1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/binfmt_elf.c 4 * 5 * These are the functions used to load ELF format executables as used 6 * on SVr4 machines. Information on the format may be found in the book 7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 8 * Tools". 9 * 10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 11 */ 12 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/fs.h> 16 #include <linux/mm.h> 17 #include <linux/mman.h> 18 #include <linux/errno.h> 19 #include <linux/signal.h> 20 #include <linux/binfmts.h> 21 #include <linux/string.h> 22 #include <linux/file.h> 23 #include <linux/slab.h> 24 #include <linux/personality.h> 25 #include <linux/elfcore.h> 26 #include <linux/init.h> 27 #include <linux/highuid.h> 28 #include <linux/compiler.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/random.h> 34 #include <linux/elf.h> 35 #include <linux/elf-randomize.h> 36 #include <linux/utsname.h> 37 #include <linux/coredump.h> 38 #include <linux/sched.h> 39 #include <linux/sched/coredump.h> 40 #include <linux/sched/task_stack.h> 41 #include <linux/sched/cputime.h> 42 #include <linux/cred.h> 43 #include <linux/dax.h> 44 #include <linux/uaccess.h> 45 #include <asm/param.h> 46 #include <asm/page.h> 47 48 #ifndef user_long_t 49 #define user_long_t long 50 #endif 51 #ifndef user_siginfo_t 52 #define user_siginfo_t siginfo_t 53 #endif 54 55 /* That's for binfmt_elf_fdpic to deal with */ 56 #ifndef elf_check_fdpic 57 #define elf_check_fdpic(ex) false 58 #endif 59 60 static int load_elf_binary(struct linux_binprm *bprm); 61 62 #ifdef CONFIG_USELIB 63 static int load_elf_library(struct file *); 64 #else 65 #define load_elf_library NULL 66 #endif 67 68 /* 69 * If we don't support core dumping, then supply a NULL so we 70 * don't even try. 71 */ 72 #ifdef CONFIG_ELF_CORE 73 static int elf_core_dump(struct coredump_params *cprm); 74 #else 75 #define elf_core_dump NULL 76 #endif 77 78 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 79 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 80 #else 81 #define ELF_MIN_ALIGN PAGE_SIZE 82 #endif 83 84 #ifndef ELF_CORE_EFLAGS 85 #define ELF_CORE_EFLAGS 0 86 #endif 87 88 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) 89 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 90 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 91 92 static struct linux_binfmt elf_format = { 93 .module = THIS_MODULE, 94 .load_binary = load_elf_binary, 95 .load_shlib = load_elf_library, 96 .core_dump = elf_core_dump, 97 .min_coredump = ELF_EXEC_PAGESIZE, 98 }; 99 100 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE) 101 102 static int set_brk(unsigned long start, unsigned long end, int prot) 103 { 104 start = ELF_PAGEALIGN(start); 105 end = ELF_PAGEALIGN(end); 106 if (end > start) { 107 /* 108 * Map the last of the bss segment. 109 * If the header is requesting these pages to be 110 * executable, honour that (ppc32 needs this). 111 */ 112 int error = vm_brk_flags(start, end - start, 113 prot & PROT_EXEC ? VM_EXEC : 0); 114 if (error) 115 return error; 116 } 117 current->mm->start_brk = current->mm->brk = end; 118 return 0; 119 } 120 121 /* We need to explicitly zero any fractional pages 122 after the data section (i.e. bss). This would 123 contain the junk from the file that should not 124 be in memory 125 */ 126 static int padzero(unsigned long elf_bss) 127 { 128 unsigned long nbyte; 129 130 nbyte = ELF_PAGEOFFSET(elf_bss); 131 if (nbyte) { 132 nbyte = ELF_MIN_ALIGN - nbyte; 133 if (clear_user((void __user *) elf_bss, nbyte)) 134 return -EFAULT; 135 } 136 return 0; 137 } 138 139 /* Let's use some macros to make this stack manipulation a little clearer */ 140 #ifdef CONFIG_STACK_GROWSUP 141 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 142 #define STACK_ROUND(sp, items) \ 143 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 144 #define STACK_ALLOC(sp, len) ({ \ 145 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 146 old_sp; }) 147 #else 148 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 149 #define STACK_ROUND(sp, items) \ 150 (((unsigned long) (sp - items)) &~ 15UL) 151 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) 152 #endif 153 154 #ifndef ELF_BASE_PLATFORM 155 /* 156 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. 157 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value 158 * will be copied to the user stack in the same manner as AT_PLATFORM. 159 */ 160 #define ELF_BASE_PLATFORM NULL 161 #endif 162 163 static int 164 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec, 165 unsigned long load_addr, unsigned long interp_load_addr) 166 { 167 unsigned long p = bprm->p; 168 int argc = bprm->argc; 169 int envc = bprm->envc; 170 elf_addr_t __user *sp; 171 elf_addr_t __user *u_platform; 172 elf_addr_t __user *u_base_platform; 173 elf_addr_t __user *u_rand_bytes; 174 const char *k_platform = ELF_PLATFORM; 175 const char *k_base_platform = ELF_BASE_PLATFORM; 176 unsigned char k_rand_bytes[16]; 177 int items; 178 elf_addr_t *elf_info; 179 int ei_index = 0; 180 const struct cred *cred = current_cred(); 181 struct vm_area_struct *vma; 182 183 /* 184 * In some cases (e.g. Hyper-Threading), we want to avoid L1 185 * evictions by the processes running on the same package. One 186 * thing we can do is to shuffle the initial stack for them. 187 */ 188 189 p = arch_align_stack(p); 190 191 /* 192 * If this architecture has a platform capability string, copy it 193 * to userspace. In some cases (Sparc), this info is impossible 194 * for userspace to get any other way, in others (i386) it is 195 * merely difficult. 