xref: /openbmc/linux/fs/binfmt_elf.c (revision ca79522c)
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <linux/sched.h>
37 #include <asm/uaccess.h>
38 #include <asm/param.h>
39 #include <asm/page.h>
40 
41 #ifndef user_long_t
42 #define user_long_t long
43 #endif
44 #ifndef user_siginfo_t
45 #define user_siginfo_t siginfo_t
46 #endif
47 
48 static int load_elf_binary(struct linux_binprm *bprm);
49 static int load_elf_library(struct file *);
50 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
51 				int, int, unsigned long);
52 
53 /*
54  * If we don't support core dumping, then supply a NULL so we
55  * don't even try.
56  */
57 #ifdef CONFIG_ELF_CORE
58 static int elf_core_dump(struct coredump_params *cprm);
59 #else
60 #define elf_core_dump	NULL
61 #endif
62 
63 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
64 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
65 #else
66 #define ELF_MIN_ALIGN	PAGE_SIZE
67 #endif
68 
69 #ifndef ELF_CORE_EFLAGS
70 #define ELF_CORE_EFLAGS	0
71 #endif
72 
73 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
74 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
75 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
76 
77 static struct linux_binfmt elf_format = {
78 	.module		= THIS_MODULE,
79 	.load_binary	= load_elf_binary,
80 	.load_shlib	= load_elf_library,
81 	.core_dump	= elf_core_dump,
82 	.min_coredump	= ELF_EXEC_PAGESIZE,
83 };
84 
85 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
86 
87 static int set_brk(unsigned long start, unsigned long end)
88 {
89 	start = ELF_PAGEALIGN(start);
90 	end = ELF_PAGEALIGN(end);
91 	if (end > start) {
92 		unsigned long addr;
93 		addr = vm_brk(start, end - start);
94 		if (BAD_ADDR(addr))
95 			return addr;
96 	}
97 	current->mm->start_brk = current->mm->brk = end;
98 	return 0;
99 }
100 
101 /* We need to explicitly zero any fractional pages
102    after the data section (i.e. bss).  This would
103    contain the junk from the file that should not
104    be in memory
105  */
106 static int padzero(unsigned long elf_bss)
107 {
108 	unsigned long nbyte;
109 
110 	nbyte = ELF_PAGEOFFSET(elf_bss);
111 	if (nbyte) {
112 		nbyte = ELF_MIN_ALIGN - nbyte;
113 		if (clear_user((void __user *) elf_bss, nbyte))
114 			return -EFAULT;
115 	}
116 	return 0;
117 }
118 
119 /* Let's use some macros to make this stack manipulation a little clearer */
120 #ifdef CONFIG_STACK_GROWSUP
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
122 #define STACK_ROUND(sp, items) \
123 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ \
125 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
126 	old_sp; })
127 #else
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
129 #define STACK_ROUND(sp, items) \
130 	(((unsigned long) (sp - items)) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
132 #endif
133 
134 #ifndef ELF_BASE_PLATFORM
135 /*
136  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
137  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
138  * will be copied to the user stack in the same manner as AT_PLATFORM.
139  */
140 #define ELF_BASE_PLATFORM NULL
141 #endif
142 
143 static int
144 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
145 		unsigned long load_addr, unsigned long interp_load_addr)
146 {
147 	unsigned long p = bprm->p;
148 	int argc = bprm->argc;
149 	int envc = bprm->envc;
150 	elf_addr_t __user *argv;
151 	elf_addr_t __user *envp;
152 	elf_addr_t __user *sp;
153 	elf_addr_t __user *u_platform;
154 	elf_addr_t __user *u_base_platform;
155 	elf_addr_t __user *u_rand_bytes;
156 	const char *k_platform = ELF_PLATFORM;
157 	const char *k_base_platform = ELF_BASE_PLATFORM;
158 	unsigned char k_rand_bytes[16];
159 	int items;
160 	elf_addr_t *elf_info;
161 	int ei_index = 0;
162 	const struct cred *cred = current_cred();
163 	struct vm_area_struct *vma;
164 
165 	/*
166 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
167 	 * evictions by the processes running on the same package. One
168 	 * thing we can do is to shuffle the initial stack for them.
169 	 */
170 
171 	p = arch_align_stack(p);
172 
173 	/*
174 	 * If this architecture has a platform capability string, copy it
175 	 * to userspace.  In some cases (Sparc), this info is impossible
176 	 * for userspace to get any other way, in others (i386) it is
177 	 * merely difficult.
178 	 */
179 	u_platform = NULL;
180 	if (k_platform) {
181 		size_t len = strlen(k_platform) + 1;
182 
183 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
184 		if (__copy_to_user(u_platform, k_platform, len))
185 			return -EFAULT;
186 	}
187 
188 	/*
189 	 * If this architecture has a "base" platform capability
190 	 * string, copy it to userspace.
191 	 */
192 	u_base_platform = NULL;
193 	if (k_base_platform) {
194 		size_t len = strlen(k_base_platform) + 1;
195 
196 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
197 		if (__copy_to_user(u_base_platform, k_base_platform, len))
198 			return -EFAULT;
199 	}
200 
201 	/*
202 	 * Generate 16 random bytes for userspace PRNG seeding.
203 	 */
204 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
205 	u_rand_bytes = (elf_addr_t __user *)
206 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
207 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
208 		return -EFAULT;
209 
210 	/* Create the ELF interpreter info */
211 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
212 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
213 #define NEW_AUX_ENT(id, val) \
214 	do { \
215 		elf_info[ei_index++] = id; \
216 		elf_info[ei_index++] = val; \
217 	} while (0)
218 
219 #ifdef ARCH_DLINFO
220 	/*
221 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
222 	 * AUXV.
223 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
224 	 * ARCH_DLINFO changes
225 	 */
226 	ARCH_DLINFO;
227 #endif
228 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
229 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
230 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
231 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
232 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
233 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
234 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
235 	NEW_AUX_ENT(AT_FLAGS, 0);
236 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
237 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
238 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
239 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
240 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
241  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
242 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
243 #ifdef ELF_HWCAP2
244 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
245 #endif
246 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
247 	if (k_platform) {
248 		NEW_AUX_ENT(AT_PLATFORM,
249 			    (elf_addr_t)(unsigned long)u_platform);
250 	}
251 	if (k_base_platform) {
252 		NEW_AUX_ENT(AT_BASE_PLATFORM,
253 			    (elf_addr_t)(unsigned long)u_base_platform);
254 	}
255 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
256 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
257 	}
258 #undef NEW_AUX_ENT
259 	/* AT_NULL is zero; clear the rest too */
260 	memset(&elf_info[ei_index], 0,
261 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
262 
263 	/* And advance past the AT_NULL entry.  */
264 	ei_index += 2;
265 
266 	sp = STACK_ADD(p, ei_index);
267 
268 	items = (argc + 1) + (envc + 1) + 1;
269 	bprm->p = STACK_ROUND(sp, items);
270 
271 	/* Point sp at the lowest address on the stack */
272 #ifdef CONFIG_STACK_GROWSUP
273 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
274 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
275 #else
276 	sp = (elf_addr_t __user *)bprm->p;
277 #endif
278 
279 
280 	/*
281 	 * Grow the stack manually; some architectures have a limit on how
282 	 * far ahead a user-space access may be in order to grow the stack.
283 	 */
284 	vma = find_extend_vma(current->mm, bprm->p);
285 	if (!vma)
286 		return -EFAULT;
287 
288 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
289 	if (__put_user(argc, sp++))
290 		return -EFAULT;
291 	argv = sp;
292 	envp = argv + argc + 1;
293 
294 	/* Populate argv and envp */
295 	p = current->mm->arg_end = current->mm->arg_start;
296 	while (argc-- > 0) {
297 		size_t len;
298 		if (__put_user((elf_addr_t)p, argv++))
299 			return -EFAULT;
300 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
301 		if (!len || len > MAX_ARG_STRLEN)
302 			return -EINVAL;
303 		p += len;
304 	}
305 	if (__put_user(0, argv))
306 		return -EFAULT;
307 	current->mm->arg_end = current->mm->env_start = p;
308 	while (envc-- > 0) {
309 		size_t len;
310 		if (__put_user((elf_addr_t)p, envp++))
311 			return -EFAULT;
312 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
313 		if (!len || len > MAX_ARG_STRLEN)
314 			return -EINVAL;
315 		p += len;
316 	}
317 	if (__put_user(0, envp))
318 		return -EFAULT;
319 	current->mm->env_end = p;
320 
321 	/* Put the elf_info on the stack in the right place.  */
322 	sp = (elf_addr_t __user *)envp + 1;
323 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
324 		return -EFAULT;
325 	return 0;
326 }
327 
328 #ifndef elf_map
329 
330 static unsigned long elf_map(struct file *filep, unsigned long addr,
331 		struct elf_phdr *eppnt, int prot, int type,
332 		unsigned long total_size)
333 {
334 	unsigned long map_addr;
335 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
336 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
337 	addr = ELF_PAGESTART(addr);
338 	size = ELF_PAGEALIGN(size);
339 
340 	/* mmap() will return -EINVAL if given a zero size, but a
341 	 * segment with zero filesize is perfectly valid */
342 	if (!size)
343 		return addr;
344 
345 	/*
346 	* total_size is the size of the ELF (interpreter) image.
