xref: /openbmc/linux/fs/binfmt_elf.c (revision f87deada)
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/sched/cputime.h>
41 #include <linux/cred.h>
42 #include <linux/dax.h>
43 #include <linux/uaccess.h>
44 #include <asm/param.h>
45 #include <asm/page.h>
46 
47 #ifndef user_long_t
48 #define user_long_t long
49 #endif
50 #ifndef user_siginfo_t
51 #define user_siginfo_t siginfo_t
52 #endif
53 
54 /* That's for binfmt_elf_fdpic to deal with */
55 #ifndef elf_check_fdpic
56 #define elf_check_fdpic(ex) false
57 #endif
58 
59 static int load_elf_binary(struct linux_binprm *bprm);
60 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
61 				int, int, unsigned long);
62 
63 #ifdef CONFIG_USELIB
64 static int load_elf_library(struct file *);
65 #else
66 #define load_elf_library NULL
67 #endif
68 
69 /*
70  * If we don't support core dumping, then supply a NULL so we
71  * don't even try.
72  */
73 #ifdef CONFIG_ELF_CORE
74 static int elf_core_dump(struct coredump_params *cprm);
75 #else
76 #define elf_core_dump	NULL
77 #endif
78 
79 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
80 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
81 #else
82 #define ELF_MIN_ALIGN	PAGE_SIZE
83 #endif
84 
85 #ifndef ELF_CORE_EFLAGS
86 #define ELF_CORE_EFLAGS	0
87 #endif
88 
89 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
90 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
91 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
92 
93 static struct linux_binfmt elf_format = {
94 	.module		= THIS_MODULE,
95 	.load_binary	= load_elf_binary,
96 	.load_shlib	= load_elf_library,
97 	.core_dump	= elf_core_dump,
98 	.min_coredump	= ELF_EXEC_PAGESIZE,
99 };
100 
101 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
102 
103 static int set_brk(unsigned long start, unsigned long end, int prot)
104 {
105 	start = ELF_PAGEALIGN(start);
106 	end = ELF_PAGEALIGN(end);
107 	if (end > start) {
108 		/*
109 		 * Map the last of the bss segment.
110 		 * If the header is requesting these pages to be
111 		 * executable, honour that (ppc32 needs this).
112 		 */
113 		int error = vm_brk_flags(start, end - start,
114 				prot & PROT_EXEC ? VM_EXEC : 0);
115 		if (error)
116 			return error;
117 	}
118 	current->mm->start_brk = current->mm->brk = end;
119 	return 0;
120 }
121 
122 /* We need to explicitly zero any fractional pages
123    after the data section (i.e. bss).  This would
124    contain the junk from the file that should not
125    be in memory
126  */
127 static int padzero(unsigned long elf_bss)
128 {
129 	unsigned long nbyte;
130 
131 	nbyte = ELF_PAGEOFFSET(elf_bss);
132 	if (nbyte) {
133 		nbyte = ELF_MIN_ALIGN - nbyte;
134 		if (clear_user((void __user *) elf_bss, nbyte))
135 			return -EFAULT;
136 	}
137 	return 0;
138 }
139 
140 /* Let's use some macros to make this stack manipulation a little clearer */
141 #ifdef CONFIG_STACK_GROWSUP
142 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
143 #define STACK_ROUND(sp, items) \
144 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
145 #define STACK_ALLOC(sp, len) ({ \
146 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
147 	old_sp; })
148 #else
149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
150 #define STACK_ROUND(sp, items) \
151 	(((unsigned long) (sp - items)) &~ 15UL)
152 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
153 #endif
154 
155 #ifndef ELF_BASE_PLATFORM
156 /*
157  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
158  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
159  * will be copied to the user stack in the same manner as AT_PLATFORM.
160  */
161 #define ELF_BASE_PLATFORM NULL
162 #endif
163 
164 static int
165 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
166 		unsigned long load_addr, unsigned long interp_load_addr)
167 {
168 	unsigned long p = bprm->p;
169 	int argc = bprm->argc;
170 	int envc = bprm->envc;
171 	elf_addr_t __user *sp;
172 	elf_addr_t __user *u_platform;
173 	elf_addr_t __user *u_base_platform;
174 	elf_addr_t __user *u_rand_bytes;
175 	const char *k_platform = ELF_PLATFORM;
176 	const char *k_base_platform = ELF_BASE_PLATFORM;
177 	unsigned char k_rand_bytes[16];
178 	int items;
179 	elf_addr_t *elf_info;
180 	int ei_index = 0;
181 	const struct cred *cred = current_cred();
182 	struct vm_area_struct *vma;
183 
184 	/*
185 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
186 	 * evictions by the processes running on the same package. One
187 	 * thing we can do is to shuffle the initial stack for them.
188 	 */
189 
190 	p = arch_align_stack(p);
191 
192 	/*
193 	 * If this architecture has a platform capability string, copy it
194 	 * to userspace.  In some cases (Sparc), this info is impossible
195 	 * for userspace to get any other way, in others (i386) it is
196 	 * merely difficult.
197 	 */
198 	u_platform = NULL;
199 	if (k_platform) {
200 		size_t len = strlen(k_platform) + 1;
201 
202 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
203 		if (__copy_to_user(u_platform, k_platform, len))
204 			return -EFAULT;
205 	}
206 
207 	/*
208 	 * If this architecture has a "base" platform capability
209 	 * string, copy it to userspace.
210 	 */
211 	u_base_platform = NULL;
212 	if (k_base_platform) {
213 		size_t len = strlen(k_base_platform) + 1;
214 
215 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
216 		if (__copy_to_user(u_base_platform, k_base_platform, len))
217 			return -EFAULT;
218 	}
219 
220 	/*
221 	 * Generate 16 random bytes for userspace PRNG seeding.
222 	 */
223 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
224 	u_rand_bytes = (elf_addr_t __user *)
225 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
226 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
227 		return -EFAULT;
228 
229 	/* Create the ELF interpreter info */
230 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
231 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
232 #define NEW_AUX_ENT(id, val) \
233 	do { \
234 		elf_info[ei_index++] = id; \
235 		elf_info[ei_index++] = val; \
236 	} while (0)
237 
238 #ifdef ARCH_DLINFO
239 	/*
240 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
241 	 * AUXV.
242 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
243 	 * ARCH_DLINFO changes
244 	 */
245 	ARCH_DLINFO;
246 #endif
247 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
248 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
249 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
250 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
251 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
252 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
253 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
254 	NEW_AUX_ENT(AT_FLAGS, 0);
255 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
256 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
257 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
258 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
259 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
260 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
261 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
262 #ifdef ELF_HWCAP2
263 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
264 #endif
265 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
266 	if (k_platform) {
267 		NEW_AUX_ENT(AT_PLATFORM,
268 			    (elf_addr_t)(unsigned long)u_platform);
269 	}
270 	if (k_base_platform) {
271 		NEW_AUX_ENT(AT_BASE_PLATFORM,
272 			    (elf_addr_t)(unsigned long)u_base_platform);
273 	}
274 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
275 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
276 	}
277 #undef NEW_AUX_ENT
278 	/* AT_NULL is zero; clear the rest too */
279 	memset(&elf_info[ei_index], 0,
280 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
281 
282 	/* And advance past the AT_NULL entry.  */
283 	ei_index += 2;
284 
285 	sp = STACK_ADD(p, ei_index);
286 
287 	items = (argc + 1) + (envc + 1) + 1;
288 	bprm->p = STACK_ROUND(sp, items);
289 
290 	/* Point sp at the lowest address on the stack */
291 #ifdef CONFIG_STACK_GROWSUP
292 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
293 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
294 #else
295 	sp = (elf_addr_t __user *)bprm->p;
296 #endif
297 
298 
299 	/*
300 	 * Grow the stack manually; some architectures have a limit on how
301 	 * far ahead a user-space access may be in order to grow the stack.
302 	 */
303 	vma = find_extend_vma(current->mm, bprm->p);
304 	if (!vma)
305 		return -EFAULT;
306 
307 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
308 	if (__put_user(argc, sp++))
309 		return -EFAULT;
310 
311 	/* Populate list of argv pointers back to argv strings. */
312 	p = current->mm->arg_end = current->mm->arg_start;
313 	while (argc-- > 0) {
314 		size_t len;
315 		if (__put_user((elf_addr_t)p, sp++))
316 			return -EFAULT;
317 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
318 		if (!len || len > MAX_ARG_STRLEN)
319 			return -EINVAL;
320 		p += len;
321 	}
322 	if (__put_user(0, sp++))
323 		return -EFAULT;
324 	current->mm->arg_end = p;
325 
326 	/* Populate list of envp pointers back to envp strings. */
327 	current->mm->env_end = current->mm->env_start = p;
328 	while (envc-- > 0) {
329 		size_t len;
330 		if (__put_user((elf_addr_t)p, sp++))
331 			return -EFAULT;
332 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
333 		if (!len || len > MAX_ARG_STRLEN)
334 			return -EINVAL;
335 		p += len;
336 	}
337 	if (__put_user(0, sp++))
338 		return -EFAULT;
339 	current->mm->env_end = p;
340 
341 	/* Put the elf_info on the stack in the right place.  */
342 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
343 		return -EFAULT;
344 	return 0;
345 }
346 
347 #ifndef elf_map
348 
349 static unsigned long elf_map(struct file *filep, unsigned long addr,
350 		struct elf_phdr *eppnt, int prot, int type,
351 		unsigned long total_size)
352 {
353 	unsigned long map_addr;
354 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
355 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
356 	addr = ELF_PAGESTART(addr);
357 	size = ELF_PAGEALIGN(size);
358 
359 	/* mmap() will return -EINVAL if given a zero size, but a
360 	 * segment with zero filesize is perfectly valid */
361 	if (!size)
362 		return addr;
363 
364 	/*
365 	* total_size is the size of the ELF (interpreter) image.
