1 /* 2 * linux/fs/binfmt_elf.c 3 * 4 * These are the functions used to load ELF format executables as used 5 * on SVr4 machines. Information on the format may be found in the book 6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 7 * Tools". 8 * 9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 10 */ 11 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/fs.h> 15 #include <linux/mm.h> 16 #include <linux/mman.h> 17 #include <linux/errno.h> 18 #include <linux/signal.h> 19 #include <linux/binfmts.h> 20 #include <linux/string.h> 21 #include <linux/file.h> 22 #include <linux/slab.h> 23 #include <linux/personality.h> 24 #include <linux/elfcore.h> 25 #include <linux/init.h> 26 #include <linux/highuid.h> 27 #include <linux/compiler.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/security.h> 31 #include <linux/random.h> 32 #include <linux/elf.h> 33 #include <linux/utsname.h> 34 #include <asm/uaccess.h> 35 #include <asm/param.h> 36 #include <asm/page.h> 37 38 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs); 39 static int load_elf_library(struct file *); 40 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *, 41 int, int, unsigned long); 42 43 /* 44 * If we don't support core dumping, then supply a NULL so we 45 * don't even try. 46 */ 47 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) 48 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit); 49 #else 50 #define elf_core_dump NULL 51 #endif 52 53 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 54 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 55 #else 56 #define ELF_MIN_ALIGN PAGE_SIZE 57 #endif 58 59 #ifndef ELF_CORE_EFLAGS 60 #define ELF_CORE_EFLAGS 0 61 #endif 62 63 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) 64 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 65 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 66 67 static struct linux_binfmt elf_format = { 68 .module = THIS_MODULE, 69 .load_binary = load_elf_binary, 70 .load_shlib = load_elf_library, 71 .core_dump = elf_core_dump, 72 .min_coredump = ELF_EXEC_PAGESIZE, 73 .hasvdso = 1 74 }; 75 76 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE) 77 78 static int set_brk(unsigned long start, unsigned long end) 79 { 80 start = ELF_PAGEALIGN(start); 81 end = ELF_PAGEALIGN(end); 82 if (end > start) { 83 unsigned long addr; 84 down_write(¤t->mm->mmap_sem); 85 addr = do_brk(start, end - start); 86 up_write(¤t->mm->mmap_sem); 87 if (BAD_ADDR(addr)) 88 return addr; 89 } 90 current->mm->start_brk = current->mm->brk = end; 91 return 0; 92 } 93 94 /* We need to explicitly zero any fractional pages 95 after the data section (i.e. bss). This would 96 contain the junk from the file that should not 97 be in memory 98 */ 99 static int padzero(unsigned long elf_bss) 100 { 101 unsigned long nbyte; 102 103 nbyte = ELF_PAGEOFFSET(elf_bss); 104 if (nbyte) { 105 nbyte = ELF_MIN_ALIGN - nbyte; 106 if (clear_user((void __user *) elf_bss, nbyte)) 107 return -EFAULT; 108 } 109 return 0; 110 } 111 112 /* Let's use some macros to make this stack manipulation a little clearer */ 113 #ifdef CONFIG_STACK_GROWSUP 114 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 115 #define STACK_ROUND(sp, items) \ 116 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 117 #define STACK_ALLOC(sp, len) ({ \ 118 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 119 old_sp; }) 120 #else 121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 122 #define STACK_ROUND(sp, items) \ 123 (((unsigned long) (sp - items)) &~ 15UL) 124 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) 125 #endif 126 127 #ifndef ELF_BASE_PLATFORM 128 /* 129 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. 130 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value 131 * will be copied to the user stack in the same manner as AT_PLATFORM. 132 */ 133 #define ELF_BASE_PLATFORM NULL 134 #endif 135 136 static int 137 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec, 138 unsigned long load_addr, unsigned long interp_load_addr) 139 { 140 unsigned long p = bprm->p; 141 int argc = bprm->argc; 142 int envc = bprm->envc; 143 elf_addr_t __user *argv; 144 elf_addr_t __user *envp; 145 elf_addr_t __user *sp; 146 elf_addr_t __user *u_platform; 147 elf_addr_t __user *u_base_platform; 148 elf_addr_t __user *u_rand_bytes; 149 const char *k_platform = ELF_PLATFORM; 150 const char *k_base_platform = ELF_BASE_PLATFORM; 151 unsigned char k_rand_bytes[16]; 152 int items; 153 elf_addr_t *elf_info; 154 int ei_index = 0; 155 const struct cred *cred = current_cred(); 156 struct vm_area_struct *vma; 157 158 /* 159 * In some cases (e.g. Hyper-Threading), we want to avoid L1 160 * evictions by the processes running on the same package. One 161 * thing we can do is to shuffle the initial stack for them. 162 */ 163 164 p = arch_align_stack(p); 165 166 /* 167 * If this architecture has a platform capability string, copy it 168 * to userspace. In some cases (Sparc), this info is impossible 169 * for userspace to get any other way, in others (i386) it is 170 * merely difficult. 171 */ 172 u_platform = NULL; 173 if (k_platform) { 174 size_t len = strlen(k_platform) + 1; 175 176 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 177 if (__copy_to_user(u_platform, k_platform, len)) 178 return -EFAULT; 179 } 180 181 /* 182 * If this architecture has a "base" platform capability 183 * string, copy it to userspace. 184 */ 185 u_base_platform = NULL; 186 if (k_base_platform) { 187 size_t len = strlen(k_base_platform) + 1; 188 189 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 190 if (__copy_to_user(u_base_platform, k_base_platform, len)) 191 return -EFAULT; 192 } 193 194 /* 195 * Generate 16 random bytes for userspace PRNG seeding. 196 */ 197 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); 198 u_rand_bytes = (elf_addr_t __user *) 199 STACK_ALLOC(p, sizeof(k_rand_bytes)); 200 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) 201 return -EFAULT; 202 203 /* Create the ELF interpreter info */ 204 elf_info = (elf_addr_t *)current->mm->saved_auxv; 205 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 206 #define NEW_AUX_ENT(id, val) \ 207 do { \ 208 elf_info[ei_index++] = id; \ 209 elf_info[ei_index++] = val; \ 210 } while (0) 211 212 #ifdef ARCH_DLINFO 213 /* 214 * ARCH_DLINFO must come first so PPC can do its special alignment of 215 * AUXV. 216 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 217 * ARCH_DLINFO changes 218 */ 219 ARCH_DLINFO; 220 #endif 221 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 222 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 223 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 224 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); 225 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 226 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 227 NEW_AUX_ENT(AT_BASE, interp_load_addr); 228 NEW_AUX_ENT(AT_FLAGS, 0); 229 NEW_AUX_ENT(AT_ENTRY, exec->e_entry); 230 NEW_AUX_ENT(AT_UID, cred->uid); 231 NEW_AUX_ENT(AT_EUID, cred->euid); 232 NEW_AUX_ENT(AT_GID, cred->gid); 233 NEW_AUX_ENT(AT_EGID, cred->egid); 234 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm)); 235 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); 236 NEW_AUX_ENT(AT_EXECFN, bprm->exec); 237 if (k_platform) { 238 NEW_AUX_ENT(AT_PLATFORM, 239 (elf_addr_t)(unsigned long)u_platform); 240 } 241 if (k_base_platform) { 242 NEW_AUX_ENT(AT_BASE_PLATFORM, 243 (elf_addr_t)(unsigned long)u_base_platform); 244 } 245 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) { 246 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data); 247 } 248 #undef NEW_AUX_ENT 249 /* AT_NULL is zero; clear the rest too */ 250 memset(&elf_info[ei_index], 0, 251 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]); 252 253 /* And advance past the AT_NULL entry. */ 254 ei_index += 2; 255 256 sp = STACK_ADD(p, ei_index); 257 258 items = (argc + 1) + (envc + 1) + 1; 259 bprm->p = STACK_ROUND(sp, items); 260 261 /* Point sp at the lowest address on the stack */ 262 #ifdef CONFIG_STACK_GROWSUP 263 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 264 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 265 #else 266 sp = (elf_addr_t __user *)bprm->p; 267 #endif 268 269 270 /* 271 * Grow the stack manually; some architectures have a limit on how 272 * far ahead a user-space access may be in order to grow the stack. 