xref: /openbmc/linux/fs/binfmt_flat.c (revision f80be457)
1 // SPDX-License-Identifier: GPL-2.0
2 /****************************************************************************/
3 /*
4  *  linux/fs/binfmt_flat.c
5  *
6  *	Copyright (C) 2000-2003 David McCullough <davidm@snapgear.com>
7  *	Copyright (C) 2002 Greg Ungerer <gerg@snapgear.com>
8  *	Copyright (C) 2002 SnapGear, by Paul Dale <pauli@snapgear.com>
9  *	Copyright (C) 2000, 2001 Lineo, by David McCullough <davidm@lineo.com>
10  *  based heavily on:
11  *
12  *  linux/fs/binfmt_aout.c:
13  *      Copyright (C) 1991, 1992, 1996  Linus Torvalds
14  *  linux/fs/binfmt_flat.c for 2.0 kernel
15  *	    Copyright (C) 1998  Kenneth Albanowski <kjahds@kjahds.com>
16  *	JAN/99 -- coded full program relocation (gerg@snapgear.com)
17  */
18 
19 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/mm.h>
25 #include <linux/mman.h>
26 #include <linux/errno.h>
27 #include <linux/signal.h>
28 #include <linux/string.h>
29 #include <linux/fs.h>
30 #include <linux/file.h>
31 #include <linux/ptrace.h>
32 #include <linux/user.h>
33 #include <linux/slab.h>
34 #include <linux/binfmts.h>
35 #include <linux/personality.h>
36 #include <linux/init.h>
37 #include <linux/flat.h>
38 #include <linux/uaccess.h>
39 #include <linux/vmalloc.h>
40 
41 #include <asm/byteorder.h>
42 #include <asm/unaligned.h>
43 #include <asm/cacheflush.h>
44 #include <asm/page.h>
45 #include <asm/flat.h>
46 
47 #ifndef flat_get_relocate_addr
48 #define flat_get_relocate_addr(rel)	(rel)
49 #endif
50 
51 /****************************************************************************/
52 
53 /*
54  * User data (data section and bss) needs to be aligned.
55  * We pick 0x20 here because it is the max value elf2flt has always
56  * used in producing FLAT files, and because it seems to be large
57  * enough to make all the gcc alignment related tests happy.
58  */
59 #define FLAT_DATA_ALIGN	(0x20)
60 
61 /*
62  * User data (stack) also needs to be aligned.
63  * Here we can be a bit looser than the data sections since this
64  * needs to only meet arch ABI requirements.
65  */
66 #define FLAT_STACK_ALIGN	max_t(unsigned long, sizeof(void *), ARCH_SLAB_MINALIGN)
67 
68 #define RELOC_FAILED 0xff00ff01		/* Relocation incorrect somewhere */
69 #define UNLOADED_LIB 0x7ff000ff		/* Placeholder for unused library */
70 
71 #define MAX_SHARED_LIBS			(1)
72 
73 #ifdef CONFIG_BINFMT_FLAT_NO_DATA_START_OFFSET
74 #define DATA_START_OFFSET_WORDS		(0)
75 #else
76 #define DATA_START_OFFSET_WORDS		(MAX_SHARED_LIBS)
77 #endif
78 
79 struct lib_info {
80 	struct {
81 		unsigned long start_code;		/* Start of text segment */
82 		unsigned long start_data;		/* Start of data segment */
83 		unsigned long start_brk;		/* End of data segment */
84 		unsigned long text_len;			/* Length of text segment */
85 		unsigned long entry;			/* Start address for this module */
86 		unsigned long build_date;		/* When this one was compiled */
87 		bool loaded;				/* Has this library been loaded? */
88 	} lib_list[MAX_SHARED_LIBS];
89 };
90 
91 static int load_flat_binary(struct linux_binprm *);
92 
93 static struct linux_binfmt flat_format = {
94 	.module		= THIS_MODULE,
95 	.load_binary	= load_flat_binary,
96 };
97 
98 
99 /****************************************************************************/
100 /*
101  * create_flat_tables() parses the env- and arg-strings in new user
102  * memory and creates the pointer tables from them, and puts their
103  * addresses on the "stack", recording the new stack pointer value.
