1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/binfmt_elf.c 4 * 5 * These are the functions used to load ELF format executables as used 6 * on SVr4 machines. Information on the format may be found in the book 7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 8 * Tools". 9 * 10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 11 */ 12 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/fs.h> 16 #include <linux/log2.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/errno.h> 20 #include <linux/signal.h> 21 #include <linux/binfmts.h> 22 #include <linux/string.h> 23 #include <linux/file.h> 24 #include <linux/slab.h> 25 #include <linux/personality.h> 26 #include <linux/elfcore.h> 27 #include <linux/init.h> 28 #include <linux/highuid.h> 29 #include <linux/compiler.h> 30 #include <linux/highmem.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vmalloc.h> 34 #include <linux/security.h> 35 #include <linux/random.h> 36 #include <linux/elf.h> 37 #include <linux/elf-randomize.h> 38 #include <linux/utsname.h> 39 #include <linux/coredump.h> 40 #include <linux/sched.h> 41 #include <linux/sched/coredump.h> 42 #include <linux/sched/task_stack.h> 43 #include <linux/sched/cputime.h> 44 #include <linux/sizes.h> 45 #include <linux/types.h> 46 #include <linux/cred.h> 47 #include <linux/dax.h> 48 #include <linux/uaccess.h> 49 #include <asm/param.h> 50 #include <asm/page.h> 51 52 #ifndef ELF_COMPAT 53 #define ELF_COMPAT 0 54 #endif 55 56 #ifndef user_long_t 57 #define user_long_t long 58 #endif 59 #ifndef user_siginfo_t 60 #define user_siginfo_t siginfo_t 61 #endif 62 63 /* That's for binfmt_elf_fdpic to deal with */ 64 #ifndef elf_check_fdpic 65 #define elf_check_fdpic(ex) false 66 #endif 67 68 static int load_elf_binary(struct linux_binprm *bprm); 69 70 #ifdef CONFIG_USELIB 71 static int load_elf_library(struct file *); 72 #else 73 #define load_elf_library NULL 74 #endif 75 76 /* 77 * If we don't support core dumping, then supply a NULL so we 78 * don't even try. 79 */ 80 #ifdef CONFIG_ELF_CORE 81 static int elf_core_dump(struct coredump_params *cprm); 82 #else 83 #define elf_core_dump NULL 84 #endif 85 86 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 87 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 88 #else 89 #define ELF_MIN_ALIGN PAGE_SIZE 90 #endif 91 92 #ifndef ELF_CORE_EFLAGS 93 #define ELF_CORE_EFLAGS 0 94 #endif 95 96 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) 97 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 98 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 99 100 static struct linux_binfmt elf_format = { 101 .module = THIS_MODULE, 102 .load_binary = load_elf_binary, 103 .load_shlib = load_elf_library, 104 .core_dump = elf_core_dump, 105 .min_coredump = ELF_EXEC_PAGESIZE, 106 }; 107 108 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE)) 109 110 static int set_brk(unsigned long start, unsigned long end, int prot) 111 { 112 start = ELF_PAGEALIGN(start); 113 end = ELF_PAGEALIGN(end); 114 if (end > start) { 115 /* 116 * Map the last of the bss segment. 117 * If the header is requesting these pages to be 118 * executable, honour that (ppc32 needs this). 119 */ 120 int error = vm_brk_flags(start, end - start, 121 prot & PROT_EXEC ? VM_EXEC : 0); 122 if (error) 123 return error; 124 } 125 current->mm->start_brk = current->mm->brk = end; 126 return 0; 127 } 128 129 /* We need to explicitly zero any fractional pages 130 after the data section (i.e. bss). This would 131 contain the junk from the file that should not 132 be in memory 133 */ 134 static int padzero(unsigned long elf_bss) 135 { 136 unsigned long nbyte; 137 138 nbyte = ELF_PAGEOFFSET(elf_bss); 139 if (nbyte) { 140 nbyte = ELF_MIN_ALIGN - nbyte; 141 if (clear_user((void __user *) elf_bss, nbyte)) 142 return -EFAULT; 143 } 144 return 0; 145 } 146 147 /* Let's use some macros to make this stack manipulation a little clearer */ 148 #ifdef CONFIG_STACK_GROWSUP 149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 150 #define STACK_ROUND(sp, items) \ 151 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 152 #define STACK_ALLOC(sp, len) ({ \ 153 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 154 old_sp; }) 155 #else 156 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 157 #define STACK_ROUND(sp, items) \ 158 (((unsigned long) (sp - items)) &~ 15UL) 159 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) 160 #endif 161 162 #ifndef ELF_BASE_PLATFORM 163 /* 164 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. 165 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value 166 * will be copied to the user stack in the same manner as AT_PLATFORM. 167 */ 168 #define ELF_BASE_PLATFORM NULL 169 #endif 170 171 static int 172 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec, 173 unsigned long load_addr, unsigned long interp_load_addr, 174 unsigned long e_entry) 175 { 176 struct mm_struct *mm = current->mm; 177 unsigned long p = bprm->p; 178 int argc = bprm->argc; 179 int envc = bprm->envc; 180 elf_addr_t __user *sp; 181 elf_addr_t __user *u_platform; 182 elf_addr_t __user *u_base_platform; 183 elf_addr_t __user *u_rand_bytes; 184 const char *k_platform = ELF_PLATFORM; 185 const char *k_base_platform = ELF_BASE_PLATFORM; 186 unsigned char k_rand_bytes[16]; 187 int items; 188 elf_addr_t *elf_info; 189 elf_addr_t flags = 0; 190 int ei_index; 191 const struct cred *cred = current_cred(); 192 struct vm_area_struct *vma; 193 194 /* 195 * In some cases (e.g. Hyper-Threading), we want to avoid L1 196 * evictions by the processes running on the same package. One 197 * thing we can do is to shuffle the initial stack for them. 198 */ 199 200 p = arch_align_stack(p); 201 202 /* 203 * If this architecture has a platform capability string, copy it 204 * to userspace. In some cases (Sparc), this info is impossible 205 * for userspace to get any other way, in others (i386) it is 206 * merely difficult. 207 */ 208 u_platform = NULL; 209 if (k_platform) { 210 size_t len = strlen(k_platform) + 1; 211 212 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 213 if (copy_to_user(u_platform, k_platform, len)) 214 return -EFAULT; 215 } 216 217 /* 218 * If this architecture has a "base" platform capability 219 * string, copy it to userspace. 220 */ 221 u_base_platform = NULL; 222 if (k_base_platform) { 223 size_t len = strlen(k_base_platform) + 1; 224 225 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 226 if (copy_to_user(u_base_platform, k_base_platform, len)) 227 return -EFAULT; 228 } 229 230 /* 231 * Generate 16 random bytes for userspace PRNG seeding. 232 */ 233 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); 234 u_rand_bytes = (elf_addr_t __user *) 235 STACK_ALLOC(p, sizeof(k_rand_bytes)); 236 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) 237 return -EFAULT; 238 239 /* Create the ELF interpreter info */ 240 elf_info = (elf_addr_t *)mm->saved_auxv; 241 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 242 #define NEW_AUX_ENT(id, val) \ 243 do { \ 244 *elf_info++ = id; \ 245 *elf_info++ = val; \ 246 } while (0) 247 248 #ifdef ARCH_DLINFO 249 /* 250 * ARCH_DLINFO must come first so PPC can do its special alignment of 251 * AUXV. 252 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 253 * ARCH_DLINFO changes 254 */ 255 ARCH_DLINFO; 256 #endif 257 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 258 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 259 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 260 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); 261 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 262 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 263 NEW_AUX_ENT(AT_BASE, interp_load_addr); 264 if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0) 265 flags |= AT_FLAGS_PRESERVE_ARGV0; 266 NEW_AUX_ENT(AT_FLAGS, flags); 267 NEW_AUX_ENT(AT_ENTRY, e_entry); 268 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid)); 269 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid)); 270 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid)); 271 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid)); 272 NEW_AUX_ENT(AT_SECURE, bprm->secureexec); 273 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); 274 #ifdef ELF_HWCAP2 275 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2); 276 #endif 277 NEW_AUX_ENT(AT_EXECFN, bprm->exec); 278 if (k_platform) { 279 NEW_AUX_ENT(AT_PLATFORM, 280 (elf_addr_t)(unsigned long)u_platform); 281 } 282 if (k_base_platform) { 283 NEW_AUX_ENT(AT_BASE_PLATFORM, 284 (elf_addr_t)(unsigned long)u_base_platform); 285 } 286 if (bprm->have_execfd) { 287 NEW_AUX_ENT(AT_EXECFD, bprm->execfd); 288 } 289 #undef NEW_AUX_ENT 290 /* AT_NULL is zero; clear the rest too */ 291 memset(elf_info, 0, (char *)mm->saved_auxv + 292 sizeof(mm->saved_auxv) - (char *)elf_info); 293 294 /* And advance past the AT_NULL entry. */ 295 elf_info += 2; 296 297 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv; 298 sp = STACK_ADD(p, ei_index); 299 300 items = (argc + 1) + (envc + 1) + 1; 301 bprm->p = STACK_ROUND(sp, items); 302 303 /* Point sp at the lowest address on the stack */ 304 #ifdef CONFIG_STACK_GROWSUP 305 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 306 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 307 #else 308 sp = (elf_addr_t __user *)bprm->p; 309 #endif 310 311 312 /* 313 * Grow the stack manually; some architectures have a limit on how 314 * far ahead a user-space access may be in order to grow the stack. 