347 	* The _first_ mmap needs to know the full size, otherwise
348 	* randomization might put this image into an overlapping
349 	* position with the ELF binary image. (since size < total_size)
350 	* So we first map the 'big' image - and unmap the remainder at
351 	* the end. (which unmap is needed for ELF images with holes.)
352 	*/
353 	if (total_size) {
354 		total_size = ELF_PAGEALIGN(total_size);
355 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
356 		if (!BAD_ADDR(map_addr))
357 			vm_munmap(map_addr+size, total_size-size);
358 	} else
359 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
360 
361 	return(map_addr);
362 }
363 
364 #endif /* !elf_map */
365 
366 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
367 {
368 	int i, first_idx = -1, last_idx = -1;
369 
370 	for (i = 0; i < nr; i++) {
371 		if (cmds[i].p_type == PT_LOAD) {
372 			last_idx = i;
373 			if (first_idx == -1)
374 				first_idx = i;
375 		}
376 	}
377 	if (first_idx == -1)
378 		return 0;
379 
380 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
381 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
382 }
383 
384 
385 /* This is much more generalized than the library routine read function,
386    so we keep this separate.  Technically the library read function
387    is only provided so that we can read a.out libraries that have
388    an ELF header */
389 
390 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
391 		struct file *interpreter, unsigned long *interp_map_addr,
392 		unsigned long no_base)
393 {
394 	struct elf_phdr *elf_phdata;
395 	struct elf_phdr *eppnt;
396 	unsigned long load_addr = 0;
397 	int load_addr_set = 0;
398 	unsigned long last_bss = 0, elf_bss = 0;
399 	unsigned long error = ~0UL;
400 	unsigned long total_size;
401 	int retval, i, size;
402 
403 	/* First of all, some simple consistency checks */
404 	if (interp_elf_ex->e_type != ET_EXEC &&
405 	    interp_elf_ex->e_type != ET_DYN)
406 		goto out;
407 	if (!elf_check_arch(interp_elf_ex))
408 		goto out;
409 	if (!interpreter->f_op || !interpreter->f_op->mmap)
410 		goto out;
411 
412 	/*
413 	 * If the size of this structure has changed, then punt, since
414 	 * we will be doing the wrong thing.
415 	 */
416 	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
417 		goto out;
418 	if (interp_elf_ex->e_phnum < 1 ||
419 		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
420 		goto out;
421 
422 	/* Now read in all of the header information */
423 	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
424 	if (size > ELF_MIN_ALIGN)
425 		goto out;
426 	elf_phdata = kmalloc(size, GFP_KERNEL);
427 	if (!elf_phdata)
428 		goto out;
429 
430 	retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
431 			     (char *)elf_phdata, size);
432 	error = -EIO;
433 	if (retval != size) {
434 		if (retval < 0)
435 			error = retval;
436 		goto out_close;
437 	}
438 
439 	total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
440 	if (!total_size) {
441 		error = -EINVAL;
442 		goto out_close;
443 	}
444 
445 	eppnt = elf_phdata;
446 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
447 		if (eppnt->p_type == PT_LOAD) {
448 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
449 			int elf_prot = 0;
450 			unsigned long vaddr = 0;
451 			unsigned long k, map_addr;
452 
453 			if (eppnt->p_flags & PF_R)
454 		    		elf_prot = PROT_READ;
455 			if (eppnt->p_flags & PF_W)
456 				elf_prot |= PROT_WRITE;
457 			if (eppnt->p_flags & PF_X)
458 				elf_prot |= PROT_EXEC;
459 			vaddr = eppnt->p_vaddr;
460 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
461 				elf_type |= MAP_FIXED;
462 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
463 				load_addr = -vaddr;
464 
465 			map_addr = elf_map(interpreter, load_addr + vaddr,
466 					eppnt, elf_prot, elf_type, total_size);
467 			total_size = 0;
468 			if (!*interp_map_addr)
469 				*interp_map_addr = map_addr;
470 			error = map_addr;
471 			if (BAD_ADDR(map_addr))
472 				goto out_close;
473 
474 			if (!load_addr_set &&
475 			    interp_elf_ex->e_type == ET_DYN) {
476 				load_addr = map_addr - ELF_PAGESTART(vaddr);
477 				load_addr_set = 1;
478 			}
479 
480 			/*
481 			 * Check to see if the section's size will overflow the
482 			 * allowed task size. Note that p_filesz must always be
483 			 * <= p_memsize so it's only necessary to check p_memsz.
484 			 */
485 			k = load_addr + eppnt->p_vaddr;
486 			if (BAD_ADDR(k) ||
487 			    eppnt->p_filesz > eppnt->p_memsz ||
488 			    eppnt->p_memsz > TASK_SIZE ||
489 			    TASK_SIZE - eppnt->p_memsz < k) {
490 				error = -ENOMEM;
491 				goto out_close;
492 			}
493 
494 			/*
495 			 * Find the end of the file mapping for this phdr, and
496 			 * keep track of the largest address we see for this.
497 			 */
498 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
499 			if (k > elf_bss)
500 				elf_bss = k;
501 
502 			/*
503 			 * Do the same thing for the memory mapping - between
504 			 * elf_bss and last_bss is the bss section.
505 			 */
506 			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
507 			if (k > last_bss)
508 				last_bss = k;
509 		}
510 	}
511 
512 	if (last_bss > elf_bss) {
513 		/*
514 		 * Now fill out the bss section.  First pad the last page up
515 		 * to the page boundary, and then perform a mmap to make sure
516 		 * that there are zero-mapped pages up to and including the
517 		 * last bss page.
518 		 */
519 		if (padzero(elf_bss)) {
520 			error = -EFAULT;
521 			goto out_close;
522 		}
523 
524 		/* What we have mapped so far */
525 		elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
526 
527 		/* Map the last of the bss segment */
528 		error = vm_brk(elf_bss, last_bss - elf_bss);
529 		if (BAD_ADDR(error))
530 			goto out_close;
531 	}
532 
533 	error = load_addr;
534 
535 out_close:
536 	kfree(elf_phdata);
537 out:
538 	return error;
539 }
540 
541 /*
542  * These are the functions used to load ELF style executables and shared
543  * libraries.  There is no binary dependent code anywhere else.