366 	* The _first_ mmap needs to know the full size, otherwise
367 	* randomization might put this image into an overlapping
368 	* position with the ELF binary image. (since size < total_size)
369 	* So we first map the 'big' image - and unmap the remainder at
370 	* the end. (which unmap is needed for ELF images with holes.)
371 	*/
372 	if (total_size) {
373 		total_size = ELF_PAGEALIGN(total_size);
374 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
375 		if (!BAD_ADDR(map_addr))
376 			vm_munmap(map_addr+size, total_size-size);
377 	} else
378 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
379 
380 	return(map_addr);
381 }
382 
383 #endif /* !elf_map */
384 
385 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
386 {
387 	int i, first_idx = -1, last_idx = -1;
388 
389 	for (i = 0; i < nr; i++) {
390 		if (cmds[i].p_type == PT_LOAD) {
391 			last_idx = i;
392 			if (first_idx == -1)
393 				first_idx = i;
394 		}
395 	}
396 	if (first_idx == -1)
397 		return 0;
398 
399 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
400 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
401 }
402 
403 /**
404  * load_elf_phdrs() - load ELF program headers
405  * @elf_ex:   ELF header of the binary whose program headers should be loaded
406  * @elf_file: the opened ELF binary file
407  *
408  * Loads ELF program headers from the binary file elf_file, which has the ELF
409  * header pointed to by elf_ex, into a newly allocated array. The caller is
410  * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
411  */
412 static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
413 				       struct file *elf_file)
414 {
415 	struct elf_phdr *elf_phdata = NULL;
416 	int retval, size, err = -1;
417 	loff_t pos = elf_ex->e_phoff;
418 
419 	/*
420 	 * If the size of this structure has changed, then punt, since
421 	 * we will be doing the wrong thing.
422 	 */
423 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
424 		goto out;
425 
426 	/* Sanity check the number of program headers... */
427 	if (elf_ex->e_phnum < 1 ||
428 		elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
429 		goto out;
430 
431 	/* ...and their total size. */
432 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
433 	if (size > ELF_MIN_ALIGN)
434 		goto out;
435 
436 	elf_phdata = kmalloc(size, GFP_KERNEL);
437 	if (!elf_phdata)
438 		goto out;
439 
440 	/* Read in the program headers */
441 	retval = kernel_read(elf_file, elf_phdata, size, &pos);
442 	if (retval != size) {
443 		err = (retval < 0) ? retval : -EIO;
444 		goto out;
445 	}
446 
447 	/* Success! */
448 	err = 0;
449 out:
450 	if (err) {
451 		kfree(elf_phdata);
452 		elf_phdata = NULL;
453 	}
454 	return elf_phdata;
455 }
456 
457 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
458 
459 /**
460  * struct arch_elf_state - arch-specific ELF loading state
461  *
462  * This structure is used to preserve architecture specific data during
463  * the loading of an ELF file, throughout the checking of architecture
464  * specific ELF headers & through to the point where the ELF load is
465  * known to be proceeding (ie. SET_PERSONALITY).
466  *
467  * This implementation is a dummy for architectures which require no
468  * specific state.
469  */
470 struct arch_elf_state {
471 };
472 
473 #define INIT_ARCH_ELF_STATE {}
474 
475 /**
476  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
477  * @ehdr:	The main ELF header
478  * @phdr:	The program header to check
479  * @elf:	The open ELF file
480  * @is_interp:	True if the phdr is from the interpreter of the ELF being
481  *		loaded, else false.
482  * @state:	Architecture-specific state preserved throughout the process
483  *		of loading the ELF.
484  *
485  * Inspects the program header phdr to validate its correctness and/or
486  * suitability for the system. Called once per ELF program header in the
487  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
488  * interpreter.
489  *
490  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
491  *         with that return code.
492  */
493 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
494 				   struct elf_phdr *phdr,
495 				   struct file *elf, bool is_interp,
496 				   struct arch_elf_state *state)
497 {
498 	/* Dummy implementation, always proceed */
499 	return 0;
500 }
501 
502 /**
503  * arch_check_elf() - check an ELF executable
504  * @ehdr:	The main ELF header
505  * @has_interp:	True if the ELF has an interpreter, else false.
506  * @interp_ehdr: The interpreter's ELF header
507  * @state:	Architecture-specific state preserved throughout the process
508  *		of loading the ELF.
509  *
510  * Provides a final opportunity for architecture code to reject the loading
511  * of the ELF & cause an exec syscall to return an error. This is called after
512  * all program headers to be checked by arch_elf_pt_proc have been.
513  *
514  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
515  *         with that return code.
516  */
517 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
518 				 struct elfhdr *interp_ehdr,
519 				 struct arch_elf_state *state)
520 {
521 	/* Dummy implementation, always proceed */
522 	return 0;
523 }
524 
525 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
526 
527 /* This is much more generalized than the library routine read function,
528    so we keep this separate.  Technically the library read function
529    is only provided so that we can read a.out libraries that have
530    an ELF header */
531 
532 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
533 		struct file *interpreter, unsigned long *interp_map_addr,
534 		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
535 {
536 	struct elf_phdr *eppnt;
537 	unsigned long load_addr = 0;
538 	int load_addr_set = 0;
539 	unsigned long last_bss = 0, elf_bss = 0;
540 	int bss_prot = 0;
541 	unsigned long error = ~0UL;
542 	unsigned long total_size;
543 	int i;
544 
545 	/* First of all, some simple consistency checks */
546 	if (interp_elf_ex->e_type != ET_EXEC &&
547 	    interp_elf_ex->e_type != ET_DYN)
548 		goto out;
549 	if (!elf_check_arch(interp_elf_ex) ||
550 	    elf_check_fdpic(interp_elf_ex))
551 		goto out;
552 	if (!interpreter->f_op->mmap)
553 		goto out;
554 
555 	total_size = total_mapping_size(interp_elf_phdata,
556 					interp_elf_ex->e_phnum);
557 	if (!total_size) {
558 		error = -EINVAL;
559 		goto out;
560 	}
561 
562 	eppnt = interp_elf_phdata;
563 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
564 		if (eppnt->p_type == PT_LOAD) {
565 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
566 			int elf_prot = 0;
567 			unsigned long vaddr = 0;
568 			unsigned long k, map_addr;
569 
570 			if (eppnt->p_flags & PF_R)
571 		    		elf_prot = PROT_READ;
572 			if (eppnt->p_flags & PF_W)
573 				elf_prot |= PROT_WRITE;
574 			if (eppnt->p_flags & PF_X)
575 				elf_prot |= PROT_EXEC;
576 			vaddr = eppnt->p_vaddr;
577 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
578 				elf_type |= MAP_FIXED;
579 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
580 				load_addr = -vaddr;
581 
582 			map_addr = elf_map(interpreter, load_addr + vaddr,
583 					eppnt, elf_prot, elf_type, total_size);
584 			total_size = 0;
585 			if (!*interp_map_addr)
586 				*interp_map_addr = map_addr;
587 			error = map_addr;
588 			if (BAD_ADDR(map_addr))
589 				goto out;
590 
591 			if (!load_addr_set &&
592 			    interp_elf_ex->e_type == ET_DYN) {
593 				load_addr = map_addr - ELF_PAGESTART(vaddr);
594 				load_addr_set = 1;
595 			}
596 
597 			/*
598 			 * Check to see if the section's size will overflow the
599 			 * allowed task size. Note that p_filesz must always be
600 			 * <= p_memsize so it's only necessary to check p_memsz.
601 			 */
602 			k = load_addr + eppnt->p_vaddr;
603 			if (BAD_ADDR(k) ||
604 			    eppnt->p_filesz > eppnt->p_memsz ||
605 			    eppnt->p_memsz > TASK_SIZE ||
606 			    TASK_SIZE - eppnt->p_memsz < k) {
607 				error = -ENOMEM;
608 				goto out;
609 			}
610 
611 			/*
612 			 * Find the end of the file mapping for this phdr, and
613 			 * keep track of the largest address we see for this.
614 			 */
615 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
616 			if (k > elf_bss)
617 				elf_bss = k;
618 
619 			/*
620 			 * Do the same thing for the memory mapping - between
621 			 * elf_bss and last_bss is the bss section.
622 			 */
623 			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
624 			if (k > last_bss) {
625 				last_bss = k;
626 				bss_prot = elf_prot;
627 			}
628 		}
629 	}
630 
631 	/*
632 	 * Now fill out the bss section: first pad the last page from
633 	 * the file up to the page boundary, and zero it from elf_bss
634 	 * up to the end of the page.
635 	 */
636 	if (padzero(elf_bss)) {
637 		error = -EFAULT;
638 		goto out;
639 	}
640 	/*
641 	 * Next, align both the file and mem bss up to the page size,
642 	 * since this is where elf_bss was just zeroed up to, and where
643 	 * last_bss will end after the vm_brk_flags() below.