273 */ 274 vma = find_extend_vma(current->mm, bprm->p); 275 if (!vma) 276 return -EFAULT; 277 278 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 279 if (__put_user(argc, sp++)) 280 return -EFAULT; 281 argv = sp; 282 envp = argv + argc + 1; 283 284 /* Populate argv and envp */ 285 p = current->mm->arg_end = current->mm->arg_start; 286 while (argc-- > 0) { 287 size_t len; 288 if (__put_user((elf_addr_t)p, argv++)) 289 return -EFAULT; 290 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 291 if (!len || len > MAX_ARG_STRLEN) 292 return -EINVAL; 293 p += len; 294 } 295 if (__put_user(0, argv)) 296 return -EFAULT; 297 current->mm->arg_end = current->mm->env_start = p; 298 while (envc-- > 0) { 299 size_t len; 300 if (__put_user((elf_addr_t)p, envp++)) 301 return -EFAULT; 302 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 303 if (!len || len > MAX_ARG_STRLEN) 304 return -EINVAL; 305 p += len; 306 } 307 if (__put_user(0, envp)) 308 return -EFAULT; 309 current->mm->env_end = p; 310 311 /* Put the elf_info on the stack in the right place. */ 312 sp = (elf_addr_t __user *)envp + 1; 313 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t))) 314 return -EFAULT; 315 return 0; 316 } 317 318 #ifndef elf_map 319 320 static unsigned long elf_map(struct file *filep, unsigned long addr, 321 struct elf_phdr *eppnt, int prot, int type, 322 unsigned long total_size) 323 { 324 unsigned long map_addr; 325 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 326 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 327 addr = ELF_PAGESTART(addr); 328 size = ELF_PAGEALIGN(size); 329 330 /* mmap() will return -EINVAL if given a zero size, but a 331 * segment with zero filesize is perfectly valid */ 332 if (!size) 333 return addr; 334 335 down_write(¤t->mm->mmap_sem); 336 /* 337 * total_size is the size of the ELF (interpreter) image. 338 * The _first_ mmap needs to know the full size, otherwise 339 * randomization might put this image into an overlapping 340 * position with the ELF binary image. (since size < total_size) 341 * So we first map the 'big' image - and unmap the remainder at 342 * the end. (which unmap is needed for ELF images with holes.) 343 */ 344 if (total_size) { 345 total_size = ELF_PAGEALIGN(total_size); 346 map_addr = do_mmap(filep, addr, total_size, prot, type, off); 347 if (!BAD_ADDR(map_addr)) 348 do_munmap(current->mm, map_addr+size, total_size-size); 349 } else 350 map_addr = do_mmap(filep, addr, size, prot, type, off); 351 352 up_write(¤t->mm->mmap_sem); 353 return(map_addr); 354 } 355 356 #endif /* !elf_map */ 357 358 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr) 359 { 360 int i, first_idx = -1, last_idx = -1; 361 362 for (i = 0; i < nr; i++) { 363 if (cmds[i].p_type == PT_LOAD) { 364 last_idx = i; 365 if (first_idx == -1) 366 first_idx = i; 367 } 368 } 369 if (first_idx == -1) 370 return 0; 371 372 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - 373 ELF_PAGESTART(cmds[first_idx].p_vaddr); 374 } 375 376 377 /* This is much more generalized than the library routine read function, 378 so we keep this separate. Technically the library read function 379 is only provided so that we can read a.out libraries that have 380 an ELF header */ 381 382 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 383 struct file *interpreter, unsigned long *interp_map_addr, 384 unsigned long no_base) 385 { 386 struct elf_phdr *elf_phdata; 387 struct elf_phdr *eppnt; 388 unsigned long load_addr = 0; 389 int load_addr_set = 0; 390 unsigned long last_bss = 0, elf_bss = 0; 391 unsigned long error = ~0UL; 392 unsigned long total_size; 393 int retval, i, size; 394 395 /* First of all, some simple consistency checks */ 396 if (interp_elf_ex->e_type != ET_EXEC && 397 interp_elf_ex->e_type != ET_DYN) 398 goto out; 399 if (!elf_check_arch(interp_elf_ex)) 400 goto out; 401 if (!interpreter->f_op || !interpreter->f_op->mmap) 402 goto out; 403 404 /* 405 * If the size of this structure has changed, then punt, since 406 * we will be doing the wrong thing. 407 */ 408 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) 409 goto out; 410 if (interp_elf_ex->e_phnum < 1 || 411 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr)) 412 goto out; 413 414 /* Now read in all of the header information */ 415 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum; 416 if (size > ELF_MIN_ALIGN) 417 goto out; 418 elf_phdata = kmalloc(size, GFP_KERNEL); 419 if (!elf_phdata) 420 goto out; 421 422 retval = kernel_read(interpreter, interp_elf_ex->e_phoff, 423 (char *)elf_phdata,size); 424 error = -EIO; 425 if (retval != size) { 426 if (retval < 0) 427 error = retval; 428 goto out_close; 429 } 430 431 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum); 432 if (!total_size) { 433 error = -EINVAL; 434 goto out_close; 435 } 436 437 eppnt = elf_phdata; 438 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 439 if (eppnt->p_type == PT_LOAD) { 440 int elf_type = MAP_PRIVATE | MAP_DENYWRITE; 441 int elf_prot = 0; 442 unsigned long vaddr = 0; 443 unsigned long k, map_addr; 444 445 if (eppnt->p_flags & PF_R) 446 elf_prot = PROT_READ; 447 if (eppnt->p_flags & PF_W) 448 elf_prot |= PROT_WRITE; 449 if (eppnt->p_flags & PF_X) 450 elf_prot |= PROT_EXEC; 451 vaddr = eppnt->p_vaddr; 452 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 453 elf_type |= MAP_FIXED; 454 else if (no_base && interp_elf_ex->e_type == ET_DYN) 455 load_addr = -vaddr; 456 457 map_addr = elf_map(interpreter, load_addr + vaddr, 458 eppnt, elf_prot, elf_type, total_size); 459 total_size = 0; 460 if (!*interp_map_addr) 461 *interp_map_addr = map_addr; 462 error = map_addr; 463 if (BAD_ADDR(map_addr)) 464 goto out_close; 465 466 if (!load_addr_set && 467 interp_elf_ex->e_type == ET_DYN) { 468 load_addr = map_addr - ELF_PAGESTART(vaddr); 469 load_addr_set = 1; 470 } 471 472 /* 473 * Check to see if the section's size will overflow the 474 * allowed task size. Note that p_filesz must always be 475 * <= p_memsize so it's only necessary to check p_memsz. 476 */ 477 k = load_addr + eppnt->p_vaddr; 478 if (BAD_ADDR(k) || 479 eppnt->p_filesz > eppnt->p_memsz || 480 eppnt->p_memsz > TASK_SIZE || 481 TASK_SIZE - eppnt->p_memsz < k) { 482 error = -ENOMEM; 483 goto out_close; 484 } 485 486 /* 487 * Find the end of the file mapping for this phdr, and 488 * keep track of the largest address we see for this. 489 */ 490 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; 491 if (k > elf_bss) 492 elf_bss = k; 493 494 /* 495 * Do the same thing for the memory mapping - between 496 * elf_bss and last_bss is the bss section. 