544  */
545 
546 #define INTERPRETER_NONE 0
547 #define INTERPRETER_ELF 2
548 
549 #ifndef STACK_RND_MASK
550 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
551 #endif
552 
553 static unsigned long randomize_stack_top(unsigned long stack_top)
554 {
555 	unsigned int random_variable = 0;
556 
557 	if ((current->flags & PF_RANDOMIZE) &&
558 		!(current->personality & ADDR_NO_RANDOMIZE)) {
559 		random_variable = get_random_int() & STACK_RND_MASK;
560 		random_variable <<= PAGE_SHIFT;
561 	}
562 #ifdef CONFIG_STACK_GROWSUP
563 	return PAGE_ALIGN(stack_top) + random_variable;
564 #else
565 	return PAGE_ALIGN(stack_top) - random_variable;
566 #endif
567 }
568 
569 static int load_elf_binary(struct linux_binprm *bprm)
570 {
571 	struct file *interpreter = NULL; /* to shut gcc up */
572  	unsigned long load_addr = 0, load_bias = 0;
573 	int load_addr_set = 0;
574 	char * elf_interpreter = NULL;
575 	unsigned long error;
576 	struct elf_phdr *elf_ppnt, *elf_phdata;
577 	unsigned long elf_bss, elf_brk;
578 	int retval, i;
579 	unsigned int size;
580 	unsigned long elf_entry;
581 	unsigned long interp_load_addr = 0;
582 	unsigned long start_code, end_code, start_data, end_data;
583 	unsigned long reloc_func_desc __maybe_unused = 0;
584 	int executable_stack = EXSTACK_DEFAULT;
585 	unsigned long def_flags = 0;
586 	struct pt_regs *regs = current_pt_regs();
587 	struct {
588 		struct elfhdr elf_ex;
589 		struct elfhdr interp_elf_ex;
590 	} *loc;
591 
592 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
593 	if (!loc) {
594 		retval = -ENOMEM;
595 		goto out_ret;
596 	}
597 
598 	/* Get the exec-header */
599 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
600 
601 	retval = -ENOEXEC;
602 	/* First of all, some simple consistency checks */
603 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
604 		goto out;
605 
606 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
607 		goto out;
608 	if (!elf_check_arch(&loc->elf_ex))
609 		goto out;
610 	if (!bprm->file->f_op || !bprm->file->f_op->mmap)
611 		goto out;
612 
613 	/* Now read in all of the header information */
614 	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
615 		goto out;
616 	if (loc->elf_ex.e_phnum < 1 ||
617 	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
618 		goto out;
619 	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
620 	retval = -ENOMEM;
621 	elf_phdata = kmalloc(size, GFP_KERNEL);
622 	if (!elf_phdata)
623 		goto out;
624 
625 	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
626 			     (char *)elf_phdata, size);
627 	if (retval != size) {
628 		if (retval >= 0)
629 			retval = -EIO;
630 		goto out_free_ph;
631 	}
632 
633 	elf_ppnt = elf_phdata;
634 	elf_bss = 0;
635 	elf_brk = 0;
636 
637 	start_code = ~0UL;
638 	end_code = 0;
639 	start_data = 0;
640 	end_data = 0;
641 
642 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
643 		if (elf_ppnt->p_type == PT_INTERP) {
644 			/* This is the program interpreter used for
645 			 * shared libraries - for now assume that this
646 			 * is an a.out format binary
647 			 */
648 			retval = -ENOEXEC;
649 			if (elf_ppnt->p_filesz > PATH_MAX ||
650 			    elf_ppnt->p_filesz < 2)
651 				goto out_free_ph;
652 
653 			retval = -ENOMEM;
654 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
655 						  GFP_KERNEL);
656 			if (!elf_interpreter)
657 				goto out_free_ph;
658 
659 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
660 					     elf_interpreter,
661 					     elf_ppnt->p_filesz);
662 			if (retval != elf_ppnt->p_filesz) {
663 				if (retval >= 0)
664 					retval = -EIO;
665 				goto out_free_interp;
666 			}
667 			/* make sure path is NULL terminated */
668 			retval = -ENOEXEC;
669 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
670 				goto out_free_interp;
671 
672 			interpreter = open_exec(elf_interpreter);
673 			retval = PTR_ERR(interpreter);
674 			if (IS_ERR(interpreter))
675 				goto out_free_interp;
676 
677 			/*
678 			 * If the binary is not readable then enforce
679 			 * mm->dumpable = 0 regardless of the interpreter's
680 			 * permissions.
681 			 */
682 			would_dump(bprm, interpreter);
683 
684 			retval = kernel_read(interpreter, 0, bprm->buf,
685 					     BINPRM_BUF_SIZE);
686 			if (retval != BINPRM_BUF_SIZE) {
687 				if (retval >= 0)
688 					retval = -EIO;
689 				goto out_free_dentry;
690 			}
691 
692 			/* Get the exec headers */
693 			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
694 			break;
695 		}
696 		elf_ppnt++;
697 	}
698 
699 	elf_ppnt = elf_phdata;
700 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
701 		if (elf_ppnt->p_type == PT_GNU_STACK) {
702 			if (elf_ppnt->p_flags & PF_X)
703 				executable_stack = EXSTACK_ENABLE_X;
704 			else
705 				executable_stack = EXSTACK_DISABLE_X;
706 			break;
707 		}
708 
709 	/* Some simple consistency checks for the interpreter */
710 	if (elf_interpreter) {
711 		retval = -ELIBBAD;
712 		/* Not an ELF interpreter */
713 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
714 			goto out_free_dentry;
715 		/* Verify the interpreter has a valid arch */
716 		if (!elf_check_arch(&loc->interp_elf_ex))
717 			goto out_free_dentry;
718 	}
719 
720 	/* Flush all traces of the currently running executable */
721 	retval = flush_old_exec(bprm);
722 	if (retval)
723 		goto out_free_dentry;
724 
725 	/* OK, This is the point of no return */
726 	current->mm->def_flags = def_flags;
727 
728 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
729 	   may depend on the personality.  */
730 	SET_PERSONALITY(loc->elf_ex);
731 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
732 		current->personality |= READ_IMPLIES_EXEC;
733 
734 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
735 		current->flags |= PF_RANDOMIZE;
736 
737 	setup_new_exec(bprm);
738 
739 	/* Do this so that we can load the interpreter, if need be.  We will
740 	   change some of these later */
741 	current->mm->free_area_cache = current->mm->mmap_base;
742 	current->mm->cached_hole_size = 0;
743 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
744 				 executable_stack);
745 	if (retval < 0) {
746 		send_sig(SIGKILL, current, 0);
747 		goto out_free_dentry;
748 	}
749 
750 	current->mm->start_stack = bprm->p;
751 
752 	/* Now we do a little grungy work by mmapping the ELF image into
753 	   the correct location in memory. */
754 	for(i = 0, elf_ppnt = elf_phdata;
755 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
756 		int elf_prot = 0, elf_flags;
757 		unsigned long k, vaddr;
758 
759 		if (elf_ppnt->p_type != PT_LOAD)
760 			continue;
761 
762 		if (unlikely (elf_brk > elf_bss)) {
763 			unsigned long nbyte;
764 
765 			/* There was a PT_LOAD segment with p_memsz > p_filesz
766 			   before this one. Map anonymous pages, if needed,
767 			   and clear the area.  */
768 			retval = set_brk(elf_bss + load_bias,
769 					 elf_brk + load_bias);
770 			if (retval) {
771 				send_sig(SIGKILL, current, 0);
772 				goto out_free_dentry;
773 			}
774 			nbyte = ELF_PAGEOFFSET(elf_bss);
775 			if (nbyte) {
776 				nbyte = ELF_MIN_ALIGN - nbyte;
777 				if (nbyte > elf_brk - elf_bss)
778 					nbyte = elf_brk - elf_bss;
779 				if (clear_user((void __user *)elf_bss +
780 							load_bias, nbyte)) {
781 					/*
782 					 * This bss-zeroing can fail if the ELF
783 					 * file specifies odd protections. So
784 					 * we don't check the return value
785 					 */
786 				}
787 			}
788 		}
789 
790 		if (elf_ppnt->p_flags & PF_R)
791 			elf_prot |= PROT_READ;
792 		if (elf_ppnt->p_flags & PF_W)
793 			elf_prot |= PROT_WRITE;
794 		if (elf_ppnt->p_flags & PF_X)
795 			elf_prot |= PROT_EXEC;
796 
797 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
798 
799 		vaddr = elf_ppnt->p_vaddr;
800 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
801 			elf_flags |= MAP_FIXED;
802 		} else if (loc->elf_ex.e_type == ET_DYN) {
803 			/* Try and get dynamic programs out of the way of the
804 			 * default mmap base, as well as whatever program they
805 			 * might try to exec.  This is because the brk will
806 			 * follow the loader, and is not movable.  */
807 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
808 			/* Memory randomization might have been switched off
809 			 * in runtime via sysctl or explicit setting of
810 			 * personality flags.
811 			 * If that is the case, retain the original non-zero
812 			 * load_bias value in order to establish proper
813 			 * non-randomized mappings.
814 			 */
815 			if (current->flags & PF_RANDOMIZE)
816 				load_bias = 0;
817 			else
818 				load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
819 #else
820 			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
821 #endif
822 		}
823 
824 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
825 				elf_prot, elf_flags, 0);
826 		if (BAD_ADDR(error)) {
827 			send_sig(SIGKILL, current, 0);
828 			retval = IS_ERR((void *)error) ?
829 				PTR_ERR((void*)error) : -EINVAL;
830 			goto out_free_dentry;
831 		}
832 
833 		if (!load_addr_set) {
834 			load_addr_set = 1;
835 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
836 			if (loc->elf_ex.e_type == ET_DYN) {
837 				load_bias += error -
838 				             ELF_PAGESTART(load_bias + vaddr);
839 				load_addr += load_bias;
840 				reloc_func_desc = load_bias;
841 			}
842 		}
843 		k = elf_ppnt->p_vaddr;
844 		if (k < start_code)
845 			start_code = k;
846 		if (start_data < k)
847 			start_data = k;
848 
849 		/*
850 		 * Check to see if the section's size will overflow the
851 		 * allowed task size. Note that p_filesz must always be
852 		 * <= p_memsz so it is only necessary to check p_memsz.
