1 /* 2 * linux/fs/binfmt_elf.c 3 * 4 * These are the functions used to load ELF format executables as used 5 * on SVr4 machines. Information on the format may be found in the book 6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 7 * Tools". 8 * 9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 10 */ 11 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/fs.h> 15 #include <linux/mm.h> 16 #include <linux/mman.h> 17 #include <linux/errno.h> 18 #include <linux/signal.h> 19 #include <linux/binfmts.h> 20 #include <linux/string.h> 21 #include <linux/file.h> 22 #include <linux/slab.h> 23 #include <linux/personality.h> 24 #include <linux/elfcore.h> 25 #include <linux/init.h> 26 #include <linux/highuid.h> 27 #include <linux/compiler.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/vmalloc.h> 31 #include <linux/security.h> 32 #include <linux/random.h> 33 #include <linux/elf.h> 34 #include <linux/utsname.h> 35 #include <linux/coredump.h> 36 #include <linux/sched.h> 37 #include <asm/uaccess.h> 38 #include <asm/param.h> 39 #include <asm/page.h> 40 41 #ifndef user_long_t 42 #define user_long_t long 43 #endif 44 #ifndef user_siginfo_t 45 #define user_siginfo_t siginfo_t 46 #endif 47 48 static int load_elf_binary(struct linux_binprm *bprm); 49 static int load_elf_library(struct file *); 50 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *, 51 int, int, unsigned long); 52 53 /* 54 * If we don't support core dumping, then supply a NULL so we 55 * don't even try. 56 */ 57 #ifdef CONFIG_ELF_CORE 58 static int elf_core_dump(struct coredump_params *cprm); 59 #else 60 #define elf_core_dump NULL 61 #endif 62 63 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 64 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 65 #else 66 #define ELF_MIN_ALIGN PAGE_SIZE 67 #endif 68 69 #ifndef ELF_CORE_EFLAGS 70 #define ELF_CORE_EFLAGS 0 71 #endif 72 73 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) 74 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 75 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 76 77 static struct linux_binfmt elf_format = { 78 .module = THIS_MODULE, 79 .load_binary = load_elf_binary, 80 .load_shlib = load_elf_library, 81 .core_dump = elf_core_dump, 82 .min_coredump = ELF_EXEC_PAGESIZE, 83 }; 84 85 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE) 86 87 static int set_brk(unsigned long start, unsigned long end) 88 { 89 start = ELF_PAGEALIGN(start); 90 end = ELF_PAGEALIGN(end); 91 if (end > start) { 92 unsigned long addr; 93 addr = vm_brk(start, end - start); 94 if (BAD_ADDR(addr)) 95 return addr; 96 } 97 current->mm->start_brk = current->mm->brk = end; 98 return 0; 99 } 100 101 /* We need to explicitly zero any fractional pages 102 after the data section (i.e. bss). This would 103 contain the junk from the file that should not 104 be in memory 105 */ 106 static int padzero(unsigned long elf_bss) 107 { 108 unsigned long nbyte; 109 110 nbyte = ELF_PAGEOFFSET(elf_bss); 111 if (nbyte) { 112 nbyte = ELF_MIN_ALIGN - nbyte; 113 if (clear_user((void __user *) elf_bss, nbyte)) 114 return -EFAULT; 115 } 116 return 0; 117 } 118 119 /* Let's use some macros to make this stack manipulation a little clearer */ 120 #ifdef CONFIG_STACK_GROWSUP 121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 122 #define STACK_ROUND(sp, items) \ 123 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 124 #define STACK_ALLOC(sp, len) ({ \ 125 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 126 old_sp; }) 127 #else 128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 129 #define STACK_ROUND(sp, items) \ 130 (((unsigned long) (sp - items)) &~ 15UL) 131 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) 132 #endif 133 134 #ifndef ELF_BASE_PLATFORM 135 /* 136 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. 137 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value 138 * will be copied to the user stack in the same manner as AT_PLATFORM. 139 */ 140 #define ELF_BASE_PLATFORM NULL 141 #endif 142 143 static int 144 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec, 145 unsigned long load_addr, unsigned long interp_load_addr) 146 { 147 unsigned long p = bprm->p; 148 int argc = bprm->argc; 149 int envc = bprm->envc; 150 elf_addr_t __user *argv; 151 elf_addr_t __user *envp; 152 elf_addr_t __user *sp; 153 elf_addr_t __user *u_platform; 154 elf_addr_t __user *u_base_platform; 155 elf_addr_t __user *u_rand_bytes; 156 const char *k_platform = ELF_PLATFORM; 157 const char *k_base_platform = ELF_BASE_PLATFORM; 158 unsigned char k_rand_bytes[16]; 159 int items; 160 elf_addr_t *elf_info; 161 int ei_index = 0; 162 const struct cred *cred = current_cred(); 163 struct vm_area_struct *vma; 164 165 /* 166 * In some cases (e.g. Hyper-Threading), we want to avoid L1 167 * evictions by the processes running on the same package. One 168 * thing we can do is to shuffle the initial stack for them. 169 */ 170 171 p = arch_align_stack(p); 172 173 /* 174 * If this architecture has a platform capability string, copy it 175 * to userspace. In some cases (Sparc), this info is impossible 176 * for userspace to get any other way, in others (i386) it is 177 * merely difficult. 178 */ 179 u_platform = NULL; 180 if (k_platform) { 181 size_t len = strlen(k_platform) + 1; 182 183 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 184 if (__copy_to_user(u_platform, k_platform, len)) 185 return -EFAULT; 186 } 187 188 /* 189 * If this architecture has a "base" platform capability 190 * string, copy it to userspace. 191 */ 192 u_base_platform = NULL; 193 if (k_base_platform) { 194 size_t len = strlen(k_base_platform) + 1; 195 196 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 197 if (__copy_to_user(u_base_platform, k_base_platform, len)) 198 return -EFAULT; 199 } 200 201 /* 202 * Generate 16 random bytes for userspace PRNG seeding. 203 */ 204 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); 205 u_rand_bytes = (elf_addr_t __user *) 206 STACK_ALLOC(p, sizeof(k_rand_bytes)); 207 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) 208 return -EFAULT; 209 210 /* Create the ELF interpreter info */ 211 elf_info = (elf_addr_t *)current->mm->saved_auxv; 212 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 213 #define NEW_AUX_ENT(id, val) \ 214 do { \ 215 elf_info[ei_index++] = id; \ 216 elf_info[ei_index++] = val; \ 217 } while (0) 218 219 #ifdef ARCH_DLINFO 220 /* 221 * ARCH_DLINFO must come first so PPC can do its special alignment of 222 * AUXV. 223 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 224 * ARCH_DLINFO changes 225 */ 226 ARCH_DLINFO; 227 #endif 228 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 229 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 230 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 231 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); 232 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 233 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 234 NEW_AUX_ENT(AT_BASE, interp_load_addr); 235 NEW_AUX_ENT(AT_FLAGS, 0); 236 NEW_AUX_ENT(AT_ENTRY, exec->e_entry); 237 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid)); 238 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid)); 239 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid)); 240 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid)); 241 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm)); 242 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); 243 #ifdef ELF_HWCAP2 244 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2); 245 #endif 246 NEW_AUX_ENT(AT_EXECFN, bprm->exec); 247 if (k_platform) { 248 NEW_AUX_ENT(AT_PLATFORM, 249 (elf_addr_t)(unsigned long)u_platform); 250 } 251 if (k_base_platform) { 252 NEW_AUX_ENT(AT_BASE_PLATFORM, 253 (elf_addr_t)(unsigned long)u_base_platform); 254 } 255 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) { 256 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data); 257 } 258 #undef NEW_AUX_ENT 259 /* AT_NULL is zero; clear the rest too */ 260 memset(&elf_info[ei_index], 0, 261 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]); 262 263 /* And advance past the AT_NULL entry. */ 264 ei_index += 2; 265 266 sp = STACK_ADD(p, ei_index); 267 268 items = (argc + 1) + (envc + 1) + 1; 269 bprm->p = STACK_ROUND(sp, items); 270 271 /* Point sp at the lowest address on the stack */ 272 #ifdef CONFIG_STACK_GROWSUP 273 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 274 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 275 #else 276 sp = (elf_addr_t __user *)bprm->p; 277 #endif 278 279 280 /* 281 * Grow the stack manually; some architectures have a limit on how 282 * far ahead a user-space access may be in order to grow the stack. 