104  */
105 
106 static int create_flat_tables(struct linux_binprm *bprm, unsigned long arg_start)
107 {
108 	char __user *p;
109 	unsigned long __user *sp;
110 	long i, len;
111 
112 	p = (char __user *)arg_start;
113 	sp = (unsigned long __user *)current->mm->start_stack;
114 
115 	sp -= bprm->envc + 1;
116 	sp -= bprm->argc + 1;
117 	if (IS_ENABLED(CONFIG_BINFMT_FLAT_ARGVP_ENVP_ON_STACK))
118 		sp -= 2; /* argvp + envp */
119 	sp -= 1;  /* &argc */
120 
121 	current->mm->start_stack = (unsigned long)sp & -FLAT_STACK_ALIGN;
122 	sp = (unsigned long __user *)current->mm->start_stack;
123 
124 	if (put_user(bprm->argc, sp++))
125 		return -EFAULT;
126 	if (IS_ENABLED(CONFIG_BINFMT_FLAT_ARGVP_ENVP_ON_STACK)) {
127 		unsigned long argv, envp;
128 		argv = (unsigned long)(sp + 2);
129 		envp = (unsigned long)(sp + 2 + bprm->argc + 1);
130 		if (put_user(argv, sp++) || put_user(envp, sp++))
131 			return -EFAULT;
132 	}
133 
134 	current->mm->arg_start = (unsigned long)p;
135 	for (i = bprm->argc; i > 0; i--) {
136 		if (put_user((unsigned long)p, sp++))
137 			return -EFAULT;
138 		len = strnlen_user(p, MAX_ARG_STRLEN);
139 		if (!len || len > MAX_ARG_STRLEN)
140 			return -EINVAL;
141 		p += len;
142 	}
143 	if (put_user(0, sp++))
144 		return -EFAULT;
145 	current->mm->arg_end = (unsigned long)p;
146 
147 	current->mm->env_start = (unsigned long) p;
148 	for (i = bprm->envc; i > 0; i--) {
149 		if (put_user((unsigned long)p, sp++))
150 			return -EFAULT;
151 		len = strnlen_user(p, MAX_ARG_STRLEN);
152 		if (!len || len > MAX_ARG_STRLEN)
153 			return -EINVAL;
154 		p += len;
155 	}
156 	if (put_user(0, sp++))
157 		return -EFAULT;
158 	current->mm->env_end = (unsigned long)p;
159 
160 	return 0;
161 }
162 
163 /****************************************************************************/
164 
165 #ifdef CONFIG_BINFMT_ZFLAT
166 
167 #include <linux/zlib.h>
168 
169 #define LBUFSIZE	4000
170 
171 /* gzip flag byte */
172 #define ASCII_FLAG   0x01 /* bit 0 set: file probably ASCII text */
173 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
174 #define EXTRA_FIELD  0x04 /* bit 2 set: extra field present */
175 #define ORIG_NAME    0x08 /* bit 3 set: original file name present */
176 #define COMMENT      0x10 /* bit 4 set: file comment present */
177 #define ENCRYPTED    0x20 /* bit 5 set: file is encrypted */
178 #define RESERVED     0xC0 /* bit 6,7:   reserved */
179 
180 static int decompress_exec(struct linux_binprm *bprm, loff_t fpos, char *dst,
181 		long len, int fd)
182 {
183 	unsigned char *buf;
184 	z_stream strm;
185 	int ret, retval;
186 
187 	pr_debug("decompress_exec(offset=%llx,buf=%p,len=%lx)\n", fpos, dst, len);
188 
189 	memset(&strm, 0, sizeof(strm));
190 	strm.workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
191 	if (!strm.workspace)
192 		return -ENOMEM;
193 
194 	buf = kmalloc(LBUFSIZE, GFP_KERNEL);
195 	if (!buf) {
196 		retval = -ENOMEM;
197 		goto out_free;
198 	}
199 
200 	/* Read in first chunk of data and parse gzip header. */
201 	ret = kernel_read(bprm->file, buf, LBUFSIZE, &fpos);
202 
203 	strm.next_in = buf;
204 	strm.avail_in = ret;
205 	strm.total_in = 0;
206 
207 	retval = -ENOEXEC;
208 
209 	/* Check minimum size -- gzip header */
210 	if (ret < 10) {
211 		pr_debug("file too small?\n");
212 		goto out_free_buf;
213 	}
214 
215 	/* Check gzip magic number */
216 	if ((buf[0] != 037) || ((buf[1] != 0213) && (buf[1] != 0236))) {
217 		pr_debug("unknown compression magic?\n");
218 		goto out_free_buf;
219 	}
220 
221 	/* Check gzip method */
222 	if (buf[2] != 8) {
223 		pr_debug("unknown compression method?\n");
224 		goto out_free_buf;
225 	}
226 	/* Check gzip flags */
227 	if ((buf[3] & ENCRYPTED) || (buf[3] & CONTINUATION) ||
228 	    (buf[3] & RESERVED)) {
229 		pr_debug("unknown flags?\n");
230 		goto out_free_buf;
231 	}
232 
233 	ret = 10;
234 	if (buf[3] & EXTRA_FIELD) {
235 		ret += 2 + buf[10] + (buf[11] << 8);
236 		if (unlikely(ret >= LBUFSIZE)) {
237 			pr_debug("buffer overflow (EXTRA)?\n");