315 */ 316 if (mmap_read_lock_killable(mm)) 317 return -EINTR; 318 vma = find_extend_vma(mm, bprm->p); 319 mmap_read_unlock(mm); 320 if (!vma) 321 return -EFAULT; 322 323 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 324 if (put_user(argc, sp++)) 325 return -EFAULT; 326 327 /* Populate list of argv pointers back to argv strings. */ 328 p = mm->arg_end = mm->arg_start; 329 while (argc-- > 0) { 330 size_t len; 331 if (put_user((elf_addr_t)p, sp++)) 332 return -EFAULT; 333 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 334 if (!len || len > MAX_ARG_STRLEN) 335 return -EINVAL; 336 p += len; 337 } 338 if (put_user(0, sp++)) 339 return -EFAULT; 340 mm->arg_end = p; 341 342 /* Populate list of envp pointers back to envp strings. */ 343 mm->env_end = mm->env_start = p; 344 while (envc-- > 0) { 345 size_t len; 346 if (put_user((elf_addr_t)p, sp++)) 347 return -EFAULT; 348 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 349 if (!len || len > MAX_ARG_STRLEN) 350 return -EINVAL; 351 p += len; 352 } 353 if (put_user(0, sp++)) 354 return -EFAULT; 355 mm->env_end = p; 356 357 /* Put the elf_info on the stack in the right place. */ 358 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t))) 359 return -EFAULT; 360 return 0; 361 } 362 363 static unsigned long elf_map(struct file *filep, unsigned long addr, 364 const struct elf_phdr *eppnt, int prot, int type, 365 unsigned long total_size) 366 { 367 unsigned long map_addr; 368 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 369 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 370 addr = ELF_PAGESTART(addr); 371 size = ELF_PAGEALIGN(size); 372 373 /* mmap() will return -EINVAL if given a zero size, but a 374 * segment with zero filesize is perfectly valid */ 375 if (!size) 376 return addr; 377 378 /* 379 * total_size is the size of the ELF (interpreter) image. 380 * The _first_ mmap needs to know the full size, otherwise 381 * randomization might put this image into an overlapping 382 * position with the ELF binary image. (since size < total_size) 383 * So we first map the 'big' image - and unmap the remainder at 384 * the end. (which unmap is needed for ELF images with holes.) 385 */ 386 if (total_size) { 387 total_size = ELF_PAGEALIGN(total_size); 388 map_addr = vm_mmap(filep, addr, total_size, prot, type, off); 389 if (!BAD_ADDR(map_addr)) 390 vm_munmap(map_addr+size, total_size-size); 391 } else 392 map_addr = vm_mmap(filep, addr, size, prot, type, off); 393 394 if ((type & MAP_FIXED_NOREPLACE) && 395 PTR_ERR((void *)map_addr) == -EEXIST) 396 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n", 397 task_pid_nr(current), current->comm, (void *)addr); 398 399 return(map_addr); 400 } 401 402 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr) 403 { 404 int i, first_idx = -1, last_idx = -1; 405 406 for (i = 0; i < nr; i++) { 407 if (cmds[i].p_type == PT_LOAD) { 408 last_idx = i; 409 if (first_idx == -1) 410 first_idx = i; 411 } 412 } 413 if (first_idx == -1) 414 return 0; 415 416 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - 417 ELF_PAGESTART(cmds[first_idx].p_vaddr); 418 } 419 420 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos) 421 { 422 ssize_t rv; 423 424 rv = kernel_read(file, buf, len, &pos); 425 if (unlikely(rv != len)) { 426 return (rv < 0) ? rv : -EIO; 427 } 428 return 0; 429 } 430 431 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr) 432 { 433 unsigned long alignment = 0; 434 int i; 435 436 for (i = 0; i < nr; i++) { 437 if (cmds[i].p_type == PT_LOAD) { 438 unsigned long p_align = cmds[i].p_align; 439 440 /* skip non-power of two alignments as invalid */ 441 if (!is_power_of_2(p_align)) 442 continue; 443 alignment = max(alignment, p_align); 444 } 445 } 446 447 /* ensure we align to at least one page */ 448 return ELF_PAGEALIGN(alignment); 449 } 450 451 /** 452 * load_elf_phdrs() - load ELF program headers 453 * @elf_ex: ELF header of the binary whose program headers should be loaded 454 * @elf_file: the opened ELF binary file 455 * 456 * Loads ELF program headers from the binary file elf_file, which has the ELF 457 * header pointed to by elf_ex, into a newly allocated array. The caller is 458 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure. 459 */ 460 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex, 461 struct file *elf_file) 462 { 463 struct elf_phdr *elf_phdata = NULL; 464 int retval, err = -1; 465 unsigned int size; 466 467 /* 468 * If the size of this structure has changed, then punt, since 469 * we will be doing the wrong thing. 470 */ 471 if (elf_ex->e_phentsize != sizeof(struct elf_phdr)) 472 goto out; 473 474 /* Sanity check the number of program headers... */ 475 /* ...and their total size. */ 476 size = sizeof(struct elf_phdr) * elf_ex->e_phnum; 477 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN) 478 goto out; 479 480 elf_phdata = kmalloc(size, GFP_KERNEL); 481 if (!elf_phdata) 482 goto out; 483 484 /* Read in the program headers */ 485 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff); 486 if (retval < 0) { 487 err = retval; 488 goto out; 489 } 490 491 /* Success! */ 492 err = 0; 493 out: 494 if (err) { 495 kfree(elf_phdata); 496 elf_phdata = NULL; 497 } 498 return elf_phdata; 499 } 500 501 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE 502 503 /** 504 * struct arch_elf_state - arch-specific ELF loading state 505 * 506 * This structure is used to preserve architecture specific data during 507 * the loading of an ELF file, throughout the checking of architecture 508 * specific ELF headers & through to the point where the ELF load is 509 * known to be proceeding (ie. SET_PERSONALITY). 510 * 511 * This implementation is a dummy for architectures which require no 512 * specific state. 513 */ 514 struct arch_elf_state { 515 }; 516 517 #define INIT_ARCH_ELF_STATE {} 518 519 /** 520 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header 521 * @ehdr: The main ELF header 522 * @phdr: The program header to check 523 * @elf: The open ELF file 524 * @is_interp: True if the phdr is from the interpreter of the ELF being 525 * loaded, else false. 526 * @state: Architecture-specific state preserved throughout the process 527 * of loading the ELF. 528 * 529 * Inspects the program header phdr to validate its correctness and/or 530 * suitability for the system. Called once per ELF program header in the 531 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its 532 * interpreter. 533 * 534 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 535 * with that return code. 536 */ 537 static inline int arch_elf_pt_proc(struct elfhdr *ehdr, 538 struct elf_phdr *phdr, 539 struct file *elf, bool is_interp, 540 struct arch_elf_state *state) 541 { 542 /* Dummy implementation, always proceed */ 543 return 0; 544 } 545 546 /** 547 * arch_check_elf() - check an ELF executable 548 * @ehdr: The main ELF header 549 * @has_interp: True if the ELF has an interpreter, else false. 