xref: /openbmc/linux/fs/binfmt_elf.c (revision dea54fba)
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/sched/cputime.h>
41 #include <linux/cred.h>
42 #include <linux/dax.h>
43 #include <linux/uaccess.h>
44 #include <asm/param.h>
45 #include <asm/page.h>
46 
47 #ifndef user_long_t
48 #define user_long_t long
49 #endif
50 #ifndef user_siginfo_t
51 #define user_siginfo_t siginfo_t
52 #endif
53 
54 static int load_elf_binary(struct linux_binprm *bprm);
55 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
56 				int, int, unsigned long);
57 
58 #ifdef CONFIG_USELIB
59 static int load_elf_library(struct file *);
60 #else
61 #define load_elf_library NULL
62 #endif
63 
64 /*
65  * If we don't support core dumping, then supply a NULL so we
66  * don't even try.
67  */
68 #ifdef CONFIG_ELF_CORE
69 static int elf_core_dump(struct coredump_params *cprm);
70 #else
71 #define elf_core_dump	NULL
72 #endif
73 
74 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
75 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
76 #else
77 #define ELF_MIN_ALIGN	PAGE_SIZE
78 #endif
79 
80 #ifndef ELF_CORE_EFLAGS
81 #define ELF_CORE_EFLAGS	0
82 #endif
83 
84 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
85 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
86 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
87 
88 static struct linux_binfmt elf_format = {
89 	.module		= THIS_MODULE,
90 	.load_binary	= load_elf_binary,
91 	.load_shlib	= load_elf_library,
92 	.core_dump	= elf_core_dump,
93 	.min_coredump	= ELF_EXEC_PAGESIZE,
94 };
95 
96 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
97 
98 static int set_brk(unsigned long start, unsigned long end, int prot)
99 {
100 	start = ELF_PAGEALIGN(start);
101 	end = ELF_PAGEALIGN(end);
102 	if (end > start) {
103 		/*
104 		 * Map the last of the bss segment.
105 		 * If the header is requesting these pages to be
106 		 * executable, honour that (ppc32 needs this).
107 		 */
108 		int error = vm_brk_flags(start, end - start,
109 				prot & PROT_EXEC ? VM_EXEC : 0);
110 		if (error)
111 			return error;
112 	}
113 	current->mm->start_brk = current->mm->brk = end;
114 	return 0;
115 }
116 
117 /* We need to explicitly zero any fractional pages
118    after the data section (i.e. bss).  This would
119    contain the junk from the file that should not
120    be in memory
121  */
122 static int padzero(unsigned long elf_bss)
123 {
124 	unsigned long nbyte;
125 
126 	nbyte = ELF_PAGEOFFSET(elf_bss);
127 	if (nbyte) {
128 		nbyte = ELF_MIN_ALIGN - nbyte;
129 		if (clear_user((void __user *) elf_bss, nbyte))
130 			return -EFAULT;
131 	}
132 	return 0;
133 }
134 
135 /* Let's use some macros to make this stack manipulation a little clearer */
136 #ifdef CONFIG_STACK_GROWSUP
137 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
138 #define STACK_ROUND(sp, items) \
139 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
140 #define STACK_ALLOC(sp, len) ({ \
141 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
142 	old_sp; })
143 #else
144 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
145 #define STACK_ROUND(sp, items) \
146 	(((unsigned long) (sp - items)) &~ 15UL)
147 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
148 #endif
149 
150 #ifndef ELF_BASE_PLATFORM
151 /*
152  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
153  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
154  * will be copied to the user stack in the same manner as AT_PLATFORM.
155  */
156 #define ELF_BASE_PLATFORM NULL
157 #endif
158 
159 static int
160 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
161 		unsigned long load_addr, unsigned long interp_load_addr)
162 {
163 	unsigned long p = bprm->p;
164 	int argc = bprm->argc;
165 	int envc = bprm->envc;
166 	elf_addr_t __user *sp;
167 	elf_addr_t __user *u_platform;
168 	elf_addr_t __user *u_base_platform;
169 	elf_addr_t __user *u_rand_bytes;
170 	const char *k_platform = ELF_PLATFORM;
171 	const char *k_base_platform = ELF_BASE_PLATFORM;
172 	unsigned char k_rand_bytes[16];
173 	int items;
174 	elf_addr_t *elf_info;
175 	int ei_index = 0;
176 	const struct cred *cred = current_cred();
177 	struct vm_area_struct *vma;
178 
179 	/*
180 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
181 	 * evictions by the processes running on the same package. One
182 	 * thing we can do is to shuffle the initial stack for them.
183 	 */
184 
185 	p = arch_align_stack(p);
186 
187 	/*
188 	 * If this architecture has a platform capability string, copy it
189 	 * to userspace.  In some cases (Sparc), this info is impossible
190 	 * for userspace to get any other way, in others (i386) it is
191 	 * merely difficult.
192 	 */
193 	u_platform = NULL;
194 	if (k_platform) {
195 		size_t len = strlen(k_platform) + 1;
196 
197 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
198 		if (__copy_to_user(u_platform, k_platform, len))
199 			return -EFAULT;
200 	}
201 
202 	/*
203 	 * If this architecture has a "base" platform capability
204 	 * string, copy it to userspace.
205 	 */
206 	u_base_platform = NULL;
207 	if (k_base_platform) {
208 		size_t len = strlen(k_base_platform) + 1;
209 
210 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
211 		if (__copy_to_user(u_base_platform, k_base_platform, len))
212 			return -EFAULT;
213 	}
214 
215 	/*
216 	 * Generate 16 random bytes for userspace PRNG seeding.
217 	 */
218 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
219 	u_rand_bytes = (elf_addr_t __user *)
220 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
221 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
222 		return -EFAULT;
223 
224 	/* Create the ELF interpreter info */
225 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
226 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
227 #define NEW_AUX_ENT(id, val) \
228 	do { \
229 		elf_info[ei_index++] = id; \
230 		elf_info[ei_index++] = val; \
231 	} while (0)
232 
233 #ifdef ARCH_DLINFO
234 	/*
235 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
236 	 * AUXV.
237 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
238 	 * ARCH_DLINFO changes
239 	 */
240 	ARCH_DLINFO;
241 #endif
242 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
243 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
244 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
245 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
246 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
247 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
248 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
249 	NEW_AUX_ENT(AT_FLAGS, 0);
250 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
251 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
252 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
253 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
254 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
255  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
256 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
257 #ifdef ELF_HWCAP2
258 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
259 #endif
260 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
261 	if (k_platform) {
262 		NEW_AUX_ENT(AT_PLATFORM,
263 			    (elf_addr_t)(unsigned long)u_platform);
264 	}
265 	if (k_base_platform) {
266 		NEW_AUX_ENT(AT_BASE_PLATFORM,
267 			    (elf_addr_t)(unsigned long)u_base_platform);
268 	}
269 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
270 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
271 	}
272 #undef NEW_AUX_ENT
273 	/* AT_NULL is zero; clear the rest too */
274 	memset(&elf_info[ei_index], 0,
275 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
276 
277 	/* And advance past the AT_NULL entry.  */
278 	ei_index += 2;
279 
280 	sp = STACK_ADD(p, ei_index);
281 
282 	items = (argc + 1) + (envc + 1) + 1;
283 	bprm->p = STACK_ROUND(sp, items);
284 
285 	/* Point sp at the lowest address on the stack */
286 #ifdef CONFIG_STACK_GROWSUP
287 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
288 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
289 #else
290 	sp = (elf_addr_t __user *)bprm->p;
291 #endif
292 
293 
294 	/*
295 	 * Grow the stack manually; some architectures have a limit on how
296 	 * far ahead a user-space access may be in order to grow the stack.
297 	 */
298 	vma = find_extend_vma(current->mm, bprm->p);
299 	if (!vma)
300 		return -EFAULT;
301 
302 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
303 	if (__put_user(argc, sp++))
304 		return -EFAULT;
305 
306 	/* Populate list of argv pointers back to argv strings. */
307 	p = current->mm->arg_end = current->mm->arg_start;
308 	while (argc-- > 0) {
309 		size_t len;
310 		if (__put_user((elf_addr_t)p, sp++))
311 			return -EFAULT;
312 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
313 		if (!len || len > MAX_ARG_STRLEN)
314 			return -EINVAL;
315 		p += len;
316 	}
317 	if (__put_user(0, sp++))
318 		return -EFAULT;
319 	current->mm->arg_end = p;
320 
321 	/* Populate list of envp pointers back to envp strings. */
322 	current->mm->env_end = current->mm->env_start = p;
323 	while (envc-- > 0) {
324 		size_t len;
325 		if (__put_user((elf_addr_t)p, sp++))
326 			return -EFAULT;
327 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
328 		if (!len || len > MAX_ARG_STRLEN)
329 			return -EINVAL;
330 		p += len;
331 	}
332 	if (__put_user(0, sp++))
333 		return -EFAULT;
334 	current->mm->env_end = p;
335 
336 	/* Put the elf_info on the stack in the right place.  */
337 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
338 		return -EFAULT;
339 	return 0;
340 }
341 
342 #ifndef elf_map
343 
344 static unsigned long elf_map(struct file *filep, unsigned long addr,
345 		struct elf_phdr *eppnt, int prot, int type,
346 		unsigned long total_size)
347 {
348 	unsigned long map_addr;
349 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
350 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
351 	addr = ELF_PAGESTART(addr);
352 	size = ELF_PAGEALIGN(size);
353 
354 	/* mmap() will return -EINVAL if given a zero size, but a
355 	 * segment with zero filesize is perfectly valid */
356 	if (!size)
357 		return addr;
358 
359 	/*
360 	* total_size is the size of the ELF (interpreter) image.