283 */ 284 vma = find_extend_vma(current->mm, bprm->p); 285 if (!vma) 286 return -EFAULT; 287 288 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 289 if (__put_user(argc, sp++)) 290 return -EFAULT; 291 argv = sp; 292 envp = argv + argc + 1; 293 294 /* Populate argv and envp */ 295 p = current->mm->arg_end = current->mm->arg_start; 296 while (argc-- > 0) { 297 size_t len; 298 if (__put_user((elf_addr_t)p, argv++)) 299 return -EFAULT; 300 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 301 if (!len || len > MAX_ARG_STRLEN) 302 return -EINVAL; 303 p += len; 304 } 305 if (__put_user(0, argv)) 306 return -EFAULT; 307 current->mm->arg_end = current->mm->env_start = p; 308 while (envc-- > 0) { 309 size_t len; 310 if (__put_user((elf_addr_t)p, envp++)) 311 return -EFAULT; 312 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 313 if (!len || len > MAX_ARG_STRLEN) 314 return -EINVAL; 315 p += len; 316 } 317 if (__put_user(0, envp)) 318 return -EFAULT; 319 current->mm->env_end = p; 320 321 /* Put the elf_info on the stack in the right place. */ 322 sp = (elf_addr_t __user *)envp + 1; 323 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t))) 324 return -EFAULT; 325 return 0; 326 } 327 328 #ifndef elf_map 329 330 static unsigned long elf_map(struct file *filep, unsigned long addr, 331 struct elf_phdr *eppnt, int prot, int type, 332 unsigned long total_size) 333 { 334 unsigned long map_addr; 335 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 336 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 337 addr = ELF_PAGESTART(addr); 338 size = ELF_PAGEALIGN(size); 339 340 /* mmap() will return -EINVAL if given a zero size, but a 341 * segment with zero filesize is perfectly valid */ 342 if (!size) 343 return addr; 344 345 /* 346 * total_size is the size of the ELF (interpreter) image. 347 * The _first_ mmap needs to know the full size, otherwise 348 * randomization might put this image into an overlapping 349 * position with the ELF binary image. (since size < total_size) 350 * So we first map the 'big' image - and unmap the remainder at 351 * the end. (which unmap is needed for ELF images with holes.) 352 */ 353 if (total_size) { 354 total_size = ELF_PAGEALIGN(total_size); 355 map_addr = vm_mmap(filep, addr, total_size, prot, type, off); 356 if (!BAD_ADDR(map_addr)) 357 vm_munmap(map_addr+size, total_size-size); 358 } else 359 map_addr = vm_mmap(filep, addr, size, prot, type, off); 360 361 return(map_addr); 362 } 363 364 #endif /* !elf_map */ 365 366 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr) 367 { 368 int i, first_idx = -1, last_idx = -1; 369 370 for (i = 0; i < nr; i++) { 371 if (cmds[i].p_type == PT_LOAD) { 372 last_idx = i; 373 if (first_idx == -1) 374 first_idx = i; 375 } 376 } 377 if (first_idx == -1) 378 return 0; 379 380 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - 381 ELF_PAGESTART(cmds[first_idx].p_vaddr); 382 } 383 384 385 /* This is much more generalized than the library routine read function, 386 so we keep this separate. Technically the library read function 387 is only provided so that we can read a.out libraries that have 388 an ELF header */ 389 390 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 391 struct file *interpreter, unsigned long *interp_map_addr, 392 unsigned long no_base) 393 { 394 struct elf_phdr *elf_phdata; 395 struct elf_phdr *eppnt; 396 unsigned long load_addr = 0; 397 int load_addr_set = 0; 398 unsigned long last_bss = 0, elf_bss = 0; 399 unsigned long error = ~0UL; 400 unsigned long total_size; 401 int retval, i, size; 402 403 /* First of all, some simple consistency checks */ 404 if (interp_elf_ex->e_type != ET_EXEC && 405 interp_elf_ex->e_type != ET_DYN) 406 goto out; 407 if (!elf_check_arch(interp_elf_ex)) 408 goto out; 409 if (!interpreter->f_op || !interpreter->f_op->mmap) 410 goto out; 411 412 /* 413 * If the size of this structure has changed, then punt, since 414 * we will be doing the wrong thing. 415 */ 416 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) 417 goto out; 418 if (interp_elf_ex->e_phnum < 1 || 419 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr)) 420 goto out; 421 422 /* Now read in all of the header information */ 423 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum; 424 if (size > ELF_MIN_ALIGN) 425 goto out; 426 elf_phdata = kmalloc(size, GFP_KERNEL); 427 if (!elf_phdata) 428 goto out; 429 430 retval = kernel_read(interpreter, interp_elf_ex->e_phoff, 431 (char *)elf_phdata, size); 432 error = -EIO; 433 if (retval != size) { 434 if (retval < 0) 435 error = retval; 436 goto out_close; 437 } 438 439 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum); 440 if (!total_size) { 441 error = -EINVAL; 442 goto out_close; 443 } 444 445 eppnt = elf_phdata; 446 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 447 if (eppnt->p_type == PT_LOAD) { 448 int elf_type = MAP_PRIVATE | MAP_DENYWRITE; 449 int elf_prot = 0; 450 unsigned long vaddr = 0; 451 unsigned long k, map_addr; 452 453 if (eppnt->p_flags & PF_R) 454 elf_prot = PROT_READ; 455 if (eppnt->p_flags & PF_W) 456 elf_prot |= PROT_WRITE; 457 if (eppnt->p_flags & PF_X) 458 elf_prot |= PROT_EXEC; 459 vaddr = eppnt->p_vaddr; 460 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 461 elf_type |= MAP_FIXED; 462 else if (no_base && interp_elf_ex->e_type == ET_DYN) 463 load_addr = -vaddr; 464 465 map_addr = elf_map(interpreter, load_addr + vaddr, 466 eppnt, elf_prot, elf_type, total_size); 467 total_size = 0; 468 if (!*interp_map_addr) 469 *interp_map_addr = map_addr; 470 error = map_addr; 471 if (BAD_ADDR(map_addr)) 472 goto out_close; 473 474 if (!load_addr_set && 475 interp_elf_ex->e_type == ET_DYN) { 476 load_addr = map_addr - ELF_PAGESTART(vaddr); 477 load_addr_set = 1; 478 } 479 480 /* 481 * Check to see if the section's size will overflow the 482 * allowed task size. Note that p_filesz must always be 483 * <= p_memsize so it's only necessary to check p_memsz. 484 */ 485 k = load_addr + eppnt->p_vaddr; 486 if (BAD_ADDR(k) || 487 eppnt->p_filesz > eppnt->p_memsz || 488 eppnt->p_memsz > TASK_SIZE || 489 TASK_SIZE - eppnt->p_memsz < k) { 490 error = -ENOMEM; 491 goto out_close; 492 } 493 494 /* 495 * Find the end of the file mapping for this phdr, and 496 * keep track of the largest address we see for this. 497 */ 498 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; 499 if (k > elf_bss) 500 elf_bss = k; 501 502 /* 503 * Do the same thing for the memory mapping - between 504 * elf_bss and last_bss is the bss section. 505 */ 506 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr; 507 if (k > last_bss) 508 last_bss = k; 509 } 510 } 511 512 if (last_bss > elf_bss) { 513 /* 514 * Now fill out the bss section. First pad the last page up 515 * to the page boundary, and then perform a mmap to make sure 516 * that there are zero-mapped pages up to and including the 517 * last bss page. 518 */ 519 if (padzero(elf_bss)) { 520 error = -EFAULT; 521 goto out_close; 522 } 523 524 /* What we have mapped so far */ 525 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1); 526 527 /* Map the last of the bss segment */ 528 error = vm_brk(elf_bss, last_bss - elf_bss); 529 if (BAD_ADDR(error)) 530 goto out_close; 531 } 532 533 error = load_addr; 534 535 out_close: 536 kfree(elf_phdata); 537 out: 538 return error; 539 } 540 541 /* 542 * These are the functions used to load ELF style executables and shared 543 * libraries. There is no binary dependent code anywhere else. 544 */ 545 546 #define INTERPRETER_NONE 0 547 #define INTERPRETER_ELF 2 548 549 #ifndef STACK_RND_MASK 550 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 551 #endif 552 553 static unsigned long randomize_stack_top(unsigned long stack_top) 554 { 555 unsigned int random_variable = 0; 556 557 if ((current->flags & PF_RANDOMIZE) && 558 !