497 */ 498 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr; 499 if (k > last_bss) 500 last_bss = k; 501 } 502 } 503 504 /* 505 * Now fill out the bss section. First pad the last page up 506 * to the page boundary, and then perform a mmap to make sure 507 * that there are zero-mapped pages up to and including the 508 * last bss page. 509 */ 510 if (padzero(elf_bss)) { 511 error = -EFAULT; 512 goto out_close; 513 } 514 515 /* What we have mapped so far */ 516 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1); 517 518 /* Map the last of the bss segment */ 519 if (last_bss > elf_bss) { 520 down_write(¤t->mm->mmap_sem); 521 error = do_brk(elf_bss, last_bss - elf_bss); 522 up_write(¤t->mm->mmap_sem); 523 if (BAD_ADDR(error)) 524 goto out_close; 525 } 526 527 error = load_addr; 528 529 out_close: 530 kfree(elf_phdata); 531 out: 532 return error; 533 } 534 535 /* 536 * These are the functions used to load ELF style executables and shared 537 * libraries. There is no binary dependent code anywhere else. 538 */ 539 540 #define INTERPRETER_NONE 0 541 #define INTERPRETER_ELF 2 542 543 #ifndef STACK_RND_MASK 544 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 545 #endif 546 547 static unsigned long randomize_stack_top(unsigned long stack_top) 548 { 549 unsigned int random_variable = 0; 550 551 if ((current->flags & PF_RANDOMIZE) && 552 !(current->personality & ADDR_NO_RANDOMIZE)) { 553 random_variable = get_random_int() & STACK_RND_MASK; 554 random_variable <<= PAGE_SHIFT; 555 } 556 #ifdef CONFIG_STACK_GROWSUP 557 return PAGE_ALIGN(stack_top) + random_variable; 558 #else 559 return PAGE_ALIGN(stack_top) - random_variable; 560 #endif 561 } 562 563 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs) 564 { 565 struct file *interpreter = NULL; /* to shut gcc up */ 566 unsigned long load_addr = 0, load_bias = 0; 567 int load_addr_set = 0; 568 char * elf_interpreter = NULL; 569 unsigned long error; 570 struct elf_phdr *elf_ppnt, *elf_phdata; 571 unsigned long elf_bss, elf_brk; 572 int retval, i; 573 unsigned int size; 574 unsigned long elf_entry; 575 unsigned long interp_load_addr = 0; 576 unsigned long start_code, end_code, start_data, end_data; 577 unsigned long reloc_func_desc = 0; 578 int executable_stack = EXSTACK_DEFAULT; 579 unsigned long def_flags = 0; 580 struct { 581 struct elfhdr elf_ex; 582 struct elfhdr interp_elf_ex; 583 } *loc; 584 585 loc = kmalloc(sizeof(*loc), GFP_KERNEL); 586 if (!loc) { 587 retval = -ENOMEM; 588 goto out_ret; 589 } 590 591 /* Get the exec-header */ 592 loc->elf_ex = *((struct elfhdr *)bprm->buf); 593 594 retval = -ENOEXEC; 595 /* First of all, some simple consistency checks */ 596 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 597 goto out; 598 599 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN) 600 goto out; 601 if (!elf_check_arch(&loc->elf_ex)) 602 goto out; 603 if (!bprm->file->f_op||!bprm->file->f_op->mmap) 604 goto out; 605 606 /* Now read in all of the header information */ 607 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr)) 608 goto out; 609 if (loc->elf_ex.e_phnum < 1 || 610 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr)) 611 goto out; 612 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr); 613 retval = -ENOMEM; 614 elf_phdata = kmalloc(size, GFP_KERNEL); 615 if (!elf_phdata) 616 goto out; 617 618 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff, 619 (char *)elf_phdata, size); 620 if (retval != size) { 621 if (retval >= 0) 622 retval = -EIO; 623 goto out_free_ph; 624 } 625 626 elf_ppnt = elf_phdata; 627 elf_bss = 0; 628 elf_brk = 0; 629 630 start_code = ~0UL; 631 end_code = 0; 632 start_data = 0; 633 end_data = 0; 634 635 for (i = 0; i < loc->elf_ex.e_phnum; i++) { 636 if (elf_ppnt->p_type == PT_INTERP) { 637 /* This is the program interpreter used for 638 * shared libraries - for now assume that this 639 * is an a.out format binary 640 */ 641 retval = -ENOEXEC; 642 if (elf_ppnt->p_filesz > PATH_MAX || 643 elf_ppnt->p_filesz < 2) 644 goto out_free_ph; 645 646 retval = -ENOMEM; 647 elf_interpreter = kmalloc(elf_ppnt->p_filesz, 648 GFP_KERNEL); 649 if (!elf_interpreter) 650 goto out_free_ph; 651 652 retval = kernel_read(bprm->file, elf_ppnt->p_offset, 653 elf_interpreter, 654 elf_ppnt->p_filesz); 655 if (retval != elf_ppnt->p_filesz) { 656 if (retval >= 0) 657 retval = -EIO; 658 goto out_free_interp; 659 } 660 /* make sure path is NULL terminated */ 661 retval = -ENOEXEC; 662 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 663 goto out_free_interp; 664 665 /* 666 * The early SET_PERSONALITY here is so that the lookup 667 * for the interpreter happens in the namespace of the 668 * to-be-execed image. SET_PERSONALITY can select an 669 * alternate root. 670 * 671 * However, SET_PERSONALITY is NOT allowed to switch 672 * this task into the new images's memory mapping 673 * policy - that is, TASK_SIZE must still evaluate to 674 * that which is appropriate to the execing application. 675 * This is because exit_mmap() needs to have TASK_SIZE 676 * evaluate to the size of the old image. 677 * 678 * So if (say) a 64-bit application is execing a 32-bit 679 * application it is the architecture's responsibility 680 * to defer changing the value of TASK_SIZE until the 681 * switch really is going to happen - do this in 682 * flush_thread(). - akpm 683 */ 684 SET_PERSONALITY(loc->elf_ex); 685 686 interpreter = open_exec(elf_interpreter); 687 retval = PTR_ERR(interpreter); 688 if (IS_ERR(interpreter)) 689 goto out_free_interp; 690 691 /* 692 * If the binary is not readable then enforce 693 * mm->dumpable = 0 regardless of the interpreter's 694 * permissions. 695 */ 696 if (file_permission(interpreter, MAY_READ) < 0) 697 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 698 699 retval = kernel_read(interpreter, 0, bprm->buf, 700 BINPRM_BUF_SIZE); 701 if (retval != BINPRM_BUF_SIZE) { 702 if (retval >= 0) 703 retval = -EIO; 704 goto out_free_dentry; 705 } 706 707 /* Get the exec headers */ 708 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf); 709 break; 710 } 711 elf_ppnt++; 712 } 713 714 elf_ppnt = elf_phdata; 715 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) 716 if (elf_ppnt->p_type == PT_GNU_STACK) { 717 if (elf_ppnt->p_flags & PF_X) 718 executable_stack = EXSTACK_ENABLE_X; 719 else 720 executable_stack = EXSTACK_DISABLE_X; 721 break; 722 } 723 724 /* Some simple consistency checks for the interpreter */ 725 if (elf_interpreter) { 726 retval = -ELIBBAD; 727 /* Not an ELF interpreter */ 728 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 729 goto out_free_dentry; 730 /* Verify the interpreter has a valid arch */ 731 if (!elf_check_arch(&loc->interp_elf_ex)) 732 goto out_free_dentry; 733 } else { 734 /* Executables without an interpreter also need a personality */ 735 SET_PERSONALITY(loc->elf_ex); 736 } 737 738 /* Flush all traces of the currently running executable */ 739 retval = flush_old_exec(bprm); 740 if (retval) 741 goto out_free_dentry; 742 743 /* OK, This is the point of no return */ 744 current->flags &= ~PF_FORKNOEXEC; 745 current->mm->def_flags = def_flags; 746 747 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 748 may depend on the personality. */ 749 SET_PERSONALITY(loc->elf_ex); 750 if (elf_read_implies_exec(loc->elf_ex, executable_stack)) 751 current->personality |= READ_IMPLIES_EXEC; 752 753 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 754 current->flags |= PF_RANDOMIZE; 755 arch_pick_mmap_layout(current->mm); 756 757 /* Do this so that we can load the interpreter, if need be. We will 758 change some of these later */ 759 current->mm->free_area_cache = current->mm->mmap_base; 