361 	* The _first_ mmap needs to know the full size, otherwise
362 	* randomization might put this image into an overlapping
363 	* position with the ELF binary image. (since size < total_size)
364 	* So we first map the 'big' image - and unmap the remainder at
365 	* the end. (which unmap is needed for ELF images with holes.)
366 	*/
367 	if (total_size) {
368 		total_size = ELF_PAGEALIGN(total_size);
369 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
370 		if (!BAD_ADDR(map_addr))
371 			vm_munmap(map_addr+size, total_size-size);
372 	} else
373 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
374 
375 	return(map_addr);
376 }
377 
378 #endif /* !elf_map */
379 
380 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
381 {
382 	int i, first_idx = -1, last_idx = -1;
383 
384 	for (i = 0; i < nr; i++) {
385 		if (cmds[i].p_type == PT_LOAD) {
386 			last_idx = i;
387 			if (first_idx == -1)
388 				first_idx = i;
389 		}
390 	}
391 	if (first_idx == -1)
392 		return 0;
393 
394 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
395 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
396 }
397 
398 /**
399  * load_elf_phdrs() - load ELF program headers
400  * @elf_ex:   ELF header of the binary whose program headers should be loaded
401  * @elf_file: the opened ELF binary file
402  *
403  * Loads ELF program headers from the binary file elf_file, which has the ELF
404  * header pointed to by elf_ex, into a newly allocated array. The caller is
405  * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
406  */
407 static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
408 				       struct file *elf_file)
409 {
410 	struct elf_phdr *elf_phdata = NULL;
411 	int retval, size, err = -1;
412 
413 	/*
414 	 * If the size of this structure has changed, then punt, since
415 	 * we will be doing the wrong thing.
416 	 */
417 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
418 		goto out;
419 
420 	/* Sanity check the number of program headers... */
421 	if (elf_ex->e_phnum < 1 ||
422 		elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
423 		goto out;
424 
425 	/* ...and their total size. */
426 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
427 	if (size > ELF_MIN_ALIGN)
428 		goto out;
429 
430 	elf_phdata = kmalloc(size, GFP_KERNEL);
431 	if (!elf_phdata)
432 		goto out;
433 
434 	/* Read in the program headers */
435 	retval = kernel_read(elf_file, elf_ex->e_phoff,
436 			     (char *)elf_phdata, size);
437 	if (retval != size) {
438 		err = (retval < 0) ? retval : -EIO;
439 		goto out;
440 	}
441 
442 	/* Success! */
443 	err = 0;
444 out:
445 	if (err) {
446 		kfree(elf_phdata);
447 		elf_phdata = NULL;
448 	}
449 	return elf_phdata;
450 }
451 
452 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
453 
454 /**
455  * struct arch_elf_state - arch-specific ELF loading state
456  *
457  * This structure is used to preserve architecture specific data during
458  * the loading of an ELF file, throughout the checking of architecture
459  * specific ELF headers & through to the point where the ELF load is
460  * known to be proceeding (ie. SET_PERSONALITY).
461  *
462  * This implementation is a dummy for architectures which require no
463  * specific state.
464  */
465 struct arch_elf_state {
466 };
467 
468 #define INIT_ARCH_ELF_STATE {}
469 
470 /**
471  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
472  * @ehdr:	The main ELF header
473  * @phdr:	The program header to check
474  * @elf:	The open ELF file
475  * @is_interp:	True if the phdr is from the interpreter of the ELF being
476  *		loaded, else false.
477  * @state:	Architecture-specific state preserved throughout the process
478  *		of loading the ELF.
479  *
480  * Inspects the program header phdr to validate its correctness and/or
481  * suitability for the system. Called once per ELF program header in the
482  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
483  * interpreter.
484  *
485  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
486  *         with that return code.
487  */
488 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
489 				   struct elf_phdr *phdr,
490 				   struct file *elf, bool is_interp,
491 				   struct arch_elf_state *state)
492 {
493 	/* Dummy implementation, always proceed */
494 	return 0;
495 }
496 
497 /**
498  * arch_check_elf() - check an ELF executable
499  * @ehdr:	The main ELF header
500  * @has_interp:	True if the ELF has an interpreter, else false.
501  * @interp_ehdr: The interpreter's ELF header
502  * @state:	Architecture-specific state preserved throughout the process
503  *		of loading the ELF.
504  *
505  * Provides a final opportunity for architecture code to reject the loading
506  * of the ELF & cause an exec syscall to return an error. This is called after
507  * all program headers to be checked by arch_elf_pt_proc have been.
508  *
509  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
510  *         with that return code.
511  */
512 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
513 				 struct elfhdr *interp_ehdr,
514 				 struct arch_elf_state *state)
515 {
516 	/* Dummy implementation, always proceed */
517 	return 0;
518 }
519 
520 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
521 
522 /* This is much more generalized than the library routine read function,
523    so we keep this separate.  Technically the library read function
524    is only provided so that we can read a.out libraries that have
525    an ELF header */
526 
527 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
528 		struct file *interpreter, unsigned long *interp_map_addr,
529 		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
530 {
531 	struct elf_phdr *eppnt;
532 	unsigned long load_addr = 0;
533 	int load_addr_set = 0;
534 	unsigned long last_bss = 0, elf_bss = 0;
535 	int bss_prot = 0;
536 	unsigned long error = ~0UL;
537 	unsigned long total_size;
538 	int i;
539 
540 	/* First of all, some simple consistency checks */
541 	if (interp_elf_ex->e_type != ET_EXEC &&
542 	    interp_elf_ex->e_type != ET_DYN)
543 		goto out;
544 	if (!elf_check_arch(interp_elf_ex))
545 		goto out;
546 	if (!interpreter->f_op->mmap)
547 		goto out;
548 
549 	total_size = total_mapping_size(interp_elf_phdata,
550 					interp_elf_ex->e_phnum);
551 	if (!total_size) {
552 		error = -EINVAL;
553 		goto out;
554 	}
555 
556 	eppnt = interp_elf_phdata;
557 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
558 		if (eppnt->p_type == PT_LOAD) {
559 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
560 			int elf_prot = 0;
561 			unsigned long vaddr = 0;
562 			unsigned long k, map_addr;
563 
564 			if (eppnt->p_flags & PF_R)
565 		    		elf_prot = PROT_READ;
566 			if (eppnt->p_flags & PF_W)
567 				elf_prot |= PROT_WRITE;
568 			if (eppnt->p_flags & PF_X)
569 				elf_prot |= PROT_EXEC;
570 			vaddr = eppnt->p_vaddr;
571 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
572 				elf_type |= MAP_FIXED;
573 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
574 				load_addr = -vaddr;
575 
576 			map_addr = elf_map(interpreter, load_addr + vaddr,
577 					eppnt, elf_prot, elf_type, total_size);
578 			total_size = 0;
579 			if (!*interp_map_addr)
580 				*interp_map_addr = map_addr;
581 			error = map_addr;
582 			if (BAD_ADDR(map_addr))
583 				goto out;
584 
585 			if (!load_addr_set &&
586 			    interp_elf_ex->e_type == ET_DYN) {
587 				load_addr = map_addr - ELF_PAGESTART(vaddr);
588 				load_addr_set = 1;
589 			}
590 
591 			/*
592 			 * Check to see if the section's size will overflow the
593 			 * allowed task size. Note that p_filesz must always be
594 			 * <= p_memsize so it's only necessary to check p_memsz.
595 			 */
596 			k = load_addr + eppnt->p_vaddr;
597 			if (BAD_ADDR(k) ||
598 			    eppnt->p_filesz > eppnt->p_memsz ||
599 			    eppnt->p_memsz > TASK_SIZE ||
600 			    TASK_SIZE - eppnt->p_memsz < k) {
601 				error = -ENOMEM;
602 				goto out;
603 			}
604 
605 			/*
606 			 * Find the end of the file mapping for this phdr, and
607 			 * keep track of the largest address we see for this.
608 			 */
609 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
610 			if (k > elf_bss)
611 				elf_bss = k;
612 
613 			/*
614 			 * Do the same thing for the memory mapping - between
615 			 * elf_bss and last_bss is the bss section.
616 			 */
617 			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
618 			if (k > last_bss) {
619 				last_bss = k;
620 				bss_prot = elf_prot;
621 			}
622 		}
623 	}
624 
625 	/*
626 	 * Now fill out the bss section: first pad the last page from
627 	 * the file up to the page boundary, and zero it from elf_bss
628 	 * up to the end of the page.
629 	 */
630 	if (padzero(elf_bss)) {
631 		error = -EFAULT;
632 		goto out;
633 	}
634 	/*
635 	 * Next, align both the file and mem bss up to the page size,
636 	 * since this is where elf_bss was just zeroed up to, and where
637 	 * last_bss will end after the vm_brk_flags() below.
638 	 */
639 	elf_bss = ELF_PAGEALIGN(elf_bss);
640 	last_bss = ELF_PAGEALIGN(last_bss);
641 	/* Finally, if there is still more bss to allocate, do it. */
642 	if (last_bss > elf_bss) {
643 		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
644 				bss_prot & PROT_EXEC ? VM_EXEC : 0);
645 		if (error)
646 			goto out;
647 	}
648 
649 	error = load_addr;
650 out:
651 	return error;
652 }
653 
654 /*
655  * These are the functions used to load ELF style executables and shared
656  * libraries.  There is no binary dependent code anywhere else.