853 		 */
854 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
855 		    elf_ppnt->p_memsz > TASK_SIZE ||
856 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
857 			/* set_brk can never work. Avoid overflows. */
858 			send_sig(SIGKILL, current, 0);
859 			retval = -EINVAL;
860 			goto out_free_dentry;
861 		}
862 
863 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
864 
865 		if (k > elf_bss)
866 			elf_bss = k;
867 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
868 			end_code = k;
869 		if (end_data < k)
870 			end_data = k;
871 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
872 		if (k > elf_brk)
873 			elf_brk = k;
874 	}
875 
876 	loc->elf_ex.e_entry += load_bias;
877 	elf_bss += load_bias;
878 	elf_brk += load_bias;
879 	start_code += load_bias;
880 	end_code += load_bias;
881 	start_data += load_bias;
882 	end_data += load_bias;
883 
884 	/* Calling set_brk effectively mmaps the pages that we need
885 	 * for the bss and break sections.  We must do this before
886 	 * mapping in the interpreter, to make sure it doesn't wind
887 	 * up getting placed where the bss needs to go.
888 	 */
889 	retval = set_brk(elf_bss, elf_brk);
890 	if (retval) {
891 		send_sig(SIGKILL, current, 0);
892 		goto out_free_dentry;
893 	}
894 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
895 		send_sig(SIGSEGV, current, 0);
896 		retval = -EFAULT; /* Nobody gets to see this, but.. */
897 		goto out_free_dentry;
898 	}
899 
900 	if (elf_interpreter) {
901 		unsigned long interp_map_addr = 0;
902 
903 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
904 					    interpreter,
905 					    &interp_map_addr,
906 					    load_bias);
907 		if (!IS_ERR((void *)elf_entry)) {
908 			/*
909 			 * load_elf_interp() returns relocation
910 			 * adjustment
911 			 */
912 			interp_load_addr = elf_entry;
913 			elf_entry += loc->interp_elf_ex.e_entry;
914 		}
915 		if (BAD_ADDR(elf_entry)) {
916 			force_sig(SIGSEGV, current);
917 			retval = IS_ERR((void *)elf_entry) ?
918 					(int)elf_entry : -EINVAL;
919 			goto out_free_dentry;
920 		}
921 		reloc_func_desc = interp_load_addr;
922 
923 		allow_write_access(interpreter);
924 		fput(interpreter);
925 		kfree(elf_interpreter);
926 	} else {
927 		elf_entry = loc->elf_ex.e_entry;
928 		if (BAD_ADDR(elf_entry)) {
929 			force_sig(SIGSEGV, current);
930 			retval = -EINVAL;
931 			goto out_free_dentry;
932 		}
933 	}
934 
935 	kfree(elf_phdata);
936 
937 	set_binfmt(&elf_format);
938 
939 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
940 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
941 	if (retval < 0) {
942 		send_sig(SIGKILL, current, 0);
943 		goto out;
944 	}
945 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
946 
947 	install_exec_creds(bprm);
948 	retval = create_elf_tables(bprm, &loc->elf_ex,
949 			  load_addr, interp_load_addr);
950 	if (retval < 0) {
951 		send_sig(SIGKILL, current, 0);
952 		goto out;
953 	}
954 	/* N.B. passed_fileno might not be initialized? */
955 	current->mm->end_code = end_code;
956 	current->mm->start_code = start_code;
957 	current->mm->start_data = start_data;
958 	current->mm->end_data = end_data;
959 	current->mm->start_stack = bprm->p;
960 
961 #ifdef arch_randomize_brk
962 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
963 		current->mm->brk = current->mm->start_brk =
964 			arch_randomize_brk(current->mm);
965 #ifdef CONFIG_COMPAT_BRK
966 		current->brk_randomized = 1;
967 #endif
968 	}
969 #endif
970 
971 	if (current->personality & MMAP_PAGE_ZERO) {
972 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
973 		   and some applications "depend" upon this behavior.
974 		   Since we do not have the power to recompile these, we
975 		   emulate the SVr4 behavior. Sigh. */
976 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
977 				MAP_FIXED | MAP_PRIVATE, 0);
978 	}
979 
980 #ifdef ELF_PLAT_INIT
981 	/*
982 	 * The ABI may specify that certain registers be set up in special
983 	 * ways (on i386 %edx is the address of a DT_FINI function, for
984 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
985 	 * that the e_entry field is the address of the function descriptor
986 	 * for the startup routine, rather than the address of the startup
987 	 * routine itself.  This macro performs whatever initialization to
988 	 * the regs structure is required as well as any relocations to the
989 	 * function descriptor entries when executing dynamically links apps.
990 	 */
991 	ELF_PLAT_INIT(regs, reloc_func_desc);
992 #endif
993 
994 	start_thread(regs, elf_entry, bprm->p);
995 	retval = 0;
996 out:
997 	kfree(loc);
998 out_ret:
999 	return retval;
1000 
1001 	/* error cleanup */
1002 out_free_dentry:
1003 	allow_write_access(interpreter);
1004 	if (interpreter)
1005 		fput(interpreter);
1006 out_free_interp:
1007 	kfree(elf_interpreter);
1008 out_free_ph:
1009 	kfree(elf_phdata);
1010 	goto out;
1011 }
1012 
1013 /* This is really simpleminded and specialized - we are loading an
1014    a.out library that is given an ELF header. */
1015 static int load_elf_library(struct file *file)
1016 {
1017 	struct elf_phdr *elf_phdata;
1018 	struct elf_phdr *eppnt;
1019 	unsigned long elf_bss, bss, len;
1020 	int retval, error, i, j;
1021 	struct elfhdr elf_ex;
1022 
1023 	error = -ENOEXEC;
1024 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1025 	if (retval != sizeof(elf_ex))
1026 		goto out;
1027 
1028 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1029 		goto out;
1030 
1031 	/* First of all, some simple consistency checks */
1032 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1033 	    !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1034 		goto out;
1035 
1036 	/* Now read in all of the header information */
1037 
1038 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1039 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1040 
1041 	error = -ENOMEM;
1042 	elf_phdata = kmalloc(j, GFP_KERNEL);
1043 	if (!elf_phdata)
1044 		goto out;
1045 
1046 	eppnt = elf_phdata;
1047 	error = -ENOEXEC;
1048 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1049 	if (retval != j)
1050 		goto out_free_ph;
1051 
1052 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1053 		if ((eppnt + i)->p_type == PT_LOAD)
1054 			j++;
1055 	if (j != 1)
1056 		goto out_free_ph;
1057 
1058 	while (eppnt->p_type != PT_LOAD)
1059 		eppnt++;
1060 
1061 	/* Now use mmap to map the library into memory. */
1062 	error = vm_mmap(file,
1063 			ELF_PAGESTART(eppnt->p_vaddr),
1064 			(eppnt->p_filesz +
1065 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1066 			PROT_READ | PROT_WRITE | PROT_EXEC,
1067 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1068 			(eppnt->p_offset -
1069 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1070 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1071 		goto out_free_ph;
1072 
1073 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1074 	if (padzero(elf_bss)) {
1075 		error = -EFAULT;
1076 		goto out_free_ph;
1077 	}
1078 
1079 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1080 			    ELF_MIN_ALIGN - 1);
1081 	bss = eppnt->p_memsz + eppnt->p_vaddr;
1082 	if (bss > len)
1083 		vm_brk(len, bss - len);
1084 	error = 0;
1085 
1086 out_free_ph:
1087 	kfree(elf_phdata);
1088 out:
1089 	return error;
1090 }
1091 
1092 #ifdef CONFIG_ELF_CORE
1093 /*
1094  * ELF core dumper
1095  *
1096  * Modelled on fs/exec.c:aout_core_dump()
1097  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1098  */
1099 
1100 /*
1101  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1102  * that are useful for post-mortem analysis are included in every core dump.
1103  * In that way we ensure that the core dump is fully interpretable later
1104  * without matching up the same kernel and hardware config to see what PC values
1105  * meant. These special mappings include - vDSO, vsyscall, and other
1106  * architecture specific mappings
1107  */
1108 static bool always_dump_vma(struct vm_area_struct *vma)
1109 {
1110 	/* Any vsyscall mappings? */
1111 	if (vma == get_gate_vma(vma->vm_mm))
1112 		return true;
1113 	/*
1114 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1115 	 * such as vDSO sections.
1116 	 */
1117 	if (arch_vma_name(vma))
1118 		return true;
1119 
1120 	return false;
1121 }
1122 
1123 /*
1124  * Decide what to dump of a segment, part, all or none.
1125  */
1126 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1127 				   unsigned long mm_flags)
1128 {
1129 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1130 
1131 	/* always dump the vdso and vsyscall sections */
1132 	if (always_dump_vma(vma))
1133 		goto whole;
1134 
1135 	if (vma->vm_flags & VM_DONTDUMP)
1136 		return 0;
1137 
1138 	/* Hugetlb memory check */
1139 	if (vma->vm_flags & VM_HUGETLB) {
1140 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1141 			goto whole;
1142 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1143 			goto whole;
1144 		return 0;
1145 	}
1146 
1147 	/* Do not dump I/O mapped devices or special mappings */
1148 	if (vma->vm_flags & VM_IO)
1149 		return 0;
1150 
1151 	/* By default, dump shared memory if mapped from an anonymous file. */
1152 	if (vma->vm_flags & VM_SHARED) {
1153 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1154 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1155 			goto whole;
1156 		return 0;
1157 	}
1158 
1159 	/* Dump segments that have been written to.  */
1160 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1161 		goto whole;
1162 	if (vma->vm_file == NULL)
1163 		return 0;
1164 
1165 	if (FILTER(MAPPED_PRIVATE))
1166 		goto whole;
1167 
1168 	/*
1169 	 * If this looks like the beginning of a DSO or executable mapping,
1170 	 * check for an ELF header.  If we find one, dump the first page to
1171 	 * aid in determining what was mapped here.
