
221 
222 static void run_ordered_work(struct __btrfs_workqueue *wq,
223 			     struct btrfs_work *self)
224 {
225 	struct list_head *list = &wq->ordered_list;
226 	struct btrfs_work *work;
227 	spinlock_t *lock = &wq->list_lock;
228 	unsigned long flags;
229 	void *wtag;
230 	bool free_self = false;
231 
232 	while (1) {
233 		spin_lock_irqsave(lock, flags);
234 		if (list_empty(list))
235 			break;
236 		work = list_entry(list->next, struct btrfs_work,
237 				  ordered_list);
238 		if (!test_bit(WORK_DONE_BIT, &work->flags))
239 			break;
240 
241 		/*
242 		 * we are going to call the ordered done function, but
243 		 * we leave the work item on the list as a barrier so
244 		 * that later work items that are done don't have their
245 		 * functions called before this one returns
246 		 */
247 		if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
248 			break;
249 		trace_btrfs_ordered_sched(work);
250 		spin_unlock_irqrestore(lock, flags);
251 		work->ordered_func(work);
252 
253 		/* now take the lock again and drop our item from the list */
254 		spin_lock_irqsave(lock, flags);
255 		list_del(&work->ordered_list);
256 		spin_unlock_irqrestore(lock, flags);
257 
258 		if (work == self) {
259 			/*
260 			 * This is the work item that the worker is currently
261 			 * executing.
262 			 *
263 			 * The kernel workqueue code guarantees non-reentrancy
264 			 * of work items. I.e., if a work item with the same
265 			 * address and work function is queued twice, the second
266 			 * execution is blocked until the first one finishes. A
267 			 * work item may be freed and recycled with the same
268 			 * work function; the workqueue code assumes that the
269 			 * original work item cannot depend on the recycled work
270 			 * item in that case (see find_worker_executing_work()).
271 			 *
272 			 * Note that different types of Btrfs work can depend on
273 			 * each other, and one type of work on one Btrfs
274 			 * filesystem may even depend on the same type of work
275 			 * on another Btrfs filesystem via, e.g., a loop device.
276 			 * Therefore, we must not allow the current work item to
277 			 * be recycled until we are really done, otherwise we
278 			 * break the above assumption and can deadlock.
279 			 */
280 			free_self = true;
281 		} else {
282 			/*
283 			 * We don't want to call the ordered free functions with
284 			 * the lock held though. Save the work as tag for the
285 			 * trace event, because the callback could free the
286 			 * structure.
287 			 */
288 			wtag = work;
289 			work->ordered_free(work);
290 			trace_btrfs_all_work_done(wq->fs_info, wtag);
291 		}
292 	}
293 	spin_unlock_irqrestore(lock, flags);
294 
295 	if (free_self) {
296 		wtag = self;
297 		self->ordered_free(self);
298 		trace_btrfs_all_work_done(wq->fs_info, wtag);
299 	}
300 }
301 
302 static void btrfs_work_helper(struct work_struct *normal_work)
303 {
304 	struct btrfs_work *work = container_of(normal_work, struct btrfs_work,
305 					       normal_work);
306 	struct __btrfs_workqueue *wq;
307 	void *wtag;
308 	int need_order = 0;
309 
310 	/*
311 	 * We should not touch things inside work in the following cases:
312 	 * 1) after work->func() if it has no ordered_free
313 	 *    Since the struct is freed in work->func().
314 	 * 2) after setting WORK_DONE_BIT
315 	 *    The work may be freed in other threads almost instantly.
316 	 * So we save the needed things here.
317 	 */
318 	if (work->ordered_func)
319 		need_order = 1;
320 	wq = work->wq;
321 	/* Safe for tracepoints in case work gets freed by the callback */
322 	wtag = work;
323 
324 	trace_btrfs_work_sched(work);
325 	thresh_exec_hook(wq);
326 	work->func(work);
327 	if (need_order) {
328 		set_bit(WORK_DONE_BIT, &work->flags);
329 		run_ordered_work(wq, work);
330 	}
331 	if (!need_order)
332 		trace_btrfs_all_work_done(wq->fs_info, wtag);
333 }
334 
335 void btrfs_init_work(struct btrfs_work *work, btrfs_func_t func,
336 		     btrfs_func_t ordered_func, btrfs_func_t ordered_free)
337 {
338 	work->func = func;
339 	work->ordered_func = ordered_func;
340 	work->ordered_free = ordered_free;
341 	INIT_WORK(&work->normal_work, btrfs_work_helper);
342 	INIT_LIST_HEAD(&work->ordered_list);
343 	work->flags = 0;
344 }
345 
346 static inline void __btrfs_queue_work(struct __btrfs_workqueue *wq,
347 				      struct btrfs_work *work)
348 {
349 	unsigned long flags;
350 
351 	work->wq = wq;
352 	thresh_queue_hook(wq);
353 	if (work->ordered_func) {
354 		spin_lock_irqsave(&wq->list_lock, flags);
355 		list_add_tail(&work->ordered_list, &wq->ordered_list);
356 		spin_unlock_irqrestore(&wq->list_lock, flags);
357 	}
358 	trace_btrfs_work_queued(work);
359 	queue_work(wq->normal_wq, &work->normal_work);
360 }
361 
362 void btrfs_queue_work(struct btrfs_workqueue *wq,
363 		      struct btrfs_work *work)
364 {
365 	struct __btrfs_workqueue *dest_wq;
366 
367 	if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags) && wq->high)
368 		dest_wq = wq->high;
369 	else
370 		dest_wq = wq->normal;
371 	__btrfs_queue_work(dest_wq, work);
372 }
373 
374 static inline void
375 __btrfs_destroy_workqueue(struct __btrfs_workqueue *wq)
376 {
377 	destroy_workqueue(wq->normal_wq);
378 	trace_btrfs_workqueue_destroy(wq);
379 	kfree(wq);
380 }
381 
382 void btrfs_destroy_workqueue(struct btrfs_workqueue *wq)
383 {
384 	if (!wq)
385 		return;
386 	if (wq->high)
387 		__btrfs_destroy_workqueue(wq->high);
388 	__btrfs_destroy_workqueue(wq->normal);
389 	kfree(wq);
390 }
391 
392 void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int limit_active)
393 {
394 	if (!wq)
395 		return;
396 	wq->normal->limit_active = limit_active;
397 	if (wq->high)
398 		wq->high->limit_active = limit_active;
399 }
400 
401 void btrfs_set_work_high_priority(struct btrfs_work *work)
402 {
403 	set_bit(WORK_HIGH_PRIO_BIT, &work->flags);
404 }
405