657  */
658 
659 #ifndef STACK_RND_MASK
660 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
661 #endif
662 
663 static unsigned long randomize_stack_top(unsigned long stack_top)
664 {
665 	unsigned long random_variable = 0;
666 
667 	if (current->flags & PF_RANDOMIZE) {
668 		random_variable = get_random_long();
669 		random_variable &= STACK_RND_MASK;
670 		random_variable <<= PAGE_SHIFT;
671 	}
672 #ifdef CONFIG_STACK_GROWSUP
673 	return PAGE_ALIGN(stack_top) + random_variable;
674 #else
675 	return PAGE_ALIGN(stack_top) - random_variable;
676 #endif
677 }
678 
679 static int load_elf_binary(struct linux_binprm *bprm)
680 {
681 	struct file *interpreter = NULL; /* to shut gcc up */
682  	unsigned long load_addr = 0, load_bias = 0;
683 	int load_addr_set = 0;
684 	char * elf_interpreter = NULL;
685 	unsigned long error;
686 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
687 	unsigned long elf_bss, elf_brk;
688 	int bss_prot = 0;
689 	int retval, i;
690 	unsigned long elf_entry;
691 	unsigned long interp_load_addr = 0;
692 	unsigned long start_code, end_code, start_data, end_data;
693 	unsigned long reloc_func_desc __maybe_unused = 0;
694 	int executable_stack = EXSTACK_DEFAULT;
695 	struct pt_regs *regs = current_pt_regs();
696 	struct {
697 		struct elfhdr elf_ex;
698 		struct elfhdr interp_elf_ex;
699 	} *loc;
700 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
701 
702 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
703 	if (!loc) {
704 		retval = -ENOMEM;
705 		goto out_ret;
706 	}
707 
708 	/* Get the exec-header */
709 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
710 
711 	retval = -ENOEXEC;
712 	/* First of all, some simple consistency checks */
713 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
714 		goto out;
715 
716 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
717 		goto out;
718 	if (!elf_check_arch(&loc->elf_ex))
719 		goto out;
720 	if (!bprm->file->f_op->mmap)
721 		goto out;
722 
723 	elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
724 	if (!elf_phdata)
725 		goto out;
726 
727 	elf_ppnt = elf_phdata;
728 	elf_bss = 0;
729 	elf_brk = 0;
730 
731 	start_code = ~0UL;
732 	end_code = 0;
733 	start_data = 0;
734 	end_data = 0;
735 
736 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
737 		if (elf_ppnt->p_type == PT_INTERP) {
738 			/* This is the program interpreter used for
739 			 * shared libraries - for now assume that this
740 			 * is an a.out format binary
741 			 */
742 			retval = -ENOEXEC;
743 			if (elf_ppnt->p_filesz > PATH_MAX ||
744 			    elf_ppnt->p_filesz < 2)
745 				goto out_free_ph;
746 
747 			retval = -ENOMEM;
748 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
749 						  GFP_KERNEL);
750 			if (!elf_interpreter)
751 				goto out_free_ph;
752 
753 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
754 					     elf_interpreter,
755 					     elf_ppnt->p_filesz);
756 			if (retval != elf_ppnt->p_filesz) {
757 				if (retval >= 0)
758 					retval = -EIO;
759 				goto out_free_interp;
760 			}
761 			/* make sure path is NULL terminated */
762 			retval = -ENOEXEC;
763 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
764 				goto out_free_interp;
765 
766 			interpreter = open_exec(elf_interpreter);
767 			retval = PTR_ERR(interpreter);
768 			if (IS_ERR(interpreter))
769 				goto out_free_interp;
770 
771 			/*
772 			 * If the binary is not readable then enforce
773 			 * mm->dumpable = 0 regardless of the interpreter's
774 			 * permissions.
775 			 */
776 			would_dump(bprm, interpreter);
777 
778 			/* Get the exec headers */
779 			retval = kernel_read(interpreter, 0,
780 					     (void *)&loc->interp_elf_ex,
781 					     sizeof(loc->interp_elf_ex));
782 			if (retval != sizeof(loc->interp_elf_ex)) {
783 				if (retval >= 0)
784 					retval = -EIO;
785 				goto out_free_dentry;
786 			}
787 
788 			break;
789 		}
790 		elf_ppnt++;
791 	}
792 
793 	elf_ppnt = elf_phdata;
794 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
795 		switch (elf_ppnt->p_type) {
796 		case PT_GNU_STACK:
797 			if (elf_ppnt->p_flags & PF_X)
798 				executable_stack = EXSTACK_ENABLE_X;
799 			else
800 				executable_stack = EXSTACK_DISABLE_X;
801 			break;
802 
803 		case PT_LOPROC ... PT_HIPROC:
804 			retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
805 						  bprm->file, false,
806 						  &arch_state);
807 			if (retval)
808 				goto out_free_dentry;
809 			break;
810 		}
811 
812 	/* Some simple consistency checks for the interpreter */
813 	if (elf_interpreter) {
814 		retval = -ELIBBAD;
815 		/* Not an ELF interpreter */
816 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
817 			goto out_free_dentry;
818 		/* Verify the interpreter has a valid arch */
819 		if (!elf_check_arch(&loc->interp_elf_ex))
820 			goto out_free_dentry;
821 
822 		/* Load the interpreter program headers */
823 		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
824 						   interpreter);
825 		if (!interp_elf_phdata)
826 			goto out_free_dentry;
827 
828 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
829 		elf_ppnt = interp_elf_phdata;
830 		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
831 			switch (elf_ppnt->p_type) {
832 			case PT_LOPROC ... PT_HIPROC:
833 				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
834 							  elf_ppnt, interpreter,
835 							  true, &arch_state);
836 				if (retval)
837 					goto out_free_dentry;
838 				break;
839 			}
840 	}
841 
842 	/*
843 	 * Allow arch code to reject the ELF at this point, whilst it's
844 	 * still possible to return an error to the code that invoked
845 	 * the exec syscall.
846 	 */
847 	retval = arch_check_elf(&loc->elf_ex,
848 				!!interpreter, &loc->interp_elf_ex,
849 				&arch_state);
850 	if (retval)
851 		goto out_free_dentry;
852 
853 	/* Flush all traces of the currently running executable */
854 	retval = flush_old_exec(bprm);
855 	if (retval)
856 		goto out_free_dentry;
857 
858 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
859 	   may depend on the personality.  */
860 	SET_PERSONALITY2(loc->elf_ex, &arch_state);
861 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
862 		current->personality |= READ_IMPLIES_EXEC;
863 
864 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
865 		current->flags |= PF_RANDOMIZE;
866 
867 	setup_new_exec(bprm);
868 	install_exec_creds(bprm);
869 
870 	/* Do this so that we can load the interpreter, if need be.  We will
871 	   change some of these later */
872 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
873 				 executable_stack);
874 	if (retval < 0)
875 		goto out_free_dentry;
876 
877 	current->mm->start_stack = bprm->p;
878 
879 	/* Now we do a little grungy work by mmapping the ELF image into
880 	   the correct location in memory. */
881 	for(i = 0, elf_ppnt = elf_phdata;
882 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
883 		int elf_prot = 0, elf_flags;
884 		unsigned long k, vaddr;
885 		unsigned long total_size = 0;
886 
887 		if (elf_ppnt->p_type != PT_LOAD)
888 			continue;
889 
890 		if (unlikely (elf_brk > elf_bss)) {
891 			unsigned long nbyte;
892 
893 			/* There was a PT_LOAD segment with p_memsz > p_filesz
894 			   before this one. Map anonymous pages, if needed,
895 			   and clear the area.  */
896 			retval = set_brk(elf_bss + load_bias,
897 					 elf_brk + load_bias,
898 					 bss_prot);
899 			if (retval)
900 				goto out_free_dentry;
901 			nbyte = ELF_PAGEOFFSET(elf_bss);
902 			if (nbyte) {
903 				nbyte = ELF_MIN_ALIGN - nbyte;
904 				if (nbyte > elf_brk - elf_bss)
905 					nbyte = elf_brk - elf_bss;
906 				if (clear_user((void __user *)elf_bss +
907 							load_bias, nbyte)) {
908 					/*
909 					 * This bss-zeroing can fail if the ELF
910 					 * file specifies odd protections. So
911 					 * we don't check the return value
912 					 */
913 				}
914 			}
915 		}
916 
917 		if (elf_ppnt->p_flags & PF_R)
918 			elf_prot |= PROT_READ;
919 		if (elf_ppnt->p_flags & PF_W)
920 			elf_prot |= PROT_WRITE;
921 		if (elf_ppnt->p_flags & PF_X)
922 			elf_prot |= PROT_EXEC;
923 
924 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
925 
926 		vaddr = elf_ppnt->p_vaddr;
927 		/*
928 		 * If we are loading ET_EXEC or we have already performed
929 		 * the ET_DYN load_addr calculations, proceed normally.
