xref: /openbmc/linux/fs/binfmt_flat.c (revision 5d4a2e29)
1 /****************************************************************************/
2 /*
3  *  linux/fs/binfmt_flat.c
4  *
5  *	Copyright (C) 2000-2003 David McCullough <davidm@snapgear.com>
6  *	Copyright (C) 2002 Greg Ungerer <gerg@snapgear.com>
7  *	Copyright (C) 2002 SnapGear, by Paul Dale <pauli@snapgear.com>
8  *	Copyright (C) 2000, 2001 Lineo, by David McCullough <davidm@lineo.com>
9  *  based heavily on:
10  *
11  *  linux/fs/binfmt_aout.c:
12  *      Copyright (C) 1991, 1992, 1996  Linus Torvalds
13  *  linux/fs/binfmt_flat.c for 2.0 kernel
14  *	    Copyright (C) 1998  Kenneth Albanowski <kjahds@kjahds.com>
15  *	JAN/99 -- coded full program relocation (gerg@snapgear.com)
16  */
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/mman.h>
23 #include <linux/errno.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/stat.h>
29 #include <linux/fcntl.h>
30 #include <linux/ptrace.h>
31 #include <linux/user.h>
32 #include <linux/slab.h>
33 #include <linux/binfmts.h>
34 #include <linux/personality.h>
35 #include <linux/init.h>
36 #include <linux/flat.h>
37 #include <linux/syscalls.h>
38 
39 #include <asm/byteorder.h>
40 #include <asm/system.h>
41 #include <asm/uaccess.h>
42 #include <asm/unaligned.h>
43 #include <asm/cacheflush.h>
44 #include <asm/page.h>
45 
46 /****************************************************************************/
47 
48 #if 0
49 #define DEBUG 1
50 #endif
51 
52 #ifdef DEBUG
53 #define	DBG_FLT(a...)	printk(a)
54 #else
55 #define	DBG_FLT(a...)
56 #endif
57 
58 /*
59  * User data (data section and bss) needs to be aligned.
60  * We pick 0x20 here because it is the max value elf2flt has always
61  * used in producing FLAT files, and because it seems to be large
62  * enough to make all the gcc alignment related tests happy.
63  */
64 #define FLAT_DATA_ALIGN	(0x20)
65 
66 /*
67  * User data (stack) also needs to be aligned.
68  * Here we can be a bit looser than the data sections since this
69  * needs to only meet arch ABI requirements.
70  */
71 #ifdef ARCH_SLAB_MINALIGN
72 #define FLAT_STACK_ALIGN	(ARCH_SLAB_MINALIGN)
73 #else
74 #define FLAT_STACK_ALIGN	(sizeof(void *))
75 #endif
76 
77 #define RELOC_FAILED 0xff00ff01		/* Relocation incorrect somewhere */
78 #define UNLOADED_LIB 0x7ff000ff		/* Placeholder for unused library */
79 
80 struct lib_info {
81 	struct {
82 		unsigned long start_code;		/* Start of text segment */
83 		unsigned long start_data;		/* Start of data segment */
84 		unsigned long start_brk;		/* End of data segment */
85 		unsigned long text_len;			/* Length of text segment */
86 		unsigned long entry;			/* Start address for this module */
87 		unsigned long build_date;		/* When this one was compiled */
88 		short loaded;				/* Has this library been loaded? */
89 	} lib_list[MAX_SHARED_LIBS];
90 };
91 
92 #ifdef CONFIG_BINFMT_SHARED_FLAT
93 static int load_flat_shared_library(int id, struct lib_info *p);
94 #endif
95 
96 static int load_flat_binary(struct linux_binprm *, struct pt_regs * regs);
97 static int flat_core_dump(struct coredump_params *cprm);
98 
99 static struct linux_binfmt flat_format = {
100 	.module		= THIS_MODULE,
101 	.load_binary	= load_flat_binary,
102 	.core_dump	= flat_core_dump,
103 	.min_coredump	= PAGE_SIZE
104 };
105 
106 /****************************************************************************/
107 /*
108  * Routine writes a core dump image in the current directory.
109  * Currently only a stub-function.
110  */
111 
112 static int flat_core_dump(struct coredump_params *cprm)
113 {
114 	printk("Process %s:%d received signr %d and should have core dumped\n",
115 			current->comm, current->pid, (int) cprm->signr);
116 	return(1);
117 }
118 
119 /****************************************************************************/
120 /*
121  * create_flat_tables() parses the env- and arg-strings in new user
122  * memory and creates the pointer tables from them, and puts their
123  * addresses on the "stack", returning the new stack pointer value.