196 */ 197 u_platform = NULL; 198 if (k_platform) { 199 size_t len = strlen(k_platform) + 1; 200 201 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 202 if (__copy_to_user(u_platform, k_platform, len)) 203 return -EFAULT; 204 } 205 206 /* 207 * If this architecture has a "base" platform capability 208 * string, copy it to userspace. 209 */ 210 u_base_platform = NULL; 211 if (k_base_platform) { 212 size_t len = strlen(k_base_platform) + 1; 213 214 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 215 if (__copy_to_user(u_base_platform, k_base_platform, len)) 216 return -EFAULT; 217 } 218 219 /* 220 * Generate 16 random bytes for userspace PRNG seeding. 221 */ 222 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); 223 u_rand_bytes = (elf_addr_t __user *) 224 STACK_ALLOC(p, sizeof(k_rand_bytes)); 225 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) 226 return -EFAULT; 227 228 /* Create the ELF interpreter info */ 229 elf_info = (elf_addr_t *)current->mm->saved_auxv; 230 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 231 #define NEW_AUX_ENT(id, val) \ 232 do { \ 233 elf_info[ei_index++] = id; \ 234 elf_info[ei_index++] = val; \ 235 } while (0) 236 237 #ifdef ARCH_DLINFO 238 /* 239 * ARCH_DLINFO must come first so PPC can do its special alignment of 240 * AUXV. 241 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 242 * ARCH_DLINFO changes 243 */ 244 ARCH_DLINFO; 245 #endif 246 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 247 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 248 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 249 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); 250 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 251 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 252 NEW_AUX_ENT(AT_BASE, interp_load_addr); 253 NEW_AUX_ENT(AT_FLAGS, 0); 254 NEW_AUX_ENT(AT_ENTRY, exec->e_entry); 255 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid)); 256 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid)); 257 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid)); 258 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid)); 259 NEW_AUX_ENT(AT_SECURE, bprm->secureexec); 260 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); 261 #ifdef ELF_HWCAP2 262 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2); 263 #endif 264 NEW_AUX_ENT(AT_EXECFN, bprm->exec); 265 if (k_platform) { 266 NEW_AUX_ENT(AT_PLATFORM, 267 (elf_addr_t)(unsigned long)u_platform); 268 } 269 if (k_base_platform) { 270 NEW_AUX_ENT(AT_BASE_PLATFORM, 271 (elf_addr_t)(unsigned long)u_base_platform); 272 } 273 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) { 274 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data); 275 } 276 #undef NEW_AUX_ENT 277 /* AT_NULL is zero; clear the rest too */ 278 memset(&elf_info[ei_index], 0, 279 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]); 280 281 /* And advance past the AT_NULL entry. */ 282 ei_index += 2; 283 284 sp = STACK_ADD(p, ei_index); 285 286 items = (argc + 1) + (envc + 1) + 1; 287 bprm->p = STACK_ROUND(sp, items); 288 289 /* Point sp at the lowest address on the stack */ 290 #ifdef CONFIG_STACK_GROWSUP 291 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 292 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 293 #else 294 sp = (elf_addr_t __user *)bprm->p; 295 #endif 296 297 298 /* 299 * Grow the stack manually; some architectures have a limit on how 300 * far ahead a user-space access may be in order to grow the stack. 301 */ 302 vma = find_extend_vma(current->mm, bprm->p); 303 if (!vma) 304 return -EFAULT; 305 306 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 307 if (__put_user(argc, sp++)) 308 return -EFAULT; 309 310 /* Populate list of argv pointers back to argv strings. */ 311 p = current->mm->arg_end = current->mm->arg_start; 312 while (argc-- > 0) { 313 size_t len; 314 if (__put_user((elf_addr_t)p, sp++)) 315 return -EFAULT; 316 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 317 if (!len || len > MAX_ARG_STRLEN) 318 return -EINVAL; 319 p += len; 320 } 321 if (__put_user(0, sp++)) 322 return -EFAULT; 323 current->mm->arg_end = p; 324 325 /* Populate list of envp pointers back to envp strings. */ 326 current->mm->env_end = current->mm->env_start = p; 327 while (envc-- > 0) { 328 size_t len; 329 if (__put_user((elf_addr_t)p, sp++)) 330 return -EFAULT; 331 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 332 if (!len || len > MAX_ARG_STRLEN) 333 return -EINVAL; 334 p += len; 335 } 336 if (__put_user(0, sp++)) 337 return -EFAULT; 338 current->mm->env_end = p; 339 340 /* Put the elf_info on the stack in the right place. */ 341 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t))) 342 return -EFAULT; 343 return 0; 344 } 345 346 #ifndef elf_map 347 348 static unsigned long elf_map(struct file *filep, unsigned long addr, 349 const struct elf_phdr *eppnt, int prot, int type, 350 unsigned long total_size) 351 { 352 unsigned long map_addr; 353 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 354 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 355 addr = ELF_PAGESTART(addr); 356 size = ELF_PAGEALIGN(size); 357 358 /* mmap() will return -EINVAL if given a zero size, but a 359 * segment with zero filesize is perfectly valid */ 360 if (!size) 361 return addr; 362 363 /* 364 * total_size is the size of the ELF (interpreter) image. 365 * The _first_ mmap needs to know the full size, otherwise 366 * randomization might put this image into an overlapping 367 * position with the ELF binary image. (since size < total_size) 368 * So we first map the 'big' image - and unmap the remainder at 369 * the end. (which unmap is needed for ELF images with holes.) 