550 * @interp_ehdr: The interpreter's ELF header 551 * @state: Architecture-specific state preserved throughout the process 552 * of loading the ELF. 553 * 554 * Provides a final opportunity for architecture code to reject the loading 555 * of the ELF & cause an exec syscall to return an error. This is called after 556 * all program headers to be checked by arch_elf_pt_proc have been. 557 * 558 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 559 * with that return code. 560 */ 561 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp, 562 struct elfhdr *interp_ehdr, 563 struct arch_elf_state *state) 564 { 565 /* Dummy implementation, always proceed */ 566 return 0; 567 } 568 569 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */ 570 571 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state, 572 bool has_interp, bool is_interp) 573 { 574 int prot = 0; 575 576 if (p_flags & PF_R) 577 prot |= PROT_READ; 578 if (p_flags & PF_W) 579 prot |= PROT_WRITE; 580 if (p_flags & PF_X) 581 prot |= PROT_EXEC; 582 583 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp); 584 } 585 586 /* This is much more generalized than the library routine read function, 587 so we keep this separate. Technically the library read function 588 is only provided so that we can read a.out libraries that have 589 an ELF header */ 590 591 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 592 struct file *interpreter, 593 unsigned long no_base, struct elf_phdr *interp_elf_phdata, 594 struct arch_elf_state *arch_state) 595 { 596 struct elf_phdr *eppnt; 597 unsigned long load_addr = 0; 598 int load_addr_set = 0; 599 unsigned long last_bss = 0, elf_bss = 0; 600 int bss_prot = 0; 601 unsigned long error = ~0UL; 602 unsigned long total_size; 603 int i; 604 605 /* First of all, some simple consistency checks */ 606 if (interp_elf_ex->e_type != ET_EXEC && 607 interp_elf_ex->e_type != ET_DYN) 608 goto out; 609 if (!elf_check_arch(interp_elf_ex) || 610 elf_check_fdpic(interp_elf_ex)) 611 goto out; 612 if (!interpreter->f_op->mmap) 613 goto out; 614 615 total_size = total_mapping_size(interp_elf_phdata, 616 interp_elf_ex->e_phnum); 617 if (!total_size) { 618 error = -EINVAL; 619 goto out; 620 } 621 622 eppnt = interp_elf_phdata; 623 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 624 if (eppnt->p_type == PT_LOAD) { 625 int elf_type = MAP_PRIVATE | MAP_DENYWRITE; 626 int elf_prot = make_prot(eppnt->p_flags, arch_state, 627 true, true); 628 unsigned long vaddr = 0; 629 unsigned long k, map_addr; 630 631 vaddr = eppnt->p_vaddr; 632 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 633 elf_type |= MAP_FIXED_NOREPLACE; 634 else if (no_base && interp_elf_ex->e_type == ET_DYN) 635 load_addr = -vaddr; 636 637 map_addr = elf_map(interpreter, load_addr + vaddr, 638 eppnt, elf_prot, elf_type, total_size); 639 total_size = 0; 640 error = map_addr; 641 if (BAD_ADDR(map_addr)) 642 goto out; 643 644 if (!load_addr_set && 645 interp_elf_ex->e_type == ET_DYN) { 646 load_addr = map_addr - ELF_PAGESTART(vaddr); 647 load_addr_set = 1; 648 } 649 650 /* 651 * Check to see if the section's size will overflow the 652 * allowed task size. Note that p_filesz must always be 653 * <= p_memsize so it's only necessary to check p_memsz. 654 */ 655 k = load_addr + eppnt->p_vaddr; 656 if (BAD_ADDR(k) || 657 eppnt->p_filesz > eppnt->p_memsz || 658 eppnt->p_memsz > TASK_SIZE || 659 TASK_SIZE - eppnt->p_memsz < k) { 660 error = -ENOMEM; 661 goto out; 662 } 663 664 /* 665 * Find the end of the file mapping for this phdr, and 666 * keep track of the largest address we see for this. 667 */ 668 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; 669 if (k > elf_bss) 670 elf_bss = k; 671 672 /* 673 * Do the same thing for the memory mapping - between 674 * elf_bss and last_bss is the bss section. 675 */ 676 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz; 677 if (k > last_bss) { 678 last_bss = k; 679 bss_prot = elf_prot; 680 } 681 } 682 } 683 684 /* 685 * Now fill out the bss section: first pad the last page from 686 * the file up to the page boundary, and zero it from elf_bss 687 * up to the end of the page. 688 */ 689 if (padzero(elf_bss)) { 690 error = -EFAULT; 691 goto out; 692 } 693 /* 694 * Next, align both the file and mem bss up to the page size, 695 * since this is where elf_bss was just zeroed up to, and where 696 * last_bss will end after the vm_brk_flags() below. 697 */ 698 elf_bss = ELF_PAGEALIGN(elf_bss); 699 last_bss = ELF_PAGEALIGN(last_bss); 700 /* Finally, if there is still more bss to allocate, do it. */ 701 if (last_bss > elf_bss) { 702 error = vm_brk_flags(elf_bss, last_bss - elf_bss, 703 bss_prot & PROT_EXEC ? VM_EXEC : 0); 704 if (error) 705 goto out; 706 } 707 708 error = load_addr; 709 out: 710 return error; 711 } 712 713 /* 714 * These are the functions used to load ELF style executables and shared 715 * libraries. There is no binary dependent code anywhere else. 716 */ 717 718 static int parse_elf_property(const char *data, size_t *off, size_t datasz, 719 struct arch_elf_state *arch, 720 bool have_prev_type, u32 *prev_type) 721 { 722 size_t o, step; 723 const struct gnu_property *pr; 724 int ret; 725 726 if (*off == datasz) 727 return -ENOENT; 728 729 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN)) 730 return -EIO; 731 o = *off; 732 datasz -= *off; 733 734 if (datasz < sizeof(*pr)) 735 return -ENOEXEC; 736 pr = (const struct gnu_property *)(data + o); 737 o += sizeof(*pr); 738 datasz -= sizeof(*pr); 739 740 if (pr->pr_datasz > datasz) 741 return -ENOEXEC; 742 743 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN); 744 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN); 745 if (step > datasz) 746 return -ENOEXEC; 747 748 /* Properties are supposed to be unique and sorted on pr_type: */ 749 if (have_prev_type && pr->pr_type <= *prev_type) 750 return -ENOEXEC; 751 *prev_type = pr->pr_type; 752 753 ret = arch_parse_elf_property(pr->pr_type, data + o, 754 pr->pr_datasz, ELF_COMPAT, arch); 755 if (ret) 756 return ret; 757 758 *off = o + step; 759 return 0; 760 } 761 762 #define NOTE_DATA_SZ SZ_1K 763 #define GNU_PROPERTY_TYPE_0_NAME "GNU" 764 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME)) 765 766 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr, 767 struct arch_elf_state *arch) 768 { 769 union { 770 struct elf_note nhdr; 771 char data[NOTE_DATA_SZ]; 772 } note; 773 loff_t pos; 774 ssize_t n; 775 size_t off, datasz; 776 int ret; 777 bool have_prev_type; 778 u32 prev_type; 779 780 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr) 781 return 0; 782 783 /* load_elf_binary() shouldn't call us unless this is true... */ 784 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY)) 785 return -ENOEXEC; 786 787 /* If the properties are crazy large, that's too bad (for now): */ 788 if (phdr->p_filesz > sizeof(note)) 789 return -ENOEXEC; 790 791 pos = phdr->p_offset; 792 n = kernel_read(f, ¬e, phdr->p_filesz, &pos); 793 794 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ); 795 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ) 796 return -EIO; 797 798 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 799 note.nhdr.n_namesz != NOTE_NAME_SZ || 800 strncmp(note.data + sizeof(note.nhdr), 801 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr))) 802 return -ENOEXEC; 803 804 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ, 805 ELF_GNU_PROPERTY_ALIGN); 806 if (off > n) 807 return -ENOEXEC; 808 809 if (note.nhdr.n_descsz > n - off) 810 return -ENOEXEC; 811 datasz = off + note.nhdr.n_descsz; 812 813 have_prev_type = false; 814 do { 815 ret = parse_elf_property(note.data, &off, datasz, arch, 816 have_prev_type, &prev_type); 817 have_prev_type = true; 818 } while (!ret); 819 820 return ret == -ENOENT ? 0 : ret; 821 } 822 823 static int load_elf_binary(struct linux_binprm *bprm) 824 { 825 struct file *interpreter = NULL; /* to shut gcc up */ 826 unsigned long load_addr = 0, load_bias = 0; 827 int load_addr_set = 0; 828 unsigned long error; 829 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL; 830 struct elf_phdr *elf_property_phdata = NULL; 831 unsigned long elf_bss, elf_brk; 832 int bss_prot = 0; 833 int retval, i; 834 unsigned long elf_entry; 835 unsigned long e_entry; 836 unsigned long interp_load_addr = 0; 837 unsigned long start_code, end_code, start_data, end_data; 838 unsigned long reloc_func_desc __maybe_unused = 0; 839 int executable_stack = EXSTACK_DEFAULT; 840 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf; 841 struct elfhdr *interp_elf_ex = NULL; 842 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE; 843 struct mm_struct *mm; 844 struct pt_regs *regs; 845 846 retval = -ENOEXEC; 847 /* First of all, some simple consistency checks */ 848 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 849 goto out; 850 851 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN) 852 goto out; 853 if (!elf_check_arch(elf_ex)) 854 goto out; 855 if (elf_check_fdpic(elf_ex)) 856 goto out; 857 if (!bprm->file->f_op->mmap) 858 goto out; 859 860 elf_phdata = load_elf_phdrs(elf_ex, bprm->file); 861 if (!elf_phdata) 862 goto out; 863 864 elf_ppnt = elf_phdata; 865 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) { 866 char *elf_interpreter; 867 868 if (elf_ppnt->p_type == PT_GNU_PROPERTY) { 869 elf_property_phdata = elf_ppnt; 870 continue; 871 } 872 873 if (elf_ppnt->p_type != PT_INTERP) 874 continue; 875 876 /* 877 * This is the program interpreter used for shared libraries - 878 * for now assume that this is an a.out format binary. 