124  */
125 
126 static unsigned long create_flat_tables(
127 	unsigned long pp,
128 	struct linux_binprm * bprm)
129 {
130 	unsigned long *argv,*envp;
131 	unsigned long * sp;
132 	char * p = (char*)pp;
133 	int argc = bprm->argc;
134 	int envc = bprm->envc;
135 	char uninitialized_var(dummy);
136 
137 	sp = (unsigned long *)p;
138 	sp -= (envc + argc + 2) + 1 + (flat_argvp_envp_on_stack() ? 2 : 0);
139 	sp = (unsigned long *) ((unsigned long)sp & -FLAT_STACK_ALIGN);
140 	argv = sp + 1 + (flat_argvp_envp_on_stack() ? 2 : 0);
141 	envp = argv + (argc + 1);
142 
143 	if (flat_argvp_envp_on_stack()) {
144 		put_user((unsigned long) envp, sp + 2);
145 		put_user((unsigned long) argv, sp + 1);
146 	}
147 
148 	put_user(argc, sp);
149 	current->mm->arg_start = (unsigned long) p;
150 	while (argc-->0) {
151 		put_user((unsigned long) p, argv++);
152 		do {
153 			get_user(dummy, p); p++;
154 		} while (dummy);
155 	}
156 	put_user((unsigned long) NULL, argv);
157 	current->mm->arg_end = current->mm->env_start = (unsigned long) p;
158 	while (envc-->0) {
159 		put_user((unsigned long)p, envp); envp++;
160 		do {
161 			get_user(dummy, p); p++;
162 		} while (dummy);
163 	}
164 	put_user((unsigned long) NULL, envp);
165 	current->mm->env_end = (unsigned long) p;
166 	return (unsigned long)sp;
167 }
168 
169 /****************************************************************************/
170 
171 #ifdef CONFIG_BINFMT_ZFLAT
172 
173 #include <linux/zlib.h>
174 
175 #define LBUFSIZE	4000
176 
177 /* gzip flag byte */
178 #define ASCII_FLAG   0x01 /* bit 0 set: file probably ASCII text */
179 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
180 #define EXTRA_FIELD  0x04 /* bit 2 set: extra field present */
181 #define ORIG_NAME    0x08 /* bit 3 set: original file name present */
182 #define COMMENT      0x10 /* bit 4 set: file comment present */
183 #define ENCRYPTED    0x20 /* bit 5 set: file is encrypted */
184 #define RESERVED     0xC0 /* bit 6,7:   reserved */
185 
186 static int decompress_exec(
187 	struct linux_binprm *bprm,
188 	unsigned long offset,
189 	char *dst,
190 	long len,
191 	int fd)
192 {
193 	unsigned char *buf;
194 	z_stream strm;
195 	loff_t fpos;
196 	int ret, retval;
197 
198 	DBG_FLT("decompress_exec(offset=%x,buf=%x,len=%x)\n",(int)offset, (int)dst, (int)len);
199 
200 	memset(&strm, 0, sizeof(strm));
201 	strm.workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
202 	if (strm.workspace == NULL) {
203 		DBG_FLT("binfmt_flat: no memory for decompress workspace\n");
204 		return -ENOMEM;
205 	}
206 	buf = kmalloc(LBUFSIZE, GFP_KERNEL);
207 	if (buf == NULL) {
208 		DBG_FLT("binfmt_flat: no memory for read buffer\n");
209 		retval = -ENOMEM;
210 		goto out_free;
211 	}
212 
213 	/* Read in first chunk of data and parse gzip header. */
214 	fpos = offset;
215 	ret = bprm->file->f_op->read(bprm->file, buf, LBUFSIZE, &fpos);
216 
217 	strm.next_in = buf;
218 	strm.avail_in = ret;
219 	strm.total_in = 0;
220 
221 	retval = -ENOEXEC;
222 
223 	/* Check minimum size -- gzip header */
224 	if (ret < 10) {
225 		DBG_FLT("binfmt_flat: file too small?\n");
226 		goto out_free_buf;
227 	}
228 
229 	/* Check gzip magic number */
230 	if ((buf[0] != 037) || ((buf[1] != 0213) && (buf[1] != 0236))) {
231 		DBG_FLT("binfmt_flat: unknown compression magic?\n");
232 		goto out_free_buf;
233 	}
234 
235 	/* Check gzip method */
236 	if (buf[2] != 8) {
237 		DBG_FLT("binfmt_flat: unknown compression method?\n");
238 		goto out_free_buf;
239 	}
240 	/* Check gzip flags */
241 	if ((buf[3] & ENCRYPTED) || (buf[3] & CONTINUATION) ||
242 	    (buf[3] & RESERVED)) {
243 		DBG_FLT("binfmt_flat: unknown flags?\n");
244 		goto out_free_buf;
245 	}
246 
247 	ret = 10;
248 	if (buf[3] & EXTRA_FIELD) {
249 		ret += 2 + buf[10] + (buf[11] << 8);
250 		if (unlikely(LBUFSIZE <= ret)) {
251 			DBG_FLT("binfmt_flat: buffer overflow (EXTRA)?\n");
