1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 * Copyright (C) 2014 Fujitsu. All rights reserved. 5 */ 6 7 #include <linux/kthread.h> 8 #include <linux/slab.h> 9 #include <linux/list.h> 10 #include <linux/spinlock.h> 11 #include <linux/freezer.h> 12 #include "async-thread.h" 13 #include "ctree.h" 14 15 enum { 16 WORK_DONE_BIT, 17 WORK_ORDER_DONE_BIT, 18 WORK_HIGH_PRIO_BIT, 19 }; 20 21 #define NO_THRESHOLD (-1) 22 #define DFT_THRESHOLD (32) 23 24 struct __btrfs_workqueue { 25 struct workqueue_struct *normal_wq; 26 27 /* File system this workqueue services */ 28 struct btrfs_fs_info *fs_info; 29 30 /* List head pointing to ordered work list */ 31 struct list_head ordered_list; 32 33 /* Spinlock for ordered_list */ 34 spinlock_t list_lock; 35 36 /* Thresholding related variants */ 37 atomic_t pending; 38 39 /* Up limit of concurrency workers */ 40 int limit_active; 41 42 /* Current number of concurrency workers */ 43 int current_active; 44 45 /* Threshold to change current_active */ 46 int thresh; 47 unsigned int count; 48 spinlock_t thres_lock; 49 }; 50 51 struct btrfs_workqueue { 52 struct __btrfs_workqueue *normal; 53 struct __btrfs_workqueue *high; 54 }; 55 56 struct btrfs_fs_info * __pure btrfs_workqueue_owner(const struct __btrfs_workqueue *wq) 57 { 58 return wq->fs_info; 59 } 60 61 struct btrfs_fs_info * __pure btrfs_work_owner(const struct btrfs_work *work) 62 { 63 return work->wq->fs_info; 64 } 65 66 bool btrfs_workqueue_normal_congested(const struct btrfs_workqueue *wq) 67 { 68 /* 69 * We could compare wq->normal->pending with num_online_cpus() 70 * to support "thresh == NO_THRESHOLD" case, but it requires 71 * moving up atomic_inc/dec in thresh_queue/exec_hook. Let's 72 * postpone it until someone needs the support of that case. 73 */ 74 if (wq->normal->thresh == NO_THRESHOLD) 75 return false; 76 77 return atomic_read(&wq->normal->pending) > wq->normal->thresh * 2; 78 } 79 80 static struct __btrfs_workqueue * 81 __btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info, const char *name, 82 unsigned int flags, int limit_active, int thresh) 83 { 84 struct __btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL); 85 86 if (!ret) 87 return NULL; 88 89 ret->fs_info = fs_info; 90 ret->limit_active = limit_active; 91 atomic_set(&ret->pending, 0); 92 if (thresh == 0) 93 thresh = DFT_THRESHOLD; 94 /* For low threshold, disabling threshold is a better choice */ 95 if (thresh < DFT_THRESHOLD) { 96 ret->current_active = limit_active; 97 ret->thresh = NO_THRESHOLD; 98 } else { 99 /* 100 * For threshold-able wq, let its concurrency grow on demand. 101 * Use minimal max_active at alloc time to reduce resource 102 * usage. 103 */ 104 ret->current_active = 1; 105 ret->thresh = thresh; 106 } 107 108 if (flags & WQ_HIGHPRI) 109 ret->normal_wq = alloc_workqueue("btrfs-%s-high", flags, 110 ret->current_active, name); 111 else 112 ret->normal_wq = alloc_workqueue("btrfs-%s", flags, 113 ret->current_active, name); 114 if (!ret->normal_wq) { 115 kfree(ret); 116 return NULL; 117 } 118 119 INIT_LIST_HEAD(&ret->ordered_list); 120 spin_lock_init(&ret->list_lock); 121 spin_lock_init(&ret->thres_lock); 122 trace_btrfs_workqueue_alloc(ret, name, flags & WQ_HIGHPRI); 123 return ret; 124 } 125 126 static inline void 127 __btrfs_destroy_workqueue(struct __btrfs_workqueue *wq); 128 129 struct btrfs_workqueue *btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info, 130 const char *name, 131 unsigned int flags, 132 int limit_active, 133 int thresh) 134 { 135 struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL); 136 137 if (!ret) 138 return NULL; 139 140 ret->normal = __btrfs_alloc_workqueue(fs_info, name, 141 flags & ~WQ_HIGHPRI, 142 limit_active, thresh); 143 if (!ret->normal) { 144 kfree(ret); 145 return NULL; 146 } 147 148 if (flags & WQ_HIGHPRI) { 149 ret->high = __btrfs_alloc_workqueue(fs_info, name, flags, 150 limit_active, thresh); 151 if (!ret->high) { 152 __btrfs_destroy_workqueue(ret->normal); 153 kfree(ret); 154 return NULL; 155 } 156 } 157 return ret; 158 } 159 160 /* 161 * Hook for threshold which will be called in btrfs_queue_work. 162 * This hook WILL be called in IRQ handler context, 163 * so workqueue_set_max_active MUST NOT be called in this hook 164 */ 165 static inline void thresh_queue_hook(struct __btrfs_workqueue *wq) 166 { 167 if (wq->thresh == NO_THRESHOLD) 168 return; 169 atomic_inc(&wq->pending); 170 } 171 172 /* 173 * Hook for threshold which will be called before executing the work, 174 * This hook is called in kthread content. 