(current->personality & ADDR_NO_RANDOMIZE)) { 559 random_variable = get_random_int() & STACK_RND_MASK; 560 random_variable <<= PAGE_SHIFT; 561 } 562 #ifdef CONFIG_STACK_GROWSUP 563 return PAGE_ALIGN(stack_top) + random_variable; 564 #else 565 return PAGE_ALIGN(stack_top) - random_variable; 566 #endif 567 } 568 569 static int load_elf_binary(struct linux_binprm *bprm) 570 { 571 struct file *interpreter = NULL; /* to shut gcc up */ 572 unsigned long load_addr = 0, load_bias = 0; 573 int load_addr_set = 0; 574 char * elf_interpreter = NULL; 575 unsigned long error; 576 struct elf_phdr *elf_ppnt, *elf_phdata; 577 unsigned long elf_bss, elf_brk; 578 int retval, i; 579 unsigned int size; 580 unsigned long elf_entry; 581 unsigned long interp_load_addr = 0; 582 unsigned long start_code, end_code, start_data, end_data; 583 unsigned long reloc_func_desc __maybe_unused = 0; 584 int executable_stack = EXSTACK_DEFAULT; 585 unsigned long def_flags = 0; 586 struct pt_regs *regs = current_pt_regs(); 587 struct { 588 struct elfhdr elf_ex; 589 struct elfhdr interp_elf_ex; 590 } *loc; 591 592 loc = kmalloc(sizeof(*loc), GFP_KERNEL); 593 if (!loc) { 594 retval = -ENOMEM; 595 goto out_ret; 596 } 597 598 /* Get the exec-header */ 599 loc->elf_ex = *((struct elfhdr *)bprm->buf); 600 601 retval = -ENOEXEC; 602 /* First of all, some simple consistency checks */ 603 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 604 goto out; 605 606 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN) 607 goto out; 608 if (!elf_check_arch(&loc->elf_ex)) 609 goto out; 610 if (!bprm->file->f_op || !bprm->file->f_op->mmap) 611 goto out; 612 613 /* Now read in all of the header information */ 614 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr)) 615 goto out; 616 if (loc->elf_ex.e_phnum < 1 || 617 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr)) 618 goto out; 619 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr); 620 retval = -ENOMEM; 621 elf_phdata = kmalloc(size, GFP_KERNEL); 622 if (!elf_phdata) 623 goto out; 624 625 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff, 626 (char *)elf_phdata, size); 627 if (retval != size) { 628 if (retval >= 0) 629 retval = -EIO; 630 goto out_free_ph; 631 } 632 633 elf_ppnt = elf_phdata; 634 elf_bss = 0; 635 elf_brk = 0; 636 637 start_code = ~0UL; 638 end_code = 0; 639 start_data = 0; 640 end_data = 0; 641 642 for (i = 0; i < loc->elf_ex.e_phnum; i++) { 643 if (elf_ppnt->p_type == PT_INTERP) { 644 /* This is the program interpreter used for 645 * shared libraries - for now assume that this 646 * is an a.out format binary 647 */ 648 retval = -ENOEXEC; 649 if (elf_ppnt->p_filesz > PATH_MAX || 650 elf_ppnt->p_filesz < 2) 651 goto out_free_ph; 652 653 retval = -ENOMEM; 654 elf_interpreter = kmalloc(elf_ppnt->p_filesz, 655 GFP_KERNEL); 656 if (!elf_interpreter) 657 goto out_free_ph; 658 659 retval = kernel_read(bprm->file, elf_ppnt->p_offset, 660 elf_interpreter, 661 elf_ppnt->p_filesz); 662 if (retval != elf_ppnt->p_filesz) { 663 if (retval >= 0) 664 retval = -EIO; 665 goto out_free_interp; 666 } 667 /* make sure path is NULL terminated */ 668 retval = -ENOEXEC; 669 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 670 goto out_free_interp; 671 672 interpreter = open_exec(elf_interpreter); 673 retval = PTR_ERR(interpreter); 674 if (IS_ERR(interpreter)) 675 goto out_free_interp; 676 677 /* 678 * If the binary is not readable then enforce 679 * mm->dumpable = 0 regardless of the interpreter's 680 * permissions. 681 */ 682 would_dump(bprm, interpreter); 683 684 retval = kernel_read(interpreter, 0, bprm->buf, 685 BINPRM_BUF_SIZE); 686 if (retval != BINPRM_BUF_SIZE) { 687 if (retval >= 0) 688 retval = -EIO; 689 goto out_free_dentry; 690 } 691 692 /* Get the exec headers */ 693 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf); 694 break; 695 } 696 elf_ppnt++; 697 } 698 699 elf_ppnt = elf_phdata; 700 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) 701 if (elf_ppnt->p_type == PT_GNU_STACK) { 702 if (elf_ppnt->p_flags & PF_X) 703 executable_stack = EXSTACK_ENABLE_X; 704 else 705 executable_stack = EXSTACK_DISABLE_X; 706 break; 707 } 708 709 /* Some simple consistency checks for the interpreter */ 710 if (elf_interpreter) { 711 retval = -ELIBBAD; 712 /* Not an ELF interpreter */ 713 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 714 goto out_free_dentry; 715 /* Verify the interpreter has a valid arch */ 716 if (!elf_check_arch(&loc->interp_elf_ex)) 717 goto out_free_dentry; 718 } 719 720 /* Flush all traces of the currently running executable */ 721 retval = flush_old_exec(bprm); 722 if (retval) 723 goto out_free_dentry; 724 725 /* OK, This is the point of no return */ 726 current->mm->def_flags = def_flags; 727 728 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 729 may depend on the personality. */ 730 SET_PERSONALITY(loc->elf_ex); 731 if (elf_read_implies_exec(loc->elf_ex, executable_stack)) 732 current->personality |= READ_IMPLIES_EXEC; 733 734 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 735 current->flags |= PF_RANDOMIZE; 736 737 setup_new_exec(bprm); 738 739 /* Do this so that we can load the interpreter, if need be. We will 740 change some of these later */ 741 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 742 executable_stack); 743 if (retval < 0) { 744 send_sig(SIGKILL, current, 0); 745 goto out_free_dentry; 746 } 747 748 current->mm->start_stack = bprm->p; 749 750 /* Now we do a little grungy work by mmapping the ELF image into 751 the correct location in memory. */ 752 for(i = 0, elf_ppnt = elf_phdata; 753 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) { 754 int elf_prot = 0, elf_flags; 755 unsigned long k, vaddr; 756 757 if (elf_ppnt->p_type != PT_LOAD) 758 continue; 759 760 if (unlikely (elf_brk > elf_bss)) { 761 unsigned long nbyte; 762 763 /* There was a PT_LOAD segment with p_memsz > p_filesz 764 before this one. Map anonymous pages, if needed, 765 and clear the area. */ 766 retval = set_brk(elf_bss + load_bias, 767 elf_brk + load_bias); 768 if (retval) { 769 send_sig(SIGKILL, current, 0); 770 goto out_free_dentry; 771 } 772 nbyte = ELF_PAGEOFFSET(elf_bss); 773 if (nbyte) { 774 nbyte = ELF_MIN_ALIGN - nbyte; 775 if (nbyte > elf_brk - elf_bss) 776 nbyte = elf_brk - elf_bss; 777 if (clear_user((void __user *)elf_bss + 778 load_bias, nbyte)) { 779 /* 780 * This bss-zeroing can fail if the ELF 781 * file specifies odd protections. So 782 * we don't check the return value 783 */ 784 } 785 } 786 } 787 788 if (elf_ppnt->p_flags & PF_R) 789 elf_prot |= PROT_READ; 790 if (elf_ppnt->p_flags & PF_W) 791 elf_prot |= PROT_WRITE; 792 if (elf_ppnt->p_flags & PF_X) 793 elf_prot |= PROT_EXEC; 794 795 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE; 796 797 vaddr = elf_ppnt->p_vaddr; 798 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) { 799 elf_flags |= MAP_FIXED; 800 } else if (loc->elf_ex.e_type == ET_DYN) { 801 /* Try and get dynamic programs out of the way of the 802 * default mmap base, as well as whatever program they 803 * might try to exec. This is because the brk will 804 * follow the loader, and is not movable. */ 805 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE 806 /* Memory randomization might have been switched off 807 * in runtime via sysctl or explicit setting of 808 * personality flags. 809 * If that is the case, retain the original non-zero 810 * load_bias value in order to establish proper 811 * non-randomized mappings. 812 */ 813 if (current->flags & PF_RANDOMIZE) 814 load_bias = 0; 815 else 816 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr); 817 #else 818 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr); 819 #endif 820 } 821 822 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, 823 elf_prot, elf_flags, 0); 824 if (BAD_ADDR(error)) { 825 send_sig(SIGKILL, current, 0); 826 retval = IS_ERR((void *)error) ? 