644 	 */
645 	elf_bss = ELF_PAGEALIGN(elf_bss);
646 	last_bss = ELF_PAGEALIGN(last_bss);
647 	/* Finally, if there is still more bss to allocate, do it. */
648 	if (last_bss > elf_bss) {
649 		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
650 				bss_prot & PROT_EXEC ? VM_EXEC : 0);
651 		if (error)
652 			goto out;
653 	}
654 
655 	error = load_addr;
656 out:
657 	return error;
658 }
659 
660 /*
661  * These are the functions used to load ELF style executables and shared
662  * libraries.  There is no binary dependent code anywhere else.
663  */
664 
665 #ifndef STACK_RND_MASK
666 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
667 #endif
668 
669 static unsigned long randomize_stack_top(unsigned long stack_top)
670 {
671 	unsigned long random_variable = 0;
672 
673 	if (current->flags & PF_RANDOMIZE) {
674 		random_variable = get_random_long();
675 		random_variable &= STACK_RND_MASK;
676 		random_variable <<= PAGE_SHIFT;
677 	}
678 #ifdef CONFIG_STACK_GROWSUP
679 	return PAGE_ALIGN(stack_top) + random_variable;
680 #else
681 	return PAGE_ALIGN(stack_top) - random_variable;
682 #endif
683 }
684 
685 static int load_elf_binary(struct linux_binprm *bprm)
686 {
687 	struct file *interpreter = NULL; /* to shut gcc up */
688  	unsigned long load_addr = 0, load_bias = 0;
689 	int load_addr_set = 0;
690 	char * elf_interpreter = NULL;
691 	unsigned long error;
692 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
693 	unsigned long elf_bss, elf_brk;
694 	int bss_prot = 0;
695 	int retval, i;
696 	unsigned long elf_entry;
697 	unsigned long interp_load_addr = 0;
698 	unsigned long start_code, end_code, start_data, end_data;
699 	unsigned long reloc_func_desc __maybe_unused = 0;
700 	int executable_stack = EXSTACK_DEFAULT;
701 	struct pt_regs *regs = current_pt_regs();
702 	struct {
703 		struct elfhdr elf_ex;
704 		struct elfhdr interp_elf_ex;
705 	} *loc;
706 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
707 	loff_t pos;
708 
709 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
710 	if (!loc) {
711 		retval = -ENOMEM;
712 		goto out_ret;
713 	}
714 
715 	/* Get the exec-header */
716 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
717 
718 	retval = -ENOEXEC;
719 	/* First of all, some simple consistency checks */
720 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
721 		goto out;
722 
723 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
724 		goto out;
725 	if (!elf_check_arch(&loc->elf_ex))
726 		goto out;
727 	if (elf_check_fdpic(&loc->elf_ex))
728 		goto out;
729 	if (!bprm->file->f_op->mmap)
730 		goto out;
731 
732 	elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
733 	if (!elf_phdata)
734 		goto out;
735 
736 	elf_ppnt = elf_phdata;
737 	elf_bss = 0;
738 	elf_brk = 0;
739 
740 	start_code = ~0UL;
741 	end_code = 0;
742 	start_data = 0;
743 	end_data = 0;
744 
745 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
746 		if (elf_ppnt->p_type == PT_INTERP) {
747 			/* This is the program interpreter used for
748 			 * shared libraries - for now assume that this
749 			 * is an a.out format binary
750 			 */
751 			retval = -ENOEXEC;
752 			if (elf_ppnt->p_filesz > PATH_MAX ||
753 			    elf_ppnt->p_filesz < 2)
754 				goto out_free_ph;
755 
756 			retval = -ENOMEM;
757 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
758 						  GFP_KERNEL);
759 			if (!elf_interpreter)
760 				goto out_free_ph;
761 
762 			pos = elf_ppnt->p_offset;
763 			retval = kernel_read(bprm->file, elf_interpreter,
764 					     elf_ppnt->p_filesz, &pos);
765 			if (retval != elf_ppnt->p_filesz) {
766 				if (retval >= 0)
767 					retval = -EIO;
768 				goto out_free_interp;
769 			}
770 			/* make sure path is NULL terminated */
771 			retval = -ENOEXEC;
772 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
773 				goto out_free_interp;
774 
775 			interpreter = open_exec(elf_interpreter);
776 			retval = PTR_ERR(interpreter);
777 			if (IS_ERR(interpreter))
778 				goto out_free_interp;
779 
780 			/*
781 			 * If the binary is not readable then enforce
782 			 * mm->dumpable = 0 regardless of the interpreter's
783 			 * permissions.
784 			 */
785 			would_dump(bprm, interpreter);
786 
787 			/* Get the exec headers */
788 			pos = 0;
789 			retval = kernel_read(interpreter, &loc->interp_elf_ex,
790 					     sizeof(loc->interp_elf_ex), &pos);
791 			if (retval != sizeof(loc->interp_elf_ex)) {
792 				if (retval >= 0)
793 					retval = -EIO;
794 				goto out_free_dentry;
795 			}
796 
797 			break;
798 		}
799 		elf_ppnt++;
800 	}
801 
802 	elf_ppnt = elf_phdata;
803 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
804 		switch (elf_ppnt->p_type) {
805 		case PT_GNU_STACK:
806 			if (elf_ppnt->p_flags & PF_X)
807 				executable_stack = EXSTACK_ENABLE_X;
808 			else
809 				executable_stack = EXSTACK_DISABLE_X;
810 			break;
811 
812 		case PT_LOPROC ... PT_HIPROC:
813 			retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
814 						  bprm->file, false,
815 						  &arch_state);
816 			if (retval)
817 				goto out_free_dentry;
818 			break;
819 		}
820 
821 	/* Some simple consistency checks for the interpreter */
822 	if (elf_interpreter) {
823 		retval = -ELIBBAD;
824 		/* Not an ELF interpreter */
825 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
826 			goto out_free_dentry;
827 		/* Verify the interpreter has a valid arch */
828 		if (!elf_check_arch(&loc->interp_elf_ex) ||
829 		    elf_check_fdpic(&loc->interp_elf_ex))
830 			goto out_free_dentry;
831 
832 		/* Load the interpreter program headers */
833 		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
834 						   interpreter);
835 		if (!interp_elf_phdata)
836 			goto out_free_dentry;
837 
838 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
839 		elf_ppnt = interp_elf_phdata;
840 		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
841 			switch (elf_ppnt->p_type) {
842 			case PT_LOPROC ... PT_HIPROC:
843 				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
844 							  elf_ppnt, interpreter,
845 							  true, &arch_state);
846 				if (retval)
847 					goto out_free_dentry;
848 				break;
849 			}
850 	}
851 
852 	/*
853 	 * Allow arch code to reject the ELF at this point, whilst it's
854 	 * still possible to return an error to the code that invoked
855 	 * the exec syscall.
856 	 */
857 	retval = arch_check_elf(&loc->elf_ex,
858 				!!interpreter, &loc->interp_elf_ex,
859 				&arch_state);
860 	if (retval)
861 		goto out_free_dentry;
862 
863 	/* Flush all traces of the currently running executable */
864 	retval = flush_old_exec(bprm);
865 	if (retval)
866 		goto out_free_dentry;
867 
868 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
869 	   may depend on the personality.  */
870 	SET_PERSONALITY2(loc->elf_ex, &arch_state);
871 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
872 		current->personality |= READ_IMPLIES_EXEC;
873 
874 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
875 		current->flags |= PF_RANDOMIZE;
876 
877 	setup_new_exec(bprm);
878 	install_exec_creds(bprm);
879 
880 	/* Do this so that we can load the interpreter, if need be.  We will
881 	   change some of these later */
882 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
883 				 executable_stack);
884 	if (retval < 0)
885 		goto out_free_dentry;
886 
887 	current->mm->start_stack = bprm->p;
888 
889 	/* Now we do a little grungy work by mmapping the ELF image into
890 	   the correct location in memory. */
891 	for(i = 0, elf_ppnt = elf_phdata;
892 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
893 		int elf_prot = 0, elf_flags;
894 		unsigned long k, vaddr;
895 		unsigned long total_size = 0;
896 
897 		if (elf_ppnt->p_type != PT_LOAD)
898 			continue;
899 
900 		if (unlikely (elf_brk > elf_bss)) {
901 			unsigned long nbyte;
902 
903 			/* There was a PT_LOAD segment with p_memsz > p_filesz
904 			   before this one. Map anonymous pages, if needed,
905 			   and clear the area.  */
906 			retval = set_brk(elf_bss + load_bias,
907 					 elf_brk + load_bias,
908 					 bss_prot);
909 			if (retval)
910 				goto out_free_dentry;
911 			nbyte = ELF_PAGEOFFSET(elf_bss);
912 			if (nbyte) {
913 				nbyte = ELF_MIN_ALIGN - nbyte;
914 				if (nbyte > elf_brk - elf_bss)
915 					nbyte = elf_brk - elf_bss;
916 				if (clear_user((void __user *)elf_bss +
917 							load_bias, nbyte)) {
918 					/*
919 					 * This bss-zeroing can fail if the ELF
920 					 * file specifies odd protections. So
921 					 * we don't check the return value
922 					 */
923 				}
924 			}
925 		}
926 
927 		if (elf_ppnt->p_flags & PF_R)
928 			elf_prot |= PROT_READ;
929 		if (elf_ppnt->p_flags & PF_W)
930 			elf_prot |= PROT_WRITE;
931 		if (elf_ppnt->p_flags & PF_X)
932 			elf_prot |= PROT_EXEC;
933 
934 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
935 
936 		vaddr = elf_ppnt->p_vaddr;
937 		/*
938 		 * If we are loading ET_EXEC or we have already performed
939 		 * the ET_DYN load_addr calculations, proceed normally.