930 		 */
931 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
932 			elf_flags |= MAP_FIXED;
933 		} else if (loc->elf_ex.e_type == ET_DYN) {
934 			/*
935 			 * This logic is run once for the first LOAD Program
936 			 * Header for ET_DYN binaries to calculate the
937 			 * randomization (load_bias) for all the LOAD
938 			 * Program Headers, and to calculate the entire
939 			 * size of the ELF mapping (total_size). (Note that
940 			 * load_addr_set is set to true later once the
941 			 * initial mapping is performed.)
942 			 *
943 			 * There are effectively two types of ET_DYN
944 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
945 			 * and loaders (ET_DYN without INTERP, since they
946 			 * _are_ the ELF interpreter). The loaders must
947 			 * be loaded away from programs since the program
948 			 * may otherwise collide with the loader (especially
949 			 * for ET_EXEC which does not have a randomized
950 			 * position). For example to handle invocations of
951 			 * "./ld.so someprog" to test out a new version of
952 			 * the loader, the subsequent program that the
953 			 * loader loads must avoid the loader itself, so
954 			 * they cannot share the same load range. Sufficient
955 			 * room for the brk must be allocated with the
956 			 * loader as well, since brk must be available with
957 			 * the loader.
958 			 *
959 			 * Therefore, programs are loaded offset from
960 			 * ELF_ET_DYN_BASE and loaders are loaded into the
961 			 * independently randomized mmap region (0 load_bias
962 			 * without MAP_FIXED).
963 			 */
964 			if (elf_interpreter) {
965 				load_bias = ELF_ET_DYN_BASE;
966 				if (current->flags & PF_RANDOMIZE)
967 					load_bias += arch_mmap_rnd();
968 				elf_flags |= MAP_FIXED;
969 			} else
970 				load_bias = 0;
971 
972 			/*
973 			 * Since load_bias is used for all subsequent loading
974 			 * calculations, we must lower it by the first vaddr
975 			 * so that the remaining calculations based on the
976 			 * ELF vaddrs will be correctly offset. The result
977 			 * is then page aligned.
978 			 */
979 			load_bias = ELF_PAGESTART(load_bias - vaddr);
980 
981 			total_size = total_mapping_size(elf_phdata,
982 							loc->elf_ex.e_phnum);
983 			if (!total_size) {
984 				retval = -EINVAL;
985 				goto out_free_dentry;
986 			}
987 		}
988 
989 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
990 				elf_prot, elf_flags, total_size);
991 		if (BAD_ADDR(error)) {
992 			retval = IS_ERR((void *)error) ?
993 				PTR_ERR((void*)error) : -EINVAL;
994 			goto out_free_dentry;
995 		}
996 
997 		if (!load_addr_set) {
998 			load_addr_set = 1;
999 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1000 			if (loc->elf_ex.e_type == ET_DYN) {
1001 				load_bias += error -
1002 				             ELF_PAGESTART(load_bias + vaddr);
1003 				load_addr += load_bias;
1004 				reloc_func_desc = load_bias;
1005 			}
1006 		}
1007 		k = elf_ppnt->p_vaddr;
1008 		if (k < start_code)
1009 			start_code = k;
1010 		if (start_data < k)
1011 			start_data = k;
1012 
1013 		/*
1014 		 * Check to see if the section's size will overflow the
1015 		 * allowed task size. Note that p_filesz must always be
1016 		 * <= p_memsz so it is only necessary to check p_memsz.
1017 		 */
1018 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1019 		    elf_ppnt->p_memsz > TASK_SIZE ||
1020 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1021 			/* set_brk can never work. Avoid overflows. */
1022 			retval = -EINVAL;
1023 			goto out_free_dentry;
1024 		}
1025 
1026 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1027 
1028 		if (k > elf_bss)
1029 			elf_bss = k;
1030 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1031 			end_code = k;
1032 		if (end_data < k)
1033 			end_data = k;
1034 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1035 		if (k > elf_brk) {
1036 			bss_prot = elf_prot;
1037 			elf_brk = k;
1038 		}
1039 	}
1040 
1041 	loc->elf_ex.e_entry += load_bias;
1042 	elf_bss += load_bias;
1043 	elf_brk += load_bias;
1044 	start_code += load_bias;
1045 	end_code += load_bias;
1046 	start_data += load_bias;
1047 	end_data += load_bias;
1048 
1049 	/* Calling set_brk effectively mmaps the pages that we need
1050 	 * for the bss and break sections.  We must do this before
1051 	 * mapping in the interpreter, to make sure it doesn't wind
1052 	 * up getting placed where the bss needs to go.
1053 	 */
1054 	retval = set_brk(elf_bss, elf_brk, bss_prot);
1055 	if (retval)
1056 		goto out_free_dentry;
1057 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1058 		retval = -EFAULT; /* Nobody gets to see this, but.. */
1059 		goto out_free_dentry;
1060 	}
1061 
1062 	if (elf_interpreter) {
1063 		unsigned long interp_map_addr = 0;
1064 
1065 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
1066 					    interpreter,
1067 					    &interp_map_addr,
1068 					    load_bias, interp_elf_phdata);
1069 		if (!IS_ERR((void *)elf_entry)) {
1070 			/*
1071 			 * load_elf_interp() returns relocation
1072 			 * adjustment
1073 			 */
1074 			interp_load_addr = elf_entry;
1075 			elf_entry += loc->interp_elf_ex.e_entry;
1076 		}
1077 		if (BAD_ADDR(elf_entry)) {
1078 			retval = IS_ERR((void *)elf_entry) ?
1079 					(int)elf_entry : -EINVAL;
1080 			goto out_free_dentry;
1081 		}
1082 		reloc_func_desc = interp_load_addr;
1083 
1084 		allow_write_access(interpreter);
1085 		fput(interpreter);
1086 		kfree(elf_interpreter);
1087 	} else {
1088 		elf_entry = loc->elf_ex.e_entry;
1089 		if (BAD_ADDR(elf_entry)) {
1090 			retval = -EINVAL;
1091 			goto out_free_dentry;
1092 		}
1093 	}
1094 
1095 	kfree(interp_elf_phdata);
1096 	kfree(elf_phdata);
1097 
1098 	set_binfmt(&elf_format);
1099 
1100 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1101 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1102 	if (retval < 0)
1103 		goto out;
1104 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1105 
1106 	retval = create_elf_tables(bprm, &loc->elf_ex,
1107 			  load_addr, interp_load_addr);
1108 	if (retval < 0)
1109 		goto out;
1110 	/* N.B. passed_fileno might not be initialized? */
1111 	current->mm->end_code = end_code;
1112 	current->mm->start_code = start_code;
1113 	current->mm->start_data = start_data;
1114 	current->mm->end_data = end_data;
1115 	current->mm->start_stack = bprm->p;
1116 
1117 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1118 		current->mm->brk = current->mm->start_brk =
1119 			arch_randomize_brk(current->mm);
1120 #ifdef compat_brk_randomized
1121 		current->brk_randomized = 1;
1122 #endif
1123 	}
1124 
1125 	if (current->personality & MMAP_PAGE_ZERO) {
1126 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1127 		   and some applications "depend" upon this behavior.
1128 		   Since we do not have the power to recompile these, we
1129 		   emulate the SVr4 behavior. Sigh. */
1130 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1131 				MAP_FIXED | MAP_PRIVATE, 0);
1132 	}
1133 
1134 #ifdef ELF_PLAT_INIT
1135 	/*
1136 	 * The ABI may specify that certain registers be set up in special
1137 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1138 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1139 	 * that the e_entry field is the address of the function descriptor
1140 	 * for the startup routine, rather than the address of the startup
1141 	 * routine itself.  This macro performs whatever initialization to
1142 	 * the regs structure is required as well as any relocations to the
1143 	 * function descriptor entries when executing dynamically links apps.
1144 	 */
1145 	ELF_PLAT_INIT(regs, reloc_func_desc);
1146 #endif
1147 
1148 	start_thread(regs, elf_entry, bprm->p);
1149 	retval = 0;
1150 out:
1151 	kfree(loc);
1152 out_ret:
1153 	return retval;
1154 
1155 	/* error cleanup */
1156 out_free_dentry:
1157 	kfree(interp_elf_phdata);
1158 	allow_write_access(interpreter);
1159 	if (interpreter)
1160 		fput(interpreter);
1161 out_free_interp:
1162 	kfree(elf_interpreter);
1163 out_free_ph:
1164 	kfree(elf_phdata);
1165 	goto out;
1166 }
1167 
1168 #ifdef CONFIG_USELIB
1169 /* This is really simpleminded and specialized - we are loading an
1170    a.out library that is given an ELF header. */
1171 static int load_elf_library(struct file *file)
1172 {
1173 	struct elf_phdr *elf_phdata;
1174 	struct elf_phdr *eppnt;
1175 	unsigned long elf_bss, bss, len;
1176 	int retval, error, i, j;
1177 	struct elfhdr elf_ex;
1178 
1179 	error = -ENOEXEC;
1180 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1181 	if (retval != sizeof(elf_ex))
1182 		goto out;
1183 
1184 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1185 		goto out;
1186 
1187 	/* First of all, some simple consistency checks */
1188 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1189 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1190 		goto out;
1191 
1192 	/* Now read in all of the header information */
1193 
1194 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1195 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1196 
1197 	error = -ENOMEM;
1198 	elf_phdata = kmalloc(j, GFP_KERNEL);
1199 	if (!elf_phdata)
1200 		goto out;
1201 
1202 	eppnt = elf_phdata;
1203 	error = -ENOEXEC;
1204 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1205 	if (retval != j)
1206 		goto out_free_ph;
1207 
1208 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1209 		if ((eppnt + i)->p_type == PT_LOAD)
1210 			j++;
1211 	if (j != 1)
1212 		goto out_free_ph;
1213 
1214 	while (eppnt->p_type != PT_LOAD)
1215 		eppnt++;
1216 
1217 	/* Now use mmap to map the library into memory. */
1218 	error = vm_mmap(file,
1219 			ELF_PAGESTART(eppnt->p_vaddr),
1220 			(eppnt->p_filesz +
1221 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1222 			PROT_READ | PROT_WRITE | PROT_EXEC,
1223 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1224 			(eppnt->p_offset -
1225 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1226 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1227 		goto out_free_ph;
1228 
1229 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1230 	if (padzero(elf_bss)) {
1231 		error = -EFAULT;
1232 		goto out_free_ph;
1233 	}
1234 
1235 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1236 			    ELF_MIN_ALIGN - 1);
1237 	bss = eppnt->p_memsz + eppnt->p_vaddr;
1238 	if (bss > len) {
1239 		error = vm_brk(len, bss - len);
1240 		if (error)
1241 			goto out_free_ph;
1242 	}
1243 	error = 0;
1244 
1245 out_free_ph:
1246 	kfree(elf_phdata);
1247 out:
1248 	return error;
1249 }
1250 #endif /* #ifdef CONFIG_USELIB */
1251 
1252 #ifdef CONFIG_ELF_CORE
1253 /*
1254  * ELF core dumper
1255  *
1256  * Modelled on fs/exec.c:aout_core_dump()
1257  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1258  */
1259 
1260 /*
1261  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1262  * that are useful for post-mortem analysis are included in every core dump.