827 PTR_ERR((void*)error) : -EINVAL; 828 goto out_free_dentry; 829 } 830 831 if (!load_addr_set) { 832 load_addr_set = 1; 833 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); 834 if (loc->elf_ex.e_type == ET_DYN) { 835 load_bias += error - 836 ELF_PAGESTART(load_bias + vaddr); 837 load_addr += load_bias; 838 reloc_func_desc = load_bias; 839 } 840 } 841 k = elf_ppnt->p_vaddr; 842 if (k < start_code) 843 start_code = k; 844 if (start_data < k) 845 start_data = k; 846 847 /* 848 * Check to see if the section's size will overflow the 849 * allowed task size. Note that p_filesz must always be 850 * <= p_memsz so it is only necessary to check p_memsz. 851 */ 852 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 853 elf_ppnt->p_memsz > TASK_SIZE || 854 TASK_SIZE - elf_ppnt->p_memsz < k) { 855 /* set_brk can never work. Avoid overflows. */ 856 send_sig(SIGKILL, current, 0); 857 retval = -EINVAL; 858 goto out_free_dentry; 859 } 860 861 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 862 863 if (k > elf_bss) 864 elf_bss = k; 865 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 866 end_code = k; 867 if (end_data < k) 868 end_data = k; 869 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 870 if (k > elf_brk) 871 elf_brk = k; 872 } 873 874 loc->elf_ex.e_entry += load_bias; 875 elf_bss += load_bias; 876 elf_brk += load_bias; 877 start_code += load_bias; 878 end_code += load_bias; 879 start_data += load_bias; 880 end_data += load_bias; 881 882 /* Calling set_brk effectively mmaps the pages that we need 883 * for the bss and break sections. We must do this before 884 * mapping in the interpreter, to make sure it doesn't wind 885 * up getting placed where the bss needs to go. 886 */ 887 retval = set_brk(elf_bss, elf_brk); 888 if (retval) { 889 send_sig(SIGKILL, current, 0); 890 goto out_free_dentry; 891 } 892 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { 893 send_sig(SIGSEGV, current, 0); 894 retval = -EFAULT; /* Nobody gets to see this, but.. */ 895 goto out_free_dentry; 896 } 897 898 if (elf_interpreter) { 899 unsigned long interp_map_addr = 0; 900 901 elf_entry = load_elf_interp(&loc->interp_elf_ex, 902 interpreter, 903 &interp_map_addr, 904 load_bias); 905 if (!IS_ERR((void *)elf_entry)) { 906 /* 907 * load_elf_interp() returns relocation 908 * adjustment 909 */ 910 interp_load_addr = elf_entry; 911 elf_entry += loc->interp_elf_ex.e_entry; 912 } 913 if (BAD_ADDR(elf_entry)) { 914 force_sig(SIGSEGV, current); 915 retval = IS_ERR((void *)elf_entry) ? 916 (int)elf_entry : -EINVAL; 917 goto out_free_dentry; 918 } 919 reloc_func_desc = interp_load_addr; 920 921 allow_write_access(interpreter); 922 fput(interpreter); 923 kfree(elf_interpreter); 924 } else { 925 elf_entry = loc->elf_ex.e_entry; 926 if (BAD_ADDR(elf_entry)) { 927 force_sig(SIGSEGV, current); 928 retval = -EINVAL; 929 goto out_free_dentry; 930 } 931 } 932 933 kfree(elf_phdata); 934 935 set_binfmt(&elf_format); 936 937 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 938 retval = arch_setup_additional_pages(bprm, !!elf_interpreter); 939 if (retval < 0) { 940 send_sig(SIGKILL, current, 0); 941 goto out; 942 } 943 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 944 945 install_exec_creds(bprm); 946 retval = create_elf_tables(bprm, &loc->elf_ex, 947 load_addr, interp_load_addr); 948 if (retval < 0) { 949 send_sig(SIGKILL, current, 0); 950 goto out; 951 } 952 /* N.B. passed_fileno might not be initialized? */ 953 current->mm->end_code = end_code; 954 current->mm->start_code = start_code; 955 current->mm->start_data = start_data; 956 current->mm->end_data = end_data; 957 current->mm->start_stack = bprm->p; 958 959 #ifdef arch_randomize_brk 960 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { 961 current->mm->brk = current->mm->start_brk = 962 arch_randomize_brk(current->mm); 963 #ifdef CONFIG_COMPAT_BRK 964 current->brk_randomized = 1; 965 #endif 966 } 967 #endif 968 969 if (current->personality & MMAP_PAGE_ZERO) { 970 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 971 and some applications "depend" upon this behavior. 972 Since we do not have the power to recompile these, we 973 emulate the SVr4 behavior. Sigh. */ 974 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 975 MAP_FIXED | MAP_PRIVATE, 0); 976 } 977 978 #ifdef ELF_PLAT_INIT 979 /* 980 * The ABI may specify that certain registers be set up in special 981 * ways (on i386 %edx is the address of a DT_FINI function, for 982 * example. In addition, it may also specify (eg, PowerPC64 ELF) 983 * that the e_entry field is the address of the function descriptor 984 * for the startup routine, rather than the address of the startup 985 * routine itself. This macro performs whatever initialization to 986 * the regs structure is required as well as any relocations to the 987 * function descriptor entries when executing dynamically links apps. 988 */ 989 ELF_PLAT_INIT(regs, reloc_func_desc); 990 #endif 991 992 start_thread(regs, elf_entry, bprm->p); 993 retval = 0; 994 out: 995 kfree(loc); 996 out_ret: 997 return retval; 998 999 /* error cleanup */ 1000 out_free_dentry: 1001 allow_write_access(interpreter); 1002 if (interpreter) 1003 fput(interpreter); 1004 out_free_interp: 1005 kfree(elf_interpreter); 1006 out_free_ph: 1007 kfree(elf_phdata); 1008 goto out; 1009 } 1010 1011 /* This is really simpleminded and specialized - we are loading an 1012 a.out library that is given an ELF header. */ 1013 static int load_elf_library(struct file *file) 1014 { 1015 struct elf_phdr *elf_phdata; 1016 struct elf_phdr *eppnt; 1017 unsigned long elf_bss, bss, len; 1018 int retval, error, i, j; 1019 struct elfhdr elf_ex; 1020 1021 error = -ENOEXEC; 1022 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex)); 1023 if (retval != sizeof(elf_ex)) 1024 goto out; 1025 1026 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1027 goto out; 1028 1029 /* First of all, some simple consistency checks */ 1030 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1031 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap) 1032 goto out; 1033 1034 /* Now read in all of the header information */ 1035 1036 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1037 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1038 1039 error = -ENOMEM; 1040 elf_phdata = kmalloc(j, GFP_KERNEL); 1041 if (!elf_phdata) 1042 goto out; 1043 1044 eppnt = elf_phdata; 1045 error = -ENOEXEC; 1046 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j); 1047 if (retval != j) 1048 goto out_free_ph; 1049 1050 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1051 if ((eppnt + i)->p_type == PT_LOAD) 1052 j++; 1053 if (j != 1) 1054 goto out_free_ph; 1055 1056 while (eppnt->p_type != PT_LOAD) 1057 eppnt++; 1058 1059 /* Now use mmap to map the library into memory. */ 1060 error = vm_mmap(file, 1061 ELF_PAGESTART(eppnt->p_vaddr), 1062 (eppnt->p_filesz + 1063 ELF_PAGEOFFSET(eppnt->p_vaddr)), 1064 PROT_READ | PROT_WRITE | PROT_EXEC, 1065 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, 1066 (eppnt->p_offset - 1067 ELF_PAGEOFFSET(eppnt->p_vaddr))); 1068 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1069 goto out_free_ph; 1070 1071 elf_bss = eppnt->p_vaddr + eppnt->p_filesz; 1072 if (padzero(elf_bss)) { 1073 error = -EFAULT; 1074 goto out_free_ph; 1075 } 1076 1077 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr + 1078 ELF_MIN_ALIGN - 1); 1079 bss = eppnt->p_memsz + eppnt->p_vaddr; 1080 if (bss > len) 1081 vm_brk(len, bss - len); 1082 error = 0; 1083 1084 out_free_ph: 1085 kfree(elf_phdata); 1086 out: 1087 return error; 1088 } 1089 1090 #ifdef CONFIG_ELF_CORE 1091 /* 1092 * ELF core dumper 1093 * 1094 * Modelled on fs/exec.c:aout_core_dump() 1095 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1096 */ 1097 1098 /* 1099 * The purpose of always_dump_vma() is to make sure that special kernel mappings 1100 * that are useful for post-mortem analysis are included in every core dump. 1101 * In that way we ensure that the core dump is fully interpretable later 1102 * without matching up the same kernel and hardware config to see what PC values 1103 * meant. These special mappings include - vDSO, vsyscall, and other 1104 * architecture specific mappings 1105 */ 1106 static bool always_dump_vma(struct vm_area_struct *vma) 1107 { 1108 /* Any vsyscall mappings? */ 1109 if (vma == get_gate_vma(vma->vm_mm)) 1110 return true; 1111 /* 1112 * arch_vma_name() returns non-NULL for special architecture mappings, 1113 * such as vDSO sections. 