370 */ 371 if (total_size) { 372 total_size = ELF_PAGEALIGN(total_size); 373 map_addr = vm_mmap(filep, addr, total_size, prot, type, off); 374 if (!BAD_ADDR(map_addr)) 375 vm_munmap(map_addr+size, total_size-size); 376 } else 377 map_addr = vm_mmap(filep, addr, size, prot, type, off); 378 379 if ((type & MAP_FIXED_NOREPLACE) && 380 PTR_ERR((void *)map_addr) == -EEXIST) 381 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n", 382 task_pid_nr(current), current->comm, (void *)addr); 383 384 return(map_addr); 385 } 386 387 #endif /* !elf_map */ 388 389 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr) 390 { 391 int i, first_idx = -1, last_idx = -1; 392 393 for (i = 0; i < nr; i++) { 394 if (cmds[i].p_type == PT_LOAD) { 395 last_idx = i; 396 if (first_idx == -1) 397 first_idx = i; 398 } 399 } 400 if (first_idx == -1) 401 return 0; 402 403 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - 404 ELF_PAGESTART(cmds[first_idx].p_vaddr); 405 } 406 407 /** 408 * load_elf_phdrs() - load ELF program headers 409 * @elf_ex: ELF header of the binary whose program headers should be loaded 410 * @elf_file: the opened ELF binary file 411 * 412 * Loads ELF program headers from the binary file elf_file, which has the ELF 413 * header pointed to by elf_ex, into a newly allocated array. The caller is 414 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure. 415 */ 416 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex, 417 struct file *elf_file) 418 { 419 struct elf_phdr *elf_phdata = NULL; 420 int retval, err = -1; 421 loff_t pos = elf_ex->e_phoff; 422 unsigned int size; 423 424 /* 425 * If the size of this structure has changed, then punt, since 426 * we will be doing the wrong thing. 427 */ 428 if (elf_ex->e_phentsize != sizeof(struct elf_phdr)) 429 goto out; 430 431 /* Sanity check the number of program headers... */ 432 /* ...and their total size. */ 433 size = sizeof(struct elf_phdr) * elf_ex->e_phnum; 434 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN) 435 goto out; 436 437 elf_phdata = kmalloc(size, GFP_KERNEL); 438 if (!elf_phdata) 439 goto out; 440 441 /* Read in the program headers */ 442 retval = kernel_read(elf_file, elf_phdata, size, &pos); 443 if (retval != size) { 444 err = (retval < 0) ? retval : -EIO; 445 goto out; 446 } 447 448 /* Success! */ 449 err = 0; 450 out: 451 if (err) { 452 kfree(elf_phdata); 453 elf_phdata = NULL; 454 } 455 return elf_phdata; 456 } 457 458 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE 459 460 /** 461 * struct arch_elf_state - arch-specific ELF loading state 462 * 463 * This structure is used to preserve architecture specific data during 464 * the loading of an ELF file, throughout the checking of architecture 465 * specific ELF headers & through to the point where the ELF load is 466 * known to be proceeding (ie. SET_PERSONALITY). 467 * 468 * This implementation is a dummy for architectures which require no 469 * specific state. 470 */ 471 struct arch_elf_state { 472 }; 473 474 #define INIT_ARCH_ELF_STATE {} 475 476 /** 477 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header 478 * @ehdr: The main ELF header 479 * @phdr: The program header to check 480 * @elf: The open ELF file 481 * @is_interp: True if the phdr is from the interpreter of the ELF being 482 * loaded, else false. 483 * @state: Architecture-specific state preserved throughout the process 484 * of loading the ELF. 485 * 486 * Inspects the program header phdr to validate its correctness and/or 487 * suitability for the system. Called once per ELF program header in the 488 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its 489 * interpreter. 490 * 491 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 492 * with that return code. 493 */ 494 static inline int arch_elf_pt_proc(struct elfhdr *ehdr, 495 struct elf_phdr *phdr, 496 struct file *elf, bool is_interp, 497 struct arch_elf_state *state) 498 { 499 /* Dummy implementation, always proceed */ 500 return 0; 501 } 502 503 /** 504 * arch_check_elf() - check an ELF executable 505 * @ehdr: The main ELF header 506 * @has_interp: True if the ELF has an interpreter, else false. 507 * @interp_ehdr: The interpreter's ELF header 508 * @state: Architecture-specific state preserved throughout the process 509 * of loading the ELF. 510 * 511 * Provides a final opportunity for architecture code to reject the loading 512 * of the ELF & cause an exec syscall to return an error. This is called after 513 * all program headers to be checked by arch_elf_pt_proc have been. 514 * 515 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 516 * with that return code. 517 */ 518 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp, 519 struct elfhdr *interp_ehdr, 520 struct arch_elf_state *state) 521 { 522 /* Dummy implementation, always proceed */ 523 return 0; 524 } 525 526 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */ 527 528 static inline int make_prot(u32 p_flags) 529 { 530 int prot = 0; 531 532 if (p_flags & PF_R) 533 prot |= PROT_READ; 534 if (p_flags & PF_W) 535 prot |= PROT_WRITE; 536 if (p_flags & PF_X) 537 prot |= PROT_EXEC; 538 return prot; 539 } 540 541 /* This is much more generalized than the library routine read function, 542 so we keep this separate. Technically the library read function 543 is only provided so that we can read a.out libraries that have 544 an ELF header */ 545 546 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 547 struct file *interpreter, unsigned long *interp_map_addr, 548 unsigned long no_base, struct elf_phdr *interp_elf_phdata) 549 { 550 struct elf_phdr *eppnt; 551 unsigned long load_addr = 0; 552 int load_addr_set = 0; 553 unsigned long last_bss = 0, elf_bss = 0; 554 int bss_prot = 0; 555 unsigned