1172 	 */
1173 	if (FILTER(ELF_HEADERS) &&
1174 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1175 		u32 __user *header = (u32 __user *) vma->vm_start;
1176 		u32 word;
1177 		mm_segment_t fs = get_fs();
1178 		/*
1179 		 * Doing it this way gets the constant folded by GCC.
1180 		 */
1181 		union {
1182 			u32 cmp;
1183 			char elfmag[SELFMAG];
1184 		} magic;
1185 		BUILD_BUG_ON(SELFMAG != sizeof word);
1186 		magic.elfmag[EI_MAG0] = ELFMAG0;
1187 		magic.elfmag[EI_MAG1] = ELFMAG1;
1188 		magic.elfmag[EI_MAG2] = ELFMAG2;
1189 		magic.elfmag[EI_MAG3] = ELFMAG3;
1190 		/*
1191 		 * Switch to the user "segment" for get_user(),
1192 		 * then put back what elf_core_dump() had in place.
1193 		 */
1194 		set_fs(USER_DS);
1195 		if (unlikely(get_user(word, header)))
1196 			word = 0;
1197 		set_fs(fs);
1198 		if (word == magic.cmp)
1199 			return PAGE_SIZE;
1200 	}
1201 
1202 #undef	FILTER
1203 
1204 	return 0;
1205 
1206 whole:
1207 	return vma->vm_end - vma->vm_start;
1208 }
1209 
1210 /* An ELF note in memory */
1211 struct memelfnote
1212 {
1213 	const char *name;
1214 	int type;
1215 	unsigned int datasz;
1216 	void *data;
1217 };
1218 
1219 static int notesize(struct memelfnote *en)
1220 {
1221 	int sz;
1222 
1223 	sz = sizeof(struct elf_note);
1224 	sz += roundup(strlen(en->name) + 1, 4);
1225 	sz += roundup(en->datasz, 4);
1226 
1227 	return sz;
1228 }
1229 
1230 #define DUMP_WRITE(addr, nr, foffset)	\
1231 	do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1232 
1233 static int alignfile(struct file *file, loff_t *foffset)
1234 {
1235 	static const char buf[4] = { 0, };
1236 	DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1237 	return 1;
1238 }
1239 
1240 static int writenote(struct memelfnote *men, struct file *file,
1241 			loff_t *foffset)
1242 {
1243 	struct elf_note en;
1244 	en.n_namesz = strlen(men->name) + 1;
1245 	en.n_descsz = men->datasz;
1246 	en.n_type = men->type;
1247 
1248 	DUMP_WRITE(&en, sizeof(en), foffset);
1249 	DUMP_WRITE(men->name, en.n_namesz, foffset);
1250 	if (!alignfile(file, foffset))
1251 		return 0;
1252 	DUMP_WRITE(men->data, men->datasz, foffset);
1253 	if (!alignfile(file, foffset))
1254 		return 0;
1255 
1256 	return 1;
1257 }
1258 #undef DUMP_WRITE
1259 
1260 static void fill_elf_header(struct elfhdr *elf, int segs,
1261 			    u16 machine, u32 flags)
1262 {
1263 	memset(elf, 0, sizeof(*elf));
1264 
1265 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1266 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1267 	elf->e_ident[EI_DATA] = ELF_DATA;
1268 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1269 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1270 
1271 	elf->e_type = ET_CORE;
1272 	elf->e_machine = machine;
1273 	elf->e_version = EV_CURRENT;
1274 	elf->e_phoff = sizeof(struct elfhdr);
1275 	elf->e_flags = flags;
1276 	elf->e_ehsize = sizeof(struct elfhdr);
1277 	elf->e_phentsize = sizeof(struct elf_phdr);
1278 	elf->e_phnum = segs;
1279 
1280 	return;
1281 }
1282 
1283 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1284 {
1285 	phdr->p_type = PT_NOTE;
1286 	phdr->p_offset = offset;
1287 	phdr->p_vaddr = 0;
1288 	phdr->p_paddr = 0;
1289 	phdr->p_filesz = sz;
1290 	phdr->p_memsz = 0;
1291 	phdr->p_flags = 0;
1292 	phdr->p_align = 0;
1293 	return;
1294 }
1295 
1296 static void fill_note(struct memelfnote *note, const char *name, int type,
1297 		unsigned int sz, void *data)
1298 {
1299 	note->name = name;
1300 	note->type = type;
1301 	note->datasz = sz;
1302 	note->data = data;
1303 	return;
1304 }
1305 
1306 /*
1307  * fill up all the fields in prstatus from the given task struct, except
1308  * registers which need to be filled up separately.
1309  */
1310 static void fill_prstatus(struct elf_prstatus *prstatus,
1311 		struct task_struct *p, long signr)
1312 {
1313 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1314 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1315 	prstatus->pr_sighold = p->blocked.sig[0];
1316 	rcu_read_lock();
1317 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1318 	rcu_read_unlock();
1319 	prstatus->pr_pid = task_pid_vnr(p);
1320 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1321 	prstatus->pr_sid = task_session_vnr(p);
1322 	if (thread_group_leader(p)) {
1323 		struct task_cputime cputime;
1324 
1325 		/*
1326 		 * This is the record for the group leader.  It shows the
1327 		 * group-wide total, not its individual thread total.
1328 		 */
1329 		thread_group_cputime(p, &cputime);
1330 		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1331 		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1332 	} else {
1333 		cputime_t utime, stime;
1334 
1335 		task_cputime(p, &utime, &stime);
1336 		cputime_to_timeval(utime, &prstatus->pr_utime);
1337 		cputime_to_timeval(stime, &prstatus->pr_stime);
1338 	}
1339 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1340 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1341 }
1342 
1343 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1344 		       struct mm_struct *mm)
1345 {
1346 	const struct cred *cred;
1347 	unsigned int i, len;
1348 
1349 	/* first copy the parameters from user space */
1350 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1351 
1352 	len = mm->arg_end - mm->arg_start;
1353 	if (len >= ELF_PRARGSZ)
1354 		len = ELF_PRARGSZ-1;
1355 	if (copy_from_user(&psinfo->pr_psargs,
1356 		           (const char __user *)mm->arg_start, len))
1357 		return -EFAULT;
1358 	for(i = 0; i < len; i++)
1359 		if (psinfo->pr_psargs[i] == 0)
1360 			psinfo->pr_psargs[i] = ' ';
1361 	psinfo->pr_psargs[len] = 0;
1362 
1363 	rcu_read_lock();
1364 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1365 	rcu_read_unlock();
1366 	psinfo->pr_pid = task_pid_vnr(p);
1367 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1368 	psinfo->pr_sid = task_session_vnr(p);
1369 
1370 	i = p->state ? ffz(~p->state) + 1 : 0;
1371 	psinfo->pr_state = i;
1372 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1373 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1374 	psinfo->pr_nice = task_nice(p);
1375 	psinfo->pr_flag = p->flags;
1376 	rcu_read_lock();
1377 	cred = __task_cred(p);
1378 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1379 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1380 	rcu_read_unlock();
1381 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1382 
1383 	return 0;
1384 }
1385 
1386 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1387 {
1388 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1389 	int i = 0;
1390 	do
1391 		i += 2;
1392 	while (auxv[i - 2] != AT_NULL);
1393 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1394 }
1395 
1396 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1397 		siginfo_t *siginfo)
1398 {
1399 	mm_segment_t old_fs = get_fs();
1400 	set_fs(KERNEL_DS);
1401 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1402 	set_fs(old_fs);
1403 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1404 }
1405 
1406 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1407 /*
1408  * Format of NT_FILE note:
1409  *
1410  * long count     -- how many files are mapped
1411  * long page_size -- units for file_ofs
1412  * array of [COUNT] elements of
1413  *   long start
1414  *   long end
1415  *   long file_ofs
1416  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1417  */
1418 static void fill_files_note(struct memelfnote *note)
1419 {
1420 	struct vm_area_struct *vma;
1421 	unsigned count, size, names_ofs, remaining, n;
1422 	user_long_t *data;
1423 	user_long_t *start_end_ofs;
1424 	char *name_base, *name_curpos;
1425 
1426 	/* *Estimated* file count and total data size needed */
1427 	count = current->mm->map_count;
1428 	size = count * 64;
1429 
1430 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1431  alloc:
1432 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1433 		goto err;
1434 	size = round_up(size, PAGE_SIZE);
1435 	data = vmalloc(size);
1436 	if (!data)
1437 		goto err;
1438 
1439 	start_end_ofs = data + 2;
1440 	name_base = name_curpos = ((char *)data) + names_ofs;
1441 	remaining = size - names_ofs;
1442 	count = 0;
1443 	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1444 		struct file *file;
1445 		const char *filename;
1446 
1447 		file = vma->vm_file;
1448 		if (!file)
1449 			continue;
1450 		filename = d_path(&file->f_path, name_curpos, remaining);
1451 		if (IS_ERR(filename)) {
1452 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1453 				vfree(data);
1454 				size = size * 5 / 4;
1455 				goto alloc;
1456 			}
1457 			continue;
1458 		}
1459 
1460 		/* d_path() fills at the end, move name down */
1461 		/* n = strlen(filename) + 1: */
1462 		n = (name_curpos + remaining) - filename;
1463 		remaining = filename - name_curpos;
1464 		memmove(name_curpos, filename, n);
1465 		name_curpos += n;
1466 
1467 		*start_end_ofs++ = vma->vm_start;
1468 		*start_end_ofs++ = vma->vm_end;
1469 		*start_end_ofs++ = vma->vm_pgoff;
1470 		count++;
1471 	}
1472 
1473 	/* Now we know exact count of files, can store it */
1474 	data[0] = count;
1475 	data[1] = PAGE_SIZE;
1476 	/*
1477 	 * Count usually is less than current->mm->map_count,
1478 	 * we need to move filenames down.