879 */ 880 retval = -ENOEXEC; 881 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2) 882 goto out_free_ph; 883 884 retval = -ENOMEM; 885 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL); 886 if (!elf_interpreter) 887 goto out_free_ph; 888 889 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz, 890 elf_ppnt->p_offset); 891 if (retval < 0) 892 goto out_free_interp; 893 /* make sure path is NULL terminated */ 894 retval = -ENOEXEC; 895 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 896 goto out_free_interp; 897 898 interpreter = open_exec(elf_interpreter); 899 kfree(elf_interpreter); 900 retval = PTR_ERR(interpreter); 901 if (IS_ERR(interpreter)) 902 goto out_free_ph; 903 904 /* 905 * If the binary is not readable then enforce mm->dumpable = 0 906 * regardless of the interpreter's permissions. 907 */ 908 would_dump(bprm, interpreter); 909 910 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL); 911 if (!interp_elf_ex) { 912 retval = -ENOMEM; 913 goto out_free_ph; 914 } 915 916 /* Get the exec headers */ 917 retval = elf_read(interpreter, interp_elf_ex, 918 sizeof(*interp_elf_ex), 0); 919 if (retval < 0) 920 goto out_free_dentry; 921 922 break; 923 924 out_free_interp: 925 kfree(elf_interpreter); 926 goto out_free_ph; 927 } 928 929 elf_ppnt = elf_phdata; 930 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) 931 switch (elf_ppnt->p_type) { 932 case PT_GNU_STACK: 933 if (elf_ppnt->p_flags & PF_X) 934 executable_stack = EXSTACK_ENABLE_X; 935 else 936 executable_stack = EXSTACK_DISABLE_X; 937 break; 938 939 case PT_LOPROC ... PT_HIPROC: 940 retval = arch_elf_pt_proc(elf_ex, elf_ppnt, 941 bprm->file, false, 942 &arch_state); 943 if (retval) 944 goto out_free_dentry; 945 break; 946 } 947 948 /* Some simple consistency checks for the interpreter */ 949 if (interpreter) { 950 retval = -ELIBBAD; 951 /* Not an ELF interpreter */ 952 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 953 goto out_free_dentry; 954 /* Verify the interpreter has a valid arch */ 955 if (!elf_check_arch(interp_elf_ex) || 956 elf_check_fdpic(interp_elf_ex)) 957 goto out_free_dentry; 958 959 /* Load the interpreter program headers */ 960 interp_elf_phdata = load_elf_phdrs(interp_elf_ex, 961 interpreter); 962 if (!interp_elf_phdata) 963 goto out_free_dentry; 964 965 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */ 966 elf_property_phdata = NULL; 967 elf_ppnt = interp_elf_phdata; 968 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++) 969 switch (elf_ppnt->p_type) { 970 case PT_GNU_PROPERTY: 971 elf_property_phdata = elf_ppnt; 972 break; 973 974 case PT_LOPROC ... PT_HIPROC: 975 retval = arch_elf_pt_proc(interp_elf_ex, 976 elf_ppnt, interpreter, 977 true, &arch_state); 978 if (retval) 979 goto out_free_dentry; 980 break; 981 } 982 } 983 984 retval = parse_elf_properties(interpreter ?: bprm->file, 985 elf_property_phdata, &arch_state); 986 if (retval) 987 goto out_free_dentry; 988 989 /* 990 * Allow arch code to reject the ELF at this point, whilst it's 991 * still possible to return an error to the code that invoked 992 * the exec syscall. 993 */ 994 retval = arch_check_elf(elf_ex, 995 !!interpreter, interp_elf_ex, 996 &arch_state); 997 if (retval) 998 goto out_free_dentry; 999 1000 /* Flush all traces of the currently running executable */ 1001 retval = begin_new_exec(bprm); 1002 if (retval) 1003 goto out_free_dentry; 1004 1005 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 1006 may depend on the personality. */ 1007 SET_PERSONALITY2(*elf_ex, &arch_state); 1008 if (elf_read_implies_exec(*elf_ex, executable_stack)) 1009 current->personality |= READ_IMPLIES_EXEC; 1010 1011 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1012 current->flags |= PF_RANDOMIZE; 1013 1014 setup_new_exec(bprm); 1015 1016 /* Do this so that we can load the interpreter, if need be. We will 1017 change some of these later */ 1018 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 1019 executable_stack); 1020 if (retval < 0) 1021 goto out_free_dentry; 1022 1023 elf_bss = 0; 1024 elf_brk = 0; 1025 1026 start_code = ~0UL; 1027 end_code = 0; 1028 start_data = 0; 1029 end_data = 0; 1030 1031 /* Now we do a little grungy work by mmapping the ELF image into 1032 the correct location in memory. */ 1033 for(i = 0, elf_ppnt = elf_phdata; 1034 i < elf_ex->e_phnum; i++, elf_ppnt++) { 1035 int elf_prot, elf_flags; 1036 unsigned long k, vaddr; 1037 unsigned long total_size = 0; 1038 unsigned long alignment; 1039 1040 if (elf_ppnt->p_type != PT_LOAD) 1041 continue; 1042 1043 if (unlikely (elf_brk > elf_bss)) { 1044 unsigned long nbyte; 1045 1046 /* There was a PT_LOAD segment with p_memsz > p_filesz 1047 before this one. Map anonymous pages, if needed, 1048 and clear the area. */ 1049 retval = set_brk(elf_bss + load_bias, 1050 elf_brk + load_bias, 1051 bss_prot); 1052 if (retval) 1053 goto out_free_dentry; 1054 nbyte = ELF_PAGEOFFSET(elf_bss); 1055 if (nbyte) { 1056 nbyte = ELF_MIN_ALIGN - nbyte; 1057 if (nbyte > elf_brk - elf_bss) 1058 nbyte = elf_brk - elf_bss; 1059 if (clear_user((void __user *)elf_bss + 1060 load_bias, nbyte)) { 1061 /* 1062 * This bss-zeroing can fail if the ELF 1063 * file specifies odd protections. So 1064 * we don't check the return value 1065 */ 1066 } 1067 } 1068 } 1069 1070 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state, 1071 !!interpreter, false); 1072 1073 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE; 1074 1075 vaddr = elf_ppnt->p_vaddr; 1076 /* 1077 * If we are loading ET_EXEC or we have already performed 1078 * the ET_DYN load_addr calculations, proceed normally. 1079 */ 1080 if (elf_ex->e_type == ET_EXEC || load_addr_set) { 1081 elf_flags |= MAP_FIXED; 1082 } else if (elf_ex->e_type == ET_DYN) { 1083 /* 1084 * This logic is run once for the first LOAD Program 1085 * Header for ET_DYN binaries to calculate the 1086 * randomization (load_bias) for all the LOAD 1087 * Program Headers, and to calculate the entire 1088 * size of the ELF mapping (total_size). (Note that 1089 * load_addr_set is set to true later once the 1090 * initial mapping is performed.) 1091 * 1092 * There are effectively two types of ET_DYN 1093 * binaries: programs (i.e. PIE: ET_DYN with INTERP) 1094 * and loaders (ET_DYN without INTERP, since they 1095 * _are_ the ELF interpreter). The loaders must 1096 * be loaded away from programs since the program 1097 * may otherwise collide with the loader (especially 1098 * for ET_EXEC which does not have a randomized 1099 * position). For example to handle invocations of 1100 * "./ld.so someprog" to test out a new version of 1101 * the loader, the subsequent program that the 1102 * loader loads must avoid the loader itself, so 1103 * they cannot share the same load range. Sufficient 1104 * room for the brk must be allocated with the 1105 * loader as well, since brk must be available with 1106 * the loader. 1107 * 1108 * Therefore, programs are loaded offset from 1109 * ELF_ET_DYN_BASE and loaders are loaded into the 1110 * independently randomized mmap region (0 load_bias 1111 * without MAP_FIXED). 1112 */ 1113 if (interpreter) { 1114 load_bias = ELF_ET_DYN_BASE; 1115 if (current->flags & PF_RANDOMIZE) 1116 load_bias += arch_mmap_rnd(); 1117 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum); 1118 if (alignment) 1119 load_bias &= ~(alignment - 1); 1120 elf_flags |= MAP_FIXED; 1121 } else 1122 load_bias = 0; 1123 1124 /* 1125 * Since load_bias is used for all subsequent loading 1126 * calculations, we must lower it by the first vaddr 1127 * so that the remaining calculations based on the 1128 * ELF vaddrs will be correctly offset. The result 1129 * is then page aligned. 1130 */ 1131 load_bias = ELF_PAGESTART(load_bias - vaddr); 1132 1133 total_size = total_mapping_size(elf_phdata, 1134 elf_ex->e_phnum); 1135 if (!total_size) { 1136 retval = -EINVAL; 1137 goto out_free_dentry; 1138 } 1139 } 1140 1141 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, 1142 elf_prot, elf_flags, total_size); 1143 if (BAD_ADDR(error)) { 1144 retval = IS_ERR((void *)error) ? 