1263  * In that way we ensure that the core dump is fully interpretable later
1264  * without matching up the same kernel and hardware config to see what PC values
1265  * meant. These special mappings include - vDSO, vsyscall, and other
1266  * architecture specific mappings
1267  */
1268 static bool always_dump_vma(struct vm_area_struct *vma)
1269 {
1270 	/* Any vsyscall mappings? */
1271 	if (vma == get_gate_vma(vma->vm_mm))
1272 		return true;
1273 
1274 	/*
1275 	 * Assume that all vmas with a .name op should always be dumped.
1276 	 * If this changes, a new vm_ops field can easily be added.
1277 	 */
1278 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1279 		return true;
1280 
1281 	/*
1282 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1283 	 * such as vDSO sections.
1284 	 */
1285 	if (arch_vma_name(vma))
1286 		return true;
1287 
1288 	return false;
1289 }
1290 
1291 /*
1292  * Decide what to dump of a segment, part, all or none.
1293  */
1294 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1295 				   unsigned long mm_flags)
1296 {
1297 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1298 
1299 	/* always dump the vdso and vsyscall sections */
1300 	if (always_dump_vma(vma))
1301 		goto whole;
1302 
1303 	if (vma->vm_flags & VM_DONTDUMP)
1304 		return 0;
1305 
1306 	/* support for DAX */
1307 	if (vma_is_dax(vma)) {
1308 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1309 			goto whole;
1310 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1311 			goto whole;
1312 		return 0;
1313 	}
1314 
1315 	/* Hugetlb memory check */
1316 	if (vma->vm_flags & VM_HUGETLB) {
1317 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1318 			goto whole;
1319 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1320 			goto whole;
1321 		return 0;
1322 	}
1323 
1324 	/* Do not dump I/O mapped devices or special mappings */
1325 	if (vma->vm_flags & VM_IO)
1326 		return 0;
1327 
1328 	/* By default, dump shared memory if mapped from an anonymous file. */
1329 	if (vma->vm_flags & VM_SHARED) {
1330 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1331 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1332 			goto whole;
1333 		return 0;
1334 	}
1335 
1336 	/* Dump segments that have been written to.  */
1337 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1338 		goto whole;
1339 	if (vma->vm_file == NULL)
1340 		return 0;
1341 
1342 	if (FILTER(MAPPED_PRIVATE))
1343 		goto whole;
1344 
1345 	/*
1346 	 * If this looks like the beginning of a DSO or executable mapping,
1347 	 * check for an ELF header.  If we find one, dump the first page to
1348 	 * aid in determining what was mapped here.
1349 	 */
1350 	if (FILTER(ELF_HEADERS) &&
1351 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1352 		u32 __user *header = (u32 __user *) vma->vm_start;
1353 		u32 word;
1354 		mm_segment_t fs = get_fs();
1355 		/*
1356 		 * Doing it this way gets the constant folded by GCC.
1357 		 */
1358 		union {
1359 			u32 cmp;
1360 			char elfmag[SELFMAG];
1361 		} magic;
1362 		BUILD_BUG_ON(SELFMAG != sizeof word);
1363 		magic.elfmag[EI_MAG0] = ELFMAG0;
1364 		magic.elfmag[EI_MAG1] = ELFMAG1;
1365 		magic.elfmag[EI_MAG2] = ELFMAG2;
1366 		magic.elfmag[EI_MAG3] = ELFMAG3;
1367 		/*
1368 		 * Switch to the user "segment" for get_user(),
1369 		 * then put back what elf_core_dump() had in place.
1370 		 */
1371 		set_fs(USER_DS);
1372 		if (unlikely(get_user(word, header)))
1373 			word = 0;
1374 		set_fs(fs);
1375 		if (word == magic.cmp)
1376 			return PAGE_SIZE;
1377 	}
1378 
1379 #undef	FILTER
1380 
1381 	return 0;
1382 
1383 whole:
1384 	return vma->vm_end - vma->vm_start;
1385 }
1386 
1387 /* An ELF note in memory */
1388 struct memelfnote
1389 {
1390 	const char *name;
1391 	int type;
1392 	unsigned int datasz;
1393 	void *data;
1394 };
1395 
1396 static int notesize(struct memelfnote *en)
1397 {
1398 	int sz;
1399 
1400 	sz = sizeof(struct elf_note);
1401 	sz += roundup(strlen(en->name) + 1, 4);
1402 	sz += roundup(en->datasz, 4);
1403 
1404 	return sz;
1405 }
1406 
1407 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1408 {
1409 	struct elf_note en;
1410 	en.n_namesz = strlen(men->name) + 1;
1411 	en.n_descsz = men->datasz;
1412 	en.n_type = men->type;
1413 
1414 	return dump_emit(cprm, &en, sizeof(en)) &&
1415 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1416 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1417 }
1418 
1419 static void fill_elf_header(struct elfhdr *elf, int segs,
1420 			    u16 machine, u32 flags)
1421 {
1422 	memset(elf, 0, sizeof(*elf));
1423 
1424 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1425 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1426 	elf->e_ident[EI_DATA] = ELF_DATA;
1427 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1428 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1429 
1430 	elf->e_type = ET_CORE;
1431 	elf->e_machine = machine;
1432 	elf->e_version = EV_CURRENT;
1433 	elf->e_phoff = sizeof(struct elfhdr);
1434 	elf->e_flags = flags;
1435 	elf->e_ehsize = sizeof(struct elfhdr);
1436 	elf->e_phentsize = sizeof(struct elf_phdr);
1437 	elf->e_phnum = segs;
1438 
1439 	return;
1440 }
1441 
1442 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1443 {
1444 	phdr->p_type = PT_NOTE;
1445 	phdr->p_offset = offset;
1446 	phdr->p_vaddr = 0;
1447 	phdr->p_paddr = 0;
1448 	phdr->p_filesz = sz;
1449 	phdr->p_memsz = 0;
1450 	phdr->p_flags = 0;
1451 	phdr->p_align = 0;
1452 	return;
1453 }
1454 
1455 static void fill_note(struct memelfnote *note, const char *name, int type,
1456 		unsigned int sz, void *data)
1457 {
1458 	note->name = name;
1459 	note->type = type;
1460 	note->datasz = sz;
1461 	note->data = data;
1462 	return;
1463 }
1464 
1465 /*
1466  * fill up all the fields in prstatus from the given task struct, except
1467  * registers which need to be filled up separately.
1468  */
1469 static void fill_prstatus(struct elf_prstatus *prstatus,
1470 		struct task_struct *p, long signr)
1471 {
1472 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1473 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1474 	prstatus->pr_sighold = p->blocked.sig[0];
1475 	rcu_read_lock();
1476 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1477 	rcu_read_unlock();
1478 	prstatus->pr_pid = task_pid_vnr(p);
1479 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1480 	prstatus->pr_sid = task_session_vnr(p);
1481 	if (thread_group_leader(p)) {
1482 		struct task_cputime cputime;
1483 
1484 		/*
1485 		 * This is the record for the group leader.  It shows the
1486 		 * group-wide total, not its individual thread total.