238 			goto out_free_buf;
239 		}
240 	}
241 	if (buf[3] & ORIG_NAME) {
242 		while (ret < LBUFSIZE && buf[ret++] != 0)
243 			;
244 		if (unlikely(ret == LBUFSIZE)) {
245 			pr_debug("buffer overflow (ORIG_NAME)?\n");
246 			goto out_free_buf;
247 		}
248 	}
249 	if (buf[3] & COMMENT) {
250 		while (ret < LBUFSIZE && buf[ret++] != 0)
251 			;
252 		if (unlikely(ret == LBUFSIZE)) {
253 			pr_debug("buffer overflow (COMMENT)?\n");
254 			goto out_free_buf;
255 		}
256 	}
257 
258 	strm.next_in += ret;
259 	strm.avail_in -= ret;
260 
261 	strm.next_out = dst;
262 	strm.avail_out = len;
263 	strm.total_out = 0;
264 
265 	if (zlib_inflateInit2(&strm, -MAX_WBITS) != Z_OK) {
266 		pr_debug("zlib init failed?\n");
267 		goto out_free_buf;
268 	}
269 
270 	while ((ret = zlib_inflate(&strm, Z_NO_FLUSH)) == Z_OK) {
271 		ret = kernel_read(bprm->file, buf, LBUFSIZE, &fpos);
272 		if (ret <= 0)
273 			break;
274 		len -= ret;
275 
276 		strm.next_in = buf;
277 		strm.avail_in = ret;
278 		strm.total_in = 0;
279 	}
280 
281 	if (ret < 0) {
282 		pr_debug("decompression failed (%d), %s\n",
283 			ret, strm.msg);
284 		goto out_zlib;
285 	}
286 
287 	retval = 0;
288 out_zlib:
289 	zlib_inflateEnd(&strm);
290 out_free_buf:
291 	kfree(buf);
292 out_free:
293 	kfree(strm.workspace);
294 	return retval;
295 }
296 
297 #endif /* CONFIG_BINFMT_ZFLAT */
298 
299 /****************************************************************************/
300 
301 static unsigned long
302 calc_reloc(unsigned long r, struct lib_info *p)
303 {
304 	unsigned long addr;
305 	unsigned long start_brk;
306 	unsigned long start_data;
307 	unsigned long text_len;
308 	unsigned long start_code;
309 
310 	start_brk = p->lib_list[0].start_brk;
311 	start_data = p->lib_list[0].start_data;
312 	start_code = p->lib_list[0].start_code;
313 	text_len = p->lib_list[0].text_len;
314 
315 	if (r > start_brk - start_data + text_len) {
316 		pr_err("reloc outside program 0x%lx (0 - 0x%lx/0x%lx)",
317 		       r, start_brk-start_data+text_len, text_len);
318 		goto failed;
319 	}
320 
321 	if (r < text_len)			/* In text segment */
322 		addr = r + start_code;
323 	else					/* In data segment */
324 		addr = r - text_len + start_data;
325 
326 	/* Range checked already above so doing the range tests is redundant...*/
327 	return addr;
328 
329 failed:
330 	pr_cont(", killing %s!\n", current->comm);
331 	send_sig(SIGSEGV, current, 0);
332 
333 	return RELOC_FAILED;
334 }
335 
336 /****************************************************************************/
337 
338 #ifdef CONFIG_BINFMT_FLAT_OLD
339 static void old_reloc(unsigned long rl)
340 {
341 	static const char *segment[] = { "TEXT", "DATA", "BSS", "*UNKNOWN*" };
342 	flat_v2_reloc_t	r;
343 	unsigned long __user *ptr;
344 	unsigned long val;
345 
346 	r.value = rl;
347 #if defined(CONFIG_COLDFIRE)
348 	ptr = (unsigned long __user *)(current->mm->start_code + r.reloc.offset);
349 #else
350 	ptr = (unsigned long __user *)(current->mm->start_data + r.reloc.offset);
351 #endif
352 	get_user(val, ptr);
353 
354 	pr_debug("Relocation of variable at DATASEG+%x "
355 		 "(address %p, currently %lx) into segment %s\n",
356 		 r.reloc.offset, ptr, val, segment[r.reloc.type]);
357 
358 	switch (r.reloc.type) {
359 	case OLD_FLAT_RELOC_TYPE_TEXT:
360 		val += current->mm->start_code;
361 		break;
362 	case OLD_FLAT_RELOC_TYPE_DATA:
363 		val += current->mm->start_data;
364 		break;
365 	case OLD_FLAT_RELOC_TYPE_BSS:
366 		val += current->mm->end_data;
367 		break;
368 	default:
369 		pr_err("Unknown relocation type=%x\n", r.reloc.type);
370 		break;
371 	}
372 	put_user(val, ptr);
373 
374 	pr_debug("Relocation became %lx\n", val);
375 }
376 #endif /* CONFIG_BINFMT_FLAT_OLD */
377 
378 /****************************************************************************/
379 
380 static inline u32 __user *skip_got_header(u32 __user *rp)
381 {
382 	if (IS_ENABLED(CONFIG_RISCV)) {
383 		/*
384 		 * RISC-V has a 16 byte GOT PLT header for elf64-riscv
385 		 * and 8 byte GOT PLT header for elf32-riscv.