long error = ~0UL; 556 unsigned long total_size; 557 int i; 558 559 /* First of all, some simple consistency checks */ 560 if (interp_elf_ex->e_type != ET_EXEC && 561 interp_elf_ex->e_type != ET_DYN) 562 goto out; 563 if (!elf_check_arch(interp_elf_ex) || 564 elf_check_fdpic(interp_elf_ex)) 565 goto out; 566 if (!interpreter->f_op->mmap) 567 goto out; 568 569 total_size = total_mapping_size(interp_elf_phdata, 570 interp_elf_ex->e_phnum); 571 if (!total_size) { 572 error = -EINVAL; 573 goto out; 574 } 575 576 eppnt = interp_elf_phdata; 577 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 578 if (eppnt->p_type == PT_LOAD) { 579 int elf_type = MAP_PRIVATE | MAP_DENYWRITE; 580 int elf_prot = make_prot(eppnt->p_flags); 581 unsigned long vaddr = 0; 582 unsigned long k, map_addr; 583 584 vaddr = eppnt->p_vaddr; 585 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 586 elf_type |= MAP_FIXED_NOREPLACE; 587 else if (no_base && interp_elf_ex->e_type == ET_DYN) 588 load_addr = -vaddr; 589 590 map_addr = elf_map(interpreter, load_addr + vaddr, 591 eppnt, elf_prot, elf_type, total_size); 592 total_size = 0; 593 if (!*interp_map_addr) 594 *interp_map_addr = map_addr; 595 error = map_addr; 596 if (BAD_ADDR(map_addr)) 597 goto out; 598 599 if (!load_addr_set && 600 interp_elf_ex->e_type == ET_DYN) { 601 load_addr = map_addr - ELF_PAGESTART(vaddr); 602 load_addr_set = 1; 603 } 604 605 /* 606 * Check to see if the section's size will overflow the 607 * allowed task size. Note that p_filesz must always be 608 * <= p_memsize so it's only necessary to check p_memsz. 609 */ 610 k = load_addr + eppnt->p_vaddr; 611 if (BAD_ADDR(k) || 612 eppnt->p_filesz > eppnt->p_memsz || 613 eppnt->p_memsz > TASK_SIZE || 614 TASK_SIZE - eppnt->p_memsz < k) { 615 error = -ENOMEM; 616 goto out; 617 } 618 619 /* 620 * Find the end of the file mapping for this phdr, and 621 * keep track of the largest address we see for this. 622 */ 623 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; 624 if (k > elf_bss) 625 elf_bss = k; 626 627 /* 628 * Do the same thing for the memory mapping - between 629 * elf_bss and last_bss is the bss section. 630 */ 631 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz; 632 if (k > last_bss) { 633 last_bss = k; 634 bss_prot = elf_prot; 635 } 636 } 637 } 638 639 /* 640 * Now fill out the bss section: first pad the last page from 641 * the file up to the page boundary, and zero it from elf_bss 642 * up to the end of the page. 643 */ 644 if (padzero(elf_bss)) { 645 error = -EFAULT; 646 goto out; 647 } 648 /* 649 * Next, align both the file and mem bss up to the page size, 650 * since this is where elf_bss was just zeroed up to, and where 651 * last_bss will end after the vm_brk_flags() below. 652 */ 653 elf_bss = ELF_PAGEALIGN(elf_bss); 654 last_bss = ELF_PAGEALIGN(last_bss); 655 /* Finally, if there is still more bss to allocate, do it. */ 656 if (last_bss > elf_bss) { 657 error = vm_brk_flags(elf_bss, last_bss - elf_bss, 658 bss_prot & PROT_EXEC ? VM_EXEC : 0); 659 if (error) 660 goto out; 661 } 662 663 error = load_addr; 664 out: 665 return error; 666 } 667 668 /* 669 * These are the functions used to load ELF style executables and shared 670 * libraries. There is no binary dependent code anywhere else. 671 */ 672 673 #ifndef STACK_RND_MASK 674 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 675 #endif 676 677 static unsigned long randomize_stack_top(unsigned long stack_top) 678 { 679 unsigned long random_variable = 0; 680 681 if (current->flags & PF_RANDOMIZE) { 682 random_variable = get_random_long(); 683 random_variable &= STACK_RND_MASK; 684 random_variable <<= PAGE_SHIFT; 685 } 686 #ifdef CONFIG_STACK_GROWSUP 687 return PAGE_ALIGN(stack_top) + random_variable; 688 #else 689 return PAGE_ALIGN(stack_top) - random_variable; 690 #endif 691 } 692 693 static int load_elf_binary(struct linux_binprm *bprm) 694 { 695 struct file *interpreter = NULL; /* to shut gcc up */ 696 unsigned long load_addr = 0, load_bias = 0; 697 int load_addr_set = 0; 698 unsigned long error; 699 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL; 700 unsigned long elf_bss, elf_brk; 701 int bss_prot = 0; 702 int retval, i; 703 unsigned long elf_entry; 704 unsigned long interp_load_addr = 0; 705 unsigned long start_code, end_code, start_data, end_data; 706 unsigned long reloc_func_desc __maybe_unused = 0; 707 int executable_stack = EXSTACK_DEFAULT; 708 struct { 709 struct elfhdr elf_ex; 710 struct elfhdr interp_elf_ex; 711 } *loc; 712 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE; 713 struct pt_regs *regs; 714 715 loc = kmalloc(sizeof(*loc), GFP_KERNEL); 716 if (!loc) { 717 retval = -ENOMEM; 718 goto out_ret; 719 } 720 721 /* Get the exec-header */ 722 loc->elf_ex = *((struct elfhdr *)bprm->buf); 723 724 retval = -ENOEXEC; 725 /* First of all, some simple consistency checks */ 726 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 727 goto out; 728 729 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN) 730 goto out; 731 if (!elf_check_arch(&loc->elf_ex)) 732 goto out; 733 if (elf_check_fdpic(&loc->elf_ex)) 734 goto out; 735 if (!bprm->file->f_op->mmap) 736 goto out; 737 738 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file); 739 if (!elf_phdata) 740 goto out; 741 742 elf_ppnt = elf_phdata; 743 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) { 744 char *elf_interpreter; 745 loff_t pos; 746 747 if (elf_ppnt->p_type != PT_INTERP) 748 continue; 749 750 /* 751 * This is the program interpreter used for shared libraries - 752 * for now assume that this is an a.out format binary. 