1487 		 */
1488 		thread_group_cputime(p, &cputime);
1489 		prstatus->pr_utime = ns_to_timeval(cputime.utime);
1490 		prstatus->pr_stime = ns_to_timeval(cputime.stime);
1491 	} else {
1492 		u64 utime, stime;
1493 
1494 		task_cputime(p, &utime, &stime);
1495 		prstatus->pr_utime = ns_to_timeval(utime);
1496 		prstatus->pr_stime = ns_to_timeval(stime);
1497 	}
1498 
1499 	prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1500 	prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1501 }
1502 
1503 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1504 		       struct mm_struct *mm)
1505 {
1506 	const struct cred *cred;
1507 	unsigned int i, len;
1508 
1509 	/* first copy the parameters from user space */
1510 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1511 
1512 	len = mm->arg_end - mm->arg_start;
1513 	if (len >= ELF_PRARGSZ)
1514 		len = ELF_PRARGSZ-1;
1515 	if (copy_from_user(&psinfo->pr_psargs,
1516 		           (const char __user *)mm->arg_start, len))
1517 		return -EFAULT;
1518 	for(i = 0; i < len; i++)
1519 		if (psinfo->pr_psargs[i] == 0)
1520 			psinfo->pr_psargs[i] = ' ';
1521 	psinfo->pr_psargs[len] = 0;
1522 
1523 	rcu_read_lock();
1524 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1525 	rcu_read_unlock();
1526 	psinfo->pr_pid = task_pid_vnr(p);
1527 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1528 	psinfo->pr_sid = task_session_vnr(p);
1529 
1530 	i = p->state ? ffz(~p->state) + 1 : 0;
1531 	psinfo->pr_state = i;
1532 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1533 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1534 	psinfo->pr_nice = task_nice(p);
1535 	psinfo->pr_flag = p->flags;
1536 	rcu_read_lock();
1537 	cred = __task_cred(p);
1538 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1539 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1540 	rcu_read_unlock();
1541 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1542 
1543 	return 0;
1544 }
1545 
1546 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1547 {
1548 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1549 	int i = 0;
1550 	do
1551 		i += 2;
1552 	while (auxv[i - 2] != AT_NULL);
1553 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1554 }
1555 
1556 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1557 		const siginfo_t *siginfo)
1558 {
1559 	mm_segment_t old_fs = get_fs();
1560 	set_fs(KERNEL_DS);
1561 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1562 	set_fs(old_fs);
1563 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1564 }
1565 
1566 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1567 /*
1568  * Format of NT_FILE note:
1569  *
1570  * long count     -- how many files are mapped
1571  * long page_size -- units for file_ofs
1572  * array of [COUNT] elements of
1573  *   long start
1574  *   long end
1575  *   long file_ofs
1576  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1577  */
1578 static int fill_files_note(struct memelfnote *note)
1579 {
1580 	struct vm_area_struct *vma;
1581 	unsigned count, size, names_ofs, remaining, n;
1582 	user_long_t *data;
1583 	user_long_t *start_end_ofs;
1584 	char *name_base, *name_curpos;
1585 
1586 	/* *Estimated* file count and total data size needed */
1587 	count = current->mm->map_count;
1588 	size = count * 64;
1589 
1590 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1591  alloc:
1592 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1593 		return -EINVAL;
1594 	size = round_up(size, PAGE_SIZE);
1595 	data = vmalloc(size);
1596 	if (!data)
1597 		return -ENOMEM;
1598 
1599 	start_end_ofs = data + 2;
1600 	name_base = name_curpos = ((char *)data) + names_ofs;
1601 	remaining = size - names_ofs;
1602 	count = 0;
1603 	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1604 		struct file *file;
1605 		const char *filename;
1606 
1607 		file = vma->vm_file;
1608 		if (!file)
1609 			continue;
1610 		filename = file_path(file, name_curpos, remaining);
1611 		if (IS_ERR(filename)) {
1612 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1613 				vfree(data);
1614 				size = size * 5 / 4;
1615 				goto alloc;
1616 			}
1617 			continue;
1618 		}
1619 
1620 		/* file_path() fills at the end, move name down */
1621 		/* n = strlen(filename) + 1: */
1622 		n = (name_curpos + remaining) - filename;
1623 		remaining = filename - name_curpos;
1624 		memmove(name_curpos, filename, n);
1625 		name_curpos += n;
1626 
1627 		*start_end_ofs++ = vma->vm_start;
1628 		*start_end_ofs++ = vma->vm_end;
1629 		*start_end_ofs++ = vma->vm_pgoff;
1630 		count++;
1631 	}
1632 
1633 	/* Now we know exact count of files, can store it */
1634 	data[0] = count;
1635 	data[1] = PAGE_SIZE;
1636 	/*
1637 	 * Count usually is less than current->mm->map_count,
1638 	 * we need to move filenames down.
1639 	 */
1640 	n = current->mm->map_count - count;
1641 	if (n != 0) {
1642 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1643 		memmove(name_base - shift_bytes, name_base,
1644 			name_curpos - name_base);
1645 		name_curpos -= shift_bytes;
1646 	}
1647 
1648 	size = name_curpos - (char *)data;
1649 	fill_note(note, "CORE", NT_FILE, size, data);
1650 	return 0;
1651 }
1652 
1653 #ifdef CORE_DUMP_USE_REGSET
1654 #include <linux/regset.h>
1655 
1656 struct elf_thread_core_info {
1657 	struct elf_thread_core_info *next;
1658 	struct task_struct *task;
1659 	struct elf_prstatus prstatus;
1660 	struct memelfnote notes[0];
1661 };
1662 
1663 struct elf_note_info {
1664 	struct elf_thread_core_info *thread;
1665 	struct memelfnote psinfo;
1666 	struct memelfnote signote;
1667 	struct memelfnote auxv;
1668 	struct memelfnote files;
1669 	user_siginfo_t csigdata;
1670 	size_t size;
1671 	int thread_notes;
1672 };
1673 
1674 /*
1675  * When a regset has a writeback hook, we call it on each thread before
1676  * dumping user memory.  On register window machines, this makes sure the
1677  * user memory backing the register data is up to date before we read it.
1678  */
1679 static void do_thread_regset_writeback(struct task_struct *task,
1680 				       const struct user_regset *regset)
1681 {
1682 	if (regset->writeback)
1683 		regset->writeback(task, regset, 1);
1684 }
1685 
1686 #ifndef PRSTATUS_SIZE
1687 #define PRSTATUS_SIZE(S, R) sizeof(S)
1688 #endif
1689 
1690 #ifndef SET_PR_FPVALID
1691 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1692 #endif
1693 
1694 static int fill_thread_core_info(struct elf_thread_core_info *t,
1695 				 const struct user_regset_view *view,
1696 				 long signr, size_t *total)
1697 {
1698 	unsigned int i;
1699 	unsigned int regset_size = view->regsets[0].n * view->regsets[0].size;
1700 
1701 	/*
1702 	 * NT_PRSTATUS is the one special case, because the regset data
1703 	 * goes into the pr_reg field inside the note contents, rather
1704 	 * than being the whole note contents.  We fill the reset in here.
1705 	 * We assume that regset 0 is NT_PRSTATUS.
1706 	 */
1707 	fill_prstatus(&t->prstatus, t->task, signr);
1708 	(void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset_size,
1709 				    &t->prstatus.pr_reg, NULL);
1710 
1711 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1712 		  PRSTATUS_SIZE(t->prstatus, regset_size), &t->prstatus);
1713 	*total += notesize(&t->notes[0]);
1714 
1715 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1716 
1717 	/*
1718 	 * Each other regset might generate a note too.  For each regset
1719 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1720 	 * all zero and we'll know to skip writing it later.
1721 	 */
1722 	for (i = 1; i < view->n; ++i) {
1723 		const struct user_regset *regset = &view->regsets[i];
1724 		do_thread_regset_writeback(t->task, regset);
1725 		if (regset->core_note_type && regset->get &&
1726 		    (!regset->active || regset->active(t->task, regset))) {
1727 			int ret;
1728 			size_t size = regset->n * regset->size;
1729 			void *data = kmalloc(size, GFP_KERNEL);
1730 			if (unlikely(!data))
1731 				return 0;
1732 			ret = regset->get(t->task, regset,
1733 					  0, size, data, NULL);
1734 			if (unlikely(ret))
1735 				kfree(data);
1736 			else {
1737 				if (regset->core_note_type != NT_PRFPREG)
1738 					fill_note(&t->notes[i], "LINUX",
1739 						  regset->core_note_type,
1740 						  size, data);
1741 				else {
1742 					SET_PR_FPVALID(&t->prstatus,
1743 							1, regset_size);
1744 					fill_note(&t->notes[i], "CORE",
1745 						  NT_PRFPREG, size, data);
1746 				}
1747 				*total += notesize(&t->notes[i]);
1748 			}
1749 		}
1750 	}
1751 
1752 	return 1;
1753 }
1754 
1755 static int fill_note_info(struct elfhdr *elf, int phdrs,
1756 			  struct elf_note_info *info,
1757 			  const siginfo_t *siginfo, struct pt_regs *regs)
1758 {
1759 	struct task_struct *dump_task = current;
1760 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1761 	struct elf_thread_core_info *t;
1762 	struct elf_prpsinfo *psinfo;
1763 	struct core_thread *ct;
1764 	unsigned int i;
1765 
1766 	info->size = 0;
1767 	info->thread = NULL;
1768 
1769 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1770 	if (psinfo == NULL) {
1771 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1772 		return 0;
1773 	}
1774 
1775 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1776 
1777 	/*
1778 	 * Figure out how many notes we're going to need for each thread.
1779 	 */
1780 	info->thread_notes = 0;
1781 	for (i = 0; i < view->n; ++i)
1782 		if (view->regsets[i].core_note_type != 0)
1783 			++info->thread_notes;
1784 
1785 	/*
1786 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1787 	 * since it is our one special case.
1788 	 */
1789 	if (unlikely(info->thread_notes == 0) ||
1790 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1791 		WARN_ON(1);
1792 		return 0;
1793 	}
1794 
1795 	/*
1796 	 * Initialize the ELF file header.