386 		 * Skip the whole GOT PLT header, since it is reserved
387 		 * for the dynamic linker (ld.so).
388 		 */
389 		u32 rp_val0, rp_val1;
390 
391 		if (get_user(rp_val0, rp))
392 			return rp;
393 		if (get_user(rp_val1, rp + 1))
394 			return rp;
395 
396 		if (rp_val0 == 0xffffffff && rp_val1 == 0xffffffff)
397 			rp += 4;
398 		else if (rp_val0 == 0xffffffff)
399 			rp += 2;
400 	}
401 	return rp;
402 }
403 
404 static int load_flat_file(struct linux_binprm *bprm,
405 		struct lib_info *libinfo, unsigned long *extra_stack)
406 {
407 	struct flat_hdr *hdr;
408 	unsigned long textpos, datapos, realdatastart;
409 	u32 text_len, data_len, bss_len, stack_len, full_data, flags;
410 	unsigned long len, memp, memp_size, extra, rlim;
411 	__be32 __user *reloc;
412 	u32 __user *rp;
413 	int i, rev, relocs;
414 	loff_t fpos;
415 	unsigned long start_code, end_code;
416 	ssize_t result;
417 	int ret;
418 
419 	hdr = ((struct flat_hdr *) bprm->buf);		/* exec-header */
420 
421 	text_len  = ntohl(hdr->data_start);
422 	data_len  = ntohl(hdr->data_end) - ntohl(hdr->data_start);
423 	bss_len   = ntohl(hdr->bss_end) - ntohl(hdr->data_end);
424 	stack_len = ntohl(hdr->stack_size);
425 	if (extra_stack) {
426 		stack_len += *extra_stack;
427 		*extra_stack = stack_len;
428 	}
429 	relocs    = ntohl(hdr->reloc_count);
430 	flags     = ntohl(hdr->flags);
431 	rev       = ntohl(hdr->rev);
432 	full_data = data_len + relocs * sizeof(unsigned long);
433 
434 	if (strncmp(hdr->magic, "bFLT", 4)) {
435 		/*
436 		 * Previously, here was a printk to tell people
437 		 *   "BINFMT_FLAT: bad header magic".
438 		 * But for the kernel which also use ELF FD-PIC format, this
439 		 * error message is confusing.
440 		 * because a lot of people do not manage to produce good
441 		 */
442 		ret = -ENOEXEC;
443 		goto err;
444 	}
445 
446 	if (flags & FLAT_FLAG_KTRACE)
447 		pr_info("Loading file: %s\n", bprm->filename);
448 
449 #ifdef CONFIG_BINFMT_FLAT_OLD
450 	if (rev != FLAT_VERSION && rev != OLD_FLAT_VERSION) {
451 		pr_err("bad flat file version 0x%x (supported 0x%lx and 0x%lx)\n",
452 		       rev, FLAT_VERSION, OLD_FLAT_VERSION);
453 		ret = -ENOEXEC;
454 		goto err;
455 	}
456 
457 	/*
458 	 * fix up the flags for the older format,  there were all kinds
459 	 * of endian hacks,  this only works for the simple cases
460 	 */
461 	if (rev == OLD_FLAT_VERSION &&
462 	   (flags || IS_ENABLED(CONFIG_BINFMT_FLAT_OLD_ALWAYS_RAM)))
463 		flags = FLAT_FLAG_RAM;
464 
465 #else /* CONFIG_BINFMT_FLAT_OLD */
466 	if (rev != FLAT_VERSION) {
467 		pr_err("bad flat file version 0x%x (supported 0x%lx)\n",
468 		       rev, FLAT_VERSION);
469 		ret = -ENOEXEC;
470 		goto err;
471 	}
472 #endif /* !CONFIG_BINFMT_FLAT_OLD */
473 
474 	/*
475 	 * Make sure the header params are sane.
476 	 * 28 bits (256 MB) is way more than reasonable in this case.
477 	 * If some top bits are set we have probable binary corruption.