1114 */ 1115 if (arch_vma_name(vma)) 1116 return true; 1117 1118 return false; 1119 } 1120 1121 /* 1122 * Decide what to dump of a segment, part, all or none. 1123 */ 1124 static unsigned long vma_dump_size(struct vm_area_struct *vma, 1125 unsigned long mm_flags) 1126 { 1127 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) 1128 1129 /* always dump the vdso and vsyscall sections */ 1130 if (always_dump_vma(vma)) 1131 goto whole; 1132 1133 if (vma->vm_flags & VM_DONTDUMP) 1134 return 0; 1135 1136 /* Hugetlb memory check */ 1137 if (vma->vm_flags & VM_HUGETLB) { 1138 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) 1139 goto whole; 1140 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) 1141 goto whole; 1142 return 0; 1143 } 1144 1145 /* Do not dump I/O mapped devices or special mappings */ 1146 if (vma->vm_flags & VM_IO) 1147 return 0; 1148 1149 /* By default, dump shared memory if mapped from an anonymous file. */ 1150 if (vma->vm_flags & VM_SHARED) { 1151 if (file_inode(vma->vm_file)->i_nlink == 0 ? 1152 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) 1153 goto whole; 1154 return 0; 1155 } 1156 1157 /* Dump segments that have been written to. */ 1158 if (vma->anon_vma && FILTER(ANON_PRIVATE)) 1159 goto whole; 1160 if (vma->vm_file == NULL) 1161 return 0; 1162 1163 if (FILTER(MAPPED_PRIVATE)) 1164 goto whole; 1165 1166 /* 1167 * If this looks like the beginning of a DSO or executable mapping, 1168 * check for an ELF header. If we find one, dump the first page to 1169 * aid in determining what was mapped here. 1170 */ 1171 if (FILTER(ELF_HEADERS) && 1172 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) { 1173 u32 __user *header = (u32 __user *) vma->vm_start; 1174 u32 word; 1175 mm_segment_t fs = get_fs(); 1176 /* 1177 * Doing it this way gets the constant folded by GCC. 1178 */ 1179 union { 1180 u32 cmp; 1181 char elfmag[SELFMAG]; 1182 } magic; 1183 BUILD_BUG_ON(SELFMAG != sizeof word); 1184 magic.elfmag[EI_MAG0] = ELFMAG0; 1185 magic.elfmag[EI_MAG1] = ELFMAG1; 1186 magic.elfmag[EI_MAG2] = ELFMAG2; 1187 magic.elfmag[EI_MAG3] = ELFMAG3; 1188 /* 1189 * Switch to the user "segment" for get_user(), 1190 * then put back what elf_core_dump() had in place. 1191 */ 1192 set_fs(USER_DS); 1193 if (unlikely(get_user(word, header))) 1194 word = 0; 1195 set_fs(fs); 1196 if (word == magic.cmp) 1197 return PAGE_SIZE; 1198 } 1199 1200 #undef FILTER 1201 1202 return 0; 1203 1204 whole: 1205 return vma->vm_end - vma->vm_start; 1206 } 1207 1208 /* An ELF note in memory */ 1209 struct memelfnote 1210 { 1211 const char *name; 1212 int type; 1213 unsigned int datasz; 1214 void *data; 1215 }; 1216 1217 static int notesize(struct memelfnote *en) 1218 { 1219 int sz; 1220 1221 sz = sizeof(struct elf_note); 1222 sz += roundup(strlen(en->name) + 1, 4); 1223 sz += roundup(en->datasz, 4); 1224 1225 return sz; 1226 } 1227 1228 #define DUMP_WRITE(addr, nr, foffset) \ 1229 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0) 1230 1231 static int alignfile(struct file *file, loff_t *foffset) 1232 { 1233 static const char buf[4] = { 0, }; 1234 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset); 1235 return 1; 1236 } 1237 1238 static int writenote(struct memelfnote *men, struct file *file, 1239 loff_t *foffset) 1240 { 1241 struct elf_note en; 1242 en.n_namesz = strlen(men->name) + 1; 1243 en.n_descsz = men->datasz; 1244 en.n_type = men->type; 1245 1246 DUMP_WRITE(&en, sizeof(en), foffset); 1247 DUMP_WRITE(men->name, en.n_namesz, foffset); 1248 if (!alignfile(file, foffset)) 1249 return 0; 1250 DUMP_WRITE(men->data, men->datasz, foffset); 1251 if (!alignfile(file, foffset)) 1252 return 0; 1253 1254 return 1; 1255 } 1256 #undef DUMP_WRITE 1257 1258 static void fill_elf_header(struct elfhdr *elf, int segs, 1259 u16 machine, u32 flags) 1260 { 1261 memset(elf, 0, sizeof(*elf)); 1262 1263 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1264 elf->e_ident[EI_CLASS] = ELF_CLASS; 1265 elf->e_ident[EI_DATA] = ELF_DATA; 1266 elf->e_ident[EI_VERSION] = EV_CURRENT; 1267 elf->e_ident[EI_OSABI] = ELF_OSABI; 1268 1269 elf->e_type = ET_CORE; 1270 elf->e_machine = machine; 1271 elf->e_version = EV_CURRENT; 1272 elf->e_phoff = sizeof(struct elfhdr); 1273 elf->e_flags = flags; 1274 elf->e_ehsize = sizeof(struct elfhdr); 1275 elf->e_phentsize = sizeof(struct elf_phdr); 1276 elf->e_phnum = segs; 1277 1278 return; 1279 } 1280 1281 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1282 { 1283 phdr->p_type = PT_NOTE; 1284 phdr->p_offset = offset; 1285 phdr->p_vaddr = 0; 1286 phdr->p_paddr = 0; 1287 phdr->p_filesz = sz; 1288 phdr->p_memsz = 0; 1289 phdr->p_flags = 0; 1290 phdr->p_align = 0; 1291 return; 1292 } 1293 1294 static void fill_note(struct memelfnote *note, const char *name, int type, 1295 unsigned int sz, void *data) 1296 { 1297 note->name = name; 1298 note->type = type; 1299 note->datasz = sz; 1300 note->data = data; 1301 return; 1302 } 1303 1304 /* 1305 * fill up all the fields in prstatus from the given task struct, except 1306 * registers which need to be filled up separately. 1307 */ 1308 static void fill_prstatus(struct elf_prstatus *prstatus, 1309 struct task_struct *p, long signr) 1310 { 1311 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1312 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1313 prstatus->pr_sighold = p->blocked.sig[0]; 1314 rcu_read_lock(); 1315 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1316 rcu_read_unlock(); 1317 prstatus->pr_pid = task_pid_vnr(p); 1318 prstatus->pr_pgrp = task_pgrp_vnr(p); 1319 prstatus->pr_sid = task_session_vnr(p); 1320 if (thread_group_leader(p)) { 1321 struct task_cputime cputime; 1322 1323 /* 1324 * This is the record for the group leader. It shows the 1325 * group-wide total, not its individual thread total. 1326 */ 1327 thread_group_cputime(p, &cputime); 1328 cputime_to_timeval(cputime.utime, &prstatus->pr_utime); 1329 cputime_to_timeval(cputime.stime, &prstatus->pr_stime); 1330 } else { 1331 cputime_t utime, stime; 1332 1333 task_cputime(p, &utime, &stime); 1334 cputime_to_timeval(utime, &prstatus->pr_utime); 1335 cputime_to_timeval(stime, &prstatus->pr_stime); 1336 } 1337 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime); 1338 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime); 1339 } 1340 1341 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1342 struct mm_struct *mm) 1343 { 1344 const struct cred *cred; 1345 unsigned int i, len; 1346 1347 /* first copy the parameters from user space */ 1348 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1349 1350 len = mm->arg_end - mm->arg_start; 1351 if (len >= ELF_PRARGSZ) 1352 len = ELF_PRARGSZ-1; 1353 if (copy_from_user(&psinfo->pr_psargs, 1354 (const char __user *)mm->arg_start, len)) 1355 return -EFAULT; 1356 for(i = 0; i < len; i++) 1357 if (psinfo->pr_psargs[i] == 0) 1358 psinfo->pr_psargs[i] = ' '; 1359 psinfo->pr_psargs[len] = 0; 1360 1361 rcu_read_lock(); 1362 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1363 rcu_read_unlock(); 1364 psinfo->pr_pid = task_pid_vnr(p); 1365 psinfo->pr_pgrp = task_pgrp_vnr(p); 1366 psinfo->pr_sid = task_session_vnr(p); 1367 1368 i = p->state ? ffz(~p->state) + 1 : 0; 1369 psinfo->pr_state = i; 1370 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1371 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1372 psinfo->pr_nice = task_nice(p); 1373 psinfo->pr_flag = p->flags; 1374 rcu_read_lock(); 1375 cred = __task_cred(p); 1376 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid)); 1377 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid)); 1378 rcu_read_unlock(); 1379 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); 1380 1381 return 0; 1382 } 1383 1384 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1385 { 1386 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1387 int i = 0; 1388 do 1389 i += 2; 1390 while (auxv[i - 2] != AT_NULL); 1391 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1392 } 1393 1394 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata, 1395 siginfo_t *siginfo) 1396 { 1397 mm_segment_t old_fs = get_fs(); 1398 set_fs(KERNEL_DS); 1399 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo); 1400 set_fs(old_fs); 1401 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata); 1402 } 1403 1404 #define MAX_FILE_NOTE_SIZE (4*1024*1024) 1405 /* 1406 * Format of NT_FILE note: 1407 * 1408 * long count -- how many files are mapped 1409 * long page_size -- units for file_ofs 1410 * array of [COUNT] elements of 1411 * long start 1412 * long end 1413 * long file_ofs 1414 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... 