760 current->mm->cached_hole_size = 0; 761 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 762 executable_stack); 763 if (retval < 0) { 764 send_sig(SIGKILL, current, 0); 765 goto out_free_dentry; 766 } 767 768 current->mm->start_stack = bprm->p; 769 770 /* Now we do a little grungy work by mmaping the ELF image into 771 the correct location in memory. */ 772 for(i = 0, elf_ppnt = elf_phdata; 773 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) { 774 int elf_prot = 0, elf_flags; 775 unsigned long k, vaddr; 776 777 if (elf_ppnt->p_type != PT_LOAD) 778 continue; 779 780 if (unlikely (elf_brk > elf_bss)) { 781 unsigned long nbyte; 782 783 /* There was a PT_LOAD segment with p_memsz > p_filesz 784 before this one. Map anonymous pages, if needed, 785 and clear the area. */ 786 retval = set_brk (elf_bss + load_bias, 787 elf_brk + load_bias); 788 if (retval) { 789 send_sig(SIGKILL, current, 0); 790 goto out_free_dentry; 791 } 792 nbyte = ELF_PAGEOFFSET(elf_bss); 793 if (nbyte) { 794 nbyte = ELF_MIN_ALIGN - nbyte; 795 if (nbyte > elf_brk - elf_bss) 796 nbyte = elf_brk - elf_bss; 797 if (clear_user((void __user *)elf_bss + 798 load_bias, nbyte)) { 799 /* 800 * This bss-zeroing can fail if the ELF 801 * file specifies odd protections. So 802 * we don't check the return value 803 */ 804 } 805 } 806 } 807 808 if (elf_ppnt->p_flags & PF_R) 809 elf_prot |= PROT_READ; 810 if (elf_ppnt->p_flags & PF_W) 811 elf_prot |= PROT_WRITE; 812 if (elf_ppnt->p_flags & PF_X) 813 elf_prot |= PROT_EXEC; 814 815 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE; 816 817 vaddr = elf_ppnt->p_vaddr; 818 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) { 819 elf_flags |= MAP_FIXED; 820 } else if (loc->elf_ex.e_type == ET_DYN) { 821 /* Try and get dynamic programs out of the way of the 822 * default mmap base, as well as whatever program they 823 * might try to exec. This is because the brk will 824 * follow the loader, and is not movable. */ 825 #ifdef CONFIG_X86 826 load_bias = 0; 827 #else 828 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr); 829 #endif 830 } 831 832 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, 833 elf_prot, elf_flags, 0); 834 if (BAD_ADDR(error)) { 835 send_sig(SIGKILL, current, 0); 836 retval = IS_ERR((void *)error) ? 837 PTR_ERR((void*)error) : -EINVAL; 838 goto out_free_dentry; 839 } 840 841 if (!load_addr_set) { 842 load_addr_set = 1; 843 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); 844 if (loc->elf_ex.e_type == ET_DYN) { 845 load_bias += error - 846 ELF_PAGESTART(load_bias + vaddr); 847 load_addr += load_bias; 848 reloc_func_desc = load_bias; 849 } 850 } 851 k = elf_ppnt->p_vaddr; 852 if (k < start_code) 853 start_code = k; 854 if (start_data < k) 855 start_data = k; 856 857 /* 858 * Check to see if the section's size will overflow the 859 * allowed task size. Note that p_filesz must always be 860 * <= p_memsz so it is only necessary to check p_memsz. 861 */ 862 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 863 elf_ppnt->p_memsz > TASK_SIZE || 864 TASK_SIZE - elf_ppnt->p_memsz < k) { 865 /* set_brk can never work. Avoid overflows. */ 866 send_sig(SIGKILL, current, 0); 867 retval = -EINVAL; 868 goto out_free_dentry; 869 } 870 871 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 872 873 if (k > elf_bss) 874 elf_bss = k; 875 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 876 end_code = k; 877 if (end_data < k) 878 end_data = k; 879 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 880 if (k > elf_brk) 881 elf_brk = k; 882 } 883 884 loc->elf_ex.e_entry += load_bias; 885 elf_bss += load_bias; 886 elf_brk += load_bias; 887 start_code += load_bias; 888 end_code += load_bias; 889 start_data += load_bias; 890 end_data += load_bias; 891 892 /* Calling set_brk effectively mmaps the pages that we need 893 * for the bss and break sections. We must do this before 894 * mapping in the interpreter, to make sure it doesn't wind 895 * up getting placed where the bss needs to go. 896 */ 897 retval = set_brk(elf_bss, elf_brk); 898 if (retval) { 899 send_sig(SIGKILL, current, 0); 900 goto out_free_dentry; 901 } 902 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { 903 send_sig(SIGSEGV, current, 0); 904 retval = -EFAULT; /* Nobody gets to see this, but.. */ 905 goto out_free_dentry; 906 } 907 908 if (elf_interpreter) { 909 unsigned long uninitialized_var(interp_map_addr); 910 911 elf_entry = load_elf_interp(&loc->interp_elf_ex, 912 interpreter, 913 &interp_map_addr, 914 load_bias); 915 if (!IS_ERR((void *)elf_entry)) { 916 /* 917 * load_elf_interp() returns relocation 918 * adjustment 919 */ 920 interp_load_addr = elf_entry; 921 elf_entry += loc->interp_elf_ex.e_entry; 922 } 923 if (BAD_ADDR(elf_entry)) { 924 force_sig(SIGSEGV, current); 925 retval = IS_ERR((void *)elf_entry) ? 926 (int)elf_entry : -EINVAL; 927 goto out_free_dentry; 928 } 929 reloc_func_desc = interp_load_addr; 930 931 allow_write_access(interpreter); 932 fput(interpreter); 933 kfree(elf_interpreter); 934 } else { 935 elf_entry = loc->elf_ex.e_entry; 936 if (BAD_ADDR(elf_entry)) { 937 force_sig(SIGSEGV, current); 938 retval = -EINVAL; 939 goto out_free_dentry; 940 } 941 } 942 943 kfree(elf_phdata); 944 945 set_binfmt(&elf_format); 946 947 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 948 retval = arch_setup_additional_pages(bprm, !!elf_interpreter); 949 if (retval < 0) { 950 send_sig(SIGKILL, current, 0); 951 goto out; 952 } 953 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 954 955 install_exec_creds(bprm); 956 current->flags &= ~PF_FORKNOEXEC; 957 retval = create_elf_tables(bprm, &loc->elf_ex, 958 load_addr, interp_load_addr); 959 if (retval < 0) { 960 send_sig(SIGKILL, current, 0); 961 goto out; 962 } 963 /* N.B. passed_fileno might not be initialized? */ 964 current->mm->end_code = end_code; 965 current->mm->start_code = start_code; 966 current->mm->start_data = start_data; 967 current->mm->end_data = end_data; 968 current->mm->start_stack = bprm->p; 969 970 #ifdef arch_randomize_brk 971 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) 972 current->mm->brk = current->mm->start_brk = 973 arch_randomize_brk(current->mm); 974 #endif 975 976 if (current->personality & MMAP_PAGE_ZERO) { 977 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 978 and some applications "depend" upon this behavior. 979 Since we do not have the power to recompile these, we 980 emulate the SVr4 behavior. Sigh. */ 981 down_write(¤t->mm->mmap_sem); 982 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 983 MAP_FIXED | MAP_PRIVATE, 0); 984 up_write(¤t->mm->mmap_sem); 985 } 986 987 #ifdef ELF_PLAT_INIT 988 /* 989 * The ABI may specify that certain registers be set up in special 990 * ways (on i386 %edx is the address of a DT_FINI function, for 991 * example. In addition, it may also specify (eg, PowerPC64 ELF) 992 * that the e_entry field is the address of the function descriptor 993 * for the startup routine, rather than the address of the startup 994 * routine itself. This macro performs whatever initialization to 995 * the regs structure is required as well as any relocations to the 996 * function descriptor entries when executing dynamically links apps. 997 */ 998 ELF_PLAT_INIT(regs, reloc_func_desc); 999 #endif 1000 1001 start_thread(regs, elf_entry, bprm->p); 1002 retval = 0; 1003 out: 1004 kfree(loc); 1005 out_ret: 1006 return retval; 1007 1008 /* error cleanup */ 1009 out_free_dentry: 1010 allow_write_access(interpreter); 1011 if (interpreter) 1012 fput(interpreter); 1013 out_free_interp: 