xref: /openbmc/linux/fs/binfmt_elf.c (revision e23feb16)
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <linux/sched.h>
37 #include <asm/uaccess.h>
38 #include <asm/param.h>
39 #include <asm/page.h>
40 
41 #ifndef user_long_t
42 #define user_long_t long
43 #endif
44 #ifndef user_siginfo_t
45 #define user_siginfo_t siginfo_t
46 #endif
47 
48 static int load_elf_binary(struct linux_binprm *bprm);
49 static int load_elf_library(struct file *);
50 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
51 				int, int, unsigned long);
52 
53 /*
54  * If we don't support core dumping, then supply a NULL so we
55  * don't even try.
56  */
57 #ifdef CONFIG_ELF_CORE
58 static int elf_core_dump(struct coredump_params *cprm);
59 #else
60 #define elf_core_dump	NULL
61 #endif
62 
63 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
64 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
65 #else
66 #define ELF_MIN_ALIGN	PAGE_SIZE
67 #endif
68 
69 #ifndef ELF_CORE_EFLAGS
70 #define ELF_CORE_EFLAGS	0
71 #endif
72 
73 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
74 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
75 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
76 
77 static struct linux_binfmt elf_format = {
78 	.module		= THIS_MODULE,
79 	.load_binary	= load_elf_binary,
80 	.load_shlib	= load_elf_library,
81 	.core_dump	= elf_core_dump,
82 	.min_coredump	= ELF_EXEC_PAGESIZE,
83 };
84 
85 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
86 
87 static int set_brk(unsigned long start, unsigned long end)
88 {
89 	start = ELF_PAGEALIGN(start);
90 	end = ELF_PAGEALIGN(end);
91 	if (end > start) {
92 		unsigned long addr;
93 		addr = vm_brk(start, end - start);
94 		if (BAD_ADDR(addr))
95 			return addr;
96 	}
97 	current->mm->start_brk = current->mm->brk = end;
98 	return 0;
99 }
100 
101 /* We need to explicitly zero any fractional pages
102    after the data section (i.e. bss).  This would
103    contain the junk from the file that should not
104    be in memory
105  */
106 static int padzero(unsigned long elf_bss)
107 {
108 	unsigned long nbyte;
109 
110 	nbyte = ELF_PAGEOFFSET(elf_bss);
111 	if (nbyte) {
112 		nbyte = ELF_MIN_ALIGN - nbyte;
113 		if (clear_user((void __user *) elf_bss, nbyte))
114 			return -EFAULT;
115 	}
116 	return 0;
117 }
118 
119 /* Let's use some macros to make this stack manipulation a little clearer */
120 #ifdef CONFIG_STACK_GROWSUP
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
122 #define STACK_ROUND(sp, items) \
123 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ \
125 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
126 	old_sp; })
127 #else
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
129 #define STACK_ROUND(sp, items) \
130 	(((unsigned long) (sp - items)) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
132 #endif
133 
134 #ifndef ELF_BASE_PLATFORM
135 /*
136  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
137  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
138  * will be copied to the user stack in the same manner as AT_PLATFORM.
139  */
140 #define ELF_BASE_PLATFORM NULL
141 #endif
142 
143 static int
144 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
145 		unsigned long load_addr, unsigned long interp_load_addr)
146 {
147 	unsigned long p = bprm->p;
148 	int argc = bprm->argc;
149 	int envc = bprm->envc;
150 	elf_addr_t __user *argv;
151 	elf_addr_t __user *envp;
152 	elf_addr_t __user *sp;
153 	elf_addr_t __user *u_platform;
154 	elf_addr_t __user *u_base_platform;
155 	elf_addr_t __user *u_rand_bytes;
156 	const char *k_platform = ELF_PLATFORM;
157 	const char *k_base_platform = ELF_BASE_PLATFORM;
158 	unsigned char k_rand_bytes[16];
159 	int items;
160 	elf_addr_t *elf_info;
161 	int ei_index = 0;
162 	const struct cred *cred = current_cred();
163 	struct vm_area_struct *vma;
164 
165 	/*
166 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
167 	 * evictions by the processes running on the same package. One
168 	 * thing we can do is to shuffle the initial stack for them.
169 	 */
170 
171 	p = arch_align_stack(p);
172 
173 	/*
174 	 * If this architecture has a platform capability string, copy it
175 	 * to userspace.  In some cases (Sparc), this info is impossible
176 	 * for userspace to get any other way, in others (i386) it is
177 	 * merely difficult.
178 	 */
179 	u_platform = NULL;
180 	if (k_platform) {
181 		size_t len = strlen(k_platform) + 1;
182 
183 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
184 		if (__copy_to_user(u_platform, k_platform, len))
185 			return -EFAULT;
186 	}
187 
188 	/*
189 	 * If this architecture has a "base" platform capability
190 	 * string, copy it to userspace.
191 	 */
192 	u_base_platform = NULL;
193 	if (k_base_platform) {
194 		size_t len = strlen(k_base_platform) + 1;
195 
196 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
197 		if (__copy_to_user(u_base_platform, k_base_platform, len))
198 			return -EFAULT;
199 	}
200 
201 	/*
202 	 * Generate 16 random bytes for userspace PRNG seeding.
203 	 */
204 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
205 	u_rand_bytes = (elf_addr_t __user *)
206 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
207 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
208 		return -EFAULT;
209 
210 	/* Create the ELF interpreter info */
211 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
212 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
213 #define NEW_AUX_ENT(id, val) \
214 	do { \
215 		elf_info[ei_index++] = id; \
216 		elf_info[ei_index++] = val; \
217 	} while (0)
218 
219 #ifdef ARCH_DLINFO
220 	/*
221 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
222 	 * AUXV.
223 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
224 	 * ARCH_DLINFO changes
225 	 */
226 	ARCH_DLINFO;
227 #endif
228 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
229 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
230 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
231 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
232 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
233 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
234 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
235 	NEW_AUX_ENT(AT_FLAGS, 0);
236 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
237 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
238 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
239 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
240 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
241  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
242 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
243 #ifdef ELF_HWCAP2
244 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
245 #endif
246 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
247 	if (k_platform) {
248 		NEW_AUX_ENT(AT_PLATFORM,
249 			    (elf_addr_t)(unsigned long)u_platform);
250 	}
251 	if (k_base_platform) {
252 		NEW_AUX_ENT(AT_BASE_PLATFORM,
253 			    (elf_addr_t)(unsigned long)u_base_platform);
254 	}
255 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
256 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
257 	}
258 #undef NEW_AUX_ENT
259 	/* AT_NULL is zero; clear the rest too */
260 	memset(&elf_info[ei_index], 0,
261 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
262 
263 	/* And advance past the AT_NULL entry.  */
264 	ei_index += 2;
265 
266 	sp = STACK_ADD(p, ei_index);
267 
268 	items = (argc + 1) + (envc + 1) + 1;
269 	bprm->p = STACK_ROUND(sp, items);
270 
271 	/* Point sp at the lowest address on the stack */
272 #ifdef CONFIG_STACK_GROWSUP
273 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
274 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
275 #else
276 	sp = (elf_addr_t __user *)bprm->p;
277 #endif
278 
279 
280 	/*
281 	 * Grow the stack manually; some architectures have a limit on how
282 	 * far ahead a user-space access may be in order to grow the stack.
283 	 */
284 	vma = find_extend_vma(current->mm, bprm->p);
285 	if (!vma)
286 		return -EFAULT;
287 
288 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
289 	if (__put_user(argc, sp++))
290 		return -EFAULT;
291 	argv = sp;
292 	envp = argv + argc + 1;
293 
294 	/* Populate argv and envp */
295 	p = current->mm->arg_end = current->mm->arg_start;
296 	while (argc-- > 0) {
297 		size_t len;
298 		if (__put_user((elf_addr_t)p, argv++))
299 			return -EFAULT;
300 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
301 		if (!len || len > MAX_ARG_STRLEN)
302 			return -EINVAL;
303 		p += len;
304 	}
305 	if (__put_user(0, argv))
306 		return -EFAULT;
307 	current->mm->arg_end = current->mm->env_start = p;
308 	while (envc-- > 0) {
309 		size_t len;
310 		if (__put_user((elf_addr_t)p, envp++))
311 			return -EFAULT;
312 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
313 		if (!len || len > MAX_ARG_STRLEN)
314 			return -EINVAL;
315 		p += len;
316 	}
317 	if (__put_user(0, envp))
318 		return -EFAULT;
319 	current->mm->env_end = p;
320 
321 	/* Put the elf_info on the stack in the right place.  */
322 	sp = (elf_addr_t __user *)envp + 1;
323 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
324 		return -EFAULT;
325 	return 0;
326 }
327 
328 #ifndef elf_map
329 
330 static unsigned long elf_map(struct file *filep, unsigned long addr,
331 		struct elf_phdr *eppnt, int prot, int type,
332 		unsigned long total_size)
333 {
334 	unsigned long map_addr;
335 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
336 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
337 	addr = ELF_PAGESTART(addr);
338 	size = ELF_PAGEALIGN(size);
339 
340 	/* mmap() will return -EINVAL if given a zero size, but a
341 	 * segment with zero filesize is perfectly valid */
342 	if (!size)
343 		return addr;
344 
345 	/*
346 	* total_size is the size of the ELF (interpreter) image.