1415 */ 1416 static int fill_files_note(struct memelfnote *note) 1417 { 1418 struct vm_area_struct *vma; 1419 unsigned count, size, names_ofs, remaining, n; 1420 user_long_t *data; 1421 user_long_t *start_end_ofs; 1422 char *name_base, *name_curpos; 1423 1424 /* *Estimated* file count and total data size needed */ 1425 count = current->mm->map_count; 1426 size = count * 64; 1427 1428 names_ofs = (2 + 3 * count) * sizeof(data[0]); 1429 alloc: 1430 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */ 1431 return -EINVAL; 1432 size = round_up(size, PAGE_SIZE); 1433 data = vmalloc(size); 1434 if (!data) 1435 return -ENOMEM; 1436 1437 start_end_ofs = data + 2; 1438 name_base = name_curpos = ((char *)data) + names_ofs; 1439 remaining = size - names_ofs; 1440 count = 0; 1441 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) { 1442 struct file *file; 1443 const char *filename; 1444 1445 file = vma->vm_file; 1446 if (!file) 1447 continue; 1448 filename = d_path(&file->f_path, name_curpos, remaining); 1449 if (IS_ERR(filename)) { 1450 if (PTR_ERR(filename) == -ENAMETOOLONG) { 1451 vfree(data); 1452 size = size * 5 / 4; 1453 goto alloc; 1454 } 1455 continue; 1456 } 1457 1458 /* d_path() fills at the end, move name down */ 1459 /* n = strlen(filename) + 1: */ 1460 n = (name_curpos + remaining) - filename; 1461 remaining = filename - name_curpos; 1462 memmove(name_curpos, filename, n); 1463 name_curpos += n; 1464 1465 *start_end_ofs++ = vma->vm_start; 1466 *start_end_ofs++ = vma->vm_end; 1467 *start_end_ofs++ = vma->vm_pgoff; 1468 count++; 1469 } 1470 1471 /* Now we know exact count of files, can store it */ 1472 data[0] = count; 1473 data[1] = PAGE_SIZE; 1474 /* 1475 * Count usually is less than current->mm->map_count, 1476 * we need to move filenames down. 1477 */ 1478 n = current->mm->map_count - count; 1479 if (n != 0) { 1480 unsigned shift_bytes = n * 3 * sizeof(data[0]); 1481 memmove(name_base - shift_bytes, name_base, 1482 name_curpos - name_base); 1483 name_curpos -= shift_bytes; 1484 } 1485 1486 size = name_curpos - (char *)data; 1487 fill_note(note, "CORE", NT_FILE, size, data); 1488 return 0; 1489 } 1490 1491 #ifdef CORE_DUMP_USE_REGSET 1492 #include <linux/regset.h> 1493 1494 struct elf_thread_core_info { 1495 struct elf_thread_core_info *next; 1496 struct task_struct *task; 1497 struct elf_prstatus prstatus; 1498 struct memelfnote notes[0]; 1499 }; 1500 1501 struct elf_note_info { 1502 struct elf_thread_core_info *thread; 1503 struct memelfnote psinfo; 1504 struct memelfnote signote; 1505 struct memelfnote auxv; 1506 struct memelfnote files; 1507 user_siginfo_t csigdata; 1508 size_t size; 1509 int thread_notes; 1510 }; 1511 1512 /* 1513 * When a regset has a writeback hook, we call it on each thread before 1514 * dumping user memory. On register window machines, this makes sure the 1515 * user memory backing the register data is up to date before we read it. 1516 */ 1517 static void do_thread_regset_writeback(struct task_struct *task, 1518 const struct user_regset *regset) 1519 { 1520 if (regset->writeback) 1521 regset->writeback(task, regset, 1); 1522 } 1523 1524 #ifndef PR_REG_SIZE 1525 #define PR_REG_SIZE(S) sizeof(S) 1526 #endif 1527 1528 #ifndef PRSTATUS_SIZE 1529 #define PRSTATUS_SIZE(S) sizeof(S) 1530 #endif 1531 1532 #ifndef PR_REG_PTR 1533 #define PR_REG_PTR(S) (&((S)->pr_reg)) 1534 #endif 1535 1536 #ifndef SET_PR_FPVALID 1537 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V)) 1538 #endif 1539 1540 static int fill_thread_core_info(struct elf_thread_core_info *t, 1541 const struct user_regset_view *view, 1542 long signr, size_t *total) 1543 { 1544 unsigned int i; 1545 1546 /* 1547 * NT_PRSTATUS is the one special case, because the regset data 1548 * goes into the pr_reg field inside the note contents, rather 1549 * than being the whole note contents. We fill the reset in here. 1550 * We assume that regset 0 is NT_PRSTATUS. 1551 */ 1552 fill_prstatus(&t->prstatus, t->task, signr); 1553 (void) view->regsets[0].get(t->task, &view->regsets[0], 1554 0, PR_REG_SIZE(t->prstatus.pr_reg), 1555 PR_REG_PTR(&t->prstatus), NULL); 1556 1557 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1558 PRSTATUS_SIZE(t->prstatus), &t->prstatus); 1559 *total += notesize(&t->notes[0]); 1560 1561 do_thread_regset_writeback(t->task, &view->regsets[0]); 1562 1563 /* 1564 * Each other regset might generate a note too. For each regset 1565 * that has no core_note_type or is inactive, we leave t->notes[i] 1566 * all zero and we'll know to skip writing it later. 1567 */ 1568 for (i = 1; i < view->n; ++i) { 1569 const struct user_regset *regset = &view->regsets[i]; 1570 do_thread_regset_writeback(t->task, regset); 1571 if (regset->core_note_type && regset->get && 1572 (!regset->active || regset->active(t->task, regset))) { 1573 int ret; 1574 size_t size = regset->n * regset->size; 1575 void *data = kmalloc(size, GFP_KERNEL); 1576 if (unlikely(!data)) 1577 return 0; 1578 ret = regset->get(t->task, regset, 1579 0, size, data, NULL); 1580 if (unlikely(ret)) 1581 kfree(data); 1582 else { 1583 if (regset->core_note_type != NT_PRFPREG) 1584 fill_note(&t->notes[i], "LINUX", 1585 regset->core_note_type, 1586 size, data); 1587 else { 1588 SET_PR_FPVALID(&t->prstatus, 1); 1589 fill_note(&t->notes[i], "CORE", 1590 NT_PRFPREG, size, data); 1591 } 1592 *total += notesize(&t->notes[i]); 1593 } 1594 } 1595 } 1596 1597 return 1; 1598 } 1599 1600 static int fill_note_info(struct elfhdr *elf, int phdrs, 1601 struct elf_note_info *info, 1602 siginfo_t *siginfo, struct pt_regs *regs) 1603 { 1604 struct task_struct *dump_task = current; 1605 const struct user_regset_view *view = task_user_regset_view(dump_task); 1606 struct elf_thread_core_info *t; 1607 struct elf_prpsinfo *psinfo; 1608 struct core_thread *ct; 1609 unsigned int i; 1610 1611 info->size = 0; 1612 info->thread = NULL; 1613 1614 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1615 if (psinfo == NULL) { 1616 info->psinfo.data = NULL; /* So we don't free this wrongly */ 1617 return 0; 1618 } 1619 1620 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1621 1622 /* 1623 * Figure out how many notes we're going to need for each thread. 1624 */ 1625 info->thread_notes = 0; 1626 for (i = 0; i < view->n; ++i) 1627 if (view->regsets[i].core_note_type != 0) 1628 ++info->thread_notes; 1629 1630 /* 1631 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1632 * since it is our one special case. 1633 */ 1634 if (unlikely(info->thread_notes == 0) || 1635 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1636 WARN_ON(1); 1637 return 0; 1638 } 1639 1640 /* 1641 * Initialize the ELF file header. 1642 */ 1643 fill_elf_header(elf, phdrs, 1644 view->e_machine, view->e_flags); 1645 1646 /* 1647 * Allocate a structure for each thread. 1648 */ 1649 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) { 1650 t = kzalloc(offsetof(struct elf_thread_core_info, 1651 notes[info->thread_notes]), 1652 GFP_KERNEL); 1653 if (unlikely(!t)) 1654 return 0; 1655 1656 t->task = ct->task; 1657 if (ct->task == dump_task || !info->thread) { 1658 t->next = info->thread; 1659 info->thread = t; 1660 } else { 1661 /* 1662 * Make sure to keep the original task at 1663 * the head of the list. 1664 */ 1665 t->next = info->thread->next; 1666 info->thread->next = t; 1667 } 1668 } 1669 1670 /* 1671 * Now fill in each thread's information. 1672 */ 1673 for (t = info->thread; t != NULL; t = t->next) 1674 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size)) 1675 return 0; 1676 1677 /* 1678 * Fill in the two process-wide notes. 