1797 	 */
1798 	fill_elf_header(elf, phdrs,
1799 			view->e_machine, view->e_flags);
1800 
1801 	/*
1802 	 * Allocate a structure for each thread.
1803 	 */
1804 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1805 		t = kzalloc(offsetof(struct elf_thread_core_info,
1806 				     notes[info->thread_notes]),
1807 			    GFP_KERNEL);
1808 		if (unlikely(!t))
1809 			return 0;
1810 
1811 		t->task = ct->task;
1812 		if (ct->task == dump_task || !info->thread) {
1813 			t->next = info->thread;
1814 			info->thread = t;
1815 		} else {
1816 			/*
1817 			 * Make sure to keep the original task at
1818 			 * the head of the list.
1819 			 */
1820 			t->next = info->thread->next;
1821 			info->thread->next = t;
1822 		}
1823 	}
1824 
1825 	/*
1826 	 * Now fill in each thread's information.
1827 	 */
1828 	for (t = info->thread; t != NULL; t = t->next)
1829 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1830 			return 0;
1831 
1832 	/*
1833 	 * Fill in the two process-wide notes.
1834 	 */
1835 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1836 	info->size += notesize(&info->psinfo);
1837 
1838 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1839 	info->size += notesize(&info->signote);
1840 
1841 	fill_auxv_note(&info->auxv, current->mm);
1842 	info->size += notesize(&info->auxv);
1843 
1844 	if (fill_files_note(&info->files) == 0)
1845 		info->size += notesize(&info->files);
1846 
1847 	return 1;
1848 }
1849 
1850 static size_t get_note_info_size(struct elf_note_info *info)
1851 {
1852 	return info->size;
1853 }
1854 
1855 /*
1856  * Write all the notes for each thread.  When writing the first thread, the
1857  * process-wide notes are interleaved after the first thread-specific note.
1858  */
1859 static int write_note_info(struct elf_note_info *info,
1860 			   struct coredump_params *cprm)
1861 {
1862 	bool first = true;
1863 	struct elf_thread_core_info *t = info->thread;
1864 
1865 	do {
1866 		int i;
1867 
1868 		if (!writenote(&t->notes[0], cprm))
1869 			return 0;
1870 
1871 		if (first && !writenote(&info->psinfo, cprm))
1872 			return 0;
1873 		if (first && !writenote(&info->signote, cprm))
1874 			return 0;
1875 		if (first && !writenote(&info->auxv, cprm))
1876 			return 0;
1877 		if (first && info->files.data &&
1878 				!writenote(&info->files, cprm))
1879 			return 0;
1880 
1881 		for (i = 1; i < info->thread_notes; ++i)
1882 			if (t->notes[i].data &&
1883 			    !writenote(&t->notes[i], cprm))
1884 				return 0;
1885 
1886 		first = false;
1887 		t = t->next;
1888 	} while (t);
1889 
1890 	return 1;
1891 }
1892 
1893 static void free_note_info(struct elf_note_info *info)
1894 {
1895 	struct elf_thread_core_info *threads = info->thread;
1896 	while (threads) {
1897 		unsigned int i;
1898 		struct elf_thread_core_info *t = threads;
1899 		threads = t->next;
1900 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1901 		for (i = 1; i < info->thread_notes; ++i)
1902 			kfree(t->notes[i].data);
1903 		kfree(t);
1904 	}
1905 	kfree(info->psinfo.data);
1906 	vfree(info->files.data);
1907 }
1908 
1909 #else
1910 
1911 /* Here is the structure in which status of each thread is captured. */
1912 struct elf_thread_status
1913 {
1914 	struct list_head list;
1915 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1916 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1917 	struct task_struct *thread;
1918 #ifdef ELF_CORE_COPY_XFPREGS
1919 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1920 #endif
1921 	struct memelfnote notes[3];
1922 	int num_notes;
1923 };
1924 
1925 /*
1926  * In order to add the specific thread information for the elf file format,
1927  * we need to keep a linked list of every threads pr_status and then create
1928  * a single section for them in the final core file.
1929  */
1930 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1931 {
1932 	int sz = 0;
1933 	struct task_struct *p = t->thread;
1934 	t->num_notes = 0;
1935 
1936 	fill_prstatus(&t->prstatus, p, signr);
1937 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1938 
1939 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1940 		  &(t->prstatus));
1941 	t->num_notes++;
1942 	sz += notesize(&t->notes[0]);
1943 
1944 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1945 								&t->fpu))) {
1946 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1947 			  &(t->fpu));
1948 		t->num_notes++;
1949 		sz += notesize(&t->notes[1]);
1950 	}
1951 
1952 #ifdef ELF_CORE_COPY_XFPREGS
1953 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1954 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1955 			  sizeof(t->xfpu), &t->xfpu);
1956 		t->num_notes++;
1957 		sz += notesize(&t->notes[2]);
1958 	}
1959 #endif
1960 	return sz;
1961 }
1962 
1963 struct elf_note_info {
1964 	struct memelfnote *notes;
1965 	struct memelfnote *notes_files;
1966 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1967 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1968 	struct list_head thread_list;
1969 	elf_fpregset_t *fpu;
1970 #ifdef ELF_CORE_COPY_XFPREGS
1971 	elf_fpxregset_t *xfpu;
1972 #endif
1973 	user_siginfo_t csigdata;
1974 	int thread_status_size;
1975 	int numnote;
1976 };
1977 
1978 static int elf_note_info_init(struct elf_note_info *info)
1979 {
1980 	memset(info, 0, sizeof(*info));
1981 	INIT_LIST_HEAD(&info->thread_list);
1982 
1983 	/* Allocate space for ELF notes */
1984 	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1985 	if (!info->notes)
1986 		return 0;
1987 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1988 	if (!info->psinfo)
1989 		return 0;
1990 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1991 	if (!info->prstatus)
1992 		return 0;
1993 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1994 	if (!info->fpu)
1995 		return 0;
1996 #ifdef ELF_CORE_COPY_XFPREGS
1997 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1998 	if (!info->xfpu)
1999 		return 0;
2000 #endif
2001 	return 1;
2002 }
2003 
2004 static int fill_note_info(struct elfhdr *elf, int phdrs,
2005 			  struct elf_note_info *info,
2006 			  const siginfo_t *siginfo, struct pt_regs *regs)
2007 {
2008 	struct list_head *t;
2009 	struct core_thread *ct;
2010 	struct elf_thread_status *ets;
2011 
2012 	if (!elf_note_info_init(info))
2013 		return 0;
2014 
2015 	for (ct = current->mm->core_state->dumper.next;
2016 					ct; ct = ct->next) {
2017 		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2018 		if (!ets)
2019 			return 0;
2020 
2021 		ets->thread = ct->task;
2022 		list_add(&ets->list, &info->thread_list);
2023 	}
2024 
2025 	list_for_each(t, &info->thread_list) {
2026 		int sz;
2027 
2028 		ets = list_entry(t, struct elf_thread_status, list);
2029 		sz = elf_dump_thread_status(siginfo->si_signo, ets);
2030 		info->thread_status_size += sz;
2031 	}
2032 	/* now collect the dump for the current */
2033 	memset(info->prstatus, 0, sizeof(*info->prstatus));
2034 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
2035 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2036 
2037 	/* Set up header */
2038 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2039 
2040 	/*
2041 	 * Set up the notes in similar form to SVR4 core dumps made
2042 	 * with info from their /proc.
2043 	 */
2044 
2045 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2046 		  sizeof(*info->prstatus), info->prstatus);
2047 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
2048 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2049 		  sizeof(*info->psinfo), info->psinfo);
2050 
2051 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2052 	fill_auxv_note(info->notes + 3, current->mm);
2053 	info->numnote = 4;
2054 
2055 	if (fill_files_note(info->notes + info->numnote) == 0) {
2056 		info->notes_files = info->notes + info->numnote;
2057 		info->numnote++;
2058 	}
2059 
2060 	/* Try to dump the FPU. */
2061 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2062 							       info->fpu);
2063 	if (info->prstatus->pr_fpvalid)
2064 		fill_note(info->notes + info->numnote++,
2065 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2066 #ifdef ELF_CORE_COPY_XFPREGS
2067 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
2068 		fill_note(info->notes + info->numnote++,
2069 			  "LINUX", ELF_CORE_XFPREG_TYPE,
2070 			  sizeof(*info->xfpu), info->xfpu);
2071 #endif
2072 
2073 	return 1;
2074 }
2075 
2076 static size_t get_note_info_size(struct elf_note_info *info)
2077 {
2078 	int sz = 0;
2079 	int i;
2080 
2081 	for (i = 0; i < info->numnote; i++)
2082 		sz += notesize(info->notes + i);
2083 
2084 	sz += info->thread_status_size;
2085 
2086 	return sz;
2087 }
2088 
2089 static int write_note_info(struct elf_note_info *info,
2090 			   struct coredump_params *cprm)
2091 {
2092 	int i;
2093 	struct list_head *t;
2094 
2095 	for (i = 0; i < info->numnote; i++)
2096 		if (!writenote(info->notes + i, cprm))
2097 			return 0;
2098 
2099 	/* write out the thread status notes section */
2100 	list_for_each(t, &info->thread_list) {
2101 		struct elf_thread_status *tmp =
2102 				list_entry(t, struct elf_thread_status, list);
2103 
2104 		for (i = 0; i < tmp->num_notes; i++)
2105 			if (!writenote(&tmp->notes[i], cprm))
2106 				return 0;
2107 	}
2108 
2109 	return 1;
2110 }
2111 
2112 static void free_note_info(struct elf_note_info *info)
2113 {
2114 	while (!list_empty(&info->thread_list)) {
2115 		struct list_head *tmp = info->thread_list.next;
2116 		list_del(tmp);
2117 		kfree(list_entry(tmp, struct elf_thread_status, list));
2118 	}
2119 
2120 	/* Free data possibly allocated by fill_files_note(): */
2121 	if (info->notes_files)
2122 		vfree(info->notes_files->data);
2123 
2124 	kfree(info->prstatus);
2125 	kfree(info->psinfo);
2126 	kfree(info->notes);
2127 	kfree(info->fpu);
2128 #ifdef ELF_CORE_COPY_XFPREGS
2129 	kfree(info->xfpu);
2130 #endif
2131 }
2132 
2133 #endif
2134 
2135 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2136 					struct vm_area_struct *gate_vma)
2137 {
2138 	struct vm_area_struct *ret = tsk->mm->mmap;
2139 
2140 	if (ret)
2141 		return ret;
2142 	return gate_vma;
2143 }
2144 /*
2145  * Helper function for iterating across a vma list.  It ensures that the caller
2146  * will visit `gate_vma' prior to terminating the search.