252 			goto out_free_buf;
253 		}
254 	}
255 	if (buf[3] & ORIG_NAME) {
256 		while (ret < LBUFSIZE && buf[ret++] != 0)
257 			;
258 		if (unlikely(LBUFSIZE == ret)) {
259 			DBG_FLT("binfmt_flat: buffer overflow (ORIG_NAME)?\n");
260 			goto out_free_buf;
261 		}
262 	}
263 	if (buf[3] & COMMENT) {
264 		while (ret < LBUFSIZE && buf[ret++] != 0)
265 			;
266 		if (unlikely(LBUFSIZE == ret)) {
267 			DBG_FLT("binfmt_flat: buffer overflow (COMMENT)?\n");
268 			goto out_free_buf;
269 		}
270 	}
271 
272 	strm.next_in += ret;
273 	strm.avail_in -= ret;
274 
275 	strm.next_out = dst;
276 	strm.avail_out = len;
277 	strm.total_out = 0;
278 
279 	if (zlib_inflateInit2(&strm, -MAX_WBITS) != Z_OK) {
280 		DBG_FLT("binfmt_flat: zlib init failed?\n");
281 		goto out_free_buf;
282 	}
283 
284 	while ((ret = zlib_inflate(&strm, Z_NO_FLUSH)) == Z_OK) {
285 		ret = bprm->file->f_op->read(bprm->file, buf, LBUFSIZE, &fpos);
286 		if (ret <= 0)
287 			break;
288 		len -= ret;
289 
290 		strm.next_in = buf;
291 		strm.avail_in = ret;
292 		strm.total_in = 0;
293 	}
294 
295 	if (ret < 0) {
296 		DBG_FLT("binfmt_flat: decompression failed (%d), %s\n",
297 			ret, strm.msg);
298 		goto out_zlib;
299 	}
300 
301 	retval = 0;
302 out_zlib:
303 	zlib_inflateEnd(&strm);
304 out_free_buf:
305 	kfree(buf);
306 out_free:
307 	kfree(strm.workspace);
308 	return retval;
309 }
310 
311 #endif /* CONFIG_BINFMT_ZFLAT */
312 
313 /****************************************************************************/
314 
315 static unsigned long
316 calc_reloc(unsigned long r, struct lib_info *p, int curid, int internalp)
317 {
318 	unsigned long addr;
319 	int id;
320 	unsigned long start_brk;
321 	unsigned long start_data;
322 	unsigned long text_len;
323 	unsigned long start_code;
324 
325 #ifdef CONFIG_BINFMT_SHARED_FLAT
326 	if (r == 0)
327 		id = curid;	/* Relocs of 0 are always self referring */
328 	else {
329 		id = (r >> 24) & 0xff;	/* Find ID for this reloc */
330 		r &= 0x00ffffff;	/* Trim ID off here */
331 	}
332 	if (id >= MAX_SHARED_LIBS) {
333 		printk("BINFMT_FLAT: reference 0x%x to shared library %d",
334 				(unsigned) r, id);
335 		goto failed;
336 	}
337 	if (curid != id) {
338 		if (internalp) {
339 			printk("BINFMT_FLAT: reloc address 0x%x not in same module "
340 					"(%d != %d)", (unsigned) r, curid, id);
341 			goto failed;
342 		} else if ( ! p->lib_list[id].loaded &&
343 				IS_ERR_VALUE(load_flat_shared_library(id, p))) {
344 			printk("BINFMT_FLAT: failed to load library %d", id);
345 			goto failed;
346 		}
347 		/* Check versioning information (i.e. time stamps) */
348 		if (p->lib_list[id].build_date && p->lib_list[curid].build_date &&
349 				p->lib_list[curid].build_date < p->lib_list[id].build_date) {
350 			printk("BINFMT_FLAT: library %d is younger than %d", id, curid);
351 			goto failed;
352 		}
353 	}
354 #else
355 	id = 0;
356 #endif
357 
358 	start_brk = p->lib_list[id].start_brk;
359 	start_data = p->lib_list[id].start_data;
360 	start_code = p->lib_list[id].start_code;
361 	text_len = p->lib_list[id].text_len;
362 
363 	if (!flat_reloc_valid(r, start_brk - start_data + text_len)) {
364 		printk("BINFMT_FLAT: reloc outside program 0x%x (0 - 0x%x/0x%x)",
365 		       (int) r,(int)(start_brk-start_data+text_len),(int)text_len);
366 		goto failed;
367 	}
368 
369 	if (r < text_len)			/* In text segment */
370 		addr = r + start_code;
371 	else					/* In data segment */
372 		addr = r - text_len + start_data;
373 
374 	/* Range checked already above so doing the range tests is redundant...*/
375 	return(addr);
376 
377 failed:
378 	printk(", killing %s!\n", current->comm);
379 	send_sig(SIGSEGV, current, 0);
380 
381 	return RELOC_FAILED;
382 }
383 
384 /****************************************************************************/
385 
386 void old_reloc(unsigned long rl)
387 {
388 #ifdef DEBUG