347 	* The _first_ mmap needs to know the full size, otherwise
348 	* randomization might put this image into an overlapping
349 	* position with the ELF binary image. (since size < total_size)
350 	* So we first map the 'big' image - and unmap the remainder at
351 	* the end. (which unmap is needed for ELF images with holes.)
352 	*/
353 	if (total_size) {
354 		total_size = ELF_PAGEALIGN(total_size);
355 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
356 		if (!BAD_ADDR(map_addr))
357 			vm_munmap(map_addr+size, total_size-size);
358 	} else
359 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
360 
361 	return(map_addr);
362 }
363 
364 #endif /* !elf_map */
365 
366 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
367 {
368 	int i, first_idx = -1, last_idx = -1;
369 
370 	for (i = 0; i < nr; i++) {
371 		if (cmds[i].p_type == PT_LOAD) {
372 			last_idx = i;
373 			if (first_idx == -1)
374 				first_idx = i;
375 		}
376 	}
377 	if (first_idx == -1)
378 		return 0;
379 
380 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
381 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
382 }
383 
384 
385 /* This is much more generalized than the library routine read function,
386    so we keep this separate.  Technically the library read function
387    is only provided so that we can read a.out libraries that have
388    an ELF header */
389 
390 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
391 		struct file *interpreter, unsigned long *interp_map_addr,
392 		unsigned long no_base)
393 {
394 	struct elf_phdr *elf_phdata;
395 	struct elf_phdr *eppnt;
396 	unsigned long load_addr = 0;
397 	int load_addr_set = 0;
398 	unsigned long last_bss = 0, elf_bss = 0;
399 	unsigned long error = ~0UL;
400 	unsigned long total_size;
401 	int retval, i, size;
402 
403 	/* First of all, some simple consistency checks */
404 	if (interp_elf_ex->e_type != ET_EXEC &&
405 	    interp_elf_ex->e_type != ET_DYN)
406 		goto out;
407 	if (!elf_check_arch(interp_elf_ex))
408 		goto out;
409 	if (!interpreter->f_op || !interpreter->f_op->mmap)
410 		goto out;
411 
412 	/*
413 	 * If the size of this structure has changed, then punt, since
414 	 * we will be doing the wrong thing.
415 	 */
416 	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
417 		goto out;
418 	if (interp_elf_ex->e_phnum < 1 ||
419 		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
420 		goto out;
421 
422 	/* Now read in all of the header information */
423 	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
424 	if (size > ELF_MIN_ALIGN)
425 		goto out;
426 	elf_phdata = kmalloc(size, GFP_KERNEL);
427 	if (!elf_phdata)
428 		goto out;
429 
430 	retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
431 			     (char *)elf_phdata, size);
432 	error = -EIO;
433 	if (retval != size) {
434 		if (retval < 0)
435 			error = retval;
436 		goto out_close;
437 	}
438 
439 	total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
440 	if (!total_size) {
441 		error = -EINVAL;
442 		goto out_close;
443 	}
444 
445 	eppnt = elf_phdata;
446 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
447 		if (eppnt->p_type == PT_LOAD) {
448 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
449 			int elf_prot = 0;
450 			unsigned long vaddr = 0;
451 			unsigned long k, map_addr;
452 
453 			if (eppnt->p_flags & PF_R)
454 		    		elf_prot = PROT_READ;
455 			if (eppnt->p_flags & PF_W)
456 				elf_prot |= PROT_WRITE;
457 			if (eppnt->p_flags & PF_X)
458 				elf_prot |= PROT_EXEC;
459 			vaddr = eppnt->p_vaddr;
460 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
461 				elf_type |= MAP_FIXED;
462 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
463 				load_addr = -vaddr;
464 
465 			map_addr = elf_map(interpreter, load_addr + vaddr,
466 					eppnt, elf_prot, elf_type, total_size);
467 			total_size = 0;
468 			if (!*interp_map_addr)
469 				*interp_map_addr = map_addr;
470 			error = map_addr;
471 			if (BAD_ADDR(map_addr))
472 				goto out_close;
473 
474 			if (!load_addr_set &&
475 			    interp_elf_ex->e_type == ET_DYN) {
476 				load_addr = map_addr - ELF_PAGESTART(vaddr);
477 				load_addr_set = 1;
478 			}
479 
480 			/*
481 			 * Check to see if the section's size will overflow the
482 			 * allowed task size. Note that p_filesz must always be
483 			 * <= p_memsize so it's only necessary to check p_memsz.
484 			 */
485 			k = load_addr + eppnt->p_vaddr;
486 			if (BAD_ADDR(k) ||
487 			    eppnt->p_filesz > eppnt->p_memsz ||
488 			    eppnt->p_memsz > TASK_SIZE ||
489 			    TASK_SIZE - eppnt->p_memsz < k) {
490 				error = -ENOMEM;
491 				goto out_close;
492 			}
493 
494 			/*
495 			 * Find the end of the file mapping for this phdr, and
496 			 * keep track of the largest address we see for this.
497 			 */
498 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
499 			if (k > elf_bss)
500 				elf_bss = k;
501 
502 			/*
503 			 * Do the same thing for the memory mapping - between
504 			 * elf_bss and last_bss is the bss section.
505 			 */
506 			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
507 			if (k > last_bss)
508 				last_bss = k;
509 		}
510 	}
511 
512 	if (last_bss > elf_bss) {
513 		/*
514 		 * Now fill out the bss section.  First pad the last page up
515 		 * to the page boundary, and then perform a mmap to make sure
516 		 * that there are zero-mapped pages up to and including the
517 		 * last bss page.
518 		 */
519 		if (padzero(elf_bss)) {
520 			error = -EFAULT;
521 			goto out_close;
522 		}
523 
524 		/* What we have mapped so far */
525 		elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
526 
527 		/* Map the last of the bss segment */
528 		error = vm_brk(elf_bss, last_bss - elf_bss);
529 		if (BAD_ADDR(error))
530 			goto out_close;
531 	}
532 
533 	error = load_addr;
534 
535 out_close:
536 	kfree(elf_phdata);
537 out:
538 	return error;
539 }
540 
541 /*
542  * These are the functions used to load ELF style executables and shared
543  * libraries.  There is no binary dependent code anywhere else.