940 		 */
941 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
942 			elf_flags |= MAP_FIXED;
943 		} else if (loc->elf_ex.e_type == ET_DYN) {
944 			/*
945 			 * This logic is run once for the first LOAD Program
946 			 * Header for ET_DYN binaries to calculate the
947 			 * randomization (load_bias) for all the LOAD
948 			 * Program Headers, and to calculate the entire
949 			 * size of the ELF mapping (total_size). (Note that
950 			 * load_addr_set is set to true later once the
951 			 * initial mapping is performed.)
952 			 *
953 			 * There are effectively two types of ET_DYN
954 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
955 			 * and loaders (ET_DYN without INTERP, since they
956 			 * _are_ the ELF interpreter). The loaders must
957 			 * be loaded away from programs since the program
958 			 * may otherwise collide with the loader (especially
959 			 * for ET_EXEC which does not have a randomized
960 			 * position). For example to handle invocations of
961 			 * "./ld.so someprog" to test out a new version of
962 			 * the loader, the subsequent program that the
963 			 * loader loads must avoid the loader itself, so
964 			 * they cannot share the same load range. Sufficient
965 			 * room for the brk must be allocated with the
966 			 * loader as well, since brk must be available with
967 			 * the loader.
968 			 *
969 			 * Therefore, programs are loaded offset from
970 			 * ELF_ET_DYN_BASE and loaders are loaded into the
971 			 * independently randomized mmap region (0 load_bias
972 			 * without MAP_FIXED).
973 			 */
974 			if (elf_interpreter) {
975 				load_bias = ELF_ET_DYN_BASE;
976 				if (current->flags & PF_RANDOMIZE)
977 					load_bias += arch_mmap_rnd();
978 				elf_flags |= MAP_FIXED;
979 			} else
980 				load_bias = 0;
981 
982 			/*
983 			 * Since load_bias is used for all subsequent loading
984 			 * calculations, we must lower it by the first vaddr
985 			 * so that the remaining calculations based on the
986 			 * ELF vaddrs will be correctly offset. The result
987 			 * is then page aligned.
988 			 */
989 			load_bias = ELF_PAGESTART(load_bias - vaddr);
990 
991 			total_size = total_mapping_size(elf_phdata,
992 							loc->elf_ex.e_phnum);
993 			if (!total_size) {
994 				retval = -EINVAL;
995 				goto out_free_dentry;
996 			}
997 		}
998 
999 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1000 				elf_prot, elf_flags, total_size);
1001 		if (BAD_ADDR(error)) {
1002 			retval = IS_ERR((void *)error) ?
1003 				PTR_ERR((void*)error) : -EINVAL;
1004 			goto out_free_dentry;
1005 		}
1006 
1007 		if (!load_addr_set) {
1008 			load_addr_set = 1;
1009 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1010 			if (loc->elf_ex.e_type == ET_DYN) {
1011 				load_bias += error -
1012 				             ELF_PAGESTART(load_bias + vaddr);
1013 				load_addr += load_bias;
1014 				reloc_func_desc = load_bias;
1015 			}
1016 		}
1017 		k = elf_ppnt->p_vaddr;
1018 		if (k < start_code)
1019 			start_code = k;
1020 		if (start_data < k)
1021 			start_data = k;
1022 
1023 		/*
1024 		 * Check to see if the section's size will overflow the
1025 		 * allowed task size. Note that p_filesz must always be
1026 		 * <= p_memsz so it is only necessary to check p_memsz.
1027 		 */
1028 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1029 		    elf_ppnt->p_memsz > TASK_SIZE ||
1030 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1031 			/* set_brk can never work. Avoid overflows. */
1032 			retval = -EINVAL;
1033 			goto out_free_dentry;
1034 		}
1035 
1036 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1037 
1038 		if (k > elf_bss)
1039 			elf_bss = k;
1040 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1041 			end_code = k;
1042 		if (end_data < k)
1043 			end_data = k;
1044 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1045 		if (k > elf_brk) {
1046 			bss_prot = elf_prot;
1047 			elf_brk = k;
1048 		}
1049 	}
1050 
1051 	loc->elf_ex.e_entry += load_bias;
1052 	elf_bss += load_bias;
1053 	elf_brk += load_bias;
1054 	start_code += load_bias;
1055 	end_code += load_bias;
1056 	start_data += load_bias;
1057 	end_data += load_bias;
1058 
1059 	/* Calling set_brk effectively mmaps the pages that we need
1060 	 * for the bss and break sections.  We must do this before
1061 	 * mapping in the interpreter, to make sure it doesn't wind
1062 	 * up getting placed where the bss needs to go.
1063 	 */
1064 	retval = set_brk(elf_bss, elf_brk, bss_prot);
1065 	if (retval)
1066 		goto out_free_dentry;
1067 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1068 		retval = -EFAULT; /* Nobody gets to see this, but.. */
1069 		goto out_free_dentry;
1070 	}
1071 
1072 	if (elf_interpreter) {
1073 		unsigned long interp_map_addr = 0;
1074 
1075 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
1076 					    interpreter,
1077 					    &interp_map_addr,
1078 					    load_bias, interp_elf_phdata);
1079 		if (!IS_ERR((void *)elf_entry)) {
1080 			/*
1081 			 * load_elf_interp() returns relocation
1082 			 * adjustment
1083 			 */
1084 			interp_load_addr = elf_entry;
1085 			elf_entry += loc->interp_elf_ex.e_entry;
1086 		}
1087 		if (BAD_ADDR(elf_entry)) {
1088 			retval = IS_ERR((void *)elf_entry) ?
1089 					(int)elf_entry : -EINVAL;
1090 			goto out_free_dentry;
1091 		}
1092 		reloc_func_desc = interp_load_addr;
1093 
1094 		allow_write_access(interpreter);
1095 		fput(interpreter);
1096 		kfree(elf_interpreter);
1097 	} else {
1098 		elf_entry = loc->elf_ex.e_entry;
1099 		if (BAD_ADDR(elf_entry)) {
1100 			retval = -EINVAL;
1101 			goto out_free_dentry;
1102 		}
1103 	}
1104 
1105 	kfree(interp_elf_phdata);
1106 	kfree(elf_phdata);
1107 
1108 	set_binfmt(&elf_format);
1109 
1110 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1111 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1112 	if (retval < 0)
1113 		goto out;
1114 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1115 
1116 	retval = create_elf_tables(bprm, &loc->elf_ex,
1117 			  load_addr, interp_load_addr);
1118 	if (retval < 0)
1119 		goto out;
1120 	/* N.B. passed_fileno might not be initialized? */
1121 	current->mm->end_code = end_code;
1122 	current->mm->start_code = start_code;
1123 	current->mm->start_data = start_data;
1124 	current->mm->end_data = end_data;
1125 	current->mm->start_stack = bprm->p;
1126 
1127 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1128 		current->mm->brk = current->mm->start_brk =
1129 			arch_randomize_brk(current->mm);
1130 #ifdef compat_brk_randomized
1131 		current->brk_randomized = 1;
1132 #endif
1133 	}
1134 
1135 	if (current->personality & MMAP_PAGE_ZERO) {
1136 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1137 		   and some applications "depend" upon this behavior.
1138 		   Since we do not have the power to recompile these, we
1139 		   emulate the SVr4 behavior. Sigh. */
1140 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1141 				MAP_FIXED | MAP_PRIVATE, 0);
1142 	}
1143 
1144 #ifdef ELF_PLAT_INIT
1145 	/*
1146 	 * The ABI may specify that certain registers be set up in special
1147 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1148 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1149 	 * that the e_entry field is the address of the function descriptor
1150 	 * for the startup routine, rather than the address of the startup
1151 	 * routine itself.  This macro performs whatever initialization to
1152 	 * the regs structure is required as well as any relocations to the
1153 	 * function descriptor entries when executing dynamically links apps.