389 	char *segment[] = { "TEXT", "DATA", "BSS", "*UNKNOWN*" };
390 #endif
391 	flat_v2_reloc_t	r;
392 	unsigned long *ptr;
393 
394 	r.value = rl;
395 #if defined(CONFIG_COLDFIRE)
396 	ptr = (unsigned long *) (current->mm->start_code + r.reloc.offset);
397 #else
398 	ptr = (unsigned long *) (current->mm->start_data + r.reloc.offset);
399 #endif
400 
401 #ifdef DEBUG
402 	printk("Relocation of variable at DATASEG+%x "
403 		"(address %p, currently %x) into segment %s\n",
404 		r.reloc.offset, ptr, (int)*ptr, segment[r.reloc.type]);
405 #endif
406 
407 	switch (r.reloc.type) {
408 	case OLD_FLAT_RELOC_TYPE_TEXT:
409 		*ptr += current->mm->start_code;
410 		break;
411 	case OLD_FLAT_RELOC_TYPE_DATA:
412 		*ptr += current->mm->start_data;
413 		break;
414 	case OLD_FLAT_RELOC_TYPE_BSS:
415 		*ptr += current->mm->end_data;
416 		break;
417 	default:
418 		printk("BINFMT_FLAT: Unknown relocation type=%x\n", r.reloc.type);
419 		break;
420 	}
421 
422 #ifdef DEBUG
423 	printk("Relocation became %x\n", (int)*ptr);
424 #endif
425 }
426 
427 /****************************************************************************/
428 
429 static int load_flat_file(struct linux_binprm * bprm,
430 		struct lib_info *libinfo, int id, unsigned long *extra_stack)
431 {
432 	struct flat_hdr * hdr;
433 	unsigned long textpos = 0, datapos = 0, result;
434 	unsigned long realdatastart = 0;
435 	unsigned long text_len, data_len, bss_len, stack_len, flags;
436 	unsigned long len, memp = 0;
437 	unsigned long memp_size, extra, rlim;
438 	unsigned long *reloc = 0, *rp;
439 	struct inode *inode;
440 	int i, rev, relocs = 0;
441 	loff_t fpos;
442 	unsigned long start_code, end_code;
443 	int ret;
444 
445 	hdr = ((struct flat_hdr *) bprm->buf);		/* exec-header */
446 	inode = bprm->file->f_path.dentry->d_inode;
447 
448 	text_len  = ntohl(hdr->data_start);
449 	data_len  = ntohl(hdr->data_end) - ntohl(hdr->data_start);
450 	bss_len   = ntohl(hdr->bss_end) - ntohl(hdr->data_end);
451 	stack_len = ntohl(hdr->stack_size);
452 	if (extra_stack) {
453 		stack_len += *extra_stack;
454 		*extra_stack = stack_len;
455 	}
456 	relocs    = ntohl(hdr->reloc_count);
457 	flags     = ntohl(hdr->flags);
458 	rev       = ntohl(hdr->rev);
459 
460 	if (strncmp(hdr->magic, "bFLT", 4)) {
461 		/*
462 		 * Previously, here was a printk to tell people
463 		 *   "BINFMT_FLAT: bad header magic".
464 		 * But for the kernel which also use ELF FD-PIC format, this
465 		 * error message is confusing.
466 		 * because a lot of people do not manage to produce good
467 		 */
468 		ret = -ENOEXEC;
469 		goto err;
470 	}
471 
472 	if (flags & FLAT_FLAG_KTRACE)
473 		printk("BINFMT_FLAT: Loading file: %s\n", bprm->filename);
474 
475 	if (rev != FLAT_VERSION && rev != OLD_FLAT_VERSION) {
476 		printk("BINFMT_FLAT: bad flat file version 0x%x (supported "
477 			"0x%lx and 0x%lx)\n",
478 			rev, FLAT_VERSION, OLD_FLAT_VERSION);
479 		ret = -ENOEXEC;
480 		goto err;
481 	}
482 
483 	/* Don't allow old format executables to use shared libraries */
484 	if (rev == OLD_FLAT_VERSION && id != 0) {
485 		printk("BINFMT_FLAT: shared libraries are not available before rev 0x%x\n",
486 				(int) FLAT_VERSION);
487 		ret = -ENOEXEC;
488 		goto err;
489 	}
490 
491 	/*
492 	 * fix up the flags for the older format,  there were all kinds
493 	 * of endian hacks,  this only works for the simple cases
494 	 */
495 	if (rev == OLD_FLAT_VERSION && flat_old_ram_flag(flags))
496 		flags = FLAT_FLAG_RAM;
497 
498 #ifndef CONFIG_BINFMT_ZFLAT
499 	if (flags & (FLAT_FLAG_GZIP|FLAT_FLAG_GZDATA)) {
500 		printk("Support for ZFLAT executables is not enabled.\n");
501 		ret = -ENOEXEC;
502 		goto err;
503 	}
504 #endif
505 
506 	/*
507 	 * Check initial limits. This avoids letting people circumvent
508 	 * size limits imposed on them by creating programs with large
509 	 * arrays in the data or bss.