544  */
545 
546 #define INTERPRETER_NONE 0
547 #define INTERPRETER_ELF 2
548 
549 #ifndef STACK_RND_MASK
550 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
551 #endif
552 
553 static unsigned long randomize_stack_top(unsigned long stack_top)
554 {
555 	unsigned int random_variable = 0;
556 
557 	if ((current->flags & PF_RANDOMIZE) &&
558 		!(current->personality & ADDR_NO_RANDOMIZE)) {
559 		random_variable = get_random_int() & STACK_RND_MASK;
560 		random_variable <<= PAGE_SHIFT;
561 	}
562 #ifdef CONFIG_STACK_GROWSUP
563 	return PAGE_ALIGN(stack_top) + random_variable;
564 #else
565 	return PAGE_ALIGN(stack_top) - random_variable;
566 #endif
567 }
568 
569 static int load_elf_binary(struct linux_binprm *bprm)
570 {
571 	struct file *interpreter = NULL; /* to shut gcc up */
572  	unsigned long load_addr = 0, load_bias = 0;
573 	int load_addr_set = 0;
574 	char * elf_interpreter = NULL;
575 	unsigned long error;
576 	struct elf_phdr *elf_ppnt, *elf_phdata;
577 	unsigned long elf_bss, elf_brk;
578 	int retval, i;
579 	unsigned int size;
580 	unsigned long elf_entry;
581 	unsigned long interp_load_addr = 0;
582 	unsigned long start_code, end_code, start_data, end_data;
583 	unsigned long reloc_func_desc __maybe_unused = 0;
584 	int executable_stack = EXSTACK_DEFAULT;
585 	unsigned long def_flags = 0;
586 	struct pt_regs *regs = current_pt_regs();
587 	struct {
588 		struct elfhdr elf_ex;
589 		struct elfhdr interp_elf_ex;
590 	} *loc;
591 
592 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
593 	if (!loc) {
594 		retval = -ENOMEM;
595 		goto out_ret;
596 	}
597 
598 	/* Get the exec-header */
599 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
600 
601 	retval = -ENOEXEC;
602 	/* First of all, some simple consistency checks */
603 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
604 		goto out;
605 
606 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
607 		goto out;
608 	if (!elf_check_arch(&loc->elf_ex))
609 		goto out;
610 	if (!bprm->file->f_op || !bprm->file->f_op->mmap)
611 		goto out;
612 
613 	/* Now read in all of the header information */
614 	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
615 		goto out;
616 	if (loc->elf_ex.e_phnum < 1 ||
617 	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
618 		goto out;
619 	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
620 	retval = -ENOMEM;
621 	elf_phdata = kmalloc(size, GFP_KERNEL);
622 	if (!elf_phdata)
623 		goto out;
624 
625 	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
626 			     (char *)elf_phdata, size);
627 	if (retval != size) {
628 		if (retval >= 0)
629 			retval = -EIO;
630 		goto out_free_ph;
631 	}
632 
633 	elf_ppnt = elf_phdata;
634 	elf_bss = 0;
635 	elf_brk = 0;
636 
637 	start_code = ~0UL;
638 	end_code = 0;
639 	start_data = 0;
640 	end_data = 0;
641 
642 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
643 		if (elf_ppnt->p_type == PT_INTERP) {
644 			/* This is the program interpreter used for
645 			 * shared libraries - for now assume that this
646 			 * is an a.out format binary
647 			 */
648 			retval = -ENOEXEC;
649 			if (elf_ppnt->p_filesz > PATH_MAX ||
650 			    elf_ppnt->p_filesz < 2)
651 				goto out_free_ph;
652 
653 			retval = -ENOMEM;
654 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
655 						  GFP_KERNEL);
656 			if (!elf_interpreter)
657 				goto out_free_ph;
658 
659 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
660 					     elf_interpreter,
661 					     elf_ppnt->p_filesz);
662 			if (retval != elf_ppnt->p_filesz) {
663 				if (retval >= 0)
664 					retval = -EIO;
665 				goto out_free_interp;
666 			}
667 			/* make sure path is NULL terminated */
668 			retval = -ENOEXEC;
669 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
670 				goto out_free_interp;
671 
672 			interpreter = open_exec(elf_interpreter);
673 			retval = PTR_ERR(interpreter);
674 			if (IS_ERR(interpreter))
675 				goto out_free_interp;
676 
677 			/*
678 			 * If the binary is not readable then enforce
679 			 * mm->dumpable = 0 regardless of the interpreter's
680 			 * permissions.
681 			 */
682 			would_dump(bprm, interpreter);
683 
684 			retval = kernel_read(interpreter, 0, bprm->buf,
685 					     BINPRM_BUF_SIZE);
686 			if (retval != BINPRM_BUF_SIZE) {
687 				if (retval >= 0)
688 					retval = -EIO;
689 				goto out_free_dentry;
690 			}
691 
692 			/* Get the exec headers */
693 			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
694 			break;
695 		}
696 		elf_ppnt++;
697 	}
698 
699 	elf_ppnt = elf_phdata;
700 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
701 		if (elf_ppnt->p_type == PT_GNU_STACK) {
702 			if (elf_ppnt->p_flags & PF_X)
703 				executable_stack = EXSTACK_ENABLE_X;
704 			else
705 				executable_stack = EXSTACK_DISABLE_X;
706 			break;
707 		}
708 
709 	/* Some simple consistency checks for the interpreter */
710 	if (elf_interpreter) {
711 		retval = -ELIBBAD;
712 		/* Not an ELF interpreter */
713 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
714 			goto out_free_dentry;
715 		/* Verify the interpreter has a valid arch */
716 		if (!elf_check_arch(&loc->interp_elf_ex))
717 			goto out_free_dentry;
718 	}
719 
720 	/* Flush all traces of the currently running executable */
721 	retval = flush_old_exec(bprm);
722 	if (retval)
723 		goto out_free_dentry;
724 
725 	/* OK, This is the point of no return */
726 	current->mm->def_flags = def_flags;
727 
728 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
729 	   may depend on the personality.  */
730 	SET_PERSONALITY(loc->elf_ex);
731 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
732 		current->personality |= READ_IMPLIES_EXEC;
733 
734 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
735 		current->flags |= PF_RANDOMIZE;
736 
737 	setup_new_exec(bprm);
738 
739 	/* Do this so that we can load the interpreter, if need be.  We will
740 	   change some of these later */
741 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
742 				 executable_stack);
743 	if (retval < 0) {
744 		send_sig(SIGKILL, current, 0);
745 		goto out_free_dentry;
746 	}
747 
748 	current->mm->start_stack = bprm->p;
749 
750 	/* Now we do a little grungy work by mmapping the ELF image into
751 	   the correct location in memory. */
752 	for(i = 0, elf_ppnt = elf_phdata;
753 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
754 		int elf_prot = 0, elf_flags;
755 		unsigned long k, vaddr;
756 
757 		if (elf_ppnt->p_type != PT_LOAD)
758 			continue;
759 
760 		if (unlikely (elf_brk > elf_bss)) {
761 			unsigned long nbyte;
762 
763 			/* There was a PT_LOAD segment with p_memsz > p_filesz
764 			   before this one. Map anonymous pages, if needed,
765 			   and clear the area.  */
766 			retval = set_brk(elf_bss + load_bias,
767 					 elf_brk + load_bias);
768 			if (retval) {
769 				send_sig(SIGKILL, current, 0);
770 				goto out_free_dentry;
771 			}
772 			nbyte = ELF_PAGEOFFSET(elf_bss);
773 			if (nbyte) {
774 				nbyte = ELF_MIN_ALIGN - nbyte;
775 				if (nbyte > elf_brk - elf_bss)
776 					nbyte = elf_brk - elf_bss;
777 				if (clear_user((void __user *)elf_bss +
778 							load_bias, nbyte)) {
779 					/*
780 					 * This bss-zeroing can fail if the ELF
781 					 * file specifies odd protections. So
782 					 * we don't check the return value
783 					 */
784 				}
785 			}
786 		}
787 
788 		if (elf_ppnt->p_flags & PF_R)
789 			elf_prot |= PROT_READ;
790 		if (elf_ppnt->p_flags & PF_W)
791 			elf_prot |= PROT_WRITE;
792 		if (elf_ppnt->p_flags & PF_X)
793 			elf_prot |= PROT_EXEC;
794 
795 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
796 
797 		vaddr = elf_ppnt->p_vaddr;
798 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
799 			elf_flags |= MAP_FIXED;
800 		} else if (loc->elf_ex.e_type == ET_DYN) {
801 			/* Try and get dynamic programs out of the way of the
802 			 * default mmap base, as well as whatever program they
803 			 * might try to exec.  This is because the brk will
804 			 * follow the loader, and is not movable.  */
805 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
806 			/* Memory randomization might have been switched off
807 			 * in runtime via sysctl or explicit setting of
808 			 * personality flags.
809 			 * If that is the case, retain the original non-zero
810 			 * load_bias value in order to establish proper
811 			 * non-randomized mappings.
812 			 */
813 			if (current->flags & PF_RANDOMIZE)
814 				load_bias = 0;
815 			else
816 				load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
817 #else
818 			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
819 #endif
820 		}
821 
822 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
823 				elf_prot, elf_flags, 0);
824 		if (BAD_ADDR(error)) {
825 			send_sig(SIGKILL, current, 0);
826 			retval = IS_ERR((void *)error) ?
827 				PTR_ERR((void*)error) : -EINVAL;
828 			goto out_free_dentry;
829 		}
830 
831 		if (!load_addr_set) {
832 			load_addr_set = 1;
833 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
834 			if (loc->elf_ex.e_type == ET_DYN) {
835 				load_bias += error -
836 				             ELF_PAGESTART(load_bias + vaddr);
837 				load_addr += load_bias;
838 				reloc_func_desc = load_bias;
839 			}
840 		}
841 		k = elf_ppnt->p_vaddr;
842 		if (k < start_code)
843 			start_code = k;
844 		if (start_data < k)
845 			start_data = k;
846 
847 		/*
848 		 * Check to see if the section's size will overflow the
849 		 * allowed task size. Note that p_filesz must always be
850 		 * <= p_memsz so it is only necessary to check p_memsz.
851 		 */
852 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
853 		    elf_ppnt->p_memsz > TASK_SIZE ||
854 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
855 			/* set_brk can never work. Avoid overflows. */
856 			send_sig(SIGKILL, current, 0);
857 			retval = -EINVAL;
858 			goto out_free_dentry;
859 		}
860 
861 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
862 
863 		if (k > elf_bss)
864 			elf_bss = k;
865 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
866 			end_code = k;
867 		if (end_data < k)
868 			end_data = k;
869 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
870 		if (k > elf_brk)
871 			elf_brk = k;
872 	}
873 
874 	loc->elf_ex.e_entry += load_bias;
875 	elf_bss += load_bias;
876 	elf_brk += load_bias;
877 	start_code += load_bias;
878 	end_code += load_bias;
879 	start_data += load_bias;
880 	end_data += load_bias;
881 
882 	/* Calling set_brk effectively mmaps the pages that we need
883 	 * for the bss and break sections.  We must do this before
884 	 * mapping in the interpreter, to make sure it doesn't wind
885 	 * up getting placed where the bss needs to go.