1154 	 */
1155 	ELF_PLAT_INIT(regs, reloc_func_desc);
1156 #endif
1157 
1158 	start_thread(regs, elf_entry, bprm->p);
1159 	retval = 0;
1160 out:
1161 	kfree(loc);
1162 out_ret:
1163 	return retval;
1164 
1165 	/* error cleanup */
1166 out_free_dentry:
1167 	kfree(interp_elf_phdata);
1168 	allow_write_access(interpreter);
1169 	if (interpreter)
1170 		fput(interpreter);
1171 out_free_interp:
1172 	kfree(elf_interpreter);
1173 out_free_ph:
1174 	kfree(elf_phdata);
1175 	goto out;
1176 }
1177 
1178 #ifdef CONFIG_USELIB
1179 /* This is really simpleminded and specialized - we are loading an
1180    a.out library that is given an ELF header. */
1181 static int load_elf_library(struct file *file)
1182 {
1183 	struct elf_phdr *elf_phdata;
1184 	struct elf_phdr *eppnt;
1185 	unsigned long elf_bss, bss, len;
1186 	int retval, error, i, j;
1187 	struct elfhdr elf_ex;
1188 	loff_t pos = 0;
1189 
1190 	error = -ENOEXEC;
1191 	retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1192 	if (retval != sizeof(elf_ex))
1193 		goto out;
1194 
1195 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1196 		goto out;
1197 
1198 	/* First of all, some simple consistency checks */
1199 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1200 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1201 		goto out;
1202 	if (elf_check_fdpic(&elf_ex))
1203 		goto out;
1204 
1205 	/* Now read in all of the header information */
1206 
1207 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1208 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1209 
1210 	error = -ENOMEM;
1211 	elf_phdata = kmalloc(j, GFP_KERNEL);
1212 	if (!elf_phdata)
1213 		goto out;
1214 
1215 	eppnt = elf_phdata;
1216 	error = -ENOEXEC;
1217 	pos =  elf_ex.e_phoff;
1218 	retval = kernel_read(file, eppnt, j, &pos);
1219 	if (retval != j)
1220 		goto out_free_ph;
1221 
1222 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1223 		if ((eppnt + i)->p_type == PT_LOAD)
1224 			j++;
1225 	if (j != 1)
1226 		goto out_free_ph;
1227 
1228 	while (eppnt->p_type != PT_LOAD)
1229 		eppnt++;
1230 
1231 	/* Now use mmap to map the library into memory. */
1232 	error = vm_mmap(file,
1233 			ELF_PAGESTART(eppnt->p_vaddr),
1234 			(eppnt->p_filesz +
1235 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1236 			PROT_READ | PROT_WRITE | PROT_EXEC,
1237 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1238 			(eppnt->p_offset -
1239 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1240 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1241 		goto out_free_ph;
1242 
1243 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1244 	if (padzero(elf_bss)) {
1245 		error = -EFAULT;
1246 		goto out_free_ph;
1247 	}
1248 
1249 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1250 			    ELF_MIN_ALIGN - 1);
1251 	bss = eppnt->p_memsz + eppnt->p_vaddr;
1252 	if (bss > len) {
1253 		error = vm_brk(len, bss - len);
1254 		if (error)
1255 			goto out_free_ph;
1256 	}
1257 	error = 0;
1258 
1259 out_free_ph:
1260 	kfree(elf_phdata);
1261 out:
1262 	return error;
1263 }
1264 #endif /* #ifdef CONFIG_USELIB */
1265 
1266 #ifdef CONFIG_ELF_CORE
1267 /*
1268  * ELF core dumper
1269  *
1270  * Modelled on fs/exec.c:aout_core_dump()
1271  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1272  */
1273 
1274 /*
1275  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1276  * that are useful for post-mortem analysis are included in every core dump.
1277  * In that way we ensure that the core dump is fully interpretable later
1278  * without matching up the same kernel and hardware config to see what PC values
1279  * meant. These special mappings include - vDSO, vsyscall, and other
1280  * architecture specific mappings
1281  */
1282 static bool always_dump_vma(struct vm_area_struct *vma)
1283 {
1284 	/* Any vsyscall mappings? */
1285 	if (vma == get_gate_vma(vma->vm_mm))
1286 		return true;
1287 
1288 	/*
1289 	 * Assume that all vmas with a .name op should always be dumped.
1290 	 * If this changes, a new vm_ops field can easily be added.
1291 	 */
1292 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1293 		return true;
1294 
1295 	/*
1296 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1297 	 * such as vDSO sections.
1298 	 */
1299 	if (arch_vma_name(vma))
1300 		return true;
1301 
1302 	return false;
1303 }
1304 
1305 /*
1306  * Decide what to dump of a segment, part, all or none.
1307  */
1308 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1309 				   unsigned long mm_flags)
1310 {
1311 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1312 
1313 	/* always dump the vdso and vsyscall sections */
1314 	if (always_dump_vma(vma))
1315 		goto whole;
1316 
1317 	if (vma->vm_flags & VM_DONTDUMP)
1318 		return 0;
1319 
1320 	/* support for DAX */
1321 	if (vma_is_dax(vma)) {
1322 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1323 			goto whole;
1324 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1325 			goto whole;
1326 		return 0;
1327 	}
1328 
1329 	/* Hugetlb memory check */
1330 	if (vma->vm_flags & VM_HUGETLB) {
1331 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1332 			goto whole;
1333 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1334 			goto whole;
1335 		return 0;
1336 	}
1337 
1338 	/* Do not dump I/O mapped devices or special mappings */
1339 	if (vma->vm_flags & VM_IO)
1340 		return 0;
1341 
1342 	/* By default, dump shared memory if mapped from an anonymous file. */
1343 	if (vma->vm_flags & VM_SHARED) {
1344 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1345 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1346 			goto whole;
1347 		return 0;
1348 	}
1349 
1350 	/* Dump segments that have been written to.  */
1351 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1352 		goto whole;
1353 	if (vma->vm_file == NULL)
1354 		return 0;
1355 
1356 	if (FILTER(MAPPED_PRIVATE))
1357 		goto whole;
1358 
1359 	/*
1360 	 * If this looks like the beginning of a DSO or executable mapping,
1361 	 * check for an ELF header.  If we find one, dump the first page to
1362 	 * aid in determining what was mapped here.
1363 	 */
1364 	if (FILTER(ELF_HEADERS) &&
1365 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1366 		u32 __user *header = (u32 __user *) vma->vm_start;
1367 		u32 word;
1368 		mm_segment_t fs = get_fs();
1369 		/*
1370 		 * Doing it this way gets the constant folded by GCC.
1371 		 */
1372 		union {
1373 			u32 cmp;
1374 			char elfmag[SELFMAG];
1375 		} magic;
1376 		BUILD_BUG_ON(SELFMAG != sizeof word);
1377 		magic.elfmag[EI_MAG0] = ELFMAG0;
1378 		magic.elfmag[EI_MAG1] = ELFMAG1;
1379 		magic.elfmag[EI_MAG2] = ELFMAG2;
1380 		magic.elfmag[EI_MAG3] = ELFMAG3;
1381 		/*
1382 		 * Switch to the user "segment" for get_user(),
1383 		 * then put back what elf_core_dump() had in place.
1384 		 */
1385 		set_fs(USER_DS);
1386 		if (unlikely(get_user(word, header)))
1387 			word = 0;
1388 		set_fs(fs);
1389 		if (word == magic.cmp)
1390 			return PAGE_SIZE;
1391 	}
1392 
1393 #undef	FILTER
1394 
1395 	return 0;
1396 
1397 whole:
1398 	return vma->vm_end - vma->vm_start;
1399 }
1400 
1401 /* An ELF note in memory */
1402 struct memelfnote
1403 {
1404 	const char *name;
1405 	int type;
1406 	unsigned int datasz;
1407 	void *data;
1408 };
1409 
1410 static int notesize(struct memelfnote *en)
1411 {
1412 	int sz;
1413 
1414 	sz = sizeof(struct elf_note);
1415 	sz += roundup(strlen(en->name) + 1, 4);
1416 	sz += roundup(en->datasz, 4);
1417 
1418 	return sz;
1419 }
1420 
1421 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1422 {
1423 	struct elf_note en;
1424 	en.n_namesz = strlen(men->name) + 1;
1425 	en.n_descsz = men->datasz;
1426 	en.n_type = men->type;
1427 
1428 	return dump_emit(cprm, &en, sizeof(en)) &&
1429 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1430 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1431 }
1432 
1433 static void fill_elf_header(struct elfhdr *elf, int segs,
1434 			    u16 machine, u32 flags)
1435 {
1436 	memset(elf, 0, sizeof(*elf));
1437 
1438 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1439 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1440 	elf->e_ident[EI_DATA] = ELF_DATA;
1441 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1442 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1443 
1444 	elf->e_type = ET_CORE;
1445 	elf->e_machine = machine;
1446 	elf->e_version = EV_CURRENT;
1447 	elf->e_phoff = sizeof(struct elfhdr);
1448 	elf->e_flags = flags;
1449 	elf->e_ehsize = sizeof(struct elfhdr);
1450 	elf->e_phentsize = sizeof(struct elf_phdr);
1451 	elf->e_phnum = segs;
1452 
1453 	return;
1454 }
1455 
1456 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1457 {
1458 	phdr->p_type = PT_NOTE;
1459 	phdr->p_offset = offset;
1460 	phdr->p_vaddr = 0;
1461 	phdr->p_paddr = 0;
1462 	phdr->p_filesz = sz;
1463 	phdr->p_memsz = 0;
1464 	phdr->p_flags = 0;
1465 	phdr->p_align = 0;
1466 	return;
1467 }
1468 
1469 static void fill_note(struct memelfnote *note, const char *name, int type,
1470 		unsigned int sz, void *data)
1471 {
1472 	note->name = name;
1473 	note->type = type;
1474 	note->datasz = sz;
1475 	note->data = data;
1476 	return;
1477 }
1478 
1479 /*
1480  * fill up all the fields in prstatus from the given task struct, except
1481  * registers which need to be filled up separately.
1482  */
1483 static void fill_prstatus(struct elf_prstatus *prstatus,
1484 		struct task_struct *p, long signr)
1485 {
1486 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1487 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1488 	prstatus->pr_sighold = p->blocked.sig[0];
1489 	rcu_read_lock();
1490 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1491 	rcu_read_unlock();
1492 	prstatus->pr_pid = task_pid_vnr(p);
1493 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1494 	prstatus->pr_sid = task_session_vnr(p);
1495 	if (thread_group_leader(p)) {
1496 		struct task_cputime cputime;
1497 
1498 		/*
1499 		 * This is the record for the group leader.  It shows the
1500 		 * group-wide total, not its individual thread total.