478 	*/
479 	if ((text_len | data_len | bss_len | stack_len | full_data) >> 28) {
480 		pr_err("bad header\n");
481 		ret = -ENOEXEC;
482 		goto err;
483 	}
484 
485 #ifndef CONFIG_BINFMT_ZFLAT
486 	if (flags & (FLAT_FLAG_GZIP|FLAT_FLAG_GZDATA)) {
487 		pr_err("Support for ZFLAT executables is not enabled.\n");
488 		ret = -ENOEXEC;
489 		goto err;
490 	}
491 #endif
492 
493 	/*
494 	 * Check initial limits. This avoids letting people circumvent
495 	 * size limits imposed on them by creating programs with large
496 	 * arrays in the data or bss.
497 	 */
498 	rlim = rlimit(RLIMIT_DATA);
499 	if (rlim >= RLIM_INFINITY)
500 		rlim = ~0;
501 	if (data_len + bss_len > rlim) {
502 		ret = -ENOMEM;
503 		goto err;
504 	}
505 
506 	/* Flush all traces of the currently running executable */
507 	ret = begin_new_exec(bprm);
508 	if (ret)
509 		goto err;
510 
511 	/* OK, This is the point of no return */
512 	set_personality(PER_LINUX_32BIT);
513 	setup_new_exec(bprm);
514 
515 	/*
516 	 * calculate the extra space we need to map in
517 	 */
518 	extra = max_t(unsigned long, bss_len + stack_len,
519 			relocs * sizeof(unsigned long));
520 
521 	/*
522 	 * there are a couple of cases here,  the separate code/data
523 	 * case,  and then the fully copied to RAM case which lumps
524 	 * it all together.
525 	 */
526 	if (!IS_ENABLED(CONFIG_MMU) && !(flags & (FLAT_FLAG_RAM|FLAT_FLAG_GZIP))) {
527 		/*
528 		 * this should give us a ROM ptr,  but if it doesn't we don't
529 		 * really care
530 		 */
531 		pr_debug("ROM mapping of file (we hope)\n");
532 
533 		textpos = vm_mmap(bprm->file, 0, text_len, PROT_READ|PROT_EXEC,
534 				  MAP_PRIVATE, 0);
535 		if (!textpos || IS_ERR_VALUE(textpos)) {
536 			ret = textpos;
537 			if (!textpos)
538 				ret = -ENOMEM;
539 			pr_err("Unable to mmap process text, errno %d\n", ret);
540 			goto err;
541 		}
542 
543 		len = data_len + extra +
544 			DATA_START_OFFSET_WORDS * sizeof(unsigned long);
545 		len = PAGE_ALIGN(len);
546 		realdatastart = vm_mmap(NULL, 0, len,
547 			PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 0);
548 
549 		if (realdatastart == 0 || IS_ERR_VALUE(realdatastart)) {
550 			ret = realdatastart;
551 			if (!realdatastart)
552 				ret = -ENOMEM;
553 			pr_err("Unable to allocate RAM for process data, "
554 			       "errno %d\n", ret);
555 			vm_munmap(textpos, text_len);
556 			goto err;
557 		}
558 		datapos = ALIGN(realdatastart +
559 				DATA_START_OFFSET_WORDS * sizeof(unsigned long),
560 				FLAT_DATA_ALIGN);
561 
562 		pr_debug("Allocated data+bss+stack (%u bytes): %lx\n",
563 			 data_len + bss_len + stack_len, datapos);
564 
565 		fpos = ntohl(hdr->data_start);
566 #ifdef CONFIG_BINFMT_ZFLAT
567 		if (flags & FLAT_FLAG_GZDATA) {
568 			result = decompress_exec(bprm, fpos, (char *)datapos,
569 						 full_data, 0);
570 		} else
571 #endif
572 		{
573 			result = read_code(bprm->file, datapos, fpos,
574 					full_data);
575 		}
576 		if (IS_ERR_VALUE(result)) {
577 			ret = result;
578 			pr_err("Unable to read data+bss, errno %d\n", ret);
579 			vm_munmap(textpos, text_len);
580 			vm_munmap(realdatastart, len);
581 			goto err;
582 		}
583 
584 		reloc = (__be32 __user *)
585 			(datapos + (ntohl(hdr->reloc_start) - text_len));
586 		memp = realdatastart;
587 		memp_size = len;
588 	} else {
589 
590 		len = text_len + data_len + extra +
591 			DATA_START_OFFSET_WORDS * sizeof(u32);
592 		len = PAGE_ALIGN(len);
593 		textpos = vm_mmap(NULL, 0, len,
594 			PROT_READ | PROT_EXEC | PROT_WRITE, MAP_PRIVATE, 0);
595 
596 		if (!textpos || IS_ERR_VALUE(textpos)) {
597 			ret = textpos;
598 			if (!textpos)
599 				ret = -ENOMEM;
600 			pr_err("Unable to allocate RAM for process text/data, "
601 			       "errno %d\n", ret);
602 			goto err;
603 		}
604 
605 		realdatastart = textpos + ntohl(hdr->data_start);
606 		datapos = ALIGN(realdatastart +
607 				DATA_START_OFFSET_WORDS * sizeof(u32),
608 				FLAT_DATA_ALIGN);
609 
610 		reloc = (__be32 __user *)
611 			(datapos + (ntohl(hdr->reloc_start) - text_len));
612 		memp = textpos;
613 		memp_size = len;
614 #ifdef CONFIG_BINFMT_ZFLAT
615 		/*
616 		 * load it all in and treat it like a RAM load from now on
617 		 */
618 		if (flags & FLAT_FLAG_GZIP) {
619 #ifndef CONFIG_MMU
620 			result = decompress_exec(bprm, sizeof(struct flat_hdr),
621 					 (((char *)textpos) + sizeof(struct flat_hdr)),
622 					 (text_len + full_data
623 						  - sizeof(struct flat_hdr)),
624 					 0);
625 			memmove((void *) datapos, (void *) realdatastart,
626 					full_data);
627 #else
628 			/*
629 			 * This is used on MMU systems mainly for testing.