1014 kfree(elf_interpreter); 1015 out_free_ph: 1016 kfree(elf_phdata); 1017 goto out; 1018 } 1019 1020 /* This is really simpleminded and specialized - we are loading an 1021 a.out library that is given an ELF header. */ 1022 static int load_elf_library(struct file *file) 1023 { 1024 struct elf_phdr *elf_phdata; 1025 struct elf_phdr *eppnt; 1026 unsigned long elf_bss, bss, len; 1027 int retval, error, i, j; 1028 struct elfhdr elf_ex; 1029 1030 error = -ENOEXEC; 1031 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex)); 1032 if (retval != sizeof(elf_ex)) 1033 goto out; 1034 1035 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1036 goto out; 1037 1038 /* First of all, some simple consistency checks */ 1039 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1040 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap) 1041 goto out; 1042 1043 /* Now read in all of the header information */ 1044 1045 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1046 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1047 1048 error = -ENOMEM; 1049 elf_phdata = kmalloc(j, GFP_KERNEL); 1050 if (!elf_phdata) 1051 goto out; 1052 1053 eppnt = elf_phdata; 1054 error = -ENOEXEC; 1055 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j); 1056 if (retval != j) 1057 goto out_free_ph; 1058 1059 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1060 if ((eppnt + i)->p_type == PT_LOAD) 1061 j++; 1062 if (j != 1) 1063 goto out_free_ph; 1064 1065 while (eppnt->p_type != PT_LOAD) 1066 eppnt++; 1067 1068 /* Now use mmap to map the library into memory. */ 1069 down_write(¤t->mm->mmap_sem); 1070 error = do_mmap(file, 1071 ELF_PAGESTART(eppnt->p_vaddr), 1072 (eppnt->p_filesz + 1073 ELF_PAGEOFFSET(eppnt->p_vaddr)), 1074 PROT_READ | PROT_WRITE | PROT_EXEC, 1075 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, 1076 (eppnt->p_offset - 1077 ELF_PAGEOFFSET(eppnt->p_vaddr))); 1078 up_write(¤t->mm->mmap_sem); 1079 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1080 goto out_free_ph; 1081 1082 elf_bss = eppnt->p_vaddr + eppnt->p_filesz; 1083 if (padzero(elf_bss)) { 1084 error = -EFAULT; 1085 goto out_free_ph; 1086 } 1087 1088 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr + 1089 ELF_MIN_ALIGN - 1); 1090 bss = eppnt->p_memsz + eppnt->p_vaddr; 1091 if (bss > len) { 1092 down_write(¤t->mm->mmap_sem); 1093 do_brk(len, bss - len); 1094 up_write(¤t->mm->mmap_sem); 1095 } 1096 error = 0; 1097 1098 out_free_ph: 1099 kfree(elf_phdata); 1100 out: 1101 return error; 1102 } 1103 1104 /* 1105 * Note that some platforms still use traditional core dumps and not 1106 * the ELF core dump. Each platform can select it as appropriate. 1107 */ 1108 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) 1109 1110 /* 1111 * ELF core dumper 1112 * 1113 * Modelled on fs/exec.c:aout_core_dump() 1114 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1115 */ 1116 /* 1117 * These are the only things you should do on a core-file: use only these 1118 * functions to write out all the necessary info. 1119 */ 1120 static int dump_write(struct file *file, const void *addr, int nr) 1121 { 1122 return file->f_op->write(file, addr, nr, &file->f_pos) == nr; 1123 } 1124 1125 static int dump_seek(struct file *file, loff_t off) 1126 { 1127 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 1128 if (file->f_op->llseek(file, off, SEEK_CUR) < 0) 1129 return 0; 1130 } else { 1131 char *buf = (char *)get_zeroed_page(GFP_KERNEL); 1132 if (!buf) 1133 return 0; 1134 while (off > 0) { 1135 unsigned long n = off; 1136 if (n > PAGE_SIZE) 1137 n = PAGE_SIZE; 1138 if (!dump_write(file, buf, n)) 1139 return 0; 1140 off -= n; 1141 } 1142 free_page((unsigned long)buf); 1143 } 1144 return 1; 1145 } 1146 1147 /* 1148 * Decide what to dump of a segment, part, all or none. 1149 */ 1150 static unsigned long vma_dump_size(struct vm_area_struct *vma, 1151 unsigned long mm_flags) 1152 { 1153 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) 1154 1155 /* The vma can be set up to tell us the answer directly. */ 1156 if (vma->vm_flags & VM_ALWAYSDUMP) 1157 goto whole; 1158 1159 /* Hugetlb memory check */ 1160 if (vma->vm_flags & VM_HUGETLB) { 1161 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) 1162 goto whole; 1163 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) 1164 goto whole; 1165 } 1166 1167 /* Do not dump I/O mapped devices or special mappings */ 1168 if (vma->vm_flags & (VM_IO | VM_RESERVED)) 1169 return 0; 1170 1171 /* By default, dump shared memory if mapped from an anonymous file. */ 1172 if (vma->vm_flags & VM_SHARED) { 1173 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ? 1174 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) 1175 goto whole; 1176 return 0; 1177 } 1178 1179 /* Dump segments that have been written to. */ 1180 if (vma->anon_vma && FILTER(ANON_PRIVATE)) 1181 goto whole; 1182 if (vma->vm_file == NULL) 1183 return 0; 1184 1185 if (FILTER(MAPPED_PRIVATE)) 1186 goto whole; 1187 1188 /* 1189 * If this looks like the beginning of a DSO or executable mapping, 1190 * check for an ELF header. If we find one, dump the first page to 1191 * aid in determining what was mapped here. 1192 */ 1193 if (FILTER(ELF_HEADERS) && 1194 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) { 1195 u32 __user *header = (u32 __user *) vma->vm_start; 1196 u32 word; 1197 mm_segment_t fs = get_fs(); 1198 /* 1199 * Doing it this way gets the constant folded by GCC. 1200 */ 1201 union { 1202 u32 cmp; 1203 char elfmag[SELFMAG]; 1204 } magic; 1205 BUILD_BUG_ON(SELFMAG != sizeof word); 1206 magic.elfmag[EI_MAG0] = ELFMAG0; 1207 magic.elfmag[EI_MAG1] = ELFMAG1; 1208 magic.elfmag[EI_MAG2] = ELFMAG2; 1209 magic.elfmag[EI_MAG3] = ELFMAG3; 1210 /* 1211 * Switch to the user "segment" for get_user(), 1212 * then put back what elf_core_dump() had in place. 1213 */ 1214 set_fs(USER_DS); 1215 if (unlikely(get_user(word, header))) 1216 word = 0; 1217 set_fs(fs); 1218 if (word == magic.cmp) 1219 return PAGE_SIZE; 1220 } 1221 1222 #undef FILTER 1223 1224 return 0; 1225 1226 whole: 1227 return vma->vm_end - vma->vm_start; 1228 } 1229 1230 /* An ELF note in memory */ 1231 struct memelfnote 1232 { 1233 const char *name; 1234 int type; 1235 unsigned int datasz; 1236 void *data; 1237 }; 1238 1239 static int notesize(struct memelfnote *en) 1240 { 1241 int sz; 1242 1243 sz = sizeof(struct elf_note); 1244 sz += roundup(strlen(en->name) + 1, 4); 1245 sz += roundup(en->datasz, 4); 1246 1247 return sz; 1248 } 1249 1250 #define DUMP_WRITE(addr, nr, foffset) \ 1251 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0) 1252 1253 static int alignfile(struct file *file, loff_t *foffset) 1254 { 1255 static const char buf[4] = { 0, }; 1256 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset); 1257 return 1; 1258 } 1259 1260 static int writenote(struct memelfnote *men, struct file *file, 1261 loff_t *foffset) 1262 { 1263 struct elf_note en; 1264 en.n_namesz = strlen(men->name) + 1; 1265 en.n_descsz = men->datasz; 1266 en.n_type = men->type; 1267 1268 DUMP_WRITE(&en, sizeof(en), foffset); 1269 DUMP_WRITE(men->name, en.n_namesz, foffset); 1270 if (!alignfile(file, foffset)) 1271 return 0; 1272 DUMP_WRITE(men->data, men->datasz, foffset); 1273 if (!alignfile(file, foffset)) 1274 return 0; 1275 1276 return 1; 1277 } 1278 #undef DUMP_WRITE 1279 1280 #define DUMP_WRITE(addr, nr) \ 1281 if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \ 1282 goto end_coredump; 1283 #define DUMP_SEEK(off) \ 1284 if (!dump_seek(file, (off))) \ 1285 goto end_coredump; 1286 1287 static