510 	 */
511 	rlim = rlimit(RLIMIT_DATA);
512 	if (rlim >= RLIM_INFINITY)
513 		rlim = ~0;
514 	if (data_len + bss_len > rlim) {
515 		ret = -ENOMEM;
516 		goto err;
517 	}
518 
519 	/* Flush all traces of the currently running executable */
520 	if (id == 0) {
521 		result = flush_old_exec(bprm);
522 		if (result) {
523 			ret = result;
524 			goto err;
525 		}
526 
527 		/* OK, This is the point of no return */
528 		set_personality(PER_LINUX_32BIT);
529 		setup_new_exec(bprm);
530 	}
531 
532 	/*
533 	 * calculate the extra space we need to map in
534 	 */
535 	extra = max_t(unsigned long, bss_len + stack_len,
536 			relocs * sizeof(unsigned long));
537 
538 	/*
539 	 * there are a couple of cases here,  the separate code/data
540 	 * case,  and then the fully copied to RAM case which lumps
541 	 * it all together.
542 	 */
543 	if ((flags & (FLAT_FLAG_RAM|FLAT_FLAG_GZIP)) == 0) {
544 		/*
545 		 * this should give us a ROM ptr,  but if it doesn't we don't
546 		 * really care
547 		 */
548 		DBG_FLT("BINFMT_FLAT: ROM mapping of file (we hope)\n");
549 
550 		down_write(&current->mm->mmap_sem);
551 		textpos = do_mmap(bprm->file, 0, text_len, PROT_READ|PROT_EXEC,
552 				  MAP_PRIVATE|MAP_EXECUTABLE, 0);
553 		up_write(&current->mm->mmap_sem);
554 		if (!textpos || IS_ERR_VALUE(textpos)) {
555 			if (!textpos)
556 				textpos = (unsigned long) -ENOMEM;
557 			printk("Unable to mmap process text, errno %d\n", (int)-textpos);
558 			ret = textpos;
559 			goto err;
560 		}
561 
562 		len = data_len + extra + MAX_SHARED_LIBS * sizeof(unsigned long);
563 		len = PAGE_ALIGN(len);
564 		down_write(&current->mm->mmap_sem);
565 		realdatastart = do_mmap(0, 0, len,
566 			PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 0);
567 		up_write(&current->mm->mmap_sem);
568 
569 		if (realdatastart == 0 || IS_ERR_VALUE(realdatastart)) {
570 			if (!realdatastart)
571 				realdatastart = (unsigned long) -ENOMEM;
572 			printk("Unable to allocate RAM for process data, errno %d\n",
573 					(int)-realdatastart);
574 			do_munmap(current->mm, textpos, text_len);
575 			ret = realdatastart;
576 			goto err;
577 		}
578 		datapos = ALIGN(realdatastart +
579 				MAX_SHARED_LIBS * sizeof(unsigned long),
580 				FLAT_DATA_ALIGN);
581 
582 		DBG_FLT("BINFMT_FLAT: Allocated data+bss+stack (%d bytes): %x\n",
583 				(int)(data_len + bss_len + stack_len), (int)datapos);
584 
585 		fpos = ntohl(hdr->data_start);
586 #ifdef CONFIG_BINFMT_ZFLAT
587 		if (flags & FLAT_FLAG_GZDATA) {
588 			result = decompress_exec(bprm, fpos, (char *) datapos,
589 						 data_len + (relocs * sizeof(unsigned long)), 0);
590 		} else
591 #endif
592 		{
593 			result = bprm->file->f_op->read(bprm->file, (char *) datapos,
594 					data_len + (relocs * sizeof(unsigned long)), &fpos);
595 		}
596 		if (IS_ERR_VALUE(result)) {
597 			printk("Unable to read data+bss, errno %d\n", (int)-result);
598 			do_munmap(current->mm, textpos, text_len);
599 			do_munmap(current->mm, realdatastart, len);
600 			ret = result;
601 			goto err;
602 		}
603 
604 		reloc = (unsigned long *) (datapos+(ntohl(hdr->reloc_start)-text_len));
605 		memp = realdatastart;
606 		memp_size = len;
607 	} else {
608 
609 		len = text_len + data_len + extra + MAX_SHARED_LIBS * sizeof(unsigned long);
610 		len = PAGE_ALIGN(len);
611 		down_write(&current->mm->mmap_sem);
612 		textpos = do_mmap(0, 0, len,
613 			PROT_READ | PROT_EXEC | PROT_WRITE, MAP_PRIVATE, 0);
614 		up_write(&current->mm->mmap_sem);
615 
616 		if (!textpos || IS_ERR_VALUE(textpos)) {
617 			if (!textpos)
618 				textpos = (unsigned long) -ENOMEM;
619 			printk("Unable to allocate RAM for process text/data, errno %d\n",
620 					(int)-textpos);
621 			ret = textpos;
622 			goto err;
623 		}
624 
625 		realdatastart = textpos + ntohl(hdr->data_start);
626 		datapos = ALIGN(realdatastart +