175 * So workqueue_set_max_active is called here. 176 */ 177 static inline void thresh_exec_hook(struct __btrfs_workqueue *wq) 178 { 179 int new_current_active; 180 long pending; 181 int need_change = 0; 182 183 if (wq->thresh == NO_THRESHOLD) 184 return; 185 186 atomic_dec(&wq->pending); 187 spin_lock(&wq->thres_lock); 188 /* 189 * Use wq->count to limit the calling frequency of 190 * workqueue_set_max_active. 191 */ 192 wq->count++; 193 wq->count %= (wq->thresh / 4); 194 if (!wq->count) 195 goto out; 196 new_current_active = wq->current_active; 197 198 /* 199 * pending may be changed later, but it's OK since we really 200 * don't need it so accurate to calculate new_max_active. 201 */ 202 pending = atomic_read(&wq->pending); 203 if (pending > wq->thresh) 204 new_current_active++; 205 if (pending < wq->thresh / 2) 206 new_current_active--; 207 new_current_active = clamp_val(new_current_active, 1, wq->limit_active); 208 if (new_current_active != wq->current_active) { 209 need_change = 1; 210 wq->current_active = new_current_active; 211 } 212 out: 213 spin_unlock(&wq->thres_lock); 214 215 if (need_change) { 216 workqueue_set_max_active(wq->normal_wq, wq->current_active); 217 } 218 } 219 220 static void run_ordered_work(struct __btrfs_workqueue *wq, 221 struct btrfs_work *self) 222 { 223 struct list_head *list = &wq->ordered_list; 224 struct btrfs_work *work; 225 spinlock_t *lock = &wq->list_lock; 226 unsigned long flags; 227 bool free_self = false; 228 229 while (1) { 230 spin_lock_irqsave(lock, flags); 231 if (list_empty(list)) 232 break; 233 work = list_entry(list->next, struct btrfs_work, 234 ordered_list); 235 if (!test_bit(WORK_DONE_BIT, &work->flags)) 236 break; 237 /* 238 * Orders all subsequent loads after reading WORK_DONE_BIT, 239 * paired with the smp_mb__before_atomic in btrfs_work_helper 240 * this guarantees that the ordered function will see all 241 * updates from ordinary work function. 242 */ 243 smp_rmb(); 244 245 /* 246 * we are going to call the ordered done function, but 247 * we leave the work item on the list as a barrier so 248 * that later work items that are done don't have their 249 * functions called before this one returns 250 */ 251 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags)) 252 break; 253 trace_btrfs_ordered_sched(work); 254 spin_unlock_irqrestore(lock, flags); 255 work->ordered_func(work); 256 257 /* now take the lock again and drop our item from the list */ 258 spin_lock_irqsave(lock, flags); 259 list_del(&work->ordered_list); 260 spin_unlock_irqrestore(lock, flags); 261 262 if (work == self) { 263 /* 264 * This is the work item that the worker is currently 265 * executing. 266 * 267 * The kernel workqueue code guarantees non-reentrancy 268 * of work items. I.e., if a work item with the same 269 * address and work function is queued twice, the second 270 * execution is blocked until the first one finishes. A 271 * work item may be freed and recycled with the same 272 * work function; the workqueue code assumes that the 273 * original work item cannot depend on the recycled work 274 * item in that case (see find_worker_executing_work()). 275 * 276 * Note that different types of Btrfs work can depend on 277 * each other, and one type of work on one Btrfs 278 * filesystem may even depend on the same type of work 279 * on another Btrfs filesystem via, e.g., a loop device. 