1501 		 */
1502 		thread_group_cputime(p, &cputime);
1503 		prstatus->pr_utime = ns_to_timeval(cputime.utime);
1504 		prstatus->pr_stime = ns_to_timeval(cputime.stime);
1505 	} else {
1506 		u64 utime, stime;
1507 
1508 		task_cputime(p, &utime, &stime);
1509 		prstatus->pr_utime = ns_to_timeval(utime);
1510 		prstatus->pr_stime = ns_to_timeval(stime);
1511 	}
1512 
1513 	prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1514 	prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1515 }
1516 
1517 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1518 		       struct mm_struct *mm)
1519 {
1520 	const struct cred *cred;
1521 	unsigned int i, len;
1522 
1523 	/* first copy the parameters from user space */
1524 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1525 
1526 	len = mm->arg_end - mm->arg_start;
1527 	if (len >= ELF_PRARGSZ)
1528 		len = ELF_PRARGSZ-1;
1529 	if (copy_from_user(&psinfo->pr_psargs,
1530 		           (const char __user *)mm->arg_start, len))
1531 		return -EFAULT;
1532 	for(i = 0; i < len; i++)
1533 		if (psinfo->pr_psargs[i] == 0)
1534 			psinfo->pr_psargs[i] = ' ';
1535 	psinfo->pr_psargs[len] = 0;
1536 
1537 	rcu_read_lock();
1538 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1539 	rcu_read_unlock();
1540 	psinfo->pr_pid = task_pid_vnr(p);
1541 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1542 	psinfo->pr_sid = task_session_vnr(p);
1543 
1544 	i = p->state ? ffz(~p->state) + 1 : 0;
1545 	psinfo->pr_state = i;
1546 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1547 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1548 	psinfo->pr_nice = task_nice(p);
1549 	psinfo->pr_flag = p->flags;
1550 	rcu_read_lock();
1551 	cred = __task_cred(p);
1552 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1553 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1554 	rcu_read_unlock();
1555 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1556 
1557 	return 0;
1558 }
1559 
1560 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1561 {
1562 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1563 	int i = 0;
1564 	do
1565 		i += 2;
1566 	while (auxv[i - 2] != AT_NULL);
1567 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1568 }
1569 
1570 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1571 		const siginfo_t *siginfo)
1572 {
1573 	mm_segment_t old_fs = get_fs();
1574 	set_fs(KERNEL_DS);
1575 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1576 	set_fs(old_fs);
1577 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1578 }
1579 
1580 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1581 /*
1582  * Format of NT_FILE note:
1583  *
1584  * long count     -- how many files are mapped
1585  * long page_size -- units for file_ofs
1586  * array of [COUNT] elements of
1587  *   long start
1588  *   long end
1589  *   long file_ofs
1590  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1591  */
1592 static int fill_files_note(struct memelfnote *note)
1593 {
1594 	struct vm_area_struct *vma;
1595 	unsigned count, size, names_ofs, remaining, n;
1596 	user_long_t *data;
1597 	user_long_t *start_end_ofs;
1598 	char *name_base, *name_curpos;
1599 
1600 	/* *Estimated* file count and total data size needed */
1601 	count = current->mm->map_count;
1602 	if (count > UINT_MAX / 64)
1603 		return -EINVAL;
1604 	size = count * 64;
1605 
1606 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1607  alloc:
1608 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1609 		return -EINVAL;
1610 	size = round_up(size, PAGE_SIZE);
1611 	data = vmalloc(size);
1612 	if (!data)
1613 		return -ENOMEM;
1614 
1615 	start_end_ofs = data + 2;
1616 	name_base = name_curpos = ((char *)data) + names_ofs;
1617 	remaining = size - names_ofs;
1618 	count = 0;
1619 	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1620 		struct file *file;
1621 		const char *filename;
1622 
1623 		file = vma->vm_file;
1624 		if (!file)
1625 			continue;
1626 		filename = file_path(file, name_curpos, remaining);
1627 		if (IS_ERR(filename)) {
1628 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1629 				vfree(data);
1630 				size = size * 5 / 4;
1631 				goto alloc;
1632 			}
1633 			continue;
1634 		}
1635 
1636 		/* file_path() fills at the end, move name down */
1637 		/* n = strlen(filename) + 1: */
1638 		n = (name_curpos + remaining) - filename;
1639 		remaining = filename - name_curpos;
1640 		memmove(name_curpos, filename, n);
1641 		name_curpos += n;
1642 
1643 		*start_end_ofs++ = vma->vm_start;
1644 		*start_end_ofs++ = vma->vm_end;
1645 		*start_end_ofs++ = vma->vm_pgoff;
1646 		count++;
1647 	}
1648 
1649 	/* Now we know exact count of files, can store it */
1650 	data[0] = count;
1651 	data[1] = PAGE_SIZE;
1652 	/*
1653 	 * Count usually is less than current->mm->map_count,
1654 	 * we need to move filenames down.
1655 	 */
1656 	n = current->mm->map_count - count;
1657 	if (n != 0) {
1658 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1659 		memmove(name_base - shift_bytes, name_base,
1660 			name_curpos - name_base);
1661 		name_curpos -= shift_bytes;
1662 	}
1663 
1664 	size = name_curpos - (char *)data;
1665 	fill_note(note, "CORE", NT_FILE, size, data);
1666 	return 0;
1667 }
1668 
1669 #ifdef CORE_DUMP_USE_REGSET
1670 #include <linux/regset.h>
1671 
1672 struct elf_thread_core_info {
1673 	struct elf_thread_core_info *next;
1674 	struct task_struct *task;
1675 	struct elf_prstatus prstatus;
1676 	struct memelfnote notes[0];
1677 };
1678 
1679 struct elf_note_info {
1680 	struct elf_thread_core_info *thread;
1681 	struct memelfnote psinfo;
1682 	struct memelfnote signote;
1683 	struct memelfnote auxv;
1684 	struct memelfnote files;
1685 	user_siginfo_t csigdata;
1686 	size_t size;
1687 	int thread_notes;
1688 };
1689 
1690 /*
1691  * When a regset has a writeback hook, we call it on each thread before
1692  * dumping user memory.  On register window machines, this makes sure the
1693  * user memory backing the register data is up to date before we read it.
1694  */
1695 static void do_thread_regset_writeback(struct task_struct *task,
1696 				       const struct user_regset *regset)
1697 {
1698 	if (regset->writeback)
1699 		regset->writeback(task, regset, 1);
1700 }
1701 
1702 #ifndef PRSTATUS_SIZE
1703 #define PRSTATUS_SIZE(S, R) sizeof(S)
1704 #endif
1705 
1706 #ifndef SET_PR_FPVALID
1707 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1708 #endif
1709 
1710 static int fill_thread_core_info(struct elf_thread_core_info *t,
1711 				 const struct user_regset_view *view,
1712 				 long signr, size_t *total)
1713 {
1714 	unsigned int i;
1715 	unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1716 
1717 	/*
1718 	 * NT_PRSTATUS is the one special case, because the regset data
1719 	 * goes into the pr_reg field inside the note contents, rather
1720 	 * than being the whole note contents.  We fill the reset in here.
1721 	 * We assume that regset 0 is NT_PRSTATUS.
1722 	 */
1723 	fill_prstatus(&t->prstatus, t->task, signr);
1724 	(void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1725 				    &t->prstatus.pr_reg, NULL);
1726 
1727 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1728 		  PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1729 	*total += notesize(&t->notes[0]);
1730 
1731 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1732 
1733 	/*
1734 	 * Each other regset might generate a note too.  For each regset
1735 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1736 	 * all zero and we'll know to skip writing it later.
1737 	 */
1738 	for (i = 1; i < view->n; ++i) {
1739 		const struct user_regset *regset = &view->regsets[i];
1740 		do_thread_regset_writeback(t->task, regset);
1741 		if (regset->core_note_type && regset->get &&
1742 		    (!regset->active || regset->active(t->task, regset))) {
1743 			int ret;
1744 			size_t size = regset_size(t->task, regset);
1745 			void *data = kmalloc(size, GFP_KERNEL);
1746 			if (unlikely(!data))
1747 				return 0;
1748 			ret = regset->get(t->task, regset,
1749 					  0, size, data, NULL);
1750 			if (unlikely(ret))
1751 				kfree(data);
1752 			else {
1753 				if (regset->core_note_type != NT_PRFPREG)
1754 					fill_note(&t->notes[i], "LINUX",
1755 						  regset->core_note_type,
1756 						  size, data);
1757 				else {
1758 					SET_PR_FPVALID(&t->prstatus,
1759 							1, regset0_size);
1760 					fill_note(&t->notes[i], "CORE",
1761 						  NT_PRFPREG, size, data);
1762 				}
1763 				*total += notesize(&t->notes[i]);
1764 			}
1765 		}
1766 	}
1767 
1768 	return 1;
1769 }
1770 
1771 static int fill_note_info(struct elfhdr *elf, int phdrs,
1772 			  struct elf_note_info *info,
1773 			  const siginfo_t *siginfo, struct pt_regs *regs)
1774 {
1775 	struct task_struct *dump_task = current;
1776 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1777 	struct elf_thread_core_info *t;
1778 	struct elf_prpsinfo *psinfo;
1779 	struct core_thread *ct;
1780 	unsigned int i;
1781 
1782 	info->size = 0;
1783 	info->thread = NULL;
1784 
1785 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1786 	if (psinfo == NULL) {
1787 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1788 		return 0;
1789 	}
1790 
1791 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1792 
1793 	/*
1794 	 * Figure out how many notes we're going to need for each thread.
1795 	 */
1796 	info->thread_notes = 0;
1797 	for (i = 0; i < view->n; ++i)
1798 		if (view->regsets[i].core_note_type != 0)
1799 			++info->thread_notes;
1800 
1801 	/*
1802 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1803 	 * since it is our one special case.