753 */ 754 retval = -ENOEXEC; 755 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2) 756 goto out_free_ph; 757 758 retval = -ENOMEM; 759 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL); 760 if (!elf_interpreter) 761 goto out_free_ph; 762 763 pos = elf_ppnt->p_offset; 764 retval = kernel_read(bprm->file, elf_interpreter, 765 elf_ppnt->p_filesz, &pos); 766 if (retval != elf_ppnt->p_filesz) { 767 if (retval >= 0) 768 retval = -EIO; 769 goto out_free_interp; 770 } 771 /* make sure path is NULL terminated */ 772 retval = -ENOEXEC; 773 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 774 goto out_free_interp; 775 776 interpreter = open_exec(elf_interpreter); 777 kfree(elf_interpreter); 778 retval = PTR_ERR(interpreter); 779 if (IS_ERR(interpreter)) 780 goto out_free_ph; 781 782 /* 783 * If the binary is not readable then enforce mm->dumpable = 0 784 * regardless of the interpreter's permissions. 785 */ 786 would_dump(bprm, interpreter); 787 788 /* Get the exec headers */ 789 pos = 0; 790 retval = kernel_read(interpreter, &loc->interp_elf_ex, 791 sizeof(loc->interp_elf_ex), &pos); 792 if (retval != sizeof(loc->interp_elf_ex)) { 793 if (retval >= 0) 794 retval = -EIO; 795 goto out_free_dentry; 796 } 797 798 break; 799 800 out_free_interp: 801 kfree(elf_interpreter); 802 goto out_free_ph; 803 } 804 805 elf_ppnt = elf_phdata; 806 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) 807 switch (elf_ppnt->p_type) { 808 case PT_GNU_STACK: 809 if (elf_ppnt->p_flags & PF_X) 810 executable_stack = EXSTACK_ENABLE_X; 811 else 812 executable_stack = EXSTACK_DISABLE_X; 813 break; 814 815 case PT_LOPROC ... PT_HIPROC: 816 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt, 817 bprm->file, false, 818 &arch_state); 819 if (retval) 820 goto out_free_dentry; 821 break; 822 } 823 824 /* Some simple consistency checks for the interpreter */ 825 if (interpreter) { 826 retval = -ELIBBAD; 827 /* Not an ELF interpreter */ 828 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 829 goto out_free_dentry; 830 /* Verify the interpreter has a valid arch */ 831 if (!elf_check_arch(&loc->interp_elf_ex) || 832 elf_check_fdpic(&loc->interp_elf_ex)) 833 goto out_free_dentry; 834 835 /* Load the interpreter program headers */ 836 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex, 837 interpreter); 838 if (!interp_elf_phdata) 839 goto out_free_dentry; 840 841 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */ 842 elf_ppnt = interp_elf_phdata; 843 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++) 844 switch (elf_ppnt->p_type) { 845 case PT_LOPROC ... PT_HIPROC: 846 retval = arch_elf_pt_proc(&loc->interp_elf_ex, 847 elf_ppnt, interpreter, 848 true, &arch_state); 849 if (retval) 850 goto out_free_dentry; 851 break; 852 } 853 } 854 855 /* 856 * Allow arch code to reject the ELF at this point, whilst it's 857 * still possible to return an error to the code that invoked 858 * the exec syscall. 859 */ 860 retval = arch_check_elf(&loc->elf_ex, 861 !!interpreter, &loc->interp_elf_ex, 862 &arch_state); 863 if (retval) 864 goto out_free_dentry; 865 866 /* Flush all traces of the currently running executable */ 867 retval = flush_old_exec(bprm); 868 if (retval) 869 goto out_free_dentry; 870 871 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 872 may depend on the personality. */ 873 SET_PERSONALITY2(loc->elf_ex, &arch_state); 874 if (elf_read_implies_exec(loc->elf_ex, executable_stack)) 875 current->personality |= READ_IMPLIES_EXEC; 876 877 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 878 current->flags |= PF_RANDOMIZE; 879 880 setup_new_exec(bprm); 881 install_exec_creds(bprm); 882 883 /* Do this so that we can load the interpreter, if need be. We will 884 change some of these later */ 885 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 886 executable_stack); 887 if (retval < 0) 888 goto out_free_dentry; 889 890 elf_bss = 0; 891 elf_brk = 0; 892 893 start_code = ~0UL; 894 end_code = 0; 895 start_data = 0; 896 end_data = 0; 897 898 /* Now we do a little grungy work by mmapping the ELF image into 899 the correct location in memory. */ 900 for(i = 0, elf_ppnt = elf_phdata; 901 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) { 902 int elf_prot, elf_flags, elf_fixed = MAP_FIXED_NOREPLACE; 903 unsigned long k, vaddr; 904 unsigned long total_size = 0; 905 906 if (elf_ppnt->p_type != PT_LOAD) 907 continue; 908 909 if (unlikely (elf_brk > elf_bss)) { 910 unsigned long nbyte; 911 912 /* There was a PT_LOAD segment with p_memsz > p_filesz 913 before this one. Map anonymous pages, if needed, 914 and clear the area. */ 915 retval = set_brk(elf_bss + load_bias, 916 elf_brk + load_bias, 917 bss_prot); 918 if (retval) 919 goto out_free_dentry; 920 nbyte = ELF_PAGEOFFSET(elf_bss); 921 if (nbyte) { 922 nbyte = ELF_MIN_ALIGN - nbyte; 923 if (nbyte > elf_brk - elf_bss) 924 nbyte = elf_brk - elf_bss; 925 if (clear_user((void __user *)elf_bss + 926 load_bias, nbyte)) { 927 /* 928 * This bss-zeroing can fail if the ELF 929 * file specifies odd protections. So 930 * we don't check the return value 931 */ 932 } 933 } 934 935 /* 936 * Some binaries have overlapping elf segments and then 937 * we have to forcefully map over an existing mapping 938 * e.g. over this newly established brk mapping. 939 */ 940 elf_fixed = MAP_FIXED; 941 } 942 943 elf_prot = make_prot(elf_ppnt->p_flags); 944 945 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE; 946 947 vaddr = elf_ppnt->p_vaddr; 948 /* 949 * If we are loading ET_EXEC or we have already performed 950 * the ET_DYN load_addr calculations, proceed normally. 