886 	 */
887 	retval = set_brk(elf_bss, elf_brk);
888 	if (retval) {
889 		send_sig(SIGKILL, current, 0);
890 		goto out_free_dentry;
891 	}
892 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
893 		send_sig(SIGSEGV, current, 0);
894 		retval = -EFAULT; /* Nobody gets to see this, but.. */
895 		goto out_free_dentry;
896 	}
897 
898 	if (elf_interpreter) {
899 		unsigned long interp_map_addr = 0;
900 
901 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
902 					    interpreter,
903 					    &interp_map_addr,
904 					    load_bias);
905 		if (!IS_ERR((void *)elf_entry)) {
906 			/*
907 			 * load_elf_interp() returns relocation
908 			 * adjustment
909 			 */
910 			interp_load_addr = elf_entry;
911 			elf_entry += loc->interp_elf_ex.e_entry;
912 		}
913 		if (BAD_ADDR(elf_entry)) {
914 			force_sig(SIGSEGV, current);
915 			retval = IS_ERR((void *)elf_entry) ?
916 					(int)elf_entry : -EINVAL;
917 			goto out_free_dentry;
918 		}
919 		reloc_func_desc = interp_load_addr;
920 
921 		allow_write_access(interpreter);
922 		fput(interpreter);
923 		kfree(elf_interpreter);
924 	} else {
925 		elf_entry = loc->elf_ex.e_entry;
926 		if (BAD_ADDR(elf_entry)) {
927 			force_sig(SIGSEGV, current);
928 			retval = -EINVAL;
929 			goto out_free_dentry;
930 		}
931 	}
932 
933 	kfree(elf_phdata);
934 
935 	set_binfmt(&elf_format);
936 
937 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
938 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
939 	if (retval < 0) {
940 		send_sig(SIGKILL, current, 0);
941 		goto out;
942 	}
943 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
944 
945 	install_exec_creds(bprm);
946 	retval = create_elf_tables(bprm, &loc->elf_ex,
947 			  load_addr, interp_load_addr);
948 	if (retval < 0) {
949 		send_sig(SIGKILL, current, 0);
950 		goto out;
951 	}
952 	/* N.B. passed_fileno might not be initialized? */
953 	current->mm->end_code = end_code;
954 	current->mm->start_code = start_code;
955 	current->mm->start_data = start_data;
956 	current->mm->end_data = end_data;
957 	current->mm->start_stack = bprm->p;
958 
959 #ifdef arch_randomize_brk
960 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
961 		current->mm->brk = current->mm->start_brk =
962 			arch_randomize_brk(current->mm);
963 #ifdef CONFIG_COMPAT_BRK
964 		current->brk_randomized = 1;
965 #endif
966 	}
967 #endif
968 
969 	if (current->personality & MMAP_PAGE_ZERO) {
970 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
971 		   and some applications "depend" upon this behavior.
972 		   Since we do not have the power to recompile these, we
973 		   emulate the SVr4 behavior. Sigh. */
974 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
975 				MAP_FIXED | MAP_PRIVATE, 0);
976 	}
977 
978 #ifdef ELF_PLAT_INIT
979 	/*
980 	 * The ABI may specify that certain registers be set up in special
981 	 * ways (on i386 %edx is the address of a DT_FINI function, for
982 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
983 	 * that the e_entry field is the address of the function descriptor
984 	 * for the startup routine, rather than the address of the startup
985 	 * routine itself.  This macro performs whatever initialization to
986 	 * the regs structure is required as well as any relocations to the
987 	 * function descriptor entries when executing dynamically links apps.
988 	 */
989 	ELF_PLAT_INIT(regs, reloc_func_desc);
990 #endif
991 
992 	start_thread(regs, elf_entry, bprm->p);
993 	retval = 0;
994 out:
995 	kfree(loc);
996 out_ret:
997 	return retval;
998 
999 	/* error cleanup */
1000 out_free_dentry:
1001 	allow_write_access(interpreter);
1002 	if (interpreter)
1003 		fput(interpreter);
1004 out_free_interp:
1005 	kfree(elf_interpreter);
1006 out_free_ph:
1007 	kfree(elf_phdata);
1008 	goto out;
1009 }
1010 
1011 /* This is really simpleminded and specialized - we are loading an
1012    a.out library that is given an ELF header. */
1013 static int load_elf_library(struct file *file)
1014 {
1015 	struct elf_phdr *elf_phdata;
1016 	struct elf_phdr *eppnt;
1017 	unsigned long elf_bss, bss, len;
1018 	int retval, error, i, j;
1019 	struct elfhdr elf_ex;
1020 
1021 	error = -ENOEXEC;
1022 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1023 	if (retval != sizeof(elf_ex))
1024 		goto out;
1025 
1026 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1027 		goto out;
1028 
1029 	/* First of all, some simple consistency checks */
1030 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1031 	    !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1032 		goto out;
1033 
1034 	/* Now read in all of the header information */
1035 
1036 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1037 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1038 
1039 	error = -ENOMEM;
1040 	elf_phdata = kmalloc(j, GFP_KERNEL);
1041 	if (!elf_phdata)
1042 		goto out;
1043 
1044 	eppnt = elf_phdata;
1045 	error = -ENOEXEC;
1046 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1047 	if (retval != j)
1048 		goto out_free_ph;
1049 
1050 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1051 		if ((eppnt + i)->p_type == PT_LOAD)
1052 			j++;
1053 	if (j != 1)
1054 		goto out_free_ph;
1055 
1056 	while (eppnt->p_type != PT_LOAD)
1057 		eppnt++;
1058 
1059 	/* Now use mmap to map the library into memory. */
1060 	error = vm_mmap(file,
1061 			ELF_PAGESTART(eppnt->p_vaddr),
1062 			(eppnt->p_filesz +
1063 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1064 			PROT_READ | PROT_WRITE | PROT_EXEC,
1065 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1066 			(eppnt->p_offset -
1067 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1068 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1069 		goto out_free_ph;
1070 
1071 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1072 	if (padzero(elf_bss)) {
1073 		error = -EFAULT;
1074 		goto out_free_ph;
1075 	}
1076 
1077 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1078 			    ELF_MIN_ALIGN - 1);
1079 	bss = eppnt->p_memsz + eppnt->p_vaddr;
1080 	if (bss > len)
1081 		vm_brk(len, bss - len);
1082 	error = 0;
1083 
1084 out_free_ph:
1085 	kfree(elf_phdata);
1086 out:
1087 	return error;
1088 }
1089 
1090 #ifdef CONFIG_ELF_CORE
1091 /*
1092  * ELF core dumper
1093  *
1094  * Modelled on fs/exec.c:aout_core_dump()
1095  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1096  */
1097 
1098 /*
1099  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1100  * that are useful for post-mortem analysis are included in every core dump.
1101  * In that way we ensure that the core dump is fully interpretable later
1102  * without matching up the same kernel and hardware config to see what PC values
1103  * meant. These special mappings include - vDSO, vsyscall, and other
1104  * architecture specific mappings
1105  */
1106 static bool always_dump_vma(struct vm_area_struct *vma)
1107 {
1108 	/* Any vsyscall mappings? */
1109 	if (vma == get_gate_vma(vma->vm_mm))
1110 		return true;
1111 	/*
1112 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1113 	 * such as vDSO sections.
1114 	 */
1115 	if (arch_vma_name(vma))
1116 		return true;
1117 
1118 	return false;
1119 }
1120 
1121 /*
1122  * Decide what to dump of a segment, part, all or none.
1123  */
1124 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1125 				   unsigned long mm_flags)
1126 {
1127 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1128 
1129 	/* always dump the vdso and vsyscall sections */
1130 	if (always_dump_vma(vma))
1131 		goto whole;
1132 
1133 	if (vma->vm_flags & VM_DONTDUMP)
1134 		return 0;
1135 
1136 	/* Hugetlb memory check */
1137 	if (vma->vm_flags & VM_HUGETLB) {
1138 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1139 			goto whole;
1140 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1141 			goto whole;
1142 		return 0;
1143 	}
1144 
1145 	/* Do not dump I/O mapped devices or special mappings */
1146 	if (vma->vm_flags & VM_IO)
1147 		return 0;
1148 
1149 	/* By default, dump shared memory if mapped from an anonymous file. */
1150 	if (vma->vm_flags & VM_SHARED) {
1151 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1152 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1153 			goto whole;
1154 		return 0;
1155 	}
1156 
1157 	/* Dump segments that have been written to.  */
1158 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1159 		goto whole;
1160 	if (vma->vm_file == NULL)
1161 		return 0;
1162 
1163 	if (FILTER(MAPPED_PRIVATE))
1164 		goto whole;
1165 
1166 	/*
1167 	 * If this looks like the beginning of a DSO or executable mapping,
1168 	 * check for an ELF header.  If we find one, dump the first page to
1169 	 * aid in determining what was mapped here.