1679 */ 1680 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1681 info->size += notesize(&info->psinfo); 1682 1683 fill_siginfo_note(&info->signote, &info->csigdata, siginfo); 1684 info->size += notesize(&info->signote); 1685 1686 fill_auxv_note(&info->auxv, current->mm); 1687 info->size += notesize(&info->auxv); 1688 1689 if (fill_files_note(&info->files) == 0) 1690 info->size += notesize(&info->files); 1691 1692 return 1; 1693 } 1694 1695 static size_t get_note_info_size(struct elf_note_info *info) 1696 { 1697 return info->size; 1698 } 1699 1700 /* 1701 * Write all the notes for each thread. When writing the first thread, the 1702 * process-wide notes are interleaved after the first thread-specific note. 1703 */ 1704 static int write_note_info(struct elf_note_info *info, 1705 struct file *file, loff_t *foffset) 1706 { 1707 bool first = 1; 1708 struct elf_thread_core_info *t = info->thread; 1709 1710 do { 1711 int i; 1712 1713 if (!writenote(&t->notes[0], file, foffset)) 1714 return 0; 1715 1716 if (first && !writenote(&info->psinfo, file, foffset)) 1717 return 0; 1718 if (first && !writenote(&info->signote, file, foffset)) 1719 return 0; 1720 if (first && !writenote(&info->auxv, file, foffset)) 1721 return 0; 1722 if (first && info->files.data && 1723 !writenote(&info->files, file, foffset)) 1724 return 0; 1725 1726 for (i = 1; i < info->thread_notes; ++i) 1727 if (t->notes[i].data && 1728 !writenote(&t->notes[i], file, foffset)) 1729 return 0; 1730 1731 first = 0; 1732 t = t->next; 1733 } while (t); 1734 1735 return 1; 1736 } 1737 1738 static void free_note_info(struct elf_note_info *info) 1739 { 1740 struct elf_thread_core_info *threads = info->thread; 1741 while (threads) { 1742 unsigned int i; 1743 struct elf_thread_core_info *t = threads; 1744 threads = t->next; 1745 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1746 for (i = 1; i < info->thread_notes; ++i) 1747 kfree(t->notes[i].data); 1748 kfree(t); 1749 } 1750 kfree(info->psinfo.data); 1751 vfree(info->files.data); 1752 } 1753 1754 #else 1755 1756 /* Here is the structure in which status of each thread is captured. */ 1757 struct elf_thread_status 1758 { 1759 struct list_head list; 1760 struct elf_prstatus prstatus; /* NT_PRSTATUS */ 1761 elf_fpregset_t fpu; /* NT_PRFPREG */ 1762 struct task_struct *thread; 1763 #ifdef ELF_CORE_COPY_XFPREGS 1764 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 1765 #endif 1766 struct memelfnote notes[3]; 1767 int num_notes; 1768 }; 1769 1770 /* 1771 * In order to add the specific thread information for the elf file format, 1772 * we need to keep a linked list of every threads pr_status and then create 1773 * a single section for them in the final core file. 1774 */ 1775 static int elf_dump_thread_status(long signr, struct elf_thread_status *t) 1776 { 1777 int sz = 0; 1778 struct task_struct *p = t->thread; 1779 t->num_notes = 0; 1780 1781 fill_prstatus(&t->prstatus, p, signr); 1782 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 1783 1784 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 1785 &(t->prstatus)); 1786 t->num_notes++; 1787 sz += notesize(&t->notes[0]); 1788 1789 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, 1790 &t->fpu))) { 1791 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), 1792 &(t->fpu)); 1793 t->num_notes++; 1794 sz += notesize(&t->notes[1]); 1795 } 1796 1797 #ifdef ELF_CORE_COPY_XFPREGS 1798 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) { 1799 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE, 1800 sizeof(t->xfpu), &t->xfpu); 1801 t->num_notes++; 1802 sz += notesize(&t->notes[2]); 1803 } 1804 #endif 1805 return sz; 1806 } 1807 1808 struct elf_note_info { 1809 struct memelfnote *notes; 1810 struct memelfnote *notes_files; 1811 struct elf_prstatus *prstatus; /* NT_PRSTATUS */ 1812 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 1813 struct list_head thread_list; 1814 elf_fpregset_t *fpu; 1815 #ifdef ELF_CORE_COPY_XFPREGS 1816 elf_fpxregset_t *xfpu; 1817 #endif 1818 user_siginfo_t csigdata; 1819 int thread_status_size; 1820 int numnote; 1821 }; 1822 1823 static int elf_note_info_init(struct elf_note_info *info) 1824 { 1825 memset(info, 0, sizeof(*info)); 1826 INIT_LIST_HEAD(&info->thread_list); 1827 1828 /* Allocate space for ELF notes */ 1829 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL); 1830 if (!info->notes) 1831 return 0; 1832 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); 1833 if (!info->psinfo) 1834 return 0; 1835 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); 1836 if (!info->prstatus) 1837 return 0; 1838 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); 1839 if (!info->fpu) 1840 return 0; 1841 #ifdef ELF_CORE_COPY_XFPREGS 1842 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL); 1843 if (!info->xfpu) 1844 return 0; 1845 #endif 1846 return 1; 1847 } 1848 1849 static int fill_note_info(struct elfhdr *elf, int phdrs, 1850 struct elf_note_info *info, 1851 siginfo_t *siginfo, struct pt_regs *regs) 1852 { 1853 struct list_head *t; 1854 1855 if (!elf_note_info_init(info)) 1856 return 0; 1857 1858 if (siginfo->si_signo) { 1859 struct core_thread *ct; 1860 struct elf_thread_status *ets; 1861 1862 for (ct = current->mm->core_state->dumper.next; 1863 ct; ct = ct->next) { 1864 ets = kzalloc(sizeof(*ets), GFP_KERNEL); 1865 if (!ets) 1866 return 0; 1867 1868 ets->thread = ct->task; 1869 list_add(&ets->list, &info->thread_list); 1870 } 1871 1872 list_for_each(t, &info->thread_list) { 1873 int sz; 1874 1875 ets = list_entry(t, struct elf_thread_status, list); 1876 sz = elf_dump_thread_status(siginfo->si_signo, ets); 1877 info->thread_status_size += sz; 1878 } 1879 } 1880 /* now collect the dump for the current */ 1881 memset(info->prstatus, 0, sizeof(*info->prstatus)); 1882 fill_prstatus(info->prstatus, current, siginfo->si_signo); 1883 elf_core_copy_regs(&info->prstatus->pr_reg, regs); 1884 1885 /* Set up header */ 1886 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS); 1887 1888 /* 1889 * Set up the notes in similar form to SVR4 core dumps made 1890 * with info from their /proc. 1891 */ 1892 1893 fill_note(info->notes + 0, "CORE", NT_PRSTATUS, 1894 sizeof(*info->prstatus), info->prstatus); 1895 fill_psinfo(info->psinfo, current->group_leader, current->mm); 1896 fill_note(info->notes + 1, "CORE", NT_PRPSINFO, 1897 sizeof(*info->psinfo), info->psinfo); 1898 1899 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo); 1900 fill_auxv_note(info->notes + 3, current->mm); 1901 info->numnote = 4; 1902 1903 if (fill_files_note(info->notes + info->numnote) == 0) { 1904 info->notes_files = info->notes + info->numnote; 1905 info->numnote++; 1906 } 1907 1908 /* Try to dump the FPU. */ 1909 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs, 1910 info->fpu); 1911 if (info->prstatus->pr_fpvalid) 1912 fill_note(info->notes + info->numnote++, 1913 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); 1914 #ifdef ELF_CORE_COPY_XFPREGS 1915 if (elf_core_copy_task_xfpregs(current, info->xfpu)) 1916 fill_note(info->notes + info->numnote++, 1917 "LINUX", ELF_CORE_XFPREG_TYPE, 1918 sizeof(*info->xfpu), info->xfpu); 1919 #endif 1920 1921 return 1; 1922 } 1923 1924 static size_t get_note_info_size(struct elf_note_info *info) 1925 { 1926 int sz = 0; 1927 int i; 1928 1929 for (i = 0; i < info->numnote; i++) 1930 sz += notesize(info->notes + i); 1931 1932 sz += info->thread_status_size; 1933 1934 return sz; 1935 } 1936 1937 static int write_note_info(struct elf_note_info *info, 1938 struct file *file, loff_t *foffset) 1939 { 1940 int i; 1941 struct list_head *t; 1942 1943 for (i = 0; i < info->numnote; i++) 1944 if (!writenote(info->notes + i, file, foffset)) 1945 return 0; 1946 1947 /* write out the thread status notes section */ 1948 list_for_each(t, &info->thread_list) { 1949 struct elf_thread_status *tmp = 1950 list_entry(t, struct elf_thread_status, list); 1951 1952 for (i = 0; i < tmp->num_notes; i++) 1953 if (!writenote(&tmp->notes[i], file, foffset)) 1954 return 0; 1955 } 1956 1957 return 1; 1958 } 1959 1960 static void free_note_info(struct elf_note_info *info) 1961 { 1962 while (!list_empty(&info->thread_list)) { 1963 struct list_head *tmp = info->thread_list.next; 1964 list_del(tmp); 1965 kfree(list_entry(tmp, struct elf_thread_status, list)); 1966 } 1967 1968 /* Free data possibly allocated by fill_files_note(): */ 1969 if (info->notes_files) 1970 vfree(info->notes_files->data); 1971 1972 kfree(info->prstatus); 1973 kfree(info->psinfo); 1974 kfree(info->notes); 1975 kfree(info->fpu); 1976 #ifdef ELF_CORE_COPY_XFPREGS 1977 kfree(info->xfpu); 1978 #endif 1979 } 1980 1981 #endif 1982 1983 static struct vm_area_struct *first_vma(struct task_struct *tsk, 1984 struct vm_area_struct *gate_vma) 1985 { 1986 struct vm_area_struct *ret = tsk->mm->mmap; 1987 1988 if (ret) 1989 return ret; 1990 return gate_vma; 1991 } 1992 /* 1993 * Helper function for iterating across a vma list. It ensures that the caller 1994 * will visit `gate_vma' prior to terminating the search. 