951 */ 952 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) { 953 elf_flags |= elf_fixed; 954 } else if (loc->elf_ex.e_type == ET_DYN) { 955 /* 956 * This logic is run once for the first LOAD Program 957 * Header for ET_DYN binaries to calculate the 958 * randomization (load_bias) for all the LOAD 959 * Program Headers, and to calculate the entire 960 * size of the ELF mapping (total_size). (Note that 961 * load_addr_set is set to true later once the 962 * initial mapping is performed.) 963 * 964 * There are effectively two types of ET_DYN 965 * binaries: programs (i.e. PIE: ET_DYN with INTERP) 966 * and loaders (ET_DYN without INTERP, since they 967 * _are_ the ELF interpreter). The loaders must 968 * be loaded away from programs since the program 969 * may otherwise collide with the loader (especially 970 * for ET_EXEC which does not have a randomized 971 * position). For example to handle invocations of 972 * "./ld.so someprog" to test out a new version of 973 * the loader, the subsequent program that the 974 * loader loads must avoid the loader itself, so 975 * they cannot share the same load range. Sufficient 976 * room for the brk must be allocated with the 977 * loader as well, since brk must be available with 978 * the loader. 979 * 980 * Therefore, programs are loaded offset from 981 * ELF_ET_DYN_BASE and loaders are loaded into the 982 * independently randomized mmap region (0 load_bias 983 * without MAP_FIXED). 984 */ 985 if (interpreter) { 986 load_bias = ELF_ET_DYN_BASE; 987 if (current->flags & PF_RANDOMIZE) 988 load_bias += arch_mmap_rnd(); 989 elf_flags |= elf_fixed; 990 } else 991 load_bias = 0; 992 993 /* 994 * Since load_bias is used for all subsequent loading 995 * calculations, we must lower it by the first vaddr 996 * so that the remaining calculations based on the 997 * ELF vaddrs will be correctly offset. The result 998 * is then page aligned. 999 */ 1000 load_bias = ELF_PAGESTART(load_bias - vaddr); 1001 1002 total_size = total_mapping_size(elf_phdata, 1003 loc->elf_ex.e_phnum); 1004 if (!total_size) { 1005 retval = -EINVAL; 1006 goto out_free_dentry; 1007 } 1008 } 1009 1010 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, 1011 elf_prot, elf_flags, total_size); 1012 if (BAD_ADDR(error)) { 1013 retval = IS_ERR((void *)error) ? 1014 PTR_ERR((void*)error) : -EINVAL; 1015 goto out_free_dentry; 1016 } 1017 1018 if (!load_addr_set) { 1019 load_addr_set = 1; 1020 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); 1021 if (loc->elf_ex.e_type == ET_DYN) { 1022 load_bias += error - 1023 ELF_PAGESTART(load_bias + vaddr); 1024 load_addr += load_bias; 1025 reloc_func_desc = load_bias; 1026 } 1027 } 1028 k = elf_ppnt->p_vaddr; 1029 if (k < start_code) 1030 start_code = k; 1031 if (start_data < k) 1032 start_data = k; 1033 1034 /* 1035 * Check to see if the section's size will overflow the 1036 * allowed task size. Note that p_filesz must always be 1037 * <= p_memsz so it is only necessary to check p_memsz. 1038 */ 1039 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 1040 elf_ppnt->p_memsz > TASK_SIZE || 1041 TASK_SIZE - elf_ppnt->p_memsz < k) { 1042 /* set_brk can never work. Avoid overflows. */ 1043 retval = -EINVAL; 1044 goto out_free_dentry; 1045 } 1046 1047 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 1048 1049 if (k > elf_bss) 1050 elf_bss = k; 1051 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 1052 end_code = k; 1053 if (end_data < k) 1054 end_data = k; 1055 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 1056 if (k > elf_brk) { 1057 bss_prot = elf_prot; 1058 elf_brk = k; 1059 } 1060 } 1061 1062 loc->elf_ex.e_entry += load_bias; 1063 elf_bss += load_bias; 1064 elf_brk += load_bias; 1065 start_code += load_bias; 1066 end_code += load_bias; 1067 start_data += load_bias; 1068 end_data += load_bias; 1069 1070 /* Calling set_brk effectively mmaps the pages that we need 1071 * for the bss and break sections. We must do this before 1072 * mapping in the interpreter, to make sure it doesn't wind 1073 * up getting placed where the bss needs to go. 1074 */ 1075 retval = set_brk(elf_bss, elf_brk, bss_prot); 1076 if (retval) 1077 goto out_free_dentry; 1078 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { 1079 retval = -EFAULT; /* Nobody gets to see this, but.. */ 1080 goto out_free_dentry; 1081 } 1082 1083 if (interpreter) { 1084 unsigned long interp_map_addr = 0; 1085 1086 elf_entry = load_elf_interp(&loc->interp_elf_ex, 1087 interpreter, 1088 &interp_map_addr, 1089 load_bias, interp_elf_phdata); 1090 if (!IS_ERR((void *)elf_entry)) { 1091 /* 1092 * load_elf_interp() returns relocation 1093 * adjustment 1094 */ 1095 interp_load_addr = elf_entry; 1096 elf_entry += loc->interp_elf_ex.e_entry; 1097 } 1098 if (BAD_ADDR(elf_entry)) { 1099 retval = IS_ERR((void *)elf_entry) ? 1100 (int)elf_entry : -EINVAL; 1101 goto out_free_dentry; 1102 } 1103 reloc_func_desc = interp_load_addr; 1104 1105 allow_write_access(interpreter); 1106 fput(interpreter); 1107 } else { 1108 elf_entry = loc->elf_ex.e_entry; 1109 if (BAD_ADDR(elf_entry)) { 1110 retval = -EINVAL; 1111 goto out_free_dentry; 1112 } 1113 } 1114 1115 kfree(interp_elf_phdata); 1116 kfree(elf_phdata); 1117 1118 set_binfmt(&elf_format); 1119 1120 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 1121 retval = arch_setup_additional_pages(bprm, !!interpreter); 1122 if (retval < 0) 1123 goto out; 1124 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 1125 1126 retval = create_elf_tables(bprm, &loc->elf_ex, 1127 load_addr, interp_load_addr); 1128 if (retval < 0) 1129 goto out; 1130 current->mm->end_code = end_code; 1131 current->mm->start_code = start_code; 1132 current->mm->start_data = start_data; 1133 current->mm->end_data = end_data; 1134 current->mm->start_stack = bprm->p; 1135 1136 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { 1137 /* 1138 * For architectures with ELF randomization, when executing 1139 * a loader directly (i.e. no interpreter listed in ELF 1140 * headers), move the brk area out of the mmap region 1141 * (since it grows up, and may collide early with the stack 1142 * growing down), and into the unused ELF_ET_DYN_BASE region. 