1145 PTR_ERR((void*)error) : -EINVAL; 1146 goto out_free_dentry; 1147 } 1148 1149 if (!load_addr_set) { 1150 load_addr_set = 1; 1151 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); 1152 if (elf_ex->e_type == ET_DYN) { 1153 load_bias += error - 1154 ELF_PAGESTART(load_bias + vaddr); 1155 load_addr += load_bias; 1156 reloc_func_desc = load_bias; 1157 } 1158 } 1159 k = elf_ppnt->p_vaddr; 1160 if ((elf_ppnt->p_flags & PF_X) && k < start_code) 1161 start_code = k; 1162 if (start_data < k) 1163 start_data = k; 1164 1165 /* 1166 * Check to see if the section's size will overflow the 1167 * allowed task size. Note that p_filesz must always be 1168 * <= p_memsz so it is only necessary to check p_memsz. 1169 */ 1170 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 1171 elf_ppnt->p_memsz > TASK_SIZE || 1172 TASK_SIZE - elf_ppnt->p_memsz < k) { 1173 /* set_brk can never work. Avoid overflows. */ 1174 retval = -EINVAL; 1175 goto out_free_dentry; 1176 } 1177 1178 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 1179 1180 if (k > elf_bss) 1181 elf_bss = k; 1182 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 1183 end_code = k; 1184 if (end_data < k) 1185 end_data = k; 1186 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 1187 if (k > elf_brk) { 1188 bss_prot = elf_prot; 1189 elf_brk = k; 1190 } 1191 } 1192 1193 e_entry = elf_ex->e_entry + load_bias; 1194 elf_bss += load_bias; 1195 elf_brk += load_bias; 1196 start_code += load_bias; 1197 end_code += load_bias; 1198 start_data += load_bias; 1199 end_data += load_bias; 1200 1201 /* Calling set_brk effectively mmaps the pages that we need 1202 * for the bss and break sections. We must do this before 1203 * mapping in the interpreter, to make sure it doesn't wind 1204 * up getting placed where the bss needs to go. 1205 */ 1206 retval = set_brk(elf_bss, elf_brk, bss_prot); 1207 if (retval) 1208 goto out_free_dentry; 1209 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { 1210 retval = -EFAULT; /* Nobody gets to see this, but.. */ 1211 goto out_free_dentry; 1212 } 1213 1214 if (interpreter) { 1215 elf_entry = load_elf_interp(interp_elf_ex, 1216 interpreter, 1217 load_bias, interp_elf_phdata, 1218 &arch_state); 1219 if (!IS_ERR((void *)elf_entry)) { 1220 /* 1221 * load_elf_interp() returns relocation 1222 * adjustment 1223 */ 1224 interp_load_addr = elf_entry; 1225 elf_entry += interp_elf_ex->e_entry; 1226 } 1227 if (BAD_ADDR(elf_entry)) { 1228 retval = IS_ERR((void *)elf_entry) ? 1229 (int)elf_entry : -EINVAL; 1230 goto out_free_dentry; 1231 } 1232 reloc_func_desc = interp_load_addr; 1233 1234 allow_write_access(interpreter); 1235 fput(interpreter); 1236 1237 kfree(interp_elf_ex); 1238 kfree(interp_elf_phdata); 1239 } else { 1240 elf_entry = e_entry; 1241 if (BAD_ADDR(elf_entry)) { 1242 retval = -EINVAL; 1243 goto out_free_dentry; 1244 } 1245 } 1246 1247 kfree(elf_phdata); 1248 1249 set_binfmt(&elf_format); 1250 1251 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 1252 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter); 1253 if (retval < 0) 1254 goto out; 1255 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 1256 1257 retval = create_elf_tables(bprm, elf_ex, 1258 load_addr, interp_load_addr, e_entry); 1259 if (retval < 0) 1260 goto out; 1261 1262 mm = current->mm; 1263 mm->end_code = end_code; 1264 mm->start_code = start_code; 1265 mm->start_data = start_data; 1266 mm->end_data = end_data; 1267 mm->start_stack = bprm->p; 1268 1269 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { 1270 /* 1271 * For architectures with ELF randomization, when executing 1272 * a loader directly (i.e. no interpreter listed in ELF 1273 * headers), move the brk area out of the mmap region 1274 * (since it grows up, and may collide early with the stack 1275 * growing down), and into the unused ELF_ET_DYN_BASE region. 1276 */ 1277 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && 1278 elf_ex->e_type == ET_DYN && !interpreter) { 1279 mm->brk = mm->start_brk = ELF_ET_DYN_BASE; 1280 } 1281 1282 mm->brk = mm->start_brk = arch_randomize_brk(mm); 1283 #ifdef compat_brk_randomized 1284 current->brk_randomized = 1; 1285 #endif 1286 } 1287 1288 if (current->personality & MMAP_PAGE_ZERO) { 1289 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 1290 and some applications "depend" upon this behavior. 1291 Since we do not have the power to recompile these, we 1292 emulate the SVr4 behavior. Sigh. */ 1293 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 1294 MAP_FIXED | MAP_PRIVATE, 0); 1295 } 1296 1297 regs = current_pt_regs(); 1298 #ifdef ELF_PLAT_INIT 1299 /* 1300 * The ABI may specify that certain registers be set up in special 1301 * ways (on i386 %edx is the address of a DT_FINI function, for 1302 * example. In addition, it may also specify (eg, PowerPC64 ELF) 1303 * that the e_entry field is the address of the function descriptor 1304 * for the startup routine, rather than the address of the startup 1305 * routine itself. This macro performs whatever initialization to 1306 * the regs structure is required as well as any relocations to the 1307 * function descriptor entries when executing dynamically links apps. 1308 */ 1309 ELF_PLAT_INIT(regs, reloc_func_desc); 1310 #endif 1311 1312 finalize_exec(bprm); 1313 START_THREAD(elf_ex, regs, elf_entry, bprm->p); 1314 retval = 0; 1315 out: 1316 return retval; 1317 1318 /* error cleanup */ 1319 out_free_dentry: 1320 kfree(interp_elf_ex); 1321 kfree(interp_elf_phdata); 1322 allow_write_access(interpreter); 1323 if (interpreter) 1324 fput(interpreter); 1325 out_free_ph: 1326 kfree(elf_phdata); 1327 goto out; 1328 } 1329 1330 #ifdef CONFIG_USELIB 1331 /* This is really simpleminded and specialized - we are loading an 1332 a.out library that is given an ELF header. */ 1333 static int load_elf_library(struct file *file) 1334 { 1335 struct elf_phdr *elf_phdata; 1336 struct elf_phdr *eppnt; 1337 unsigned long elf_bss, bss, len; 1338 int retval, error, i, j; 1339 struct elfhdr elf_ex; 1340 1341 error = -ENOEXEC; 1342 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0); 1343 if (retval < 0) 1344 goto out; 1345 1346 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1347 goto out; 1348 1349 /* First of all, some simple consistency checks */ 1350 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1351 !elf_check_arch(&elf_ex) || !file->f_op->mmap) 1352 goto out; 1353 if (elf_check_fdpic(&elf_ex)) 1354 goto out; 1355 1356 /* Now read in all of the header information */ 1357 1358 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1359 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1360 1361 error = -ENOMEM; 1362 elf_phdata = kmalloc(j, GFP_KERNEL); 1363 if (!elf_phdata) 1364 goto out; 1365 1366 eppnt = elf_phdata; 1367 error = -ENOEXEC; 1368 retval = elf_read(file, eppnt, j, elf_ex.e_phoff); 1369 if (retval < 0) 1370 goto out_free_ph; 1371 1372 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1373 if ((eppnt + i)->p_type == PT_LOAD) 1374 j++; 1375 if (j != 1) 1376 goto out_free_ph; 1377 1378 while (eppnt->p_type != PT_LOAD) 1379 eppnt++; 1380 1381 /* Now use mmap to map the library into memory. */ 1382 error = vm_mmap(file, 1383 ELF_PAGESTART(eppnt->p_vaddr), 1384 (eppnt->p_filesz + 1385 ELF_PAGEOFFSET(eppnt->p_vaddr)), 1386 PROT_READ | PROT_WRITE | PROT_EXEC, 1387 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE, 1388 (eppnt->p_offset - 1389 ELF_PAGEOFFSET(eppnt->p_vaddr))); 1390 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1391 goto out_free_ph; 1392 1393 elf_bss = eppnt->p_vaddr + eppnt->p_filesz; 1394 if (padzero(elf_bss)) { 1395 error = -EFAULT; 1396 goto out_free_ph; 1397 } 1398 1399 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr); 1400 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr); 1401 if (bss > len) { 1402 error = vm_brk(len, bss - len); 1403 if (error) 1404 goto out_free_ph; 1405 } 1406 error = 0; 1407 1408 out_free_ph: 1409 kfree(elf_phdata); 1410 out: 1411 return error; 1412 } 1413 #endif /* #ifdef CONFIG_USELIB */ 1414 1415 #ifdef CONFIG_ELF_CORE 1416 /* 1417 * ELF core dumper 1418 * 1419 * Modelled on fs/exec.c:aout_core_dump() 1420 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1421 */ 1422 1423 /* An ELF note in memory */ 1424 struct memelfnote 1425 { 1426 const char *name; 1427 int type; 1428 unsigned int datasz; 1429 void *data; 1430 }; 1431 1432 static