2147  */
2148 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2149 					struct vm_area_struct *gate_vma)
2150 {
2151 	struct vm_area_struct *ret;
2152 
2153 	ret = this_vma->vm_next;
2154 	if (ret)
2155 		return ret;
2156 	if (this_vma == gate_vma)
2157 		return NULL;
2158 	return gate_vma;
2159 }
2160 
2161 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2162 			     elf_addr_t e_shoff, int segs)
2163 {
2164 	elf->e_shoff = e_shoff;
2165 	elf->e_shentsize = sizeof(*shdr4extnum);
2166 	elf->e_shnum = 1;
2167 	elf->e_shstrndx = SHN_UNDEF;
2168 
2169 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2170 
2171 	shdr4extnum->sh_type = SHT_NULL;
2172 	shdr4extnum->sh_size = elf->e_shnum;
2173 	shdr4extnum->sh_link = elf->e_shstrndx;
2174 	shdr4extnum->sh_info = segs;
2175 }
2176 
2177 /*
2178  * Actual dumper
2179  *
2180  * This is a two-pass process; first we find the offsets of the bits,
2181  * and then they are actually written out.  If we run out of core limit
2182  * we just truncate.
2183  */
2184 static int elf_core_dump(struct coredump_params *cprm)
2185 {
2186 	int has_dumped = 0;
2187 	mm_segment_t fs;
2188 	int segs, i;
2189 	size_t vma_data_size = 0;
2190 	struct vm_area_struct *vma, *gate_vma;
2191 	struct elfhdr *elf = NULL;
2192 	loff_t offset = 0, dataoff;
2193 	struct elf_note_info info = { };
2194 	struct elf_phdr *phdr4note = NULL;
2195 	struct elf_shdr *shdr4extnum = NULL;
2196 	Elf_Half e_phnum;
2197 	elf_addr_t e_shoff;
2198 	elf_addr_t *vma_filesz = NULL;
2199 
2200 	/*
2201 	 * We no longer stop all VM operations.
2202 	 *
2203 	 * This is because those proceses that could possibly change map_count
2204 	 * or the mmap / vma pages are now blocked in do_exit on current
2205 	 * finishing this core dump.
2206 	 *
2207 	 * Only ptrace can touch these memory addresses, but it doesn't change
2208 	 * the map_count or the pages allocated. So no possibility of crashing
2209 	 * exists while dumping the mm->vm_next areas to the core file.
2210 	 */
2211 
2212 	/* alloc memory for large data structures: too large to be on stack */
2213 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2214 	if (!elf)
2215 		goto out;
2216 	/*
2217 	 * The number of segs are recored into ELF header as 16bit value.
2218 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2219 	 */
2220 	segs = current->mm->map_count;
2221 	segs += elf_core_extra_phdrs();
2222 
2223 	gate_vma = get_gate_vma(current->mm);
2224 	if (gate_vma != NULL)
2225 		segs++;
2226 
2227 	/* for notes section */
2228 	segs++;
2229 
2230 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2231 	 * this, kernel supports extended numbering. Have a look at
2232 	 * include/linux/elf.h for further information. */
2233 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2234 
2235 	/*
2236 	 * Collect all the non-memory information about the process for the
2237 	 * notes.  This also sets up the file header.
2238 	 */
2239 	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2240 		goto cleanup;
2241 
2242 	has_dumped = 1;
2243 
2244 	fs = get_fs();
2245 	set_fs(KERNEL_DS);
2246 
2247 	offset += sizeof(*elf);				/* Elf header */
2248 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2249 
2250 	/* Write notes phdr entry */
2251 	{
2252 		size_t sz = get_note_info_size(&info);
2253 
2254 		sz += elf_coredump_extra_notes_size();
2255 
2256 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2257 		if (!phdr4note)
2258 			goto end_coredump;
2259 
2260 		fill_elf_note_phdr(phdr4note, sz, offset);
2261 		offset += sz;
2262 	}
2263 
2264 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2265 
2266 	if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2267 		goto end_coredump;
2268 	vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz));
2269 	if (!vma_filesz)
2270 		goto end_coredump;
2271 
2272 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2273 			vma = next_vma(vma, gate_vma)) {
2274 		unsigned long dump_size;
2275 
2276 		dump_size = vma_dump_size(vma, cprm->mm_flags);
2277 		vma_filesz[i++] = dump_size;
2278 		vma_data_size += dump_size;
2279 	}
2280 
2281 	offset += vma_data_size;
2282 	offset += elf_core_extra_data_size();
2283 	e_shoff = offset;
2284 
2285 	if (e_phnum == PN_XNUM) {
2286 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2287 		if (!shdr4extnum)
2288 			goto end_coredump;
2289 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2290 	}
2291 
2292 	offset = dataoff;
2293 
2294 	if (!dump_emit(cprm, elf, sizeof(*elf)))
2295 		goto end_coredump;
2296 
2297 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2298 		goto end_coredump;
2299 
2300 	/* Write program headers for segments dump */
2301 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2302 			vma = next_vma(vma, gate_vma)) {
2303 		struct elf_phdr phdr;
2304 
2305 		phdr.p_type = PT_LOAD;
2306 		phdr.p_offset = offset;
2307 		phdr.p_vaddr = vma->vm_start;
2308 		phdr.p_paddr = 0;
2309 		phdr.p_filesz = vma_filesz[i++];
2310 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2311 		offset += phdr.p_filesz;
2312 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2313 		if (vma->vm_flags & VM_WRITE)
2314 			phdr.p_flags |= PF_W;
2315 		if (vma->vm_flags & VM_EXEC)
2316 			phdr.p_flags |= PF_X;
2317 		phdr.p_align = ELF_EXEC_PAGESIZE;
2318 
2319 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2320 			goto end_coredump;
2321 	}
2322 
2323 	if (!elf_core_write_extra_phdrs(cprm, offset))
2324 		goto end_coredump;
2325 
2326  	/* write out the notes section */
2327 	if (!write_note_info(&info, cprm))
2328 		goto end_coredump;
2329 
2330 	if (elf_coredump_extra_notes_write(cprm))
2331 		goto end_coredump;
2332 
2333 	/* Align to page */
2334 	if (!dump_skip(cprm, dataoff - cprm->pos))
2335 		goto end_coredump;
2336 
2337 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2338 			vma = next_vma(vma, gate_vma)) {
2339 		unsigned long addr;
2340 		unsigned long end;
2341 
2342 		end = vma->vm_start + vma_filesz[i++];
2343 
2344 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2345 			struct page *page;
2346 			int stop;
2347 
2348 			page = get_dump_page(addr);
2349 			if (page) {
2350 				void *kaddr = kmap(page);
2351 				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2352 				kunmap(page);
2353 				put_page(page);
2354 			} else
2355 				stop = !dump_skip(cprm, PAGE_SIZE);
2356 			if (stop)
2357 				goto end_coredump;
2358 		}
2359 	}
2360 	dump_truncate(cprm);
2361 
2362 	if (!elf_core_write_extra_data(cprm))
2363 		goto end_coredump;
2364 
2365 	if (e_phnum == PN_XNUM) {
2366 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2367 			goto end_coredump;
2368 	}
2369 
2370 end_coredump:
2371 	set_fs(fs);
2372 
2373 cleanup:
2374 	free_note_info(&info);
2375 	kfree(shdr4extnum);
2376 	vfree(vma_filesz);
2377 	kfree(phdr4note);
2378 	kfree(elf);
2379 out:
2380 	return has_dumped;
2381 }
2382 
2383 #endif		/* CONFIG_ELF_CORE */
2384 
2385 static int __init init_elf_binfmt(void)
2386 {
2387 	register_binfmt(&elf_format);
2388 	return 0;
2389 }
2390 
2391 static void __exit exit_elf_binfmt(void)
2392 {
2393 	/* Remove the COFF and ELF loaders. */
2394 	unregister_binfmt(&elf_format);
2395 }
2396 
2397 core_initcall(init_elf_binfmt);
2398 module_exit(exit_elf_binfmt);
2399 MODULE_LICENSE("GPL");
2400