630 			 * Let's use a kernel buffer to simplify things.
631 			 */
632 			long unz_text_len = text_len - sizeof(struct flat_hdr);
633 			long unz_len = unz_text_len + full_data;
634 			char *unz_data = vmalloc(unz_len);
635 			if (!unz_data) {
636 				result = -ENOMEM;
637 			} else {
638 				result = decompress_exec(bprm, sizeof(struct flat_hdr),
639 							 unz_data, unz_len, 0);
640 				if (result == 0 &&
641 				    (copy_to_user((void __user *)textpos + sizeof(struct flat_hdr),
642 						  unz_data, unz_text_len) ||
643 				     copy_to_user((void __user *)datapos,
644 						  unz_data + unz_text_len, full_data)))
645 					result = -EFAULT;
646 				vfree(unz_data);
647 			}
648 #endif
649 		} else if (flags & FLAT_FLAG_GZDATA) {
650 			result = read_code(bprm->file, textpos, 0, text_len);
651 			if (!IS_ERR_VALUE(result)) {
652 #ifndef CONFIG_MMU
653 				result = decompress_exec(bprm, text_len, (char *) datapos,
654 						 full_data, 0);
655 #else
656 				char *unz_data = vmalloc(full_data);
657 				if (!unz_data) {
658 					result = -ENOMEM;
659 				} else {
660 					result = decompress_exec(bprm, text_len,
661 						       unz_data, full_data, 0);
662 					if (result == 0 &&
663 					    copy_to_user((void __user *)datapos,
664 							 unz_data, full_data))
665 						result = -EFAULT;
666 					vfree(unz_data);
667 				}
668 #endif
669 			}
670 		} else
671 #endif /* CONFIG_BINFMT_ZFLAT */
672 		{
673 			result = read_code(bprm->file, textpos, 0, text_len);
674 			if (!IS_ERR_VALUE(result))
675 				result = read_code(bprm->file, datapos,
676 						   ntohl(hdr->data_start),
677 						   full_data);
678 		}
679 		if (IS_ERR_VALUE(result)) {
680 			ret = result;
681 			pr_err("Unable to read code+data+bss, errno %d\n", ret);
682 			vm_munmap(textpos, text_len + data_len + extra +
683 				  DATA_START_OFFSET_WORDS * sizeof(u32));
684 			goto err;
685 		}
686 	}
687 
688 	start_code = textpos + sizeof(struct flat_hdr);
689 	end_code = textpos + text_len;
690 	text_len -= sizeof(struct flat_hdr); /* the real code len */
691 
692 	/* The main program needs a little extra setup in the task structure */
693 	current->mm->start_code = start_code;
694 	current->mm->end_code = end_code;
695 	current->mm->start_data = datapos;
696 	current->mm->end_data = datapos + data_len;
697 	/*
698 	 * set up the brk stuff, uses any slack left in data/bss/stack
699 	 * allocation.  We put the brk after the bss (between the bss
700 	 * and stack) like other platforms.
701 	 * Userspace code relies on the stack pointer starting out at
702 	 * an address right at the end of a page.