int notesize(struct memelfnote *en) 1433 { 1434 int sz; 1435 1436 sz = sizeof(struct elf_note); 1437 sz += roundup(strlen(en->name) + 1, 4); 1438 sz += roundup(en->datasz, 4); 1439 1440 return sz; 1441 } 1442 1443 static int writenote(struct memelfnote *men, struct coredump_params *cprm) 1444 { 1445 struct elf_note en; 1446 en.n_namesz = strlen(men->name) + 1; 1447 en.n_descsz = men->datasz; 1448 en.n_type = men->type; 1449 1450 return dump_emit(cprm, &en, sizeof(en)) && 1451 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) && 1452 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4); 1453 } 1454 1455 static void fill_elf_header(struct elfhdr *elf, int segs, 1456 u16 machine, u32 flags) 1457 { 1458 memset(elf, 0, sizeof(*elf)); 1459 1460 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1461 elf->e_ident[EI_CLASS] = ELF_CLASS; 1462 elf->e_ident[EI_DATA] = ELF_DATA; 1463 elf->e_ident[EI_VERSION] = EV_CURRENT; 1464 elf->e_ident[EI_OSABI] = ELF_OSABI; 1465 1466 elf->e_type = ET_CORE; 1467 elf->e_machine = machine; 1468 elf->e_version = EV_CURRENT; 1469 elf->e_phoff = sizeof(struct elfhdr); 1470 elf->e_flags = flags; 1471 elf->e_ehsize = sizeof(struct elfhdr); 1472 elf->e_phentsize = sizeof(struct elf_phdr); 1473 elf->e_phnum = segs; 1474 } 1475 1476 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1477 { 1478 phdr->p_type = PT_NOTE; 1479 phdr->p_offset = offset; 1480 phdr->p_vaddr = 0; 1481 phdr->p_paddr = 0; 1482 phdr->p_filesz = sz; 1483 phdr->p_memsz = 0; 1484 phdr->p_flags = 0; 1485 phdr->p_align = 0; 1486 } 1487 1488 static void fill_note(struct memelfnote *note, const char *name, int type, 1489 unsigned int sz, void *data) 1490 { 1491 note->name = name; 1492 note->type = type; 1493 note->datasz = sz; 1494 note->data = data; 1495 } 1496 1497 /* 1498 * fill up all the fields in prstatus from the given task struct, except 1499 * registers which need to be filled up separately. 1500 */ 1501 static void fill_prstatus(struct elf_prstatus_common *prstatus, 1502 struct task_struct *p, long signr) 1503 { 1504 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1505 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1506 prstatus->pr_sighold = p->blocked.sig[0]; 1507 rcu_read_lock(); 1508 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1509 rcu_read_unlock(); 1510 prstatus->pr_pid = task_pid_vnr(p); 1511 prstatus->pr_pgrp = task_pgrp_vnr(p); 1512 prstatus->pr_sid = task_session_vnr(p); 1513 if (thread_group_leader(p)) { 1514 struct task_cputime cputime; 1515 1516 /* 1517 * This is the record for the group leader. It shows the 1518 * group-wide total, not its individual thread total. 1519 */ 1520 thread_group_cputime(p, &cputime); 1521 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime); 1522 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime); 1523 } else { 1524 u64 utime, stime; 1525 1526 task_cputime(p, &utime, &stime); 1527 prstatus->pr_utime = ns_to_kernel_old_timeval(utime); 1528 prstatus->pr_stime = ns_to_kernel_old_timeval(stime); 1529 } 1530 1531 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime); 1532 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime); 1533 } 1534 1535 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1536 struct mm_struct *mm) 1537 { 1538 const struct cred *cred; 1539 unsigned int i, len; 1540 1541 /* first copy the parameters from user space */ 1542 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1543 1544 len = mm->arg_end - mm->arg_start; 1545 if (len >= ELF_PRARGSZ) 1546 len = ELF_PRARGSZ-1; 1547 if (copy_from_user(&psinfo->pr_psargs, 1548 (const char __user *)mm->arg_start, len)) 1549 return -EFAULT; 1550 for(i = 0; i < len; i++) 1551 if (psinfo->pr_psargs[i] == 0) 1552 psinfo->pr_psargs[i] = ' '; 1553 psinfo->pr_psargs[len] = 0; 1554 1555 rcu_read_lock(); 1556 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1557 rcu_read_unlock(); 1558 psinfo->pr_pid = task_pid_vnr(p); 1559 psinfo->pr_pgrp = task_pgrp_vnr(p); 1560 psinfo->pr_sid = task_session_vnr(p); 1561 1562 i = p->state ? ffz(~p->state) + 1 : 0; 1563 psinfo->pr_state = i; 1564 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1565 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1566 psinfo->pr_nice = task_nice(p); 1567 psinfo->pr_flag = p->flags; 1568 rcu_read_lock(); 1569 cred = __task_cred(p); 1570 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid)); 1571 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid)); 1572 rcu_read_unlock(); 1573 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); 1574 1575 return 0; 1576 } 1577 1578 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1579 { 1580 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1581 int i = 0; 1582 do 1583 i += 2; 1584 while (auxv[i - 2] != AT_NULL); 1585 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1586 } 1587 1588 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata, 1589 const kernel_siginfo_t *siginfo) 1590 { 1591 copy_siginfo_to_external(csigdata, siginfo); 1592 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata); 1593 } 1594 1595 #define MAX_FILE_NOTE_SIZE (4*1024*1024) 1596 /* 1597 * Format of NT_FILE note: 1598 * 1599 * long count -- how many files are mapped 1600 * long page_size -- units for file_ofs 1601 * array of [COUNT] elements of 1602 * long start 1603 * long end 1604 * long file_ofs 1605 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... 1606 */ 1607 static int fill_files_note(struct memelfnote *note) 1608 { 1609 struct mm_struct *mm = current->mm; 1610 struct vm_area_struct *vma; 1611 unsigned count, size, names_ofs, remaining, n; 1612 user_long_t *data; 1613 user_long_t *start_end_ofs; 1614 char *name_base, *name_curpos; 1615 1616 /* *Estimated* file count and total data size needed */ 1617 count = mm->map_count; 1618 if (count > UINT_MAX / 64) 1619 return -EINVAL; 1620 size = count * 64; 1621 1622 names_ofs = (2 + 3 * count) * sizeof(data[0]); 1623 alloc: 1624 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */ 1625 return -EINVAL; 1626 size = round_up(size, PAGE_SIZE); 1627 /* 1628 * "size" can be 0 here legitimately. 1629 * Let it ENOMEM and omit NT_FILE section which will be empty anyway. 1630 */ 1631 data = kvmalloc(size, GFP_KERNEL); 1632 if (ZERO_OR_NULL_PTR(data)) 1633 return -ENOMEM; 1634 1635 start_end_ofs = data + 2; 1636 name_base = name_curpos = ((char *)data) + names_ofs; 1637 remaining = size - names_ofs; 1638 count = 0; 1639 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) { 1640 struct file *file; 1641 const char *filename; 1642 1643 file = vma->vm_file; 1644 if (!file) 1645 continue; 1646 filename = file_path(file, name_curpos, remaining); 1647 if (IS_ERR(filename)) { 1648 if (PTR_ERR(filename) == -ENAMETOOLONG) { 1649 kvfree(data); 1650 size = size * 5 / 4; 1651 goto alloc; 1652 } 1653 continue; 1654 } 1655 1656 /* file_path() fills at the end, move name down */ 1657 /* n = strlen(filename) + 1: */ 1658 n = (name_curpos + remaining) - filename; 1659 remaining = filename - name_curpos; 1660 memmove(name_curpos, filename, n); 1661 name_curpos += n; 1662 1663 *start_end_ofs++ = vma->vm_start; 1664 *start_end_ofs++ = vma->vm_end; 1665 *start_end_ofs++ = vma->vm_pgoff; 1666 count++; 1667 } 1668 1669 /* Now we know exact count of files, can store it */ 1670 data[0] = count; 1671 data[1] = PAGE_SIZE; 1672 /* 1673 * Count usually is less than mm->map_count, 1674 * we need to move filenames down. 1675 */ 1676 n = mm->map_count - count; 1677 if (n != 0) { 1678 unsigned shift_bytes = n * 3 * sizeof(data[0]); 1679 memmove(name_base - shift_bytes, name_base, 1680 name_curpos - name_base); 1681 name_curpos -= shift_bytes; 1682 } 1683 1684 size = name_curpos - (char *)data; 1685 fill_note(note, "CORE", NT_FILE, size, data); 1686 return 0; 1687 } 1688 1689 #ifdef CORE_DUMP_USE_REGSET 1690 #include <linux/regset.h> 1691 1692 struct elf_thread_core_info { 1693 struct elf_thread_core_info *next; 1694 struct task_struct *task; 1695 struct elf_prstatus prstatus; 1696 struct memelfnote notes[]; 1697 }; 1698 1699 struct elf_note_info { 1700 struct elf_thread_core_info *thread; 1701 struct memelfnote psinfo; 1702 struct memelfnote signote; 1703 struct memelfnote auxv; 1704 struct memelfnote files; 1705 user_siginfo_t csigdata; 1706 size_t size; 1707 int thread_notes; 1708 }; 1709 1710 /* 1711 * When a regset has a writeback hook, we call it on each thread before 1712 * dumping user memory. On register window machines, this makes sure the 1713 * user memory backing the register data is up to date before we read it. 1714 */ 1715 static void do_thread_regset_writeback(struct task_struct *task, 1716 const struct user_regset *regset) 1717 { 1718 if (regset->writeback) 1719 regset->writeback(task, regset, 1); 1720 } 1721 1722 #ifndef PRSTATUS_SIZE 1723 #define PRSTATUS_SIZE sizeof(struct elf_prstatus) 1724 #endif 1725 1726 #ifndef SET_PR_FPVALID 1727 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1) 1728 #endif 1729 1730 static int fill_thread_core_info(struct elf_thread_core_info *t, 1731 const struct user_regset_view *view, 1732 long signr, size_t *total) 1733 { 1734 unsigned int i; 1735 1736 /* 1737 * NT_PRSTATUS is the one special case, because the regset data 1738 * goes into the pr_reg field inside the note contents, rather 1739 * than being the whole note contents. We fill the reset in here. 1740 * We assume that regset 0 is NT_PRSTATUS. 