1170 	 */
1171 	if (FILTER(ELF_HEADERS) &&
1172 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1173 		u32 __user *header = (u32 __user *) vma->vm_start;
1174 		u32 word;
1175 		mm_segment_t fs = get_fs();
1176 		/*
1177 		 * Doing it this way gets the constant folded by GCC.
1178 		 */
1179 		union {
1180 			u32 cmp;
1181 			char elfmag[SELFMAG];
1182 		} magic;
1183 		BUILD_BUG_ON(SELFMAG != sizeof word);
1184 		magic.elfmag[EI_MAG0] = ELFMAG0;
1185 		magic.elfmag[EI_MAG1] = ELFMAG1;
1186 		magic.elfmag[EI_MAG2] = ELFMAG2;
1187 		magic.elfmag[EI_MAG3] = ELFMAG3;
1188 		/*
1189 		 * Switch to the user "segment" for get_user(),
1190 		 * then put back what elf_core_dump() had in place.
1191 		 */
1192 		set_fs(USER_DS);
1193 		if (unlikely(get_user(word, header)))
1194 			word = 0;
1195 		set_fs(fs);
1196 		if (word == magic.cmp)
1197 			return PAGE_SIZE;
1198 	}
1199 
1200 #undef	FILTER
1201 
1202 	return 0;
1203 
1204 whole:
1205 	return vma->vm_end - vma->vm_start;
1206 }
1207 
1208 /* An ELF note in memory */
1209 struct memelfnote
1210 {
1211 	const char *name;
1212 	int type;
1213 	unsigned int datasz;
1214 	void *data;
1215 };
1216 
1217 static int notesize(struct memelfnote *en)
1218 {
1219 	int sz;
1220 
1221 	sz = sizeof(struct elf_note);
1222 	sz += roundup(strlen(en->name) + 1, 4);
1223 	sz += roundup(en->datasz, 4);
1224 
1225 	return sz;
1226 }
1227 
1228 #define DUMP_WRITE(addr, nr, foffset)	\
1229 	do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1230 
1231 static int alignfile(struct file *file, loff_t *foffset)
1232 {
1233 	static const char buf[4] = { 0, };
1234 	DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1235 	return 1;
1236 }
1237 
1238 static int writenote(struct memelfnote *men, struct file *file,
1239 			loff_t *foffset)
1240 {
1241 	struct elf_note en;
1242 	en.n_namesz = strlen(men->name) + 1;
1243 	en.n_descsz = men->datasz;
1244 	en.n_type = men->type;
1245 
1246 	DUMP_WRITE(&en, sizeof(en), foffset);
1247 	DUMP_WRITE(men->name, en.n_namesz, foffset);
1248 	if (!alignfile(file, foffset))
1249 		return 0;
1250 	DUMP_WRITE(men->data, men->datasz, foffset);
1251 	if (!alignfile(file, foffset))
1252 		return 0;
1253 
1254 	return 1;
1255 }
1256 #undef DUMP_WRITE
1257 
1258 static void fill_elf_header(struct elfhdr *elf, int segs,
1259 			    u16 machine, u32 flags)
1260 {
1261 	memset(elf, 0, sizeof(*elf));
1262 
1263 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1264 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1265 	elf->e_ident[EI_DATA] = ELF_DATA;
1266 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1267 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1268 
1269 	elf->e_type = ET_CORE;
1270 	elf->e_machine = machine;
1271 	elf->e_version = EV_CURRENT;
1272 	elf->e_phoff = sizeof(struct elfhdr);
1273 	elf->e_flags = flags;
1274 	elf->e_ehsize = sizeof(struct elfhdr);
1275 	elf->e_phentsize = sizeof(struct elf_phdr);
1276 	elf->e_phnum = segs;
1277 
1278 	return;
1279 }
1280 
1281 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1282 {
1283 	phdr->p_type = PT_NOTE;
1284 	phdr->p_offset = offset;
1285 	phdr->p_vaddr = 0;
1286 	phdr->p_paddr = 0;
1287 	phdr->p_filesz = sz;
1288 	phdr->p_memsz = 0;
1289 	phdr->p_flags = 0;
1290 	phdr->p_align = 0;
1291 	return;
1292 }
1293 
1294 static void fill_note(struct memelfnote *note, const char *name, int type,
1295 		unsigned int sz, void *data)
1296 {
1297 	note->name = name;
1298 	note->type = type;
1299 	note->datasz = sz;
1300 	note->data = data;
1301 	return;
1302 }
1303 
1304 /*
1305  * fill up all the fields in prstatus from the given task struct, except
1306  * registers which need to be filled up separately.
1307  */
1308 static void fill_prstatus(struct elf_prstatus *prstatus,
1309 		struct task_struct *p, long signr)
1310 {
1311 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1312 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1313 	prstatus->pr_sighold = p->blocked.sig[0];
1314 	rcu_read_lock();
1315 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1316 	rcu_read_unlock();
1317 	prstatus->pr_pid = task_pid_vnr(p);
1318 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1319 	prstatus->pr_sid = task_session_vnr(p);
1320 	if (thread_group_leader(p)) {
1321 		struct task_cputime cputime;
1322 
1323 		/*
1324 		 * This is the record for the group leader.  It shows the
1325 		 * group-wide total, not its individual thread total.
1326 		 */
1327 		thread_group_cputime(p, &cputime);
1328 		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1329 		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1330 	} else {
1331 		cputime_t utime, stime;
1332 
1333 		task_cputime(p, &utime, &stime);
1334 		cputime_to_timeval(utime, &prstatus->pr_utime);
1335 		cputime_to_timeval(stime, &prstatus->pr_stime);
1336 	}
1337 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1338 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1339 }
1340 
1341 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1342 		       struct mm_struct *mm)
1343 {
1344 	const struct cred *cred;
1345 	unsigned int i, len;
1346 
1347 	/* first copy the parameters from user space */
1348 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1349 
1350 	len = mm->arg_end - mm->arg_start;
1351 	if (len >= ELF_PRARGSZ)
1352 		len = ELF_PRARGSZ-1;
1353 	if (copy_from_user(&psinfo->pr_psargs,
1354 		           (const char __user *)mm->arg_start, len))
1355 		return -EFAULT;
1356 	for(i = 0; i < len; i++)
1357 		if (psinfo->pr_psargs[i] == 0)
1358 			psinfo->pr_psargs[i] = ' ';
1359 	psinfo->pr_psargs[len] = 0;
1360 
1361 	rcu_read_lock();
1362 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1363 	rcu_read_unlock();
1364 	psinfo->pr_pid = task_pid_vnr(p);
1365 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1366 	psinfo->pr_sid = task_session_vnr(p);
1367 
1368 	i = p->state ? ffz(~p->state) + 1 : 0;
1369 	psinfo->pr_state = i;
1370 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1371 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1372 	psinfo->pr_nice = task_nice(p);
1373 	psinfo->pr_flag = p->flags;
1374 	rcu_read_lock();
1375 	cred = __task_cred(p);
1376 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1377 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1378 	rcu_read_unlock();
1379 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1380 
1381 	return 0;
1382 }
1383 
1384 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1385 {
1386 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1387 	int i = 0;
1388 	do
1389 		i += 2;
1390 	while (auxv[i - 2] != AT_NULL);
1391 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1392 }
1393 
1394 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1395 		siginfo_t *siginfo)
1396 {
1397 	mm_segment_t old_fs = get_fs();
1398 	set_fs(KERNEL_DS);
1399 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1400 	set_fs(old_fs);
1401 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1402 }
1403 
1404 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1405 /*
1406  * Format of NT_FILE note:
1407  *
1408  * long count     -- how many files are mapped
1409  * long page_size -- units for file_ofs
1410  * array of [COUNT] elements of
1411  *   long start
1412  *   long end
1413  *   long file_ofs
1414  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1415  */
1416 static int fill_files_note(struct memelfnote *note)
1417 {
1418 	struct vm_area_struct *vma;
1419 	unsigned count, size, names_ofs, remaining, n;
1420 	user_long_t *data;
1421 	user_long_t *start_end_ofs;
1422 	char *name_base, *name_curpos;
1423 
1424 	/* *Estimated* file count and total data size needed */
1425 	count = current->mm->map_count;
1426 	size = count * 64;
1427 
1428 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1429  alloc:
1430 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1431 		return -EINVAL;
1432 	size = round_up(size, PAGE_SIZE);
1433 	data = vmalloc(size);
1434 	if (!data)
1435 		return -ENOMEM;
1436 
1437 	start_end_ofs = data + 2;
1438 	name_base = name_curpos = ((char *)data) + names_ofs;
1439 	remaining = size - names_ofs;
1440 	count = 0;
1441 	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1442 		struct file *file;
1443 		const char *filename;
1444 
1445 		file = vma->vm_file;
1446 		if (!file)
1447 			continue;
1448 		filename = d_path(&file->f_path, name_curpos, remaining);
1449 		if (IS_ERR(filename)) {
1450 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1451 				vfree(data);
1452 				size = size * 5 / 4;
1453 				goto alloc;
1454 			}
1455 			continue;
1456 		}
1457 
1458 		/* d_path() fills at the end, move name down */
1459 		/* n = strlen(filename) + 1: */
1460 		n = (name_curpos + remaining) - filename;
1461 		remaining = filename - name_curpos;
1462 		memmove(name_curpos, filename, n);
1463 		name_curpos += n;
1464 
1465 		*start_end_ofs++ = vma->vm_start;
1466 		*start_end_ofs++ = vma->vm_end;
1467 		*start_end_ofs++ = vma->vm_pgoff;
1468 		count++;
1469 	}
1470 
1471 	/* Now we know exact count of files, can store it */
1472 	data[0] = count;
1473 	data[1] = PAGE_SIZE;
1474 	/*
1475 	 * Count usually is less than current->mm->map_count,
1476 	 * we need to move filenames down.