1479 	 */
1480 	n = current->mm->map_count - count;
1481 	if (n != 0) {
1482 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1483 		memmove(name_base - shift_bytes, name_base,
1484 			name_curpos - name_base);
1485 		name_curpos -= shift_bytes;
1486 	}
1487 
1488 	size = name_curpos - (char *)data;
1489 	fill_note(note, "CORE", NT_FILE, size, data);
1490  err: ;
1491 }
1492 
1493 #ifdef CORE_DUMP_USE_REGSET
1494 #include <linux/regset.h>
1495 
1496 struct elf_thread_core_info {
1497 	struct elf_thread_core_info *next;
1498 	struct task_struct *task;
1499 	struct elf_prstatus prstatus;
1500 	struct memelfnote notes[0];
1501 };
1502 
1503 struct elf_note_info {
1504 	struct elf_thread_core_info *thread;
1505 	struct memelfnote psinfo;
1506 	struct memelfnote signote;
1507 	struct memelfnote auxv;
1508 	struct memelfnote files;
1509 	user_siginfo_t csigdata;
1510 	size_t size;
1511 	int thread_notes;
1512 };
1513 
1514 /*
1515  * When a regset has a writeback hook, we call it on each thread before
1516  * dumping user memory.  On register window machines, this makes sure the
1517  * user memory backing the register data is up to date before we read it.
1518  */
1519 static void do_thread_regset_writeback(struct task_struct *task,
1520 				       const struct user_regset *regset)
1521 {
1522 	if (regset->writeback)
1523 		regset->writeback(task, regset, 1);
1524 }
1525 
1526 #ifndef PR_REG_SIZE
1527 #define PR_REG_SIZE(S) sizeof(S)
1528 #endif
1529 
1530 #ifndef PRSTATUS_SIZE
1531 #define PRSTATUS_SIZE(S) sizeof(S)
1532 #endif
1533 
1534 #ifndef PR_REG_PTR
1535 #define PR_REG_PTR(S) (&((S)->pr_reg))
1536 #endif
1537 
1538 #ifndef SET_PR_FPVALID
1539 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1540 #endif
1541 
1542 static int fill_thread_core_info(struct elf_thread_core_info *t,
1543 				 const struct user_regset_view *view,
1544 				 long signr, size_t *total)
1545 {
1546 	unsigned int i;
1547 
1548 	/*
1549 	 * NT_PRSTATUS is the one special case, because the regset data
1550 	 * goes into the pr_reg field inside the note contents, rather
1551 	 * than being the whole note contents.  We fill the reset in here.
1552 	 * We assume that regset 0 is NT_PRSTATUS.
1553 	 */
1554 	fill_prstatus(&t->prstatus, t->task, signr);
1555 	(void) view->regsets[0].get(t->task, &view->regsets[0],
1556 				    0, PR_REG_SIZE(t->prstatus.pr_reg),
1557 				    PR_REG_PTR(&t->prstatus), NULL);
1558 
1559 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1560 		  PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1561 	*total += notesize(&t->notes[0]);
1562 
1563 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1564 
1565 	/*
1566 	 * Each other regset might generate a note too.  For each regset
1567 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1568 	 * all zero and we'll know to skip writing it later.
1569 	 */
1570 	for (i = 1; i < view->n; ++i) {
1571 		const struct user_regset *regset = &view->regsets[i];
1572 		do_thread_regset_writeback(t->task, regset);
1573 		if (regset->core_note_type && regset->get &&
1574 		    (!regset->active || regset->active(t->task, regset))) {
1575 			int ret;
1576 			size_t size = regset->n * regset->size;
1577 			void *data = kmalloc(size, GFP_KERNEL);
1578 			if (unlikely(!data))
1579 				return 0;
1580 			ret = regset->get(t->task, regset,
1581 					  0, size, data, NULL);
1582 			if (unlikely(ret))
1583 				kfree(data);
1584 			else {
1585 				if (regset->core_note_type != NT_PRFPREG)
1586 					fill_note(&t->notes[i], "LINUX",
1587 						  regset->core_note_type,
1588 						  size, data);
1589 				else {
1590 					SET_PR_FPVALID(&t->prstatus, 1);
1591 					fill_note(&t->notes[i], "CORE",
1592 						  NT_PRFPREG, size, data);
1593 				}
1594 				*total += notesize(&t->notes[i]);
1595 			}
1596 		}
1597 	}
1598 
1599 	return 1;
1600 }
1601 
1602 static int fill_note_info(struct elfhdr *elf, int phdrs,
1603 			  struct elf_note_info *info,
1604 			  siginfo_t *siginfo, struct pt_regs *regs)
1605 {
1606 	struct task_struct *dump_task = current;
1607 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1608 	struct elf_thread_core_info *t;
1609 	struct elf_prpsinfo *psinfo;
1610 	struct core_thread *ct;
1611 	unsigned int i;
1612 
1613 	info->size = 0;
1614 	info->thread = NULL;
1615 
1616 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1617 	if (psinfo == NULL) {
1618 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1619 		return 0;
1620 	}
1621 
1622 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1623 
1624 	/*
1625 	 * Figure out how many notes we're going to need for each thread.
1626 	 */
1627 	info->thread_notes = 0;
1628 	for (i = 0; i < view->n; ++i)
1629 		if (view->regsets[i].core_note_type != 0)
1630 			++info->thread_notes;
1631 
1632 	/*
1633 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1634 	 * since it is our one special case.
1635 	 */
1636 	if (unlikely(info->thread_notes == 0) ||
1637 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1638 		WARN_ON(1);
1639 		return 0;
1640 	}
1641 
1642 	/*
1643 	 * Initialize the ELF file header.
1644 	 */
1645 	fill_elf_header(elf, phdrs,
1646 			view->e_machine, view->e_flags);
1647 
1648 	/*
1649 	 * Allocate a structure for each thread.
1650 	 */
1651 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1652 		t = kzalloc(offsetof(struct elf_thread_core_info,
1653 				     notes[info->thread_notes]),
1654 			    GFP_KERNEL);
1655 		if (unlikely(!t))
1656 			return 0;
1657 
1658 		t->task = ct->task;
1659 		if (ct->task == dump_task || !info->thread) {
1660 			t->next = info->thread;
1661 			info->thread = t;
1662 		} else {
1663 			/*
1664 			 * Make sure to keep the original task at
1665 			 * the head of the list.
1666 			 */
1667 			t->next = info->thread->next;
1668 			info->thread->next = t;
1669 		}
1670 	}
1671 
1672 	/*
1673 	 * Now fill in each thread's information.
1674 	 */
1675 	for (t = info->thread; t != NULL; t = t->next)
1676 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1677 			return 0;
1678 
1679 	/*
1680 	 * Fill in the two process-wide notes.