1804 	 */
1805 	if (unlikely(info->thread_notes == 0) ||
1806 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1807 		WARN_ON(1);
1808 		return 0;
1809 	}
1810 
1811 	/*
1812 	 * Initialize the ELF file header.
1813 	 */
1814 	fill_elf_header(elf, phdrs,
1815 			view->e_machine, view->e_flags);
1816 
1817 	/*
1818 	 * Allocate a structure for each thread.
1819 	 */
1820 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1821 		t = kzalloc(offsetof(struct elf_thread_core_info,
1822 				     notes[info->thread_notes]),
1823 			    GFP_KERNEL);
1824 		if (unlikely(!t))
1825 			return 0;
1826 
1827 		t->task = ct->task;
1828 		if (ct->task == dump_task || !info->thread) {
1829 			t->next = info->thread;
1830 			info->thread = t;
1831 		} else {
1832 			/*
1833 			 * Make sure to keep the original task at
1834 			 * the head of the list.
1835 			 */
1836 			t->next = info->thread->next;
1837 			info->thread->next = t;
1838 		}
1839 	}
1840 
1841 	/*
1842 	 * Now fill in each thread's information.
1843 	 */
1844 	for (t = info->thread; t != NULL; t = t->next)
1845 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1846 			return 0;
1847 
1848 	/*
1849 	 * Fill in the two process-wide notes.
1850 	 */
1851 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1852 	info->size += notesize(&info->psinfo);
1853 
1854 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1855 	info->size += notesize(&info->signote);
1856 
1857 	fill_auxv_note(&info->auxv, current->mm);
1858 	info->size += notesize(&info->auxv);
1859 
1860 	if (fill_files_note(&info->files) == 0)
1861 		info->size += notesize(&info->files);
1862 
1863 	return 1;
1864 }
1865 
1866 static size_t get_note_info_size(struct elf_note_info *info)
1867 {
1868 	return info->size;
1869 }
1870 
1871 /*
1872  * Write all the notes for each thread.  When writing the first thread, the
1873  * process-wide notes are interleaved after the first thread-specific note.
1874  */
1875 static int write_note_info(struct elf_note_info *info,
1876 			   struct coredump_params *cprm)
1877 {
1878 	bool first = true;
1879 	struct elf_thread_core_info *t = info->thread;
1880 
1881 	do {
1882 		int i;
1883 
1884 		if (!writenote(&t->notes[0], cprm))
1885 			return 0;
1886 
1887 		if (first && !writenote(&info->psinfo, cprm))
1888 			return 0;
1889 		if (first && !writenote(&info->signote, cprm))
1890 			return 0;
1891 		if (first && !writenote(&info->auxv, cprm))
1892 			return 0;
1893 		if (first && info->files.data &&
1894 				!writenote(&info->files, cprm))
1895 			return 0;
1896 
1897 		for (i = 1; i < info->thread_notes; ++i)
1898 			if (t->notes[i].data &&
1899 			    !writenote(&t->notes[i], cprm))
1900 				return 0;
1901 
1902 		first = false;
1903 		t = t->next;
1904 	} while (t);
1905 
1906 	return 1;
1907 }
1908 
1909 static void free_note_info(struct elf_note_info *info)
1910 {
1911 	struct elf_thread_core_info *threads = info->thread;
1912 	while (threads) {
1913 		unsigned int i;
1914 		struct elf_thread_core_info *t = threads;
1915 		threads = t->next;
1916 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1917 		for (i = 1; i < info->thread_notes; ++i)
1918 			kfree(t->notes[i].data);
1919 		kfree(t);
1920 	}
1921 	kfree(info->psinfo.data);
1922 	vfree(info->files.data);
1923 }
1924 
1925 #else
1926 
1927 /* Here is the structure in which status of each thread is captured. */
1928 struct elf_thread_status
1929 {
1930 	struct list_head list;
1931 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1932 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1933 	struct task_struct *thread;
1934 #ifdef ELF_CORE_COPY_XFPREGS
1935 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1936 #endif
1937 	struct memelfnote notes[3];
1938 	int num_notes;
1939 };
1940 
1941 /*
1942  * In order to add the specific thread information for the elf file format,
1943  * we need to keep a linked list of every threads pr_status and then create
1944  * a single section for them in the final core file.
1945  */
1946 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1947 {
1948 	int sz = 0;
1949 	struct task_struct *p = t->thread;
1950 	t->num_notes = 0;
1951 
1952 	fill_prstatus(&t->prstatus, p, signr);
1953 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1954 
1955 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1956 		  &(t->prstatus));
1957 	t->num_notes++;
1958 	sz += notesize(&t->notes[0]);
1959 
1960 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1961 								&t->fpu))) {
1962 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1963 			  &(t->fpu));
1964 		t->num_notes++;
1965 		sz += notesize(&t->notes[1]);
1966 	}
1967 
1968 #ifdef ELF_CORE_COPY_XFPREGS
1969 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1970 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1971 			  sizeof(t->xfpu), &t->xfpu);
1972 		t->num_notes++;
1973 		sz += notesize(&t->notes[2]);
1974 	}
1975 #endif
1976 	return sz;
1977 }
1978 
1979 struct elf_note_info {
1980 	struct memelfnote *notes;
1981 	struct memelfnote *notes_files;
1982 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1983 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1984 	struct list_head thread_list;
1985 	elf_fpregset_t *fpu;
1986 #ifdef ELF_CORE_COPY_XFPREGS
1987 	elf_fpxregset_t *xfpu;
1988 #endif
1989 	user_siginfo_t csigdata;
1990 	int thread_status_size;
1991 	int numnote;
1992 };
1993 
1994 static int elf_note_info_init(struct elf_note_info *info)
1995 {
1996 	memset(info, 0, sizeof(*info));
1997 	INIT_LIST_HEAD(&info->thread_list);
1998 
1999 	/* Allocate space for ELF notes */
2000 	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
2001 	if (!info->notes)
2002 		return 0;
2003 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2004 	if (!info->psinfo)
2005 		return 0;
2006 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2007 	if (!info->prstatus)
2008 		return 0;
2009 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2010 	if (!info->fpu)
2011 		return 0;
2012 #ifdef ELF_CORE_COPY_XFPREGS
2013 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2014 	if (!info->xfpu)
2015 		return 0;
2016 #endif
2017 	return 1;
2018 }
2019 
2020 static int fill_note_info(struct elfhdr *elf, int phdrs,
2021 			  struct elf_note_info *info,
2022 			  const siginfo_t *siginfo, struct pt_regs *regs)
2023 {
2024 	struct list_head *t;
2025 	struct core_thread *ct;
2026 	struct elf_thread_status *ets;
2027 
2028 	if (!elf_note_info_init(info))
2029 		return 0;
2030 
2031 	for (ct = current->mm->core_state->dumper.next;
2032 					ct; ct = ct->next) {
2033 		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2034 		if (!ets)
2035 			return 0;
2036 
2037 		ets->thread = ct->task;
2038 		list_add(&ets->list, &info->thread_list);
2039 	}
2040 
2041 	list_for_each(t, &info->thread_list) {
2042 		int sz;
2043 
2044 		ets = list_entry(t, struct elf_thread_status, list);
2045 		sz = elf_dump_thread_status(siginfo->si_signo, ets);
2046 		info->thread_status_size += sz;
2047 	}
2048 	/* now collect the dump for the current */
2049 	memset(info->prstatus, 0, sizeof(*info->prstatus));
2050 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
2051 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2052 
2053 	/* Set up header */
2054 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2055 
2056 	/*
2057 	 * Set up the notes in similar form to SVR4 core dumps made
2058 	 * with info from their /proc.
2059 	 */
2060 
2061 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2062 		  sizeof(*info->prstatus), info->prstatus);
2063 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
2064 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2065 		  sizeof(*info->psinfo), info->psinfo);
2066 
2067 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2068 	fill_auxv_note(info->notes + 3, current->mm);
2069 	info->numnote = 4;
2070 
2071 	if (fill_files_note(info->notes + info->numnote) == 0) {
2072 		info->notes_files = info->notes + info->numnote;
2073 		info->numnote++;
2074 	}
2075 
2076 	/* Try to dump the FPU. */
2077 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2078 							       info->fpu);
2079 	if (info->prstatus->pr_fpvalid)
2080 		fill_note(info->notes + info->numnote++,
2081 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2082 #ifdef ELF_CORE_COPY_XFPREGS
2083 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
2084 		fill_note(info->notes + info->numnote++,
2085 			  "LINUX", ELF_CORE_XFPREG_TYPE,
2086 			  sizeof(*info->xfpu), info->xfpu);
2087 #endif
2088 
2089 	return 1;
2090 }
2091 
2092 static size_t get_note_info_size(struct elf_note_info *info)
2093 {
2094 	int sz = 0;
2095 	int i;
2096 
2097 	for (i = 0; i < info->numnote; i++)
2098 		sz += notesize(info->notes + i);
2099 
2100 	sz += info->thread_status_size;
2101 
2102 	return sz;
2103 }
2104 
2105 static int write_note_info(struct elf_note_info *info,
2106 			   struct coredump_params *cprm)
2107 {
2108 	int i;
2109 	struct list_head *t;
2110 
2111 	for (i = 0; i < info->numnote; i++)
2112 		if (!writenote(info->notes + i, cprm))
2113 			return 0;
2114 
2115 	/* write out the thread status notes section */
2116 	list_for_each(t, &info->thread_list) {
2117 		struct elf_thread_status *tmp =
2118 				list_entry(t, struct elf_thread_status, list);
2119 
2120 		for (i = 0; i < tmp->num_notes; i++)
2121 			if (!writenote(&tmp->notes[i], cprm))
2122 				return 0;
2123 	}
2124 
2125 	return 1;
2126 }
2127 
2128 static void free_note_info(struct elf_note_info *info)
2129 {
2130 	while (!list_empty(&info->thread_list)) {
2131 		struct list_head *tmp = info->thread_list.next;
2132 		list_del(tmp);
2133 		kfree(list_entry(tmp, struct elf_thread_status, list));
2134 	}
2135 
2136 	/* Free data possibly allocated by fill_files_note(): */
2137 	if (info->notes_files)
2138 		vfree(info->notes_files->data);
2139 
2140 	kfree(info->prstatus);
2141 	kfree(info->psinfo);
2142 	kfree(info->notes);
2143 	kfree(info->fpu);
2144 #ifdef ELF_CORE_COPY_XFPREGS
2145 	kfree(info->xfpu);
2146 #endif
2147 }
2148 
2149 #endif
2150 
2151 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2152 					struct vm_area_struct *gate_vma)
2153 {
2154 	struct vm_area_struct *ret = tsk->mm->mmap;
2155 
2156 	if (ret)
2157 		return ret;
2158 	return gate_vma;
2159 }
2160 /*
2161  * Helper function for iterating across a vma list.  It ensures that the caller
2162  * will visit `gate_vma' prior to terminating the search.