1477 	 */
1478 	n = current->mm->map_count - count;
1479 	if (n != 0) {
1480 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1481 		memmove(name_base - shift_bytes, name_base,
1482 			name_curpos - name_base);
1483 		name_curpos -= shift_bytes;
1484 	}
1485 
1486 	size = name_curpos - (char *)data;
1487 	fill_note(note, "CORE", NT_FILE, size, data);
1488 	return 0;
1489 }
1490 
1491 #ifdef CORE_DUMP_USE_REGSET
1492 #include <linux/regset.h>
1493 
1494 struct elf_thread_core_info {
1495 	struct elf_thread_core_info *next;
1496 	struct task_struct *task;
1497 	struct elf_prstatus prstatus;
1498 	struct memelfnote notes[0];
1499 };
1500 
1501 struct elf_note_info {
1502 	struct elf_thread_core_info *thread;
1503 	struct memelfnote psinfo;
1504 	struct memelfnote signote;
1505 	struct memelfnote auxv;
1506 	struct memelfnote files;
1507 	user_siginfo_t csigdata;
1508 	size_t size;
1509 	int thread_notes;
1510 };
1511 
1512 /*
1513  * When a regset has a writeback hook, we call it on each thread before
1514  * dumping user memory.  On register window machines, this makes sure the
1515  * user memory backing the register data is up to date before we read it.
1516  */
1517 static void do_thread_regset_writeback(struct task_struct *task,
1518 				       const struct user_regset *regset)
1519 {
1520 	if (regset->writeback)
1521 		regset->writeback(task, regset, 1);
1522 }
1523 
1524 #ifndef PR_REG_SIZE
1525 #define PR_REG_SIZE(S) sizeof(S)
1526 #endif
1527 
1528 #ifndef PRSTATUS_SIZE
1529 #define PRSTATUS_SIZE(S) sizeof(S)
1530 #endif
1531 
1532 #ifndef PR_REG_PTR
1533 #define PR_REG_PTR(S) (&((S)->pr_reg))
1534 #endif
1535 
1536 #ifndef SET_PR_FPVALID
1537 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1538 #endif
1539 
1540 static int fill_thread_core_info(struct elf_thread_core_info *t,
1541 				 const struct user_regset_view *view,
1542 				 long signr, size_t *total)
1543 {
1544 	unsigned int i;
1545 
1546 	/*
1547 	 * NT_PRSTATUS is the one special case, because the regset data
1548 	 * goes into the pr_reg field inside the note contents, rather
1549 	 * than being the whole note contents.  We fill the reset in here.
1550 	 * We assume that regset 0 is NT_PRSTATUS.
1551 	 */
1552 	fill_prstatus(&t->prstatus, t->task, signr);
1553 	(void) view->regsets[0].get(t->task, &view->regsets[0],
1554 				    0, PR_REG_SIZE(t->prstatus.pr_reg),
1555 				    PR_REG_PTR(&t->prstatus), NULL);
1556 
1557 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1558 		  PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1559 	*total += notesize(&t->notes[0]);
1560 
1561 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1562 
1563 	/*
1564 	 * Each other regset might generate a note too.  For each regset
1565 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1566 	 * all zero and we'll know to skip writing it later.
1567 	 */
1568 	for (i = 1; i < view->n; ++i) {
1569 		const struct user_regset *regset = &view->regsets[i];
1570 		do_thread_regset_writeback(t->task, regset);
1571 		if (regset->core_note_type && regset->get &&
1572 		    (!regset->active || regset->active(t->task, regset))) {
1573 			int ret;
1574 			size_t size = regset->n * regset->size;
1575 			void *data = kmalloc(size, GFP_KERNEL);
1576 			if (unlikely(!data))
1577 				return 0;
1578 			ret = regset->get(t->task, regset,
1579 					  0, size, data, NULL);
1580 			if (unlikely(ret))
1581 				kfree(data);
1582 			else {
1583 				if (regset->core_note_type != NT_PRFPREG)
1584 					fill_note(&t->notes[i], "LINUX",
1585 						  regset->core_note_type,
1586 						  size, data);
1587 				else {
1588 					SET_PR_FPVALID(&t->prstatus, 1);
1589 					fill_note(&t->notes[i], "CORE",
1590 						  NT_PRFPREG, size, data);
1591 				}
1592 				*total += notesize(&t->notes[i]);
1593 			}
1594 		}
1595 	}
1596 
1597 	return 1;
1598 }
1599 
1600 static int fill_note_info(struct elfhdr *elf, int phdrs,
1601 			  struct elf_note_info *info,
1602 			  siginfo_t *siginfo, struct pt_regs *regs)
1603 {
1604 	struct task_struct *dump_task = current;
1605 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1606 	struct elf_thread_core_info *t;
1607 	struct elf_prpsinfo *psinfo;
1608 	struct core_thread *ct;
1609 	unsigned int i;
1610 
1611 	info->size = 0;
1612 	info->thread = NULL;
1613 
1614 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1615 	if (psinfo == NULL) {
1616 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1617 		return 0;
1618 	}
1619 
1620 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1621 
1622 	/*
1623 	 * Figure out how many notes we're going to need for each thread.
1624 	 */
1625 	info->thread_notes = 0;
1626 	for (i = 0; i < view->n; ++i)
1627 		if (view->regsets[i].core_note_type != 0)
1628 			++info->thread_notes;
1629 
1630 	/*
1631 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1632 	 * since it is our one special case.
1633 	 */
1634 	if (unlikely(info->thread_notes == 0) ||
1635 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1636 		WARN_ON(1);
1637 		return 0;
1638 	}
1639 
1640 	/*
1641 	 * Initialize the ELF file header.
1642 	 */
1643 	fill_elf_header(elf, phdrs,
1644 			view->e_machine, view->e_flags);
1645 
1646 	/*
1647 	 * Allocate a structure for each thread.
1648 	 */
1649 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1650 		t = kzalloc(offsetof(struct elf_thread_core_info,
1651 				     notes[info->thread_notes]),
1652 			    GFP_KERNEL);
1653 		if (unlikely(!t))
1654 			return 0;
1655 
1656 		t->task = ct->task;
1657 		if (ct->task == dump_task || !info->thread) {
1658 			t->next = info->thread;
1659 			info->thread = t;
1660 		} else {
1661 			/*
1662 			 * Make sure to keep the original task at
1663 			 * the head of the list.
1664 			 */
1665 			t->next = info->thread->next;
1666 			info->thread->next = t;
1667 		}
1668 	}
1669 
1670 	/*
1671 	 * Now fill in each thread's information.
1672 	 */
1673 	for (t = info->thread; t != NULL; t = t->next)
1674 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1675 			return 0;
1676 
1677 	/*
1678 	 * Fill in the two process-wide notes.
1679 	 */
1680 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1681 	info->size += notesize(&info->psinfo);
1682 
1683 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1684 	info->size += notesize(&info->signote);
1685 
1686 	fill_auxv_note(&info->auxv, current->mm);
1687 	info->size += notesize(&info->auxv);
1688 
1689 	if (fill_files_note(&info->files) == 0)
1690 		info->size += notesize(&info->files);
1691 
1692 	return 1;
1693 }
1694 
1695 static size_t get_note_info_size(struct elf_note_info *info)
1696 {
1697 	return info->size;
1698 }
1699 
1700 /*
1701  * Write all the notes for each thread.  When writing the first thread, the
1702  * process-wide notes are interleaved after the first thread-specific note.