1681 	 */
1682 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1683 	info->size += notesize(&info->psinfo);
1684 
1685 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1686 	info->size += notesize(&info->signote);
1687 
1688 	fill_auxv_note(&info->auxv, current->mm);
1689 	info->size += notesize(&info->auxv);
1690 
1691 	fill_files_note(&info->files);
1692 	info->size += notesize(&info->files);
1693 
1694 	return 1;
1695 }
1696 
1697 static size_t get_note_info_size(struct elf_note_info *info)
1698 {
1699 	return info->size;
1700 }
1701 
1702 /*
1703  * Write all the notes for each thread.  When writing the first thread, the
1704  * process-wide notes are interleaved after the first thread-specific note.
1705  */
1706 static int write_note_info(struct elf_note_info *info,
1707 			   struct file *file, loff_t *foffset)
1708 {
1709 	bool first = 1;
1710 	struct elf_thread_core_info *t = info->thread;
1711 
1712 	do {
1713 		int i;
1714 
1715 		if (!writenote(&t->notes[0], file, foffset))
1716 			return 0;
1717 
1718 		if (first && !writenote(&info->psinfo, file, foffset))
1719 			return 0;
1720 		if (first && !writenote(&info->signote, file, foffset))
1721 			return 0;
1722 		if (first && !writenote(&info->auxv, file, foffset))
1723 			return 0;
1724 		if (first && !writenote(&info->files, file, foffset))
1725 			return 0;
1726 
1727 		for (i = 1; i < info->thread_notes; ++i)
1728 			if (t->notes[i].data &&
1729 			    !writenote(&t->notes[i], file, foffset))
1730 				return 0;
1731 
1732 		first = 0;
1733 		t = t->next;
1734 	} while (t);
1735 
1736 	return 1;
1737 }
1738 
1739 static void free_note_info(struct elf_note_info *info)
1740 {
1741 	struct elf_thread_core_info *threads = info->thread;
1742 	while (threads) {
1743 		unsigned int i;
1744 		struct elf_thread_core_info *t = threads;
1745 		threads = t->next;
1746 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1747 		for (i = 1; i < info->thread_notes; ++i)
1748 			kfree(t->notes[i].data);
1749 		kfree(t);
1750 	}
1751 	kfree(info->psinfo.data);
1752 	vfree(info->files.data);
1753 }
1754 
1755 #else
1756 
1757 /* Here is the structure in which status of each thread is captured. */
1758 struct elf_thread_status
1759 {
1760 	struct list_head list;
1761 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1762 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1763 	struct task_struct *thread;
1764 #ifdef ELF_CORE_COPY_XFPREGS
1765 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1766 #endif
1767 	struct memelfnote notes[3];
1768 	int num_notes;
1769 };
1770 
1771 /*
1772  * In order to add the specific thread information for the elf file format,
1773  * we need to keep a linked list of every threads pr_status and then create
1774  * a single section for them in the final core file.
1775  */
1776 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1777 {
1778 	int sz = 0;
1779 	struct task_struct *p = t->thread;
1780 	t->num_notes = 0;
1781 
1782 	fill_prstatus(&t->prstatus, p, signr);
1783 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1784 
1785 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1786 		  &(t->prstatus));
1787 	t->num_notes++;
1788 	sz += notesize(&t->notes[0]);
1789 
1790 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1791 								&t->fpu))) {
1792 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1793 			  &(t->fpu));
1794 		t->num_notes++;
1795 		sz += notesize(&t->notes[1]);
1796 	}
1797 
1798 #ifdef ELF_CORE_COPY_XFPREGS
1799 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1800 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1801 			  sizeof(t->xfpu), &t->xfpu);
1802 		t->num_notes++;
1803 		sz += notesize(&t->notes[2]);
1804 	}
1805 #endif
1806 	return sz;
1807 }
1808 
1809 struct elf_note_info {
1810 	struct memelfnote *notes;
1811 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1812 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1813 	struct list_head thread_list;
1814 	elf_fpregset_t *fpu;
1815 #ifdef ELF_CORE_COPY_XFPREGS
1816 	elf_fpxregset_t *xfpu;
1817 #endif
1818 	user_siginfo_t csigdata;
1819 	int thread_status_size;
1820 	int numnote;
1821 };
1822 
1823 static int elf_note_info_init(struct elf_note_info *info)
1824 {
1825 	memset(info, 0, sizeof(*info));
1826 	INIT_LIST_HEAD(&info->thread_list);
1827 
1828 	/* Allocate space for ELF notes */
1829 	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1830 	if (!info->notes)
1831 		return 0;
1832 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1833 	if (!info->psinfo)
1834 		return 0;
1835 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1836 	if (!info->prstatus)
1837 		return 0;
1838 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1839 	if (!info->fpu)
1840 		return 0;
1841 #ifdef ELF_CORE_COPY_XFPREGS
1842 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1843 	if (!info->xfpu)
1844 		return 0;
1845 #endif
1846 	return 1;
1847 }
1848 
1849 static int fill_note_info(struct elfhdr *elf, int phdrs,
1850 			  struct elf_note_info *info,
1851 			  siginfo_t *siginfo, struct pt_regs *regs)
1852 {
1853 	struct list_head *t;
1854 
1855 	if (!elf_note_info_init(info))
1856 		return 0;
1857 
1858 	if (siginfo->si_signo) {
1859 		struct core_thread *ct;
1860 		struct elf_thread_status *ets;
1861 
1862 		for (ct = current->mm->core_state->dumper.next;
1863 						ct; ct = ct->next) {
1864 			ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1865 			if (!ets)
1866 				return 0;
1867 
1868 			ets->thread = ct->task;
1869 			list_add(&ets->list, &info->thread_list);
1870 		}
1871 
1872 		list_for_each(t, &info->thread_list) {
1873 			int sz;
1874 
1875 			ets = list_entry(t, struct elf_thread_status, list);
1876 			sz = elf_dump_thread_status(siginfo->si_signo, ets);
1877 			info->thread_status_size += sz;
1878 		}
1879 	}
1880 	/* now collect the dump for the current */
1881 	memset(info->prstatus, 0, sizeof(*info->prstatus));
1882 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
1883 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1884 
1885 	/* Set up header */
1886 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1887 
1888 	/*
1889 	 * Set up the notes in similar form to SVR4 core dumps made
1890 	 * with info from their /proc.
1891 	 */
1892 
1893 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1894 		  sizeof(*info->prstatus), info->prstatus);
1895 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1896 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1897 		  sizeof(*info->psinfo), info->psinfo);
1898 
1899 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1900 	fill_auxv_note(info->notes + 3, current->mm);
1901 	fill_files_note(info->notes + 4);
1902 
1903 	info->numnote = 5;
1904 
1905 	/* Try to dump the FPU. */
1906 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1907 							       info->fpu);
1908 	if (info->prstatus->pr_fpvalid)
1909 		fill_note(info->notes + info->numnote++,
1910 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1911 #ifdef ELF_CORE_COPY_XFPREGS
1912 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
1913 		fill_note(info->notes + info->numnote++,
1914 			  "LINUX", ELF_CORE_XFPREG_TYPE,
1915 			  sizeof(*info->xfpu), info->xfpu);
1916 #endif
1917 
1918 	return 1;
1919 }
1920 
1921 static size_t get_note_info_size(struct elf_note_info *info)
1922 {
1923 	int sz = 0;
1924 	int i;
1925 
1926 	for (i = 0; i < info->numnote; i++)
1927 		sz += notesize(info->notes + i);
1928 
1929 	sz += info->thread_status_size;
1930 
1931 	return sz;
1932 }
1933 
1934 static int write_note_info(struct elf_note_info *info,
1935 			   struct file *file, loff_t *foffset)
1936 {
1937 	int i;
1938 	struct list_head *t;
1939 
1940 	for (i = 0; i < info->numnote; i++)
1941 		if (!writenote(info->notes + i, file, foffset))
1942 			return 0;
1943 
1944 	/* write out the thread status notes section */
1945 	list_for_each(t, &info->thread_list) {
1946 		struct elf_thread_status *tmp =
1947 				list_entry(t, struct elf_thread_status, list);
1948 
1949 		for (i = 0; i < tmp->num_notes; i++)
1950 			if (!writenote(&tmp->notes[i], file, foffset))
1951 				return 0;
1952 	}
1953 
1954 	return 1;
1955 }
1956 
1957 static void free_note_info(struct elf_note_info *info)
1958 {
1959 	while (!list_empty(&info->thread_list)) {
1960 		struct list_head *tmp = info->thread_list.next;
1961 		list_del(tmp);
1962 		kfree(list_entry(tmp, struct elf_thread_status, list));
1963 	}
1964 
1965 	/* Free data allocated by fill_files_note(): */
1966 	vfree(info->notes[4].data);
1967 
1968 	kfree(info->prstatus);
1969 	kfree(info->psinfo);
1970 	kfree(info->notes);
1971 	kfree(info->fpu);
1972 #ifdef ELF_CORE_COPY_XFPREGS
1973 	kfree(info->xfpu);
1974 #endif
1975 }
1976 
1977 #endif
1978 
1979 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1980 					struct vm_area_struct *gate_vma)
1981 {
1982 	struct vm_area_struct *ret = tsk->mm->mmap;
1983 
1984 	if (ret)
1985 		return ret;
1986 	return gate_vma;
1987 }
1988 /*
1989  * Helper function for iterating across a vma list.  It ensures that the caller
1990  * will visit `gate_vma' prior to terminating the search.