2163  */
2164 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2165 					struct vm_area_struct *gate_vma)
2166 {
2167 	struct vm_area_struct *ret;
2168 
2169 	ret = this_vma->vm_next;
2170 	if (ret)
2171 		return ret;
2172 	if (this_vma == gate_vma)
2173 		return NULL;
2174 	return gate_vma;
2175 }
2176 
2177 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2178 			     elf_addr_t e_shoff, int segs)
2179 {
2180 	elf->e_shoff = e_shoff;
2181 	elf->e_shentsize = sizeof(*shdr4extnum);
2182 	elf->e_shnum = 1;
2183 	elf->e_shstrndx = SHN_UNDEF;
2184 
2185 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2186 
2187 	shdr4extnum->sh_type = SHT_NULL;
2188 	shdr4extnum->sh_size = elf->e_shnum;
2189 	shdr4extnum->sh_link = elf->e_shstrndx;
2190 	shdr4extnum->sh_info = segs;
2191 }
2192 
2193 /*
2194  * Actual dumper
2195  *
2196  * This is a two-pass process; first we find the offsets of the bits,
2197  * and then they are actually written out.  If we run out of core limit
2198  * we just truncate.
2199  */
2200 static int elf_core_dump(struct coredump_params *cprm)
2201 {
2202 	int has_dumped = 0;
2203 	mm_segment_t fs;
2204 	int segs, i;
2205 	size_t vma_data_size = 0;
2206 	struct vm_area_struct *vma, *gate_vma;
2207 	struct elfhdr *elf = NULL;
2208 	loff_t offset = 0, dataoff;
2209 	struct elf_note_info info = { };
2210 	struct elf_phdr *phdr4note = NULL;
2211 	struct elf_shdr *shdr4extnum = NULL;
2212 	Elf_Half e_phnum;
2213 	elf_addr_t e_shoff;
2214 	elf_addr_t *vma_filesz = NULL;
2215 
2216 	/*
2217 	 * We no longer stop all VM operations.
2218 	 *
2219 	 * This is because those proceses that could possibly change map_count
2220 	 * or the mmap / vma pages are now blocked in do_exit on current
2221 	 * finishing this core dump.
2222 	 *
2223 	 * Only ptrace can touch these memory addresses, but it doesn't change
2224 	 * the map_count or the pages allocated. So no possibility of crashing
2225 	 * exists while dumping the mm->vm_next areas to the core file.
2226 	 */
2227 
2228 	/* alloc memory for large data structures: too large to be on stack */
2229 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2230 	if (!elf)
2231 		goto out;
2232 	/*
2233 	 * The number of segs are recored into ELF header as 16bit value.
2234 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2235 	 */
2236 	segs = current->mm->map_count;
2237 	segs += elf_core_extra_phdrs();
2238 
2239 	gate_vma = get_gate_vma(current->mm);
2240 	if (gate_vma != NULL)
2241 		segs++;
2242 
2243 	/* for notes section */
2244 	segs++;
2245 
2246 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2247 	 * this, kernel supports extended numbering. Have a look at
2248 	 * include/linux/elf.h for further information. */
2249 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2250 
2251 	/*
2252 	 * Collect all the non-memory information about the process for the
2253 	 * notes.  This also sets up the file header.
2254 	 */
2255 	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2256 		goto cleanup;
2257 
2258 	has_dumped = 1;
2259 
2260 	fs = get_fs();
2261 	set_fs(KERNEL_DS);
2262 
2263 	offset += sizeof(*elf);				/* Elf header */
2264 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2265 
2266 	/* Write notes phdr entry */
2267 	{
2268 		size_t sz = get_note_info_size(&info);
2269 
2270 		sz += elf_coredump_extra_notes_size();
2271 
2272 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2273 		if (!phdr4note)
2274 			goto end_coredump;
2275 
2276 		fill_elf_note_phdr(phdr4note, sz, offset);
2277 		offset += sz;
2278 	}
2279 
2280 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2281 
2282 	if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2283 		goto end_coredump;
2284 	vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz));
2285 	if (!vma_filesz)
2286 		goto end_coredump;
2287 
2288 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2289 			vma = next_vma(vma, gate_vma)) {
2290 		unsigned long dump_size;
2291 
2292 		dump_size = vma_dump_size(vma, cprm->mm_flags);
2293 		vma_filesz[i++] = dump_size;
2294 		vma_data_size += dump_size;
2295 	}
2296 
2297 	offset += vma_data_size;
2298 	offset += elf_core_extra_data_size();
2299 	e_shoff = offset;
2300 
2301 	if (e_phnum == PN_XNUM) {
2302 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2303 		if (!shdr4extnum)
2304 			goto end_coredump;
2305 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2306 	}
2307 
2308 	offset = dataoff;
2309 
2310 	if (!dump_emit(cprm, elf, sizeof(*elf)))
2311 		goto end_coredump;
2312 
2313 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2314 		goto end_coredump;
2315 
2316 	/* Write program headers for segments dump */
2317 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2318 			vma = next_vma(vma, gate_vma)) {
2319 		struct elf_phdr phdr;
2320 
2321 		phdr.p_type = PT_LOAD;
2322 		phdr.p_offset = offset;
2323 		phdr.p_vaddr = vma->vm_start;
2324 		phdr.p_paddr = 0;
2325 		phdr.p_filesz = vma_filesz[i++];
2326 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2327 		offset += phdr.p_filesz;
2328 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2329 		if (vma->vm_flags & VM_WRITE)
2330 			phdr.p_flags |= PF_W;
2331 		if (vma->vm_flags & VM_EXEC)
2332 			phdr.p_flags |= PF_X;
2333 		phdr.p_align = ELF_EXEC_PAGESIZE;
2334 
2335 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2336 			goto end_coredump;
2337 	}
2338 
2339 	if (!elf_core_write_extra_phdrs(cprm, offset))
2340 		goto end_coredump;
2341 
2342  	/* write out the notes section */
2343 	if (!write_note_info(&info, cprm))
2344 		goto end_coredump;
2345 
2346 	if (elf_coredump_extra_notes_write(cprm))
2347 		goto end_coredump;
2348 
2349 	/* Align to page */
2350 	if (!dump_skip(cprm, dataoff - cprm->pos))
2351 		goto end_coredump;
2352 
2353 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2354 			vma = next_vma(vma, gate_vma)) {
2355 		unsigned long addr;
2356 		unsigned long end;
2357 
2358 		end = vma->vm_start + vma_filesz[i++];
2359 
2360 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2361 			struct page *page;
2362 			int stop;
2363 
2364 			page = get_dump_page(addr);
2365 			if (page) {
2366 				void *kaddr = kmap(page);
2367 				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2368 				kunmap(page);
2369 				put_page(page);
2370 			} else
2371 				stop = !dump_skip(cprm, PAGE_SIZE);
2372 			if (stop)
2373 				goto end_coredump;
2374 		}
2375 	}
2376 	dump_truncate(cprm);
2377 
2378 	if (!elf_core_write_extra_data(cprm))
2379 		goto end_coredump;
2380 
2381 	if (e_phnum == PN_XNUM) {
2382 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2383 			goto end_coredump;
2384 	}
2385 
2386 end_coredump:
2387 	set_fs(fs);
2388 
2389 cleanup:
2390 	free_note_info(&info);
2391 	kfree(shdr4extnum);
2392 	vfree(vma_filesz);
2393 	kfree(phdr4note);
2394 	kfree(elf);
2395 out:
2396 	return has_dumped;
2397 }
2398 
2399 #endif		/* CONFIG_ELF_CORE */
2400 
2401 static int __init init_elf_binfmt(void)
2402 {
2403 	register_binfmt(&elf_format);
2404 	return 0;
2405 }
2406 
2407 static void __exit exit_elf_binfmt(void)
2408 {
2409 	/* Remove the COFF and ELF loaders. */
2410 	unregister_binfmt(&elf_format);
2411 }
2412 
2413 core_initcall(init_elf_binfmt);
2414 module_exit(exit_elf_binfmt);
2415 MODULE_LICENSE("GPL");
2416