1703  */
1704 static int write_note_info(struct elf_note_info *info,
1705 			   struct file *file, loff_t *foffset)
1706 {
1707 	bool first = 1;
1708 	struct elf_thread_core_info *t = info->thread;
1709 
1710 	do {
1711 		int i;
1712 
1713 		if (!writenote(&t->notes[0], file, foffset))
1714 			return 0;
1715 
1716 		if (first && !writenote(&info->psinfo, file, foffset))
1717 			return 0;
1718 		if (first && !writenote(&info->signote, file, foffset))
1719 			return 0;
1720 		if (first && !writenote(&info->auxv, file, foffset))
1721 			return 0;
1722 		if (first && info->files.data &&
1723 				!writenote(&info->files, file, foffset))
1724 			return 0;
1725 
1726 		for (i = 1; i < info->thread_notes; ++i)
1727 			if (t->notes[i].data &&
1728 			    !writenote(&t->notes[i], file, foffset))
1729 				return 0;
1730 
1731 		first = 0;
1732 		t = t->next;
1733 	} while (t);
1734 
1735 	return 1;
1736 }
1737 
1738 static void free_note_info(struct elf_note_info *info)
1739 {
1740 	struct elf_thread_core_info *threads = info->thread;
1741 	while (threads) {
1742 		unsigned int i;
1743 		struct elf_thread_core_info *t = threads;
1744 		threads = t->next;
1745 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1746 		for (i = 1; i < info->thread_notes; ++i)
1747 			kfree(t->notes[i].data);
1748 		kfree(t);
1749 	}
1750 	kfree(info->psinfo.data);
1751 	vfree(info->files.data);
1752 }
1753 
1754 #else
1755 
1756 /* Here is the structure in which status of each thread is captured. */
1757 struct elf_thread_status
1758 {
1759 	struct list_head list;
1760 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1761 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1762 	struct task_struct *thread;
1763 #ifdef ELF_CORE_COPY_XFPREGS
1764 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1765 #endif
1766 	struct memelfnote notes[3];
1767 	int num_notes;
1768 };
1769 
1770 /*
1771  * In order to add the specific thread information for the elf file format,
1772  * we need to keep a linked list of every threads pr_status and then create
1773  * a single section for them in the final core file.
1774  */
1775 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1776 {
1777 	int sz = 0;
1778 	struct task_struct *p = t->thread;
1779 	t->num_notes = 0;
1780 
1781 	fill_prstatus(&t->prstatus, p, signr);
1782 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1783 
1784 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1785 		  &(t->prstatus));
1786 	t->num_notes++;
1787 	sz += notesize(&t->notes[0]);
1788 
1789 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1790 								&t->fpu))) {
1791 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1792 			  &(t->fpu));
1793 		t->num_notes++;
1794 		sz += notesize(&t->notes[1]);
1795 	}
1796 
1797 #ifdef ELF_CORE_COPY_XFPREGS
1798 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1799 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1800 			  sizeof(t->xfpu), &t->xfpu);
1801 		t->num_notes++;
1802 		sz += notesize(&t->notes[2]);
1803 	}
1804 #endif
1805 	return sz;
1806 }
1807 
1808 struct elf_note_info {
1809 	struct memelfnote *notes;
1810 	struct memelfnote *notes_files;
1811 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1812 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1813 	struct list_head thread_list;
1814 	elf_fpregset_t *fpu;
1815 #ifdef ELF_CORE_COPY_XFPREGS
1816 	elf_fpxregset_t *xfpu;
1817 #endif
1818 	user_siginfo_t csigdata;
1819 	int thread_status_size;
1820 	int numnote;
1821 };
1822 
1823 static int elf_note_info_init(struct elf_note_info *info)
1824 {
1825 	memset(info, 0, sizeof(*info));
1826 	INIT_LIST_HEAD(&info->thread_list);
1827 
1828 	/* Allocate space for ELF notes */
1829 	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1830 	if (!info->notes)
1831 		return 0;
1832 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1833 	if (!info->psinfo)
1834 		return 0;
1835 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1836 	if (!info->prstatus)
1837 		return 0;
1838 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1839 	if (!info->fpu)
1840 		return 0;
1841 #ifdef ELF_CORE_COPY_XFPREGS
1842 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1843 	if (!info->xfpu)
1844 		return 0;
1845 #endif
1846 	return 1;
1847 }
1848 
1849 static int fill_note_info(struct elfhdr *elf, int phdrs,
1850 			  struct elf_note_info *info,
1851 			  siginfo_t *siginfo, struct pt_regs *regs)
1852 {
1853 	struct list_head *t;
1854 
1855 	if (!elf_note_info_init(info))
1856 		return 0;
1857 
1858 	if (siginfo->si_signo) {
1859 		struct core_thread *ct;
1860 		struct elf_thread_status *ets;
1861 
1862 		for (ct = current->mm->core_state->dumper.next;
1863 						ct; ct = ct->next) {
1864 			ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1865 			if (!ets)
1866 				return 0;
1867 
1868 			ets->thread = ct->task;
1869 			list_add(&ets->list, &info->thread_list);
1870 		}
1871 
1872 		list_for_each(t, &info->thread_list) {
1873 			int sz;
1874 
1875 			ets = list_entry(t, struct elf_thread_status, list);
1876 			sz = elf_dump_thread_status(siginfo->si_signo, ets);
1877 			info->thread_status_size += sz;
1878 		}
1879 	}
1880 	/* now collect the dump for the current */
1881 	memset(info->prstatus, 0, sizeof(*info->prstatus));
1882 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
1883 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1884 
1885 	/* Set up header */
1886 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1887 
1888 	/*
1889 	 * Set up the notes in similar form to SVR4 core dumps made
1890 	 * with info from their /proc.
1891 	 */
1892 
1893 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1894 		  sizeof(*info->prstatus), info->prstatus);
1895 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1896 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1897 		  sizeof(*info->psinfo), info->psinfo);
1898 
1899 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1900 	fill_auxv_note(info->notes + 3, current->mm);
1901 	info->numnote = 4;
1902 
1903 	if (fill_files_note(info->notes + info->numnote) == 0) {
1904 		info->notes_files = info->notes + info->numnote;
1905 		info->numnote++;
1906 	}
1907 
1908 	/* Try to dump the FPU. */
1909 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1910 							       info->fpu);
1911 	if (info->prstatus->pr_fpvalid)
1912 		fill_note(info->notes + info->numnote++,
1913 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1914 #ifdef ELF_CORE_COPY_XFPREGS
1915 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
1916 		fill_note(info->notes + info->numnote++,
1917 			  "LINUX", ELF_CORE_XFPREG_TYPE,
1918 			  sizeof(*info->xfpu), info->xfpu);
1919 #endif
1920 
1921 	return 1;
1922 }
1923 
1924 static size_t get_note_info_size(struct elf_note_info *info)
1925 {
1926 	int sz = 0;
1927 	int i;
1928 
1929 	for (i = 0; i < info->numnote; i++)
1930 		sz += notesize(info->notes + i);
1931 
1932 	sz += info->thread_status_size;
1933 
1934 	return sz;
1935 }
1936 
1937 static int write_note_info(struct elf_note_info *info,
1938 			   struct file *file, loff_t *foffset)
1939 {
1940 	int i;
1941 	struct list_head *t;
1942 
1943 	for (i = 0; i < info->numnote; i++)
1944 		if (!writenote(info->notes + i, file, foffset))
1945 			return 0;
1946 
1947 	/* write out the thread status notes section */
1948 	list_for_each(t, &info->thread_list) {
1949 		struct elf_thread_status *tmp =
1950 				list_entry(t, struct elf_thread_status, list);
1951 
1952 		for (i = 0; i < tmp->num_notes; i++)
1953 			if (!writenote(&tmp->notes[i], file, foffset))
1954 				return 0;
1955 	}
1956 
1957 	return 1;
1958 }
1959 
1960 static void free_note_info(struct elf_note_info *info)
1961 {
1962 	while (!list_empty(&info->thread_list)) {
1963 		struct list_head *tmp = info->thread_list.next;
1964 		list_del(tmp);
1965 		kfree(list_entry(tmp, struct elf_thread_status, list));
1966 	}
1967 
1968 	/* Free data possibly allocated by fill_files_note(): */
1969 	if (info->notes_files)
1970 		vfree(info->notes_files->data);
1971 
1972 	kfree(info->prstatus);
1973 	kfree(info->psinfo);
1974 	kfree(info->notes);
1975 	kfree(info->fpu);
1976 #ifdef ELF_CORE_COPY_XFPREGS
1977 	kfree(info->xfpu);
1978 #endif
1979 }
1980 
1981 #endif
1982 
1983 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1984 					struct vm_area_struct *gate_vma)
1985 {
1986 	struct vm_area_struct *ret = tsk->mm->mmap;
1987 
1988 	if (ret)
1989 		return ret;
1990 	return gate_vma;
1991 }
1992 /*
1993  * Helper function for iterating across a vma list.  It ensures that the caller
1994  * will visit `gate_vma' prior to terminating the search.