void fill_elf_header(struct elfhdr *elf, int segs, 1288 u16 machine, u32 flags, u8 osabi) 1289 { 1290 memset(elf, 0, sizeof(*elf)); 1291 1292 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1293 elf->e_ident[EI_CLASS] = ELF_CLASS; 1294 elf->e_ident[EI_DATA] = ELF_DATA; 1295 elf->e_ident[EI_VERSION] = EV_CURRENT; 1296 elf->e_ident[EI_OSABI] = ELF_OSABI; 1297 1298 elf->e_type = ET_CORE; 1299 elf->e_machine = machine; 1300 elf->e_version = EV_CURRENT; 1301 elf->e_phoff = sizeof(struct elfhdr); 1302 elf->e_flags = flags; 1303 elf->e_ehsize = sizeof(struct elfhdr); 1304 elf->e_phentsize = sizeof(struct elf_phdr); 1305 elf->e_phnum = segs; 1306 1307 return; 1308 } 1309 1310 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1311 { 1312 phdr->p_type = PT_NOTE; 1313 phdr->p_offset = offset; 1314 phdr->p_vaddr = 0; 1315 phdr->p_paddr = 0; 1316 phdr->p_filesz = sz; 1317 phdr->p_memsz = 0; 1318 phdr->p_flags = 0; 1319 phdr->p_align = 0; 1320 return; 1321 } 1322 1323 static void fill_note(struct memelfnote *note, const char *name, int type, 1324 unsigned int sz, void *data) 1325 { 1326 note->name = name; 1327 note->type = type; 1328 note->datasz = sz; 1329 note->data = data; 1330 return; 1331 } 1332 1333 /* 1334 * fill up all the fields in prstatus from the given task struct, except 1335 * registers which need to be filled up separately. 1336 */ 1337 static void fill_prstatus(struct elf_prstatus *prstatus, 1338 struct task_struct *p, long signr) 1339 { 1340 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1341 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1342 prstatus->pr_sighold = p->blocked.sig[0]; 1343 prstatus->pr_pid = task_pid_vnr(p); 1344 prstatus->pr_ppid = task_pid_vnr(p->real_parent); 1345 prstatus->pr_pgrp = task_pgrp_vnr(p); 1346 prstatus->pr_sid = task_session_vnr(p); 1347 if (thread_group_leader(p)) { 1348 struct task_cputime cputime; 1349 1350 /* 1351 * This is the record for the group leader. It shows the 1352 * group-wide total, not its individual thread total. 1353 */ 1354 thread_group_cputime(p, &cputime); 1355 cputime_to_timeval(cputime.utime, &prstatus->pr_utime); 1356 cputime_to_timeval(cputime.stime, &prstatus->pr_stime); 1357 } else { 1358 cputime_to_timeval(p->utime, &prstatus->pr_utime); 1359 cputime_to_timeval(p->stime, &prstatus->pr_stime); 1360 } 1361 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime); 1362 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime); 1363 } 1364 1365 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1366 struct mm_struct *mm) 1367 { 1368 const struct cred *cred; 1369 unsigned int i, len; 1370 1371 /* first copy the parameters from user space */ 1372 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1373 1374 len = mm->arg_end - mm->arg_start; 1375 if (len >= ELF_PRARGSZ) 1376 len = ELF_PRARGSZ-1; 1377 if (copy_from_user(&psinfo->pr_psargs, 1378 (const char __user *)mm->arg_start, len)) 1379 return -EFAULT; 1380 for(i = 0; i < len; i++) 1381 if (psinfo->pr_psargs[i] == 0) 1382 psinfo->pr_psargs[i] = ' '; 1383 psinfo->pr_psargs[len] = 0; 1384 1385 psinfo->pr_pid = task_pid_vnr(p); 1386 psinfo->pr_ppid = task_pid_vnr(p->real_parent); 1387 psinfo->pr_pgrp = task_pgrp_vnr(p); 1388 psinfo->pr_sid = task_session_vnr(p); 1389 1390 i = p->state ? ffz(~p->state) + 1 : 0; 1391 psinfo->pr_state = i; 1392 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1393 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1394 psinfo->pr_nice = task_nice(p); 1395 psinfo->pr_flag = p->flags; 1396 rcu_read_lock(); 1397 cred = __task_cred(p); 1398 SET_UID(psinfo->pr_uid, cred->uid); 1399 SET_GID(psinfo->pr_gid, cred->gid); 1400 rcu_read_unlock(); 1401 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); 1402 1403 return 0; 1404 } 1405 1406 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1407 { 1408 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1409 int i = 0; 1410 do 1411 i += 2; 1412 while (auxv[i - 2] != AT_NULL); 1413 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1414 } 1415 1416 #ifdef CORE_DUMP_USE_REGSET 1417 #include <linux/regset.h> 1418 1419 struct elf_thread_core_info { 1420 struct elf_thread_core_info *next; 1421 struct task_struct *task; 1422 struct elf_prstatus prstatus; 1423 struct memelfnote notes[0]; 1424 }; 1425 1426 struct elf_note_info { 1427 struct elf_thread_core_info *thread; 1428 struct memelfnote psinfo; 1429 struct memelfnote auxv; 1430 size_t size; 1431 int thread_notes; 1432 }; 1433 1434 /* 1435 * When a regset has a writeback hook, we call it on each thread before 1436 * dumping user memory. On register window machines, this makes sure the 1437 * user memory backing the register data is up to date before we read it. 1438 */ 1439 static void do_thread_regset_writeback(struct task_struct *task, 1440 const struct user_regset *regset) 1441 { 1442 if (regset->writeback) 1443 regset->writeback(task, regset, 1); 1444 } 1445 1446 static int fill_thread_core_info(struct elf_thread_core_info *t, 1447 const struct user_regset_view *view, 1448 long signr, size_t *total) 1449 { 1450 unsigned int i; 1451 1452 /* 1453 * NT_PRSTATUS is the one special case, because the regset data 1454 * goes into the pr_reg field inside the note contents, rather 1455 * than being the whole note contents. We fill the reset in here. 1456 * We assume that regset 0 is NT_PRSTATUS. 1457 */ 1458 fill_prstatus(&t->prstatus, t->task, signr); 1459 (void) view->regsets[0].get(t->task, &view->regsets[0], 1460 0, sizeof(t->prstatus.pr_reg), 1461 &t->prstatus.pr_reg, NULL); 1462 1463 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1464 sizeof(t->prstatus), &t->prstatus); 1465 *total += notesize(&t->notes[0]); 1466 1467 do_thread_regset_writeback(t->task, &view->regsets[0]); 1468 1469 /* 1470 * Each other regset might generate a note too. For each regset 1471 * that has no core_note_type or is inactive, we leave t->notes[i] 1472 * all zero and we'll know to skip writing it later. 1473 */ 1474 for (i = 1; i < view->n; ++i) { 1475 const struct user_regset *regset = &view->regsets[i]; 1476 do_thread_regset_writeback(t->task, regset); 1477 if (regset->core_note_type && 1478 (!regset->active || regset->active(t->task, regset))) { 1479 int ret; 1480 size_t size = regset->n * regset->size; 1481 void *data = kmalloc(size, GFP_KERNEL); 1482 if (unlikely(!data)) 1483 return 0; 1484 ret = regset->get(t->task, regset, 1485 0, size, data, NULL); 1486 if (unlikely(ret)) 1487 kfree(data); 1488 else { 1489 if (regset->core_note_type != NT_PRFPREG) 1490 fill_note(&t->notes[i], "LINUX", 1491 regset->core_note_type, 1492 size, data); 1493 else { 1494 t->prstatus.pr_fpvalid = 1; 1495 fill_note(&t->notes[i], "CORE", 1496 NT_PRFPREG, size, data); 1497 } 1498 *total += notesize(&t->notes[i]); 1499 } 1500 } 1501 } 1502 1503 return 1; 1504 } 1505 1506 static int fill_note_info(struct elfhdr *elf, int phdrs, 1507 struct elf_note_info *info, 1508 long signr, struct pt_regs *regs) 1509 { 1510 struct task_struct *dump_task = current; 1511 const struct user_regset_view *view = task_user_regset_view(dump_task); 1512 struct elf_thread_core_info *t; 1513 struct elf_prpsinfo *psinfo; 1514 struct core_thread *ct; 1515 unsigned int i; 1516 1517 info->size = 0; 1518 info->thread = NULL; 1519 1520 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1521 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1522 1523 if (psinfo == NULL) 1524 return 0; 1525 1526 /* 1527 * Figure out how many notes we're going to need for each thread. 