280 * Therefore, we must not allow the current work item to 281 * be recycled until we are really done, otherwise we 282 * break the above assumption and can deadlock. 283 */ 284 free_self = true; 285 } else { 286 /* 287 * We don't want to call the ordered free functions with 288 * the lock held. 289 */ 290 work->ordered_free(work); 291 /* NB: work must not be dereferenced past this point. */ 292 trace_btrfs_all_work_done(wq->fs_info, work); 293 } 294 } 295 spin_unlock_irqrestore(lock, flags); 296 297 if (free_self) { 298 self->ordered_free(self); 299 /* NB: self must not be dereferenced past this point. */ 300 trace_btrfs_all_work_done(wq->fs_info, self); 301 } 302 } 303 304 static void btrfs_work_helper(struct work_struct *normal_work) 305 { 306 struct btrfs_work *work = container_of(normal_work, struct btrfs_work, 307 normal_work); 308 struct __btrfs_workqueue *wq; 309 int need_order = 0; 310 311 /* 312 * We should not touch things inside work in the following cases: 313 * 1) after work->func() if it has no ordered_free 314 * Since the struct is freed in work->func(). 315 * 2) after setting WORK_DONE_BIT 316 * The work may be freed in other threads almost instantly. 317 * So we save the needed things here. 318 */ 319 if (work->ordered_func) 320 need_order = 1; 321 wq = work->wq; 322 323 trace_btrfs_work_sched(work); 324 thresh_exec_hook(wq); 325 work->func(work); 326 if (need_order) { 327 /* 328 * Ensures all memory accesses done in the work function are 329 * ordered before setting the WORK_DONE_BIT. Ensuring the thread 330 * which is going to executed the ordered work sees them. 331 * Pairs with the smp_rmb in run_ordered_work. 332 */ 333 smp_mb__before_atomic(); 334 set_bit(WORK_DONE_BIT, &work->flags); 335 run_ordered_work(wq, work); 336 } else { 337 /* NB: work must not be dereferenced past this point. */ 338 trace_btrfs_all_work_done(wq->fs_info, work); 339 } 340 } 341 342 void btrfs_init_work(struct btrfs_work *work, btrfs_func_t func, 343 btrfs_func_t ordered_func, btrfs_func_t ordered_free) 344 { 345 work->func = func; 346 work->ordered_func = ordered_func; 347 work->ordered_free = ordered_free; 348 INIT_WORK(&work->normal_work, btrfs_work_helper); 349 INIT_LIST_HEAD(&work->ordered_list); 350 work->flags = 0; 351 } 352 353 static inline void __btrfs_queue_work(struct __btrfs_workqueue *wq, 354 struct btrfs_work *work) 355 { 356 unsigned long flags; 357 358 work->wq = wq; 359 thresh_queue_hook(wq); 360 if (work->ordered_func) { 361 spin_lock_irqsave(&wq->list_lock, flags); 362 list_add_tail(&work->ordered_list, &wq->ordered_list); 363 spin_unlock_irqrestore(&wq->list_lock, flags); 364 } 365 trace_btrfs_work_queued(work); 366 queue_work(wq->normal_wq, &work->normal_work); 367 } 368 369 void btrfs_queue_work(struct btrfs_workqueue *wq, 370 struct btrfs_work *work) 371 { 372 struct __btrfs_workqueue *dest_wq; 373 374 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags) && wq->high) 375 dest_wq = wq->high; 376 else 377 dest_wq = wq->normal; 378 __btrfs_queue_work(dest_wq, work); 379 } 380 381 static inline void 382 __btrfs_destroy_workqueue(struct __btrfs_workqueue *wq) 383 { 384 destroy_workqueue(wq->normal_wq); 385 trace_btrfs_workqueue_destroy(wq); 386 kfree(wq); 387 } 388 389 void btrfs_destroy_workqueue(struct btrfs_workqueue *wq) 390 { 391 if (!wq) 392 return; 393 if (wq->high) 394 __btrfs_destroy_workqueue(wq->high); 395 __btrfs_destroy_workqueue(wq->normal); 396 kfree(wq); 397 } 398 399 void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int limit_active) 400 { 401 if (!wq) 402 return; 403 wq->normal->limit_active = limit_active; 404 if (wq->high) 405 wq->high->limit_active = limit_active; 406 } 407 408 void btrfs_set_work_high_priority(struct btrfs_work *work) 409 { 410 set_bit(WORK_HIGH_PRIO_BIT, &work->flags); 411 } 412 413 void btrfs_flush_workqueue(struct btrfs_workqueue *wq) 414 { 415 if (wq->high) 416 flush_workqueue(wq->high->normal_wq); 417 418 flush_workqueue(wq->normal->normal_wq); 419 } 420