627 				MAX_SHARED_LIBS * sizeof(unsigned long),
628 				FLAT_DATA_ALIGN);
629 
630 		reloc = (unsigned long *)
631 			(datapos + (ntohl(hdr->reloc_start) - text_len));
632 		memp = textpos;
633 		memp_size = len;
634 #ifdef CONFIG_BINFMT_ZFLAT
635 		/*
636 		 * load it all in and treat it like a RAM load from now on
637 		 */
638 		if (flags & FLAT_FLAG_GZIP) {
639 			result = decompress_exec(bprm, sizeof (struct flat_hdr),
640 					 (((char *) textpos) + sizeof (struct flat_hdr)),
641 					 (text_len + data_len + (relocs * sizeof(unsigned long))
642 						  - sizeof (struct flat_hdr)),
643 					 0);
644 			memmove((void *) datapos, (void *) realdatastart,
645 					data_len + (relocs * sizeof(unsigned long)));
646 		} else if (flags & FLAT_FLAG_GZDATA) {
647 			fpos = 0;
648 			result = bprm->file->f_op->read(bprm->file,
649 					(char *) textpos, text_len, &fpos);
650 			if (!IS_ERR_VALUE(result))
651 				result = decompress_exec(bprm, text_len, (char *) datapos,
652 						 data_len + (relocs * sizeof(unsigned long)), 0);
653 		}
654 		else
655 #endif
656 		{
657 			fpos = 0;
658 			result = bprm->file->f_op->read(bprm->file,
659 					(char *) textpos, text_len, &fpos);
660 			if (!IS_ERR_VALUE(result)) {
661 				fpos = ntohl(hdr->data_start);
662 				result = bprm->file->f_op->read(bprm->file, (char *) datapos,
663 					data_len + (relocs * sizeof(unsigned long)), &fpos);
664 			}
665 		}
666 		if (IS_ERR_VALUE(result)) {
667 			printk("Unable to read code+data+bss, errno %d\n",(int)-result);
668 			do_munmap(current->mm, textpos, text_len + data_len + extra +
669 				MAX_SHARED_LIBS * sizeof(unsigned long));
670 			ret = result;
671 			goto err;
672 		}
673 	}
674 
675 	if (flags & FLAT_FLAG_KTRACE)
676 		printk("Mapping is %x, Entry point is %x, data_start is %x\n",
677 			(int)textpos, 0x00ffffff&ntohl(hdr->entry), ntohl(hdr->data_start));
678 
679 	/* The main program needs a little extra setup in the task structure */
680 	start_code = textpos + sizeof (struct flat_hdr);
681 	end_code = textpos + text_len;
682 	if (id == 0) {
683 		current->mm->start_code = start_code;
684 		current->mm->end_code = end_code;
685 		current->mm->start_data = datapos;
686 		current->mm->end_data = datapos + data_len;
687 		/*
688 		 * set up the brk stuff, uses any slack left in data/bss/stack
689 		 * allocation.  We put the brk after the bss (between the bss
690 		 * and stack) like other platforms.
691 		 * Userspace code relies on the stack pointer starting out at
692 		 * an address right at the end of a page.
693 		 */
694 		current->mm->start_brk = datapos + data_len + bss_len;
695 		current->mm->brk = (current->mm->start_brk + 3) & ~3;
696 		current->mm->context.end_brk = memp + memp_size - stack_len;
697 	}
698 
699 	if (flags & FLAT_FLAG_KTRACE)
700 		printk("%s %s: TEXT=%x-%x DATA=%x-%x BSS=%x-%x\n",
701 			id ? "Lib" : "Load", bprm->filename,
702 			(int) start_code, (int) end_code,
703 			(int) datapos,
704 			(int) (datapos + data_len),
705 			(int) (datapos + data_len),
706 			(int) (((datapos + data_len + bss_len) + 3) & ~3));
707 
708 	text_len -= sizeof(struct flat_hdr); /* the real code len */
709 
710 	/* Store the current module values into the global library structure */
711 	libinfo->lib_list[id].start_code = start_code;
712 	libinfo->lib_list[id].start_data = datapos;
713 	libinfo->lib_list[id].start_brk = datapos + data_len + bss_len;
714 	libinfo->lib_list[id].text_len = text_len;
715 	libinfo->lib_list[id].loaded = 1;
716 	libinfo->lib_list[id].entry = (0x00ffffff & ntohl(hdr->entry)) + textpos;
717 	libinfo->lib_list[id].build_date = ntohl(hdr->build_date);
718 
719 	/*
720 	 * We just load the allocations into some temporary memory to
721 	 * help simplify all this mumbo jumbo
722 	 *
723 	 * We've got two different sections of relocation entries.