1528 */ 1529 info->thread_notes = 0; 1530 for (i = 0; i < view->n; ++i) 1531 if (view->regsets[i].core_note_type != 0) 1532 ++info->thread_notes; 1533 1534 /* 1535 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1536 * since it is our one special case. 1537 */ 1538 if (unlikely(info->thread_notes == 0) || 1539 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1540 WARN_ON(1); 1541 return 0; 1542 } 1543 1544 /* 1545 * Initialize the ELF file header. 1546 */ 1547 fill_elf_header(elf, phdrs, 1548 view->e_machine, view->e_flags, view->ei_osabi); 1549 1550 /* 1551 * Allocate a structure for each thread. 1552 */ 1553 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) { 1554 t = kzalloc(offsetof(struct elf_thread_core_info, 1555 notes[info->thread_notes]), 1556 GFP_KERNEL); 1557 if (unlikely(!t)) 1558 return 0; 1559 1560 t->task = ct->task; 1561 if (ct->task == dump_task || !info->thread) { 1562 t->next = info->thread; 1563 info->thread = t; 1564 } else { 1565 /* 1566 * Make sure to keep the original task at 1567 * the head of the list. 1568 */ 1569 t->next = info->thread->next; 1570 info->thread->next = t; 1571 } 1572 } 1573 1574 /* 1575 * Now fill in each thread's information. 1576 */ 1577 for (t = info->thread; t != NULL; t = t->next) 1578 if (!fill_thread_core_info(t, view, signr, &info->size)) 1579 return 0; 1580 1581 /* 1582 * Fill in the two process-wide notes. 1583 */ 1584 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1585 info->size += notesize(&info->psinfo); 1586 1587 fill_auxv_note(&info->auxv, current->mm); 1588 info->size += notesize(&info->auxv); 1589 1590 return 1; 1591 } 1592 1593 static size_t get_note_info_size(struct elf_note_info *info) 1594 { 1595 return info->size; 1596 } 1597 1598 /* 1599 * Write all the notes for each thread. When writing the first thread, the 1600 * process-wide notes are interleaved after the first thread-specific note. 1601 */ 1602 static int write_note_info(struct elf_note_info *info, 1603 struct file *file, loff_t *foffset) 1604 { 1605 bool first = 1; 1606 struct elf_thread_core_info *t = info->thread; 1607 1608 do { 1609 int i; 1610 1611 if (!writenote(&t->notes[0], file, foffset)) 1612 return 0; 1613 1614 if (first && !writenote(&info->psinfo, file, foffset)) 1615 return 0; 1616 if (first && !writenote(&info->auxv, file, foffset)) 1617 return 0; 1618 1619 for (i = 1; i < info->thread_notes; ++i) 1620 if (t->notes[i].data && 1621 !writenote(&t->notes[i], file, foffset)) 1622 return 0; 1623 1624 first = 0; 1625 t = t->next; 1626 } while (t); 1627 1628 return 1; 1629 } 1630 1631 static void free_note_info(struct elf_note_info *info) 1632 { 1633 struct elf_thread_core_info *threads = info->thread; 1634 while (threads) { 1635 unsigned int i; 1636 struct elf_thread_core_info *t = threads; 1637 threads = t->next; 1638 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1639 for (i = 1; i < info->thread_notes; ++i) 1640 kfree(t->notes[i].data); 1641 kfree(t); 1642 } 1643 kfree(info->psinfo.data); 1644 } 1645 1646 #else 1647 1648 /* Here is the structure in which status of each thread is captured. */ 1649 struct elf_thread_status 1650 { 1651 struct list_head list; 1652 struct elf_prstatus prstatus; /* NT_PRSTATUS */ 1653 elf_fpregset_t fpu; /* NT_PRFPREG */ 1654 struct task_struct *thread; 1655 #ifdef ELF_CORE_COPY_XFPREGS 1656 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 1657 #endif 1658 struct memelfnote notes[3]; 1659 int num_notes; 1660 }; 1661 1662 /* 1663 * In order to add the specific thread information for the elf file format, 1664 * we need to keep a linked list of every threads pr_status and then create 1665 * a single section for them in the final core file. 1666 */ 1667 static int elf_dump_thread_status(long signr, struct elf_thread_status *t) 1668 { 1669 int sz = 0; 1670 struct task_struct *p = t->thread; 1671 t->num_notes = 0; 1672 1673 fill_prstatus(&t->prstatus, p, signr); 1674 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 1675 1676 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 1677 &(t->prstatus)); 1678 t->num_notes++; 1679 sz += notesize(&t->notes[0]); 1680 1681 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, 1682 &t->fpu))) { 1683 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), 1684 &(t->fpu)); 1685 t->num_notes++; 1686 sz += notesize(&t->notes[1]); 1687 } 1688 1689 #ifdef ELF_CORE_COPY_XFPREGS 1690 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) { 1691 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE, 1692 sizeof(t->xfpu), &t->xfpu); 1693 t->num_notes++; 1694 sz += notesize(&t->notes[2]); 1695 } 1696 #endif 1697 return sz; 1698 } 1699 1700 struct elf_note_info { 1701 struct memelfnote *notes; 1702 struct elf_prstatus *prstatus; /* NT_PRSTATUS */ 1703 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 1704 struct list_head thread_list; 1705 elf_fpregset_t *fpu; 1706 #ifdef ELF_CORE_COPY_XFPREGS 1707 elf_fpxregset_t *xfpu; 1708 #endif 1709 int thread_status_size; 1710 int numnote; 1711 }; 1712 1713 static int fill_note_info(struct elfhdr *elf, int phdrs, 1714 struct elf_note_info *info, 1715 long signr, struct pt_regs *regs) 1716 { 1717 #define NUM_NOTES 6 1718 struct list_head *t; 1719 1720 info->notes = NULL; 1721 info->prstatus = NULL; 1722 info->psinfo = NULL; 1723 info->fpu = NULL; 1724 #ifdef ELF_CORE_COPY_XFPREGS 1725 info->xfpu = NULL; 1726 #endif 1727 INIT_LIST_HEAD(&info->thread_list); 1728 1729 info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote), 1730 GFP_KERNEL); 1731 if (!info->notes) 1732 return 0; 1733 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); 1734 if (!info->psinfo) 1735 return 0; 1736 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); 1737 if (!info->prstatus) 1738 return 0; 1739 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); 1740 if (!info->fpu) 1741 return 0; 1742 #ifdef ELF_CORE_COPY_XFPREGS 1743 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL); 1744 if (!info->xfpu) 1745 return 0; 1746 #endif 1747 1748 info->thread_status_size = 0; 1749 if (signr) { 1750 struct core_thread *ct; 1751 struct elf_thread_status *ets; 1752 1753 for (ct = current->mm->core_state->dumper.next; 1754 ct; ct = ct->next) { 1755 ets = kzalloc(sizeof(*ets), GFP_KERNEL); 1756 if (!ets) 1757 return 0; 1758 1759 ets->thread = ct->task; 1760 list_add(&ets->list, &info->thread_list); 1761 } 1762 1763 list_for_each(t, &info->thread_list) { 1764 int sz; 1765 1766 ets = list_entry(t, struct elf_thread_status, list); 1767 sz = elf_dump_thread_status(signr, ets); 1768 info->thread_status_size += sz; 1769 } 1770 } 1771 /* now collect the dump for the current */ 1772 memset(info->prstatus, 0, sizeof(*info->prstatus)); 1773 fill_prstatus(info->prstatus, current, signr); 1774 elf_core_copy_regs(&info->prstatus->pr_reg, regs); 1775 1776 /* Set up header */ 1777 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI); 1778 1779 /* 1780 * Set up the notes in similar form to SVR4 core dumps made 1781 * with info from their /proc. 1782 */ 1783 1784 fill_note(info->notes + 0, "CORE", NT_PRSTATUS, 1785 sizeof(*info->prstatus), info->prstatus); 1786 fill_psinfo(info->psinfo, current->group_leader, current->mm); 1787 fill_note(info->notes + 1, "CORE", NT_PRPSINFO, 1788 sizeof(*info->psinfo), info->psinfo); 1789 1790 info->numnote = 2; 1791 1792 fill_auxv_note(&info->notes[info->numnote++], current->mm); 1793 1794 /* Try to dump the FPU. */ 1795 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs, 1796 info->fpu); 1797 if (info->prstatus->pr_fpvalid) 1798 fill_note(info->notes + info->numnote++, 1799 