1143 */ 1144 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && !interpreter) 1145 current->mm->brk = current->mm->start_brk = 1146 ELF_ET_DYN_BASE; 1147 1148 current->mm->brk = current->mm->start_brk = 1149 arch_randomize_brk(current->mm); 1150 #ifdef compat_brk_randomized 1151 current->brk_randomized = 1; 1152 #endif 1153 } 1154 1155 if (current->personality & MMAP_PAGE_ZERO) { 1156 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 1157 and some applications "depend" upon this behavior. 1158 Since we do not have the power to recompile these, we 1159 emulate the SVr4 behavior. Sigh. */ 1160 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 1161 MAP_FIXED | MAP_PRIVATE, 0); 1162 } 1163 1164 regs = current_pt_regs(); 1165 #ifdef ELF_PLAT_INIT 1166 /* 1167 * The ABI may specify that certain registers be set up in special 1168 * ways (on i386 %edx is the address of a DT_FINI function, for 1169 * example. In addition, it may also specify (eg, PowerPC64 ELF) 1170 * that the e_entry field is the address of the function descriptor 1171 * for the startup routine, rather than the address of the startup 1172 * routine itself. This macro performs whatever initialization to 1173 * the regs structure is required as well as any relocations to the 1174 * function descriptor entries when executing dynamically links apps. 1175 */ 1176 ELF_PLAT_INIT(regs, reloc_func_desc); 1177 #endif 1178 1179 finalize_exec(bprm); 1180 start_thread(regs, elf_entry, bprm->p); 1181 retval = 0; 1182 out: 1183 kfree(loc); 1184 out_ret: 1185 return retval; 1186 1187 /* error cleanup */ 1188 out_free_dentry: 1189 kfree(interp_elf_phdata); 1190 allow_write_access(interpreter); 1191 if (interpreter) 1192 fput(interpreter); 1193 out_free_ph: 1194 kfree(elf_phdata); 1195 goto out; 1196 } 1197 1198 #ifdef CONFIG_USELIB 1199 /* This is really simpleminded and specialized - we are loading an 1200 a.out library that is given an ELF header. */ 1201 static int load_elf_library(struct file *file) 1202 { 1203 struct elf_phdr *elf_phdata; 1204 struct elf_phdr *eppnt; 1205 unsigned long elf_bss, bss, len; 1206 int retval, error, i, j; 1207 struct elfhdr elf_ex; 1208 loff_t pos = 0; 1209 1210 error = -ENOEXEC; 1211 retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos); 1212 if (retval != sizeof(elf_ex)) 1213 goto out; 1214 1215 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1216 goto out; 1217 1218 /* First of all, some simple consistency checks */ 1219 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1220 !elf_check_arch(&elf_ex) || !file->f_op->mmap) 1221 goto out; 1222 if (elf_check_fdpic(&elf_ex)) 1223 goto out; 1224 1225 /* Now read in all of the header information */ 1226 1227 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1228 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1229 1230 error = -ENOMEM; 1231 elf_phdata = kmalloc(j, GFP_KERNEL); 1232 if (!elf_phdata) 1233 goto out; 1234 1235 eppnt = elf_phdata; 1236 error = -ENOEXEC; 1237 pos = elf_ex.e_phoff; 1238 retval = kernel_read(file, eppnt, j, &pos); 1239 if (retval != j) 1240 goto out_free_ph; 1241 1242 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1243 if ((eppnt + i)->p_type == PT_LOAD) 1244 j++; 1245 if (j != 1) 1246 goto out_free_ph; 1247 1248 while (eppnt->p_type != PT_LOAD) 1249 eppnt++; 1250 1251 /* Now use mmap to map the library into memory. */ 1252 error = vm_mmap(file, 1253 ELF_PAGESTART(eppnt->p_vaddr), 1254 (eppnt->p_filesz + 1255 ELF_PAGEOFFSET(eppnt->p_vaddr)), 1256 PROT_READ | PROT_WRITE | PROT_EXEC, 1257 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE, 1258 (eppnt->p_offset - 1259 ELF_PAGEOFFSET(eppnt->p_vaddr))); 1260 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1261 goto out_free_ph; 1262 1263 elf_bss = eppnt->p_vaddr + eppnt->p_filesz; 1264 if (padzero(elf_bss)) { 1265 error = -EFAULT; 1266 goto out_free_ph; 1267 } 1268 1269 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr); 1270 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr); 1271 if (bss > len) { 1272 error = vm_brk(len, bss - len); 1273 if (error) 1274 goto out_free_ph; 1275 } 1276 error = 0; 1277 1278 out_free_ph: 1279 kfree(elf_phdata); 1280 out: 1281 return error; 1282 } 1283 #endif /* #ifdef CONFIG_USELIB */ 1284 1285 #ifdef CONFIG_ELF_CORE 1286 /* 1287 * ELF core dumper 1288 * 1289 * Modelled on fs/exec.c:aout_core_dump() 1290 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1291 */ 1292 1293 /* 1294 * The purpose of always_dump_vma() is to make sure that special kernel mappings 1295 * that are useful for post-mortem analysis are included in every core dump. 1296 * In that way we ensure that the core dump is fully interpretable later 1297 * without matching up the same kernel and hardware config to see what PC values 1298 * meant. These special mappings include - vDSO, vsyscall, and other 1299 * architecture specific mappings 1300 */ 1301 static bool always_dump_vma(struct vm_area_struct *vma) 1302 { 1303 /* Any vsyscall mappings? */ 1304 if (vma == get_gate_vma(vma->vm_mm)) 1305 return true; 1306 1307 /* 1308 * Assume that all vmas with a .name op should always be dumped. 1309 * If this changes, a new vm_ops field can easily be added. 1310 */ 1311 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma)) 1312 return true; 1313 1314 /* 1315 * arch_vma_name() returns non-NULL for special architecture mappings, 1316 * such as vDSO sections. 