724 	 * The first is the GOT which resides at the begining of the data segment
725 	 * and is terminated with a -1.  This one can be relocated in place.
726 	 * The second is the extra relocation entries tacked after the image's
727 	 * data segment. These require a little more processing as the entry is
728 	 * really an offset into the image which contains an offset into the
729 	 * image.
730 	 */
731 	if (flags & FLAT_FLAG_GOTPIC) {
732 		for (rp = (unsigned long *)datapos; *rp != 0xffffffff; rp++) {
733 			unsigned long addr;
734 			if (*rp) {
735 				addr = calc_reloc(*rp, libinfo, id, 0);
736 				if (addr == RELOC_FAILED) {
737 					ret = -ENOEXEC;
738 					goto err;
739 				}
740 				*rp = addr;
741 			}
742 		}
743 	}
744 
745 	/*
746 	 * Now run through the relocation entries.
747 	 * We've got to be careful here as C++ produces relocatable zero
748 	 * entries in the constructor and destructor tables which are then
749 	 * tested for being not zero (which will always occur unless we're
750 	 * based from address zero).  This causes an endless loop as __start
751 	 * is at zero.  The solution used is to not relocate zero addresses.
752 	 * This has the negative side effect of not allowing a global data
753 	 * reference to be statically initialised to _stext (I've moved
754 	 * __start to address 4 so that is okay).
755 	 */
756 	if (rev > OLD_FLAT_VERSION) {
757 		unsigned long persistent = 0;
758 		for (i=0; i < relocs; i++) {
759 			unsigned long addr, relval;
760 
761 			/* Get the address of the pointer to be
762 			   relocated (of course, the address has to be
763 			   relocated first).  */
764 			relval = ntohl(reloc[i]);
765 			if (flat_set_persistent (relval, &persistent))
766 				continue;
767 			addr = flat_get_relocate_addr(relval);
768 			rp = (unsigned long *) calc_reloc(addr, libinfo, id, 1);
769 			if (rp == (unsigned long *)RELOC_FAILED) {
770 				ret = -ENOEXEC;
771 				goto err;
772 			}
773 
774 			/* Get the pointer's value.  */
775 			addr = flat_get_addr_from_rp(rp, relval, flags,
776 							&persistent);
777 			if (addr != 0) {
778 				/*
779 				 * Do the relocation.  PIC relocs in the data section are
780 				 * already in target order
781 				 */
782 				if ((flags & FLAT_FLAG_GOTPIC) == 0)
783 					addr = ntohl(addr);
784 				addr = calc_reloc(addr, libinfo, id, 0);
785 				if (addr == RELOC_FAILED) {
786 					ret = -ENOEXEC;
787 					goto err;
788 				}
789 
790 				/* Write back the relocated pointer.  */
791 				flat_put_addr_at_rp(rp, addr, relval);
792 			}
793 		}
794 	} else {
795 		for (i=0; i < relocs; i++)
796 			old_reloc(ntohl(reloc[i]));
797 	}
798 
799 	flush_icache_range(start_code, end_code);
800 
801 	/* zero the BSS,  BRK and stack areas */
802 	memset((void*)(datapos + data_len), 0, bss_len +
803 			(memp + memp_size - stack_len -		/* end brk */
804 			libinfo->lib_list[id].start_brk) +	/* start brk */
805 			stack_len);
806 
807 	return 0;
808 err:
809 	return ret;
810 }
811 
812 
813 /****************************************************************************/
814 #ifdef CONFIG_BINFMT_SHARED_FLAT
815 
816 /*
817  * Load a shared library into memory.  The library gets its own data
818  * segment (including bss) but not argv/argc/environ.