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); 1800 #ifdef ELF_CORE_COPY_XFPREGS 1801 if (elf_core_copy_task_xfpregs(current, info->xfpu)) 1802 fill_note(info->notes + info->numnote++, 1803 "LINUX", ELF_CORE_XFPREG_TYPE, 1804 sizeof(*info->xfpu), info->xfpu); 1805 #endif 1806 1807 return 1; 1808 1809 #undef NUM_NOTES 1810 } 1811 1812 static size_t get_note_info_size(struct elf_note_info *info) 1813 { 1814 int sz = 0; 1815 int i; 1816 1817 for (i = 0; i < info->numnote; i++) 1818 sz += notesize(info->notes + i); 1819 1820 sz += info->thread_status_size; 1821 1822 return sz; 1823 } 1824 1825 static int write_note_info(struct elf_note_info *info, 1826 struct file *file, loff_t *foffset) 1827 { 1828 int i; 1829 struct list_head *t; 1830 1831 for (i = 0; i < info->numnote; i++) 1832 if (!writenote(info->notes + i, file, foffset)) 1833 return 0; 1834 1835 /* write out the thread status notes section */ 1836 list_for_each(t, &info->thread_list) { 1837 struct elf_thread_status *tmp = 1838 list_entry(t, struct elf_thread_status, list); 1839 1840 for (i = 0; i < tmp->num_notes; i++) 1841 if (!writenote(&tmp->notes[i], file, foffset)) 1842 return 0; 1843 } 1844 1845 return 1; 1846 } 1847 1848 static void free_note_info(struct elf_note_info *info) 1849 { 1850 while (!list_empty(&info->thread_list)) { 1851 struct list_head *tmp = info->thread_list.next; 1852 list_del(tmp); 1853 kfree(list_entry(tmp, struct elf_thread_status, list)); 1854 } 1855 1856 kfree(info->prstatus); 1857 kfree(info->psinfo); 1858 kfree(info->notes); 1859 kfree(info->fpu); 1860 #ifdef ELF_CORE_COPY_XFPREGS 1861 kfree(info->xfpu); 1862 #endif 1863 } 1864 1865 #endif 1866 1867 static struct vm_area_struct *first_vma(struct task_struct *tsk, 1868 struct vm_area_struct *gate_vma) 1869 { 1870 struct vm_area_struct *ret = tsk->mm->mmap; 1871 1872 if (ret) 1873 return ret; 1874 return gate_vma; 1875 } 1876 /* 1877 * Helper function for iterating across a vma list. It ensures that the caller 1878 * will visit `gate_vma' prior to terminating the search. 1879 */ 1880 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, 1881 struct vm_area_struct *gate_vma) 1882 { 1883 struct vm_area_struct *ret; 1884 1885 ret = this_vma->vm_next; 1886 if (ret) 1887 return ret; 1888 if (this_vma == gate_vma) 1889 return NULL; 1890 return gate_vma; 1891 } 1892 1893 /* 1894 * Actual dumper 1895 * 1896 * This is a two-pass process; first we find the offsets of the bits, 1897 * and then they are actually written out. If we run out of core limit 1898 * we just truncate. 1899 */ 1900 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit) 1901 { 1902 int has_dumped = 0; 1903 mm_segment_t fs; 1904 int segs; 1905 size_t size = 0; 1906 struct vm_area_struct *vma, *gate_vma; 1907 struct elfhdr *elf = NULL; 1908 loff_t offset = 0, dataoff, foffset; 1909 unsigned long mm_flags; 1910 struct elf_note_info info; 1911 1912 /* 1913 * We no longer stop all VM operations. 1914 * 1915 * This is because those proceses that could possibly change map_count 1916 * or the mmap / vma pages are now blocked in do_exit on current 1917 * finishing this core dump. 1918 * 1919 * Only ptrace can touch these memory addresses, but it doesn't change 1920 * the map_count or the pages allocated. So no possibility of crashing 1921 * exists while dumping the mm->vm_next areas to the core file. 1922 */ 1923 1924 /* alloc memory for large data structures: too large to be on stack */ 1925 elf = kmalloc(sizeof(*elf), GFP_KERNEL); 1926 if (!elf) 1927 goto out; 1928 1929 segs = current->mm->map_count; 1930 #ifdef ELF_CORE_EXTRA_PHDRS 1931 segs += ELF_CORE_EXTRA_PHDRS; 1932 #endif 1933 1934 gate_vma = get_gate_vma(current); 1935 if (gate_vma != NULL) 1936 segs++; 1937 1938 /* 1939 * Collect all the non-memory information about the process for the 1940 * notes. This also sets up the file header. 1941 */ 1942 if (!fill_note_info(elf, segs + 1, /* including notes section */ 1943 &info, signr, regs)) 1944 goto cleanup; 1945 1946 has_dumped = 1; 1947 current->flags |= PF_DUMPCORE; 1948 1949 fs = get_fs(); 1950 set_fs(KERNEL_DS); 1951 1952 DUMP_WRITE(elf, sizeof(*elf)); 1953 offset += sizeof(*elf); /* Elf header */ 1954 offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */ 1955 foffset = offset; 1956 1957 /* Write notes phdr entry */ 1958 { 1959 struct elf_phdr phdr; 1960 size_t sz = get_note_info_size(&info); 1961 1962 sz += elf_coredump_extra_notes_size(); 1963 1964 fill_elf_note_phdr(&phdr, sz, offset); 1965 offset += sz; 1966 DUMP_WRITE(&phdr, sizeof(phdr)); 1967 } 1968 1969 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 1970 1971 /* 1972 * We must use the same mm->flags while dumping core to avoid 1973 * inconsistency between the program headers and bodies, otherwise an 1974 * unusable core file can be generated. 1975 */ 1976 mm_flags = current->mm->flags; 1977 1978 /* Write program headers for segments dump */ 1979 for (vma = first_vma(current, gate_vma); vma != NULL; 1980 vma = next_vma(vma, gate_vma)) { 1981 struct elf_phdr phdr; 1982 1983 phdr.p_type = PT_LOAD; 1984 phdr.p_offset = offset; 1985 phdr.p_vaddr = vma->vm_start; 1986 phdr.p_paddr = 0; 1987 phdr.p_filesz = vma_dump_size(vma, mm_flags); 1988 phdr.p_memsz = vma->vm_end - vma->vm_start; 1989 offset += phdr.p_filesz; 1990 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; 1991 if (vma->vm_flags & VM_WRITE) 1992 phdr.p_flags |= PF_W; 1993 if (vma->vm_flags & VM_EXEC) 1994 phdr.p_flags |= PF_X; 1995 phdr.p_align = ELF_EXEC_PAGESIZE; 1996 1997 DUMP_WRITE(&phdr, sizeof(phdr)); 1998 } 1999 2000 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS 2001 ELF_CORE_WRITE_EXTRA_PHDRS; 2002 #endif 2003 2004 /* write out the notes section */ 2005 if (!write_note_info(&info, file, &foffset)) 2006 goto end_coredump; 2007 2008 if (elf_coredump_extra_notes_write(file, &foffset)) 2009 goto end_coredump; 2010 2011 /* Align to page */ 2012 DUMP_SEEK(dataoff - foffset); 2013 2014 for (vma = first_vma(current, gate_vma); vma != NULL; 2015 vma = next_vma(vma, gate_vma)) { 2016 unsigned long addr; 2017 unsigned long end; 2018 2019 end = vma->vm_start + vma_dump_size(vma, mm_flags); 2020 2021 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) { 2022 struct page *page; 2023 struct vm_area_struct *tmp_vma; 2024 2025 if (get_user_pages(current, current->mm, addr, 1, 0, 1, 2026 &page, &tmp_vma) <= 0) { 2027 DUMP_SEEK(PAGE_SIZE); 2028 } else { 2029 if (page == ZERO_PAGE(0)) { 2030 if (!dump_seek(file, PAGE_SIZE)) { 2031 page_cache_release(page); 2032 goto end_coredump; 2033 } 2034 } else { 2035 void *kaddr; 2036 flush_cache_page(tmp_vma, addr, 2037 page_to_pfn(page)); 2038 kaddr = kmap(page); 2039 if ((size += PAGE_SIZE) > limit || 2040 !dump_write(file, kaddr, 2041 PAGE_SIZE)) { 2042 kunmap(page); 2043 page_cache_release(page); 2044 goto end_coredump; 2045 } 2046 kunmap(page); 2047 } 2048 page_cache_release(page); 2049 } 2050 } 2051 } 2052 2053 #ifdef ELF_CORE_WRITE_EXTRA_DATA 2054 ELF_CORE_WRITE_EXTRA_DATA; 2055 #endif 2056 2057 end_coredump: 2058 set_fs(fs); 2059 2060 cleanup: 2061 free_note_info(&info); 2062 kfree(elf); 2063 out: 2064 return has_dumped; 2065 } 2066 2067 #endif /* USE_ELF_CORE_DUMP */ 2068 2069 static int __init init_elf_binfmt(void) 2070 { 2071 return register_binfmt(&elf_format); 2072 } 2073 2074 static void __exit exit_elf_binfmt(void) 2075 { 2076 /* Remove the COFF and ELF loaders. */ 2077 unregister_binfmt(&elf_format); 2078 } 2079 2080 core_initcall(init_elf_binfmt); 2081 module_exit(exit_elf_binfmt); 2082 MODULE_LICENSE("GPL"); 2083