1741 */ 1742 fill_prstatus(&t->prstatus.common, t->task, signr); 1743 regset_get(t->task, &view->regsets[0], 1744 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg); 1745 1746 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1747 PRSTATUS_SIZE, &t->prstatus); 1748 *total += notesize(&t->notes[0]); 1749 1750 do_thread_regset_writeback(t->task, &view->regsets[0]); 1751 1752 /* 1753 * Each other regset might generate a note too. For each regset 1754 * that has no core_note_type or is inactive, we leave t->notes[i] 1755 * all zero and we'll know to skip writing it later. 1756 */ 1757 for (i = 1; i < view->n; ++i) { 1758 const struct user_regset *regset = &view->regsets[i]; 1759 int note_type = regset->core_note_type; 1760 bool is_fpreg = note_type == NT_PRFPREG; 1761 void *data; 1762 int ret; 1763 1764 do_thread_regset_writeback(t->task, regset); 1765 if (!note_type) // not for coredumps 1766 continue; 1767 if (regset->active && regset->active(t->task, regset) <= 0) 1768 continue; 1769 1770 ret = regset_get_alloc(t->task, regset, ~0U, &data); 1771 if (ret < 0) 1772 continue; 1773 1774 if (is_fpreg) 1775 SET_PR_FPVALID(&t->prstatus); 1776 1777 fill_note(&t->notes[i], is_fpreg ? "CORE" : "LINUX", 1778 note_type, ret, data); 1779 1780 *total += notesize(&t->notes[i]); 1781 } 1782 1783 return 1; 1784 } 1785 1786 static int fill_note_info(struct elfhdr *elf, int phdrs, 1787 struct elf_note_info *info, 1788 const kernel_siginfo_t *siginfo, struct pt_regs *regs) 1789 { 1790 struct task_struct *dump_task = current; 1791 const struct user_regset_view *view = task_user_regset_view(dump_task); 1792 struct elf_thread_core_info *t; 1793 struct elf_prpsinfo *psinfo; 1794 struct core_thread *ct; 1795 unsigned int i; 1796 1797 info->size = 0; 1798 info->thread = NULL; 1799 1800 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1801 if (psinfo == NULL) { 1802 info->psinfo.data = NULL; /* So we don't free this wrongly */ 1803 return 0; 1804 } 1805 1806 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1807 1808 /* 1809 * Figure out how many notes we're going to need for each thread. 1810 */ 1811 info->thread_notes = 0; 1812 for (i = 0; i < view->n; ++i) 1813 if (view->regsets[i].core_note_type != 0) 1814 ++info->thread_notes; 1815 1816 /* 1817 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1818 * since it is our one special case. 1819 */ 1820 if (unlikely(info->thread_notes == 0) || 1821 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1822 WARN_ON(1); 1823 return 0; 1824 } 1825 1826 /* 1827 * Initialize the ELF file header. 1828 */ 1829 fill_elf_header(elf, phdrs, 1830 view->e_machine, view->e_flags); 1831 1832 /* 1833 * Allocate a structure for each thread. 1834 */ 1835 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) { 1836 t = kzalloc(offsetof(struct elf_thread_core_info, 1837 notes[info->thread_notes]), 1838 GFP_KERNEL); 1839 if (unlikely(!t)) 1840 return 0; 1841 1842 t->task = ct->task; 1843 if (ct->task == dump_task || !info->thread) { 1844 t->next = info->thread; 1845 info->thread = t; 1846 } else { 1847 /* 1848 * Make sure to keep the original task at 1849 * the head of the list. 1850 */ 1851 t->next = info->thread->next; 1852 info->thread->next = t; 1853 } 1854 } 1855 1856 /* 1857 * Now fill in each thread's information. 1858 */ 1859 for (t = info->thread; t != NULL; t = t->next) 1860 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size)) 1861 return 0; 1862 1863 /* 1864 * Fill in the two process-wide notes. 1865 */ 1866 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1867 info->size += notesize(&info->psinfo); 1868 1869 fill_siginfo_note(&info->signote, &info->csigdata, siginfo); 1870 info->size += notesize(&info->signote); 1871 1872 fill_auxv_note(&info->auxv, current->mm); 1873 info->size += notesize(&info->auxv); 1874 1875 if (fill_files_note(&info->files) == 0) 1876 info->size += notesize(&info->files); 1877 1878 return 1; 1879 } 1880 1881 static size_t get_note_info_size(struct elf_note_info *info) 1882 { 1883 return info->size; 1884 } 1885 1886 /* 1887 * Write all the notes for each thread. When writing the first thread, the 1888 * process-wide notes are interleaved after the first thread-specific note. 1889 */ 1890 static int write_note_info(struct elf_note_info *info, 1891 struct coredump_params *cprm) 1892 { 1893 bool first = true; 1894 struct elf_thread_core_info *t = info->thread; 1895 1896 do { 1897 int i; 1898 1899 if (!writenote(&t->notes[0], cprm)) 1900 return 0; 1901 1902 if (first && !writenote(&info->psinfo, cprm)) 1903 return 0; 1904 if (first && !writenote(&info->signote, cprm)) 1905 return 0; 1906 if (first && !writenote(&info->auxv, cprm)) 1907 return 0; 1908 if (first && info->files.data && 1909 !writenote(&info->files, cprm)) 1910 return 0; 1911 1912 for (i = 1; i < info->thread_notes; ++i) 1913 if (t->notes[i].data && 1914 !writenote(&t->notes[i], cprm)) 1915 return 0; 1916 1917 first = false; 1918 t = t->next; 1919 } while (t); 1920 1921 return 1; 1922 } 1923 1924 static void free_note_info(struct elf_note_info *info) 1925 { 1926 struct elf_thread_core_info *threads = info->thread; 1927 while (threads) { 1928 unsigned int i; 1929 struct elf_thread_core_info *t = threads; 1930 threads = t->next; 1931 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1932 for (i = 1; i < info->thread_notes; ++i) 1933 kfree(t->notes[i].data); 1934 kfree(t); 1935 } 1936 kfree(info->psinfo.data); 1937 kvfree(info->files.data); 1938 } 1939 1940 #else 1941 1942 /* Here is the structure in which status of each thread is captured. */ 1943 struct elf_thread_status 1944 { 1945 struct list_head list; 1946 struct elf_prstatus prstatus; /* NT_PRSTATUS */ 1947 elf_fpregset_t fpu; /* NT_PRFPREG */ 1948 struct task_struct *thread; 1949 struct memelfnote notes[3]; 1950 int num_notes; 1951 }; 1952 1953 /* 1954 * In order to add the specific thread information for the elf file format, 1955 * we need to keep a linked list of every threads pr_status and then create 1956 * a single section for them in the final core file. 1957 */ 1958 static int elf_dump_thread_status(long signr, struct elf_thread_status *t) 1959 { 1960 int sz = 0; 1961 struct task_struct *p = t->thread; 1962 t->num_notes = 0; 1963 1964 fill_prstatus(&t->prstatus.common, p, signr); 1965 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 1966 1967 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 1968 &(t->prstatus)); 1969 t->num_notes++; 1970 sz += notesize(&t->notes[0]); 1971 1972 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, 1973 &t->fpu))) { 1974 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), 1975 &(t->fpu)); 1976 t->num_notes++; 1977 sz += notesize(&t->notes[1]); 1978 } 1979 return sz; 1980 } 1981 1982 struct elf_note_info { 1983 struct memelfnote *notes; 1984 struct memelfnote *notes_files; 1985 struct elf_prstatus *prstatus; /* NT_PRSTATUS */ 1986 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 1987 struct list_head thread_list; 1988 elf_fpregset_t *fpu; 1989 user_siginfo_t csigdata; 1990 int thread_status_size; 1991 int numnote; 1992 }; 1993 1994 static int elf_note_info_init(struct elf_note_info *info) 1995 { 1996 memset(info, 0, sizeof(*info)); 1997 INIT_LIST_HEAD(&info->thread_list); 1998 1999 /* Allocate space for ELF notes */ 2000 info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL); 2001 if (!info->notes) 2002 return 0; 2003 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); 2004 if (!info->psinfo) 2005 return 0; 2006 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); 2007 if (!info->prstatus) 2008 return 0; 2009 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); 2010 if (!info->fpu) 2011 return 0; 2012 return 1; 2013 } 2014 2015 static int fill_note_info(struct elfhdr *elf, int phdrs, 2016 struct elf_note_info *info, 2017 const kernel_siginfo_t *siginfo, struct pt_regs *regs) 2018 { 2019 struct core_thread *ct; 2020 struct elf_thread_status *ets; 2021 2022 if (!elf_note_info_init(info)) 2023 return 0; 2024 2025 for (ct = current->mm->core_state->dumper.next; 2026 ct; ct = ct->next) { 2027 ets = kzalloc(sizeof(*ets), GFP_KERNEL); 2028 if (!ets) 2029 return 0; 2030 2031 ets->thread = ct->task; 2032 list_add(&ets->list, &info->thread_list); 2033 } 2034 2035 list_for_each_entry(ets, &info->thread_list, list) { 2036 int sz; 2037 2038 sz = elf_dump_thread_status(siginfo->si_signo, ets); 2039 info->thread_status_size += sz; 2040 } 2041 /* now collect the dump for the current */ 2042 memset(info->prstatus, 0, sizeof(*info->prstatus)); 2043 fill_prstatus(&info->prstatus->common, current, siginfo->si_signo); 2044 elf_core_copy_regs(&info->prstatus->pr_reg, regs); 2045 2046 /* Set up header */ 2047 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS); 2048 2049 /* 2050 * Set up the notes in similar form to SVR4 core dumps made 2051 * with info from their /proc. 2052 */ 2053 2054 fill_note(info->notes + 0, "CORE", NT_PRSTATUS, 2055 sizeof(*info->prstatus), info->prstatus); 2056 fill_psinfo(info->psinfo, current->group_leader, current->mm); 2057 fill_note(info->notes + 1, "CORE", NT_PRPSINFO, 2058 sizeof(*info->psinfo), info->psinfo); 2059 2060 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo); 2061 fill_auxv_note(info->notes + 3, current->mm); 2062 info->numnote = 4; 2063 2064 if (fill_files_note(info->notes + info->numnote) == 0) { 2065 info->notes_files = info->notes + info->numnote; 2066 info->numnote++; 2067 } 2068 2069 /* Try to dump the FPU. */ 2070 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs, 2071 info->fpu); 2072 if (info->prstatus->pr_fpvalid) 2073 fill_note(info->notes + info->numnote++, 2074 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); 2075 return 1; 2076 } 2077 2078 static size_t get_note_info_size(struct elf_note_info *info) 2079 { 2080 int sz = 0; 2081 int i; 2082 2083 for (i = 0; i < info->numnote; i++) 2084 sz += notesize(info->notes + i); 2085 2086 sz += info->thread_status_size; 2087 2088 return sz; 2089 } 2090 2091 static int write_note_info(struct elf_note_info *info, 2092 struct coredump_params *cprm) 2093 { 2094 struct elf_thread_status *ets; 2095 int i; 2096 2097 for (i = 0; i < info->numnote; i++) 2098 if (!writenote(info->notes + i, cprm)) 2099 return 0; 2100 2101 /* write out the thread status notes section */ 2102 list_for_each_entry(ets, &info->thread_list, list) { 2103 for (i = 0; i < ets->num_notes; i++) 2104 if (!writenote(&ets->notes[i], cprm)) 2105 return 0; 2106 } 2107 2108 return 1; 2109 } 2110 2111 static void free_note_info(struct elf_note_info *info) 2112 { 2113 while (!list_empty(&info->thread_list)) { 2114 struct list_head *tmp = info->thread_list.next; 2115 list_del(tmp); 2116 kfree(list_entry(tmp, struct elf_thread_status, list)); 2117 } 2118 2119 /* Free data possibly allocated by fill_files_note(): */ 2120 if (info->notes_files) 2121 kvfree(info->notes_files->data); 2122 2123 kfree(info->prstatus); 2124 kfree(info->psinfo); 2125 kfree(info->notes); 2126 kfree(info->fpu); 2127 } 2128 2129 #endif 2130 2131 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, 2132 elf_addr_t e_shoff, int segs) 2133 { 2134 elf->e_shoff = e_shoff; 2135 elf->e_shentsize = sizeof(*shdr4extnum); 2136 elf->e_shnum = 1; 2137 elf->e_shstrndx = SHN_UNDEF; 2138 2139 memset(shdr4extnum, 0, sizeof(*shdr4extnum)); 2140 2141 shdr4extnum->sh_type = SHT_NULL; 2142 shdr4extnum->sh_size = elf->e_shnum; 2143 shdr4extnum->sh_link = elf->e_shstrndx; 2144 shdr4extnum->sh_info = segs; 2145 } 2146 2147 /* 2148 * Actual dumper 2149 * 2150 * This is a two-pass process; first we find the offsets of the bits, 2151 * and then they are actually written out. If we run out of core limit 2152 * we just truncate. 2153 */ 2154 static int elf_core_dump(struct coredump_params *cprm) 2155 { 2156 int has_dumped = 0; 2157 int vma_count, segs, i; 2158 size_t vma_data_size; 2159 struct elfhdr elf; 2160 loff_t offset = 0, dataoff; 2161 struct elf_note_info info = { }; 2162 struct elf_phdr *phdr4note = NULL; 2163 struct elf_shdr *shdr4extnum = NULL; 2164 Elf_Half e_phnum; 2165 elf_addr_t e_shoff; 2166 struct core_vma_metadata *vma_meta; 2167 2168 if (dump_vma_snapshot(cprm, &vma_count, &vma_meta, &vma_data_size)) 2169 return 0; 2170 2171 /* 2172 * The number of segs are recored into ELF header as 16bit value. 2173 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. 2174 */ 2175 segs = vma_count + elf_core_extra_phdrs(); 2176 2177 /* for notes section */ 2178 segs++; 2179 2180 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid 2181 * this, kernel supports extended numbering. Have a look at 2182 * include/linux/elf.h for further information. */ 2183 e_phnum = segs > PN_XNUM ? PN_XNUM : segs; 2184 2185 /* 2186 * Collect all the non-memory information about the process for the 2187 * notes. This also sets up the file header. 2188 */ 2189 if (!fill_note_info(&elf, e_phnum, &info, cprm->siginfo, cprm->regs)) 2190 goto end_coredump; 2191 2192 has_dumped = 1; 2193 2194 offset += sizeof(elf); /* Elf header */ 2195 offset += segs * sizeof(struct elf_phdr); /* Program headers */ 2196 2197 /* Write notes phdr entry */ 2198 { 2199 size_t sz = get_note_info_size(&info); 2200 2201 /* For cell spufs */ 2202 sz += elf_coredump_extra_notes_size(); 2203 2204 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); 2205 if (!phdr4note) 2206 goto end_coredump; 2207 2208 fill_elf_note_phdr(phdr4note, sz, offset); 2209 offset += sz; 2210 } 2211 2212 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 2213 2214 offset += vma_data_size; 2215 offset += elf_core_extra_data_size(); 2216 e_shoff = offset; 2217 2218 if (e_phnum == PN_XNUM) { 2219 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); 2220 if (!shdr4extnum) 2221 goto end_coredump; 2222 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs); 2223 } 2224 2225 offset = dataoff; 2226 2227 if (!dump_emit(cprm, &elf, sizeof(elf))) 2228 goto end_coredump; 2229 2230 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note))) 2231 goto end_coredump; 2232 2233 /* Write program headers for segments dump */ 2234 for (i = 0; i < vma_count; i++) { 2235 struct core_vma_metadata *meta = vma_meta + i; 2236 struct elf_phdr phdr; 2237 2238 phdr.p_type = PT_LOAD; 2239 phdr.p_offset = offset; 2240 phdr.p_vaddr = meta->start; 2241 phdr.p_paddr = 0; 2242 phdr.p_filesz = meta->dump_size; 2243 phdr.p_memsz = meta->end - meta->start; 2244 offset += phdr.p_filesz; 2245 phdr.p_flags = 0; 2246 if (meta->flags & VM_READ) 2247 phdr.p_flags |= PF_R; 2248 if (meta->flags & VM_WRITE) 2249 phdr.p_flags |= PF_W; 2250 if (meta->flags & VM_EXEC) 2251 phdr.p_flags |= PF_X; 2252 phdr.p_align = ELF_EXEC_PAGESIZE; 2253 2254 if (!dump_emit(cprm, &phdr, sizeof(phdr))) 2255 goto end_coredump; 2256 } 2257 2258 if (!elf_core_write_extra_phdrs(cprm, offset)) 2259 goto end_coredump; 2260 2261 /* write out the notes section */ 2262 if (!write_note_info(&info, cprm)) 2263 goto end_coredump; 2264 2265 /* For cell spufs */ 2266 if (elf_coredump_extra_notes_write(cprm)) 2267 goto end_coredump; 2268 2269 /* Align to page */ 2270 dump_skip_to(cprm, dataoff); 2271 2272 for (i = 0; i < vma_count; i++) { 2273 struct core_vma_metadata *meta = vma_meta + i; 2274 2275 if (!dump_user_range(cprm, meta->start, meta->dump_size)) 2276 goto end_coredump; 2277 } 2278 2279 if (!elf_core_write_extra_data(cprm)) 2280 goto end_coredump; 2281 2282 if (e_phnum == PN_XNUM) { 2283 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum))) 2284 goto end_coredump; 2285 } 2286 2287 end_coredump: 2288 free_note_info(&info); 2289 kfree(shdr4extnum); 2290 kvfree(vma_meta); 2291 kfree(phdr4note); 2292 return has_dumped; 2293 } 2294 2295 #endif /* CONFIG_ELF_CORE */ 2296 2297 static int __init init_elf_binfmt(void) 2298 { 2299 register_binfmt(&elf_format); 2300 return 0; 2301 } 2302 2303 static void __exit exit_elf_binfmt(void) 2304 { 2305 /* Remove the COFF and ELF loaders. */ 2306 unregister_binfmt(&elf_format); 2307 } 2308 2309 core_initcall(init_elf_binfmt); 2310 module_exit(exit_elf_binfmt); 2311 MODULE_LICENSE("GPL"); 2312