703 	 */
704 	current->mm->start_brk = datapos + data_len + bss_len;
705 	current->mm->brk = (current->mm->start_brk + 3) & ~3;
706 #ifndef CONFIG_MMU
707 	current->mm->context.end_brk = memp + memp_size - stack_len;
708 #endif
709 
710 	if (flags & FLAT_FLAG_KTRACE) {
711 		pr_info("Mapping is %lx, Entry point is %x, data_start is %x\n",
712 			textpos, 0x00ffffff&ntohl(hdr->entry), ntohl(hdr->data_start));
713 		pr_info("%s %s: TEXT=%lx-%lx DATA=%lx-%lx BSS=%lx-%lx\n",
714 			"Load", bprm->filename,
715 			start_code, end_code, datapos, datapos + data_len,
716 			datapos + data_len, (datapos + data_len + bss_len + 3) & ~3);
717 	}
718 
719 	/* Store the current module values into the global library structure */
720 	libinfo->lib_list[0].start_code = start_code;
721 	libinfo->lib_list[0].start_data = datapos;
722 	libinfo->lib_list[0].start_brk = datapos + data_len + bss_len;
723 	libinfo->lib_list[0].text_len = text_len;
724 	libinfo->lib_list[0].loaded = 1;
725 	libinfo->lib_list[0].entry = (0x00ffffff & ntohl(hdr->entry)) + textpos;
726 	libinfo->lib_list[0].build_date = ntohl(hdr->build_date);
727 
728 	/*
729 	 * We just load the allocations into some temporary memory to
730 	 * help simplify all this mumbo jumbo
731 	 *
732 	 * We've got two different sections of relocation entries.
733 	 * The first is the GOT which resides at the beginning of the data segment
734 	 * and is terminated with a -1.  This one can be relocated in place.
735 	 * The second is the extra relocation entries tacked after the image's
736 	 * data segment. These require a little more processing as the entry is
737 	 * really an offset into the image which contains an offset into the
738 	 * image.
739 	 */
740 	if (flags & FLAT_FLAG_GOTPIC) {
741 		rp = skip_got_header((u32 __user *) datapos);
742 		for (; ; rp++) {
743 			u32 addr, rp_val;
744 			if (get_user(rp_val, rp))
745 				return -EFAULT;
746 			if (rp_val == 0xffffffff)
747 				break;
748 			if (rp_val) {
749 				addr = calc_reloc(rp_val, libinfo);
750 				if (addr == RELOC_FAILED) {
751 					ret = -ENOEXEC;
752 					goto err;
753 				}
754 				if (put_user(addr, rp))
755 					return -EFAULT;
756 			}
757 		}
758 	}
759 
760 	/*
761 	 * Now run through the relocation entries.
762 	 * We've got to be careful here as C++ produces relocatable zero
763 	 * entries in the constructor and destructor tables which are then
764 	 * tested for being not zero (which will always occur unless we're
765 	 * based from address zero).  This causes an endless loop as __start
766 	 * is at zero.  The solution used is to not relocate zero addresses.
767 	 * This has the negative side effect of not allowing a global data
768 	 * reference to be statically initialised to _stext (I've moved
769 	 * __start to address 4 so that is okay).
770 	 */
771 	if (rev > OLD_FLAT_VERSION) {
772 		for (i = 0; i < relocs; i++) {
773 			u32 addr, relval;
774 			__be32 tmp;
775 
776 			/*
777 			 * Get the address of the pointer to be
778 			 * relocated (of course, the address has to be
779 			 * relocated first).
780 			 */
781 			if (get_user(tmp, reloc + i))
782 				return -EFAULT;
783 			relval = ntohl(tmp);
784 			addr = flat_get_relocate_addr(relval);
785 			rp = (u32 __user *)calc_reloc(addr, libinfo);
786 			if (rp == (u32 __user *)RELOC_FAILED) {
787 				ret = -ENOEXEC;
788 				goto err;
789 			}
790 
791 			/* Get the pointer's value.  */
792 			ret = flat_get_addr_from_rp(rp, relval, flags, &addr);
793 			if (unlikely(ret))
794 				goto err;
795 
796 			if (addr != 0) {
797 				/*
798 				 * Do the relocation.  PIC relocs in the data section are
799 				 * already in target order
800 				 */
801 				if ((flags & FLAT_FLAG_GOTPIC) == 0) {
802 					/*
803 					 * Meh, the same value can have a different
804 					 * byte order based on a flag..