1995 */ 1996 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, 1997 struct vm_area_struct *gate_vma) 1998 { 1999 struct vm_area_struct *ret; 2000 2001 ret = this_vma->vm_next; 2002 if (ret) 2003 return ret; 2004 if (this_vma == gate_vma) 2005 return NULL; 2006 return gate_vma; 2007 } 2008 2009 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, 2010 elf_addr_t e_shoff, int segs) 2011 { 2012 elf->e_shoff = e_shoff; 2013 elf->e_shentsize = sizeof(*shdr4extnum); 2014 elf->e_shnum = 1; 2015 elf->e_shstrndx = SHN_UNDEF; 2016 2017 memset(shdr4extnum, 0, sizeof(*shdr4extnum)); 2018 2019 shdr4extnum->sh_type = SHT_NULL; 2020 shdr4extnum->sh_size = elf->e_shnum; 2021 shdr4extnum->sh_link = elf->e_shstrndx; 2022 shdr4extnum->sh_info = segs; 2023 } 2024 2025 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma, 2026 unsigned long mm_flags) 2027 { 2028 struct vm_area_struct *vma; 2029 size_t size = 0; 2030 2031 for (vma = first_vma(current, gate_vma); vma != NULL; 2032 vma = next_vma(vma, gate_vma)) 2033 size += vma_dump_size(vma, mm_flags); 2034 return size; 2035 } 2036 2037 /* 2038 * Actual dumper 2039 * 2040 * This is a two-pass process; first we find the offsets of the bits, 2041 * and then they are actually written out. If we run out of core limit 2042 * we just truncate. 2043 */ 2044 static int elf_core_dump(struct coredump_params *cprm) 2045 { 2046 int has_dumped = 0; 2047 mm_segment_t fs; 2048 int segs; 2049 size_t size = 0; 2050 struct vm_area_struct *vma, *gate_vma; 2051 struct elfhdr *elf = NULL; 2052 loff_t offset = 0, dataoff, foffset; 2053 struct elf_note_info info = { }; 2054 struct elf_phdr *phdr4note = NULL; 2055 struct elf_shdr *shdr4extnum = NULL; 2056 Elf_Half e_phnum; 2057 elf_addr_t e_shoff; 2058 2059 /* 2060 * We no longer stop all VM operations. 2061 * 2062 * This is because those proceses that could possibly change map_count 2063 * or the mmap / vma pages are now blocked in do_exit on current 2064 * finishing this core dump. 2065 * 2066 * Only ptrace can touch these memory addresses, but it doesn't change 2067 * the map_count or the pages allocated. So no possibility of crashing 2068 * exists while dumping the mm->vm_next areas to the core file. 2069 */ 2070 2071 /* alloc memory for large data structures: too large to be on stack */ 2072 elf = kmalloc(sizeof(*elf), GFP_KERNEL); 2073 if (!elf) 2074 goto out; 2075 /* 2076 * The number of segs are recored into ELF header as 16bit value. 2077 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. 2078 */ 2079 segs = current->mm->map_count; 2080 segs += elf_core_extra_phdrs(); 2081 2082 gate_vma = get_gate_vma(current->mm); 2083 if (gate_vma != NULL) 2084 segs++; 2085 2086 /* for notes section */ 2087 segs++; 2088 2089 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid 2090 * this, kernel supports extended numbering. Have a look at 2091 * include/linux/elf.h for further information. */ 2092 e_phnum = segs > PN_XNUM ? PN_XNUM : segs; 2093 2094 /* 2095 * Collect all the non-memory information about the process for the 2096 * notes. This also sets up the file header. 2097 */ 2098 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs)) 2099 goto cleanup; 2100 2101 has_dumped = 1; 2102 2103 fs = get_fs(); 2104 set_fs(KERNEL_DS); 2105 2106 offset += sizeof(*elf); /* Elf header */ 2107 offset += segs * sizeof(struct elf_phdr); /* Program headers */ 2108 foffset = offset; 2109 2110 /* Write notes phdr entry */ 2111 { 2112 size_t sz = get_note_info_size(&info); 2113 2114 sz += elf_coredump_extra_notes_size(); 2115 2116 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); 2117 if (!phdr4note) 2118 goto end_coredump; 2119 2120 fill_elf_note_phdr(phdr4note, sz, offset); 2121 offset += sz; 2122 } 2123 2124 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 2125 2126 offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags); 2127 offset += elf_core_extra_data_size(); 2128 e_shoff = offset; 2129 2130 if (e_phnum == PN_XNUM) { 2131 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); 2132 if (!shdr4extnum) 2133 goto end_coredump; 2134 fill_extnum_info(elf, shdr4extnum, e_shoff, segs); 2135 } 2136 2137 offset = dataoff; 2138 2139 size += sizeof(*elf); 2140 if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf))) 2141 goto end_coredump; 2142 2143 size += sizeof(*phdr4note); 2144 if (size > cprm->limit 2145 || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note))) 2146 goto end_coredump; 2147 2148 /* Write program headers for segments dump */ 2149 for (vma = first_vma(current, gate_vma); vma != NULL; 2150 vma = next_vma(vma, gate_vma)) { 2151 struct elf_phdr phdr; 2152 2153 phdr.p_type = PT_LOAD; 2154 phdr.p_offset = offset; 2155 phdr.p_vaddr = vma->vm_start; 2156 phdr.p_paddr = 0; 2157 phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags); 2158 phdr.p_memsz = vma->vm_end - vma->vm_start; 2159 offset += phdr.p_filesz; 2160 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; 2161 if (vma->vm_flags & VM_WRITE) 2162 phdr.p_flags |= PF_W; 2163 if (vma->vm_flags & VM_EXEC) 2164 phdr.p_flags |= PF_X; 2165 phdr.p_align = ELF_EXEC_PAGESIZE; 2166 2167 size += sizeof(phdr); 2168 if (size > cprm->limit 2169 || !dump_write(cprm->file, &phdr, sizeof(phdr))) 2170 goto end_coredump; 2171 } 2172 2173 if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit)) 2174 goto end_coredump; 2175 2176 /* write out the notes section */ 2177 if (!write_note_info(&info, cprm->file, &foffset)) 2178 goto end_coredump; 2179 2180 if (elf_coredump_extra_notes_write(cprm->file, &foffset)) 2181 goto end_coredump; 2182 2183 /* Align to page */ 2184 if (!dump_seek(cprm->file, dataoff - foffset)) 2185 goto end_coredump; 2186 2187 for (vma = first_vma(current, gate_vma); vma != NULL; 2188 vma = next_vma(vma, gate_vma)) { 2189 unsigned long addr; 2190 unsigned long end; 2191 2192 end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags); 2193 2194 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) { 2195 struct page *page; 2196 int stop; 2197 2198 page = get_dump_page(addr); 2199 if (page) { 2200 void *kaddr = kmap(page); 2201 stop = ((size += PAGE_SIZE) > cprm->limit) || 2202 !dump_write(cprm->file, kaddr, 2203 PAGE_SIZE); 2204 kunmap(page); 2205 page_cache_release(page); 2206 } else 2207 stop = !dump_seek(cprm->file, PAGE_SIZE); 2208 if (stop) 2209 goto end_coredump; 2210 } 2211 } 2212 2213 if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit)) 2214 goto end_coredump; 2215 2216 if (e_phnum == PN_XNUM) { 2217 size += sizeof(*shdr4extnum); 2218 if (size > cprm->limit 2219 || !dump_write(cprm->file, shdr4extnum, 2220 sizeof(*shdr4extnum))) 2221 goto end_coredump; 2222 } 2223 2224 end_coredump: 2225 set_fs(fs); 2226 2227 cleanup: 2228 free_note_info(&info); 2229 kfree(shdr4extnum); 2230 kfree(phdr4note); 2231 kfree(elf); 2232 out: 2233 return has_dumped; 2234 } 2235 2236 #endif /* CONFIG_ELF_CORE */ 2237 2238 static int __init init_elf_binfmt(void) 2239 { 2240 register_binfmt(&elf_format); 2241 return 0; 2242 } 2243 2244 static void __exit exit_elf_binfmt(void) 2245 { 2246 /* Remove the COFF and ELF loaders. */ 2247 unregister_binfmt(&elf_format); 2248 } 2249 2250 core_initcall(init_elf_binfmt); 2251 module_exit(exit_elf_binfmt); 2252 MODULE_LICENSE("GPL"); 2253