1995  */
1996 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1997 					struct vm_area_struct *gate_vma)
1998 {
1999 	struct vm_area_struct *ret;
2000 
2001 	ret = this_vma->vm_next;
2002 	if (ret)
2003 		return ret;
2004 	if (this_vma == gate_vma)
2005 		return NULL;
2006 	return gate_vma;
2007 }
2008 
2009 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2010 			     elf_addr_t e_shoff, int segs)
2011 {
2012 	elf->e_shoff = e_shoff;
2013 	elf->e_shentsize = sizeof(*shdr4extnum);
2014 	elf->e_shnum = 1;
2015 	elf->e_shstrndx = SHN_UNDEF;
2016 
2017 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2018 
2019 	shdr4extnum->sh_type = SHT_NULL;
2020 	shdr4extnum->sh_size = elf->e_shnum;
2021 	shdr4extnum->sh_link = elf->e_shstrndx;
2022 	shdr4extnum->sh_info = segs;
2023 }
2024 
2025 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
2026 				     unsigned long mm_flags)
2027 {
2028 	struct vm_area_struct *vma;
2029 	size_t size = 0;
2030 
2031 	for (vma = first_vma(current, gate_vma); vma != NULL;
2032 	     vma = next_vma(vma, gate_vma))
2033 		size += vma_dump_size(vma, mm_flags);
2034 	return size;
2035 }
2036 
2037 /*
2038  * Actual dumper
2039  *
2040  * This is a two-pass process; first we find the offsets of the bits,
2041  * and then they are actually written out.  If we run out of core limit
2042  * we just truncate.
2043  */
2044 static int elf_core_dump(struct coredump_params *cprm)
2045 {
2046 	int has_dumped = 0;
2047 	mm_segment_t fs;
2048 	int segs;
2049 	size_t size = 0;
2050 	struct vm_area_struct *vma, *gate_vma;
2051 	struct elfhdr *elf = NULL;
2052 	loff_t offset = 0, dataoff, foffset;
2053 	struct elf_note_info info = { };
2054 	struct elf_phdr *phdr4note = NULL;
2055 	struct elf_shdr *shdr4extnum = NULL;
2056 	Elf_Half e_phnum;
2057 	elf_addr_t e_shoff;
2058 
2059 	/*
2060 	 * We no longer stop all VM operations.
2061 	 *
2062 	 * This is because those proceses that could possibly change map_count
2063 	 * or the mmap / vma pages are now blocked in do_exit on current
2064 	 * finishing this core dump.
2065 	 *
2066 	 * Only ptrace can touch these memory addresses, but it doesn't change
2067 	 * the map_count or the pages allocated. So no possibility of crashing
2068 	 * exists while dumping the mm->vm_next areas to the core file.
2069 	 */
2070 
2071 	/* alloc memory for large data structures: too large to be on stack */
2072 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2073 	if (!elf)
2074 		goto out;
2075 	/*
2076 	 * The number of segs are recored into ELF header as 16bit value.
2077 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2078 	 */
2079 	segs = current->mm->map_count;
2080 	segs += elf_core_extra_phdrs();
2081 
2082 	gate_vma = get_gate_vma(current->mm);
2083 	if (gate_vma != NULL)
2084 		segs++;
2085 
2086 	/* for notes section */
2087 	segs++;
2088 
2089 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2090 	 * this, kernel supports extended numbering. Have a look at
2091 	 * include/linux/elf.h for further information. */
2092 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2093 
2094 	/*
2095 	 * Collect all the non-memory information about the process for the
2096 	 * notes.  This also sets up the file header.
2097 	 */
2098 	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2099 		goto cleanup;
2100 
2101 	has_dumped = 1;
2102 
2103 	fs = get_fs();
2104 	set_fs(KERNEL_DS);
2105 
2106 	offset += sizeof(*elf);				/* Elf header */
2107 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2108 	foffset = offset;
2109 
2110 	/* Write notes phdr entry */
2111 	{
2112 		size_t sz = get_note_info_size(&info);
2113 
2114 		sz += elf_coredump_extra_notes_size();
2115 
2116 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2117 		if (!phdr4note)
2118 			goto end_coredump;
2119 
2120 		fill_elf_note_phdr(phdr4note, sz, offset);
2121 		offset += sz;
2122 	}
2123 
2124 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2125 
2126 	offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
2127 	offset += elf_core_extra_data_size();
2128 	e_shoff = offset;
2129 
2130 	if (e_phnum == PN_XNUM) {
2131 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2132 		if (!shdr4extnum)
2133 			goto end_coredump;
2134 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2135 	}
2136 
2137 	offset = dataoff;
2138 
2139 	size += sizeof(*elf);
2140 	if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
2141 		goto end_coredump;
2142 
2143 	size += sizeof(*phdr4note);
2144 	if (size > cprm->limit
2145 	    || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
2146 		goto end_coredump;
2147 
2148 	/* Write program headers for segments dump */
2149 	for (vma = first_vma(current, gate_vma); vma != NULL;
2150 			vma = next_vma(vma, gate_vma)) {
2151 		struct elf_phdr phdr;
2152 
2153 		phdr.p_type = PT_LOAD;
2154 		phdr.p_offset = offset;
2155 		phdr.p_vaddr = vma->vm_start;
2156 		phdr.p_paddr = 0;
2157 		phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
2158 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2159 		offset += phdr.p_filesz;
2160 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2161 		if (vma->vm_flags & VM_WRITE)
2162 			phdr.p_flags |= PF_W;
2163 		if (vma->vm_flags & VM_EXEC)
2164 			phdr.p_flags |= PF_X;
2165 		phdr.p_align = ELF_EXEC_PAGESIZE;
2166 
2167 		size += sizeof(phdr);
2168 		if (size > cprm->limit
2169 		    || !dump_write(cprm->file, &phdr, sizeof(phdr)))
2170 			goto end_coredump;
2171 	}
2172 
2173 	if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
2174 		goto end_coredump;
2175 
2176  	/* write out the notes section */
2177 	if (!write_note_info(&info, cprm->file, &foffset))
2178 		goto end_coredump;
2179 
2180 	if (elf_coredump_extra_notes_write(cprm->file, &foffset))
2181 		goto end_coredump;
2182 
2183 	/* Align to page */
2184 	if (!dump_seek(cprm->file, dataoff - foffset))
2185 		goto end_coredump;
2186 
2187 	for (vma = first_vma(current, gate_vma); vma != NULL;
2188 			vma = next_vma(vma, gate_vma)) {
2189 		unsigned long addr;
2190 		unsigned long end;
2191 
2192 		end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2193 
2194 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2195 			struct page *page;
2196 			int stop;
2197 
2198 			page = get_dump_page(addr);
2199 			if (page) {
2200 				void *kaddr = kmap(page);
2201 				stop = ((size += PAGE_SIZE) > cprm->limit) ||
2202 					!dump_write(cprm->file, kaddr,
2203 						    PAGE_SIZE);
2204 				kunmap(page);
2205 				page_cache_release(page);
2206 			} else
2207 				stop = !dump_seek(cprm->file, PAGE_SIZE);
2208 			if (stop)
2209 				goto end_coredump;
2210 		}
2211 	}
2212 
2213 	if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
2214 		goto end_coredump;
2215 
2216 	if (e_phnum == PN_XNUM) {
2217 		size += sizeof(*shdr4extnum);
2218 		if (size > cprm->limit
2219 		    || !dump_write(cprm->file, shdr4extnum,
2220 				   sizeof(*shdr4extnum)))
2221 			goto end_coredump;
2222 	}
2223 
2224 end_coredump:
2225 	set_fs(fs);
2226 
2227 cleanup:
2228 	free_note_info(&info);
2229 	kfree(shdr4extnum);
2230 	kfree(phdr4note);
2231 	kfree(elf);
2232 out:
2233 	return has_dumped;
2234 }
2235 
2236 #endif		/* CONFIG_ELF_CORE */
2237 
2238 static int __init init_elf_binfmt(void)
2239 {
2240 	register_binfmt(&elf_format);
2241 	return 0;
2242 }
2243 
2244 static void __exit exit_elf_binfmt(void)
2245 {
2246 	/* Remove the COFF and ELF loaders. */
2247 	unregister_binfmt(&elf_format);
2248 }
2249 
2250 core_initcall(init_elf_binfmt);
2251 module_exit(exit_elf_binfmt);
2252 MODULE_LICENSE("GPL");
2253