805 					 */
806 					addr = ntohl((__force __be32)addr);
807 				}
808 				addr = calc_reloc(addr, libinfo);
809 				if (addr == RELOC_FAILED) {
810 					ret = -ENOEXEC;
811 					goto err;
812 				}
813 
814 				/* Write back the relocated pointer.  */
815 				ret = flat_put_addr_at_rp(rp, addr, relval);
816 				if (unlikely(ret))
817 					goto err;
818 			}
819 		}
820 #ifdef CONFIG_BINFMT_FLAT_OLD
821 	} else {
822 		for (i = 0; i < relocs; i++) {
823 			__be32 relval;
824 			if (get_user(relval, reloc + i))
825 				return -EFAULT;
826 			old_reloc(ntohl(relval));
827 		}
828 #endif /* CONFIG_BINFMT_FLAT_OLD */
829 	}
830 
831 	flush_icache_user_range(start_code, end_code);
832 
833 	/* zero the BSS,  BRK and stack areas */
834 	if (clear_user((void __user *)(datapos + data_len), bss_len +
835 		       (memp + memp_size - stack_len -		/* end brk */
836 		       libinfo->lib_list[0].start_brk) +	/* start brk */
837 		       stack_len))
838 		return -EFAULT;
839 
840 	return 0;
841 err:
842 	return ret;
843 }
844 
845 
846 /****************************************************************************/
847 
848 /*
849  * These are the functions used to load flat style executables and shared
850  * libraries.  There is no binary dependent code anywhere else.
851  */
852 
853 static int load_flat_binary(struct linux_binprm *bprm)
854 {
855 	struct lib_info libinfo;
856 	struct pt_regs *regs = current_pt_regs();
857 	unsigned long stack_len = 0;
858 	unsigned long start_addr;
859 	int res;
860 	int i, j;
861 
862 	memset(&libinfo, 0, sizeof(libinfo));
863 
864 	/*
865 	 * We have to add the size of our arguments to our stack size
866 	 * otherwise it's too easy for users to create stack overflows
867 	 * by passing in a huge argument list.  And yes,  we have to be
868 	 * pedantic and include space for the argv/envp array as it may have
869 	 * a lot of entries.
870 	 */
871 #ifndef CONFIG_MMU
872 	stack_len += PAGE_SIZE * MAX_ARG_PAGES - bprm->p; /* the strings */
873 #endif
874 	stack_len += (bprm->argc + 1) * sizeof(char *);   /* the argv array */
875 	stack_len += (bprm->envc + 1) * sizeof(char *);   /* the envp array */
876 	stack_len = ALIGN(stack_len, FLAT_STACK_ALIGN);
877 
878 	res = load_flat_file(bprm, &libinfo, &stack_len);
879 	if (res < 0)
880 		return res;
881 
882 	/* Update data segment pointers for all libraries */
883 	for (i = 0; i < MAX_SHARED_LIBS; i++) {
884 		if (!libinfo.lib_list[i].loaded)
885 			continue;
886 		for (j = 0; j < MAX_SHARED_LIBS; j++) {
887 			unsigned long val = libinfo.lib_list[j].loaded ?
888 				libinfo.lib_list[j].start_data : UNLOADED_LIB;
889 			unsigned long __user *p = (unsigned long __user *)
890 				libinfo.lib_list[i].start_data;
891 			p -= j + 1;
892 			if (put_user(val, p))
893 				return -EFAULT;
894 		}
895 	}
896 
897 	set_binfmt(&flat_format);
898 
899 #ifdef CONFIG_MMU
900 	res = setup_arg_pages(bprm, STACK_TOP, EXSTACK_DEFAULT);
901 	if (!res)
902 		res = create_flat_tables(bprm, bprm->p);
903 #else
904 	/* Stash our initial stack pointer into the mm structure */
905 	current->mm->start_stack =
906 		((current->mm->context.end_brk + stack_len + 3) & ~3) - 4;
907 	pr_debug("sp=%lx\n", current->mm->start_stack);
908 
909 	/* copy the arg pages onto the stack */
910 	res = transfer_args_to_stack(bprm, &current->mm->start_stack);
911 	if (!res)
912 		res = create_flat_tables(bprm, current->mm->start_stack);
913 #endif
914 	if (res)
915 		return res;
916 
917 	/* Fake some return addresses to ensure the call chain will
918 	 * initialise library in order for us.  We are required to call
919 	 * lib 1 first, then 2, ... and finally the main program (id 0).
920 	 */
921 	start_addr = libinfo.lib_list[0].entry;
922 
923 #ifdef FLAT_PLAT_INIT
924 	FLAT_PLAT_INIT(regs);
925 #endif
926 
927 	finalize_exec(bprm);
928 	pr_debug("start_thread(regs=0x%p, entry=0x%lx, start_stack=0x%lx)\n",
929 		 regs, start_addr, current->mm->start_stack);
930 	start_thread(regs, start_addr, current->mm->start_stack);
931 
932 	return 0;
933 }
934 
935 /****************************************************************************/
936 
937 static int __init init_flat_binfmt(void)
938 {
939 	register_binfmt(&flat_format);
940 	return 0;
941 }
942 core_initcall(init_flat_binfmt);
943 
944 /****************************************************************************/
945