1317 */ 1318 if (arch_vma_name(vma)) 1319 return true; 1320 1321 return false; 1322 } 1323 1324 /* 1325 * Decide what to dump of a segment, part, all or none. 1326 */ 1327 static unsigned long vma_dump_size(struct vm_area_struct *vma, 1328 unsigned long mm_flags) 1329 { 1330 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) 1331 1332 /* always dump the vdso and vsyscall sections */ 1333 if (always_dump_vma(vma)) 1334 goto whole; 1335 1336 if (vma->vm_flags & VM_DONTDUMP) 1337 return 0; 1338 1339 /* support for DAX */ 1340 if (vma_is_dax(vma)) { 1341 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED)) 1342 goto whole; 1343 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE)) 1344 goto whole; 1345 return 0; 1346 } 1347 1348 /* Hugetlb memory check */ 1349 if (vma->vm_flags & VM_HUGETLB) { 1350 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) 1351 goto whole; 1352 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) 1353 goto whole; 1354 return 0; 1355 } 1356 1357 /* Do not dump I/O mapped devices or special mappings */ 1358 if (vma->vm_flags & VM_IO) 1359 return 0; 1360 1361 /* By default, dump shared memory if mapped from an anonymous file. */ 1362 if (vma->vm_flags & VM_SHARED) { 1363 if (file_inode(vma->vm_file)->i_nlink == 0 ? 1364 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) 1365 goto whole; 1366 return 0; 1367 } 1368 1369 /* Dump segments that have been written to. */ 1370 if (vma->anon_vma && FILTER(ANON_PRIVATE)) 1371 goto whole; 1372 if (vma->vm_file == NULL) 1373 return 0; 1374 1375 if (FILTER(MAPPED_PRIVATE)) 1376 goto whole; 1377 1378 /* 1379 * If this looks like the beginning of a DSO or executable mapping, 1380 * check for an ELF header. If we find one, dump the first page to 1381 * aid in determining what was mapped here. 1382 */ 1383 if (FILTER(ELF_HEADERS) && 1384 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) { 1385 u32 __user *header = (u32 __user *) vma->vm_start; 1386 u32 word; 1387 mm_segment_t fs = get_fs(); 1388 /* 1389 * Doing it this way gets the constant folded by GCC. 1390 */ 1391 union { 1392 u32 cmp; 1393 char elfmag[SELFMAG]; 1394 } magic; 1395 BUILD_BUG_ON(SELFMAG != sizeof word); 1396 magic.elfmag[EI_MAG0] = ELFMAG0; 1397 magic.elfmag[EI_MAG1] = ELFMAG1; 1398 magic.elfmag[EI_MAG2] = ELFMAG2; 1399 magic.elfmag[EI_MAG3] = ELFMAG3; 1400 /* 1401 * Switch to the user "segment" for get_user(), 1402 * then put back what elf_core_dump() had in place. 1403 */ 1404 set_fs(USER_DS); 1405 if (unlikely(get_user(word, header))) 1406 word = 0; 1407 set_fs(fs); 1408 if (word == magic.cmp) 1409 return PAGE_SIZE; 1410 } 1411 1412 #undef FILTER 1413 1414 return 0; 1415 1416 whole: 1417 return vma->vm_end - vma->vm_start; 1418 } 1419 1420 /* An ELF note in memory */ 1421 struct memelfnote 1422 { 1423 const char *name; 1424 int type; 1425 unsigned int datasz; 1426 void *data; 1427 }; 1428 1429 static int notesize(struct memelfnote *en) 1430 { 1431 int sz; 1432 1433 sz = sizeof(struct elf_note); 1434 sz += roundup(strlen(en->name) + 1, 4); 1435 sz += roundup(en->datasz, 4); 1436 1437 return sz; 1438 } 1439 1440 static int writenote(struct memelfnote *men, struct coredump_params *cprm) 1441 { 1442 struct elf_note en; 1443 en.n_namesz = strlen(men->name) + 1; 1444 en.n_descsz = men->datasz; 1445 en.n_type = men->type; 1446 1447 return dump_emit(cprm, &en, sizeof(en)) && 1448 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) && 1449 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4); 1450 } 1451 1452 static void fill_elf_header(struct elfhdr *elf, int segs, 1453 u16 machine, u32 flags) 1454 { 1455 memset(elf, 0, sizeof(*elf)); 1456 1457 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1458 elf->e_ident[EI_CLASS] = ELF_CLASS; 1459 elf->e_ident[EI_DATA] = ELF_DATA; 1460 elf->e_ident[EI_VERSION] = EV_CURRENT; 1461 elf->e_ident[EI_OSABI] = ELF_OSABI; 1462 1463 elf->e_type = ET_CORE; 1464 elf->e_machine = machine; 1465 elf->e_version = EV_CURRENT; 1466 elf->e_phoff = sizeof(struct elfhdr); 1467 elf->e_flags = flags; 1468 elf->e_ehsize = sizeof(struct elfhdr); 1469 elf->e_phentsize = sizeof(struct elf_phdr); 1470 elf->e_phnum = segs; 1471 } 1472 1473 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1474 { 1475 phdr->p_type = PT_NOTE; 1476 phdr->p_offset = offset; 1477 phdr->p_vaddr = 0; 1478 phdr->p_paddr = 0; 1479 phdr->p_filesz = sz; 1480 phdr->p_memsz = 0; 1481 phdr->p_flags = 0; 1482 phdr->p_align = 0; 1483 } 1484 1485 static void fill_note(struct memelfnote *note, const char *name, int type, 1486 unsigned int sz, void *data) 1487 { 1488 note->name = name; 1489 note->type = type; 1490 note->datasz = sz; 1491 note->data = data; 1492 } 1493 1494 /* 1495 * fill up all the fields in prstatus from the given task struct, except 1496 * registers which need to be filled up separately. 1497 */ 1498 static void fill_prstatus(struct elf_prstatus *prstatus, 1499 struct task_struct *p, long signr) 1500 { 1501 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1502 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1503 prstatus->pr_sighold = p->blocked.sig[0]; 1504 rcu_read_lock(); 1505 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1506 rcu_read_unlock(); 1507 prstatus->pr_pid = task_pid_vnr(p); 1508 prstatus->pr_pgrp = task_pgrp_vnr(p); 1509 prstatus->pr_sid = task_session_vnr(p); 1510 if (thread_group_leader(p)) { 1511 struct task_cputime cputime; 1512 1513 /* 1514 * This is the record for the group leader. It shows the 1515 * group-wide total, not its individual thread total. 1516 */ 1517 thread_group_cputime(p, &cputime); 1518 prstatus->pr_utime = ns_to_timeval(cputime