1991  */
1992 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1993 					struct vm_area_struct *gate_vma)
1994 {
1995 	struct vm_area_struct *ret;
1996 
1997 	ret = this_vma->vm_next;
1998 	if (ret)
1999 		return ret;
2000 	if (this_vma == gate_vma)
2001 		return NULL;
2002 	return gate_vma;
2003 }
2004 
2005 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2006 			     elf_addr_t e_shoff, int segs)
2007 {
2008 	elf->e_shoff = e_shoff;
2009 	elf->e_shentsize = sizeof(*shdr4extnum);
2010 	elf->e_shnum = 1;
2011 	elf->e_shstrndx = SHN_UNDEF;
2012 
2013 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2014 
2015 	shdr4extnum->sh_type = SHT_NULL;
2016 	shdr4extnum->sh_size = elf->e_shnum;
2017 	shdr4extnum->sh_link = elf->e_shstrndx;
2018 	shdr4extnum->sh_info = segs;
2019 }
2020 
2021 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
2022 				     unsigned long mm_flags)
2023 {
2024 	struct vm_area_struct *vma;
2025 	size_t size = 0;
2026 
2027 	for (vma = first_vma(current, gate_vma); vma != NULL;
2028 	     vma = next_vma(vma, gate_vma))
2029 		size += vma_dump_size(vma, mm_flags);
2030 	return size;
2031 }
2032 
2033 /*
2034  * Actual dumper
2035  *
2036  * This is a two-pass process; first we find the offsets of the bits,
2037  * and then they are actually written out.  If we run out of core limit
2038  * we just truncate.
2039  */
2040 static int elf_core_dump(struct coredump_params *cprm)
2041 {
2042 	int has_dumped = 0;
2043 	mm_segment_t fs;
2044 	int segs;
2045 	size_t size = 0;
2046 	struct vm_area_struct *vma, *gate_vma;
2047 	struct elfhdr *elf = NULL;
2048 	loff_t offset = 0, dataoff, foffset;
2049 	struct elf_note_info info;
2050 	struct elf_phdr *phdr4note = NULL;
2051 	struct elf_shdr *shdr4extnum = NULL;
2052 	Elf_Half e_phnum;
2053 	elf_addr_t e_shoff;
2054 
2055 	/*
2056 	 * We no longer stop all VM operations.
2057 	 *
2058 	 * This is because those proceses that could possibly change map_count
2059 	 * or the mmap / vma pages are now blocked in do_exit on current
2060 	 * finishing this core dump.
2061 	 *
2062 	 * Only ptrace can touch these memory addresses, but it doesn't change
2063 	 * the map_count or the pages allocated. So no possibility of crashing
2064 	 * exists while dumping the mm->vm_next areas to the core file.
2065 	 */
2066 
2067 	/* alloc memory for large data structures: too large to be on stack */
2068 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2069 	if (!elf)
2070 		goto out;
2071 	/*
2072 	 * The number of segs are recored into ELF header as 16bit value.
2073 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2074 	 */
2075 	segs = current->mm->map_count;
2076 	segs += elf_core_extra_phdrs();
2077 
2078 	gate_vma = get_gate_vma(current->mm);
2079 	if (gate_vma != NULL)
2080 		segs++;
2081 
2082 	/* for notes section */
2083 	segs++;
2084 
2085 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2086 	 * this, kernel supports extended numbering. Have a look at
2087 	 * include/linux/elf.h for further information. */
2088 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2089 
2090 	/*
2091 	 * Collect all the non-memory information about the process for the
2092 	 * notes.  This also sets up the file header.
2093 	 */
2094 	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2095 		goto cleanup;
2096 
2097 	has_dumped = 1;
2098 
2099 	fs = get_fs();
2100 	set_fs(KERNEL_DS);
2101 
2102 	offset += sizeof(*elf);				/* Elf header */
2103 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2104 	foffset = offset;
2105 
2106 	/* Write notes phdr entry */
2107 	{
2108 		size_t sz = get_note_info_size(&info);
2109 
2110 		sz += elf_coredump_extra_notes_size();
2111 
2112 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2113 		if (!phdr4note)
2114 			goto end_coredump;
2115 
2116 		fill_elf_note_phdr(phdr4note, sz, offset);
2117 		offset += sz;
2118 	}
2119 
2120 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2121 
2122 	offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
2123 	offset += elf_core_extra_data_size();
2124 	e_shoff = offset;
2125 
2126 	if (e_phnum == PN_XNUM) {
2127 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2128 		if (!shdr4extnum)
2129 			goto end_coredump;
2130 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2131 	}
2132 
2133 	offset = dataoff;
2134 
2135 	size += sizeof(*elf);
2136 	if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
2137 		goto end_coredump;
2138 
2139 	size += sizeof(*phdr4note);
2140 	if (size > cprm->limit
2141 	    || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
2142 		goto end_coredump;
2143 
2144 	/* Write program headers for segments dump */
2145 	for (vma = first_vma(current, gate_vma); vma != NULL;
2146 			vma = next_vma(vma, gate_vma)) {
2147 		struct elf_phdr phdr;
2148 
2149 		phdr.p_type = PT_LOAD;
2150 		phdr.p_offset = offset;
2151 		phdr.p_vaddr = vma->vm_start;
2152 		phdr.p_paddr = 0;
2153 		phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
2154 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2155 		offset += phdr.p_filesz;
2156 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2157 		if (vma->vm_flags & VM_WRITE)
2158 			phdr.p_flags |= PF_W;
2159 		if (vma->vm_flags & VM_EXEC)
2160 			phdr.p_flags |= PF_X;
2161 		phdr.p_align = ELF_EXEC_PAGESIZE;
2162 
2163 		size += sizeof(phdr);
2164 		if (size > cprm->limit
2165 		    || !dump_write(cprm->file, &phdr, sizeof(phdr)))
2166 			goto end_coredump;
2167 	}
2168 
2169 	if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
2170 		goto end_coredump;
2171 
2172  	/* write out the notes section */
2173 	if (!write_note_info(&info, cprm->file, &foffset))
2174 		goto end_coredump;
2175 
2176 	if (elf_coredump_extra_notes_write(cprm->file, &foffset))
2177 		goto end_coredump;
2178 
2179 	/* Align to page */
2180 	if (!dump_seek(cprm->file, dataoff - foffset))
2181 		goto end_coredump;
2182 
2183 	for (vma = first_vma(current, gate_vma); vma != NULL;
2184 			vma = next_vma(vma, gate_vma)) {
2185 		unsigned long addr;
2186 		unsigned long end;
2187 
2188 		end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2189 
2190 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2191 			struct page *page;
2192 			int stop;
2193 
2194 			page = get_dump_page(addr);
2195 			if (page) {
2196 				void *kaddr = kmap(page);
2197 				stop = ((size += PAGE_SIZE) > cprm->limit) ||
2198 					!dump_write(cprm->file, kaddr,
2199 						    PAGE_SIZE);
2200 				kunmap(page);
2201 				page_cache_release(page);
2202 			} else
2203 				stop = !dump_seek(cprm->file, PAGE_SIZE);
2204 			if (stop)
2205 				goto end_coredump;
2206 		}
2207 	}
2208 
2209 	if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
2210 		goto end_coredump;
2211 
2212 	if (e_phnum == PN_XNUM) {
2213 		size += sizeof(*shdr4extnum);
2214 		if (size > cprm->limit
2215 		    || !dump_write(cprm->file, shdr4extnum,
2216 				   sizeof(*shdr4extnum)))
2217 			goto end_coredump;
2218 	}
2219 
2220 end_coredump:
2221 	set_fs(fs);
2222 
2223 cleanup:
2224 	free_note_info(&info);
2225 	kfree(shdr4extnum);
2226 	kfree(phdr4note);
2227 	kfree(elf);
2228 out:
2229 	return has_dumped;
2230 }
2231 
2232 #endif		/* CONFIG_ELF_CORE */
2233 
2234 static int __init init_elf_binfmt(void)
2235 {
2236 	register_binfmt(&elf_format);
2237 	return 0;
2238 }
2239 
2240 static void __exit exit_elf_binfmt(void)
2241 {
2242 	/* Remove the COFF and ELF loaders. */
2243 	unregister_binfmt(&elf_format);
2244 }
2245 
2246 core_initcall(init_elf_binfmt);
2247 module_exit(exit_elf_binfmt);
2248 MODULE_LICENSE("GPL");
2249