819  */
820 
821 static int load_flat_shared_library(int id, struct lib_info *libs)
822 {
823 	struct linux_binprm bprm;
824 	int res;
825 	char buf[16];
826 
827 	/* Create the file name */
828 	sprintf(buf, "/lib/lib%d.so", id);
829 
830 	/* Open the file up */
831 	bprm.filename = buf;
832 	bprm.file = open_exec(bprm.filename);
833 	res = PTR_ERR(bprm.file);
834 	if (IS_ERR(bprm.file))
835 		return res;
836 
837 	bprm.cred = prepare_exec_creds();
838 	res = -ENOMEM;
839 	if (!bprm.cred)
840 		goto out;
841 
842 	res = prepare_binprm(&bprm);
843 
844 	if (!IS_ERR_VALUE(res))
845 		res = load_flat_file(&bprm, libs, id, NULL);
846 
847 	abort_creds(bprm.cred);
848 
849 out:
850 	allow_write_access(bprm.file);
851 	fput(bprm.file);
852 
853 	return(res);
854 }
855 
856 #endif /* CONFIG_BINFMT_SHARED_FLAT */
857 /****************************************************************************/
858 
859 /*
860  * These are the functions used to load flat style executables and shared
861  * libraries.  There is no binary dependent code anywhere else.
862  */
863 
864 static int load_flat_binary(struct linux_binprm * bprm, struct pt_regs * regs)
865 {
866 	struct lib_info libinfo;
867 	unsigned long p = bprm->p;
868 	unsigned long stack_len;
869 	unsigned long start_addr;
870 	unsigned long *sp;
871 	int res;
872 	int i, j;
873 
874 	memset(&libinfo, 0, sizeof(libinfo));
875 	/*
876 	 * We have to add the size of our arguments to our stack size
877 	 * otherwise it's too easy for users to create stack overflows
878 	 * by passing in a huge argument list.  And yes,  we have to be
879 	 * pedantic and include space for the argv/envp array as it may have
880 	 * a lot of entries.
881 	 */
882 #define TOP_OF_ARGS (PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *))
883 	stack_len = TOP_OF_ARGS - bprm->p;             /* the strings */
884 	stack_len += (bprm->argc + 1) * sizeof(char *); /* the argv array */
885 	stack_len += (bprm->envc + 1) * sizeof(char *); /* the envp array */
886 	stack_len += FLAT_STACK_ALIGN - 1;  /* reserve for upcoming alignment */
887 
888 	res = load_flat_file(bprm, &libinfo, 0, &stack_len);
889 	if (IS_ERR_VALUE(res))
890 		return res;
891 
892 	/* Update data segment pointers for all libraries */
893 	for (i=0; i<MAX_SHARED_LIBS; i++)
894 		if (libinfo.lib_list[i].loaded)
895 			for (j=0; j<MAX_SHARED_LIBS; j++)
896 				(-(j+1))[(unsigned long *)(libinfo.lib_list[i].start_data)] =
897 					(libinfo.lib_list[j].loaded)?
898 						libinfo.lib_list[j].start_data:UNLOADED_LIB;
899 
900 	install_exec_creds(bprm);
901  	current->flags &= ~PF_FORKNOEXEC;
902 
903 	set_binfmt(&flat_format);
904 
905 	p = ((current->mm->context.end_brk + stack_len + 3) & ~3) - 4;
906 	DBG_FLT("p=%x\n", (int)p);
907 
908 	/* copy the arg pages onto the stack, this could be more efficient :-) */
909 	for (i = TOP_OF_ARGS - 1; i >= bprm->p; i--)
910 		* (char *) --p =
911 			((char *) page_address(bprm->page[i/PAGE_SIZE]))[i % PAGE_SIZE];
912 
913 	sp = (unsigned long *) create_flat_tables(p, bprm);
914 
915 	/* Fake some return addresses to ensure the call chain will
916 	 * initialise library in order for us.  We are required to call
917 	 * lib 1 first, then 2, ... and finally the main program (id 0).
918 	 */
919 	start_addr = libinfo.lib_list[0].entry;
920 
921 #ifdef CONFIG_BINFMT_SHARED_FLAT
922 	for (i = MAX_SHARED_LIBS-1; i>0; i--) {
923 		if (libinfo.lib_list[i].loaded) {
924 			/* Push previos first to call address */
925 			--sp;	put_user(start_addr, sp);
926 			start_addr = libinfo.lib_list[i].entry;
927 		}
928 	}
929 #endif
930 
931 	/* Stash our initial stack pointer into the mm structure */
932 	current->mm->start_stack = (unsigned long )sp;
933 
934 #ifdef FLAT_PLAT_INIT
935 	FLAT_PLAT_INIT(regs);
936 #endif
937 	DBG_FLT("start_thread(regs=0x%x, entry=0x%x, start_stack=0x%x)\n",
938 		(int)regs, (int)start_addr, (int)current->mm->start_stack);
939 
940 	start_thread(regs, start_addr, current->mm->start_stack);
941 
942 	return 0;
943 }
944 
945 /****************************************************************************/
946 
947 static int __init init_flat_binfmt(void)
948 {
949 	return register_binfmt(&flat_format);
950 }
951 
952 /****************************************************************************/
953 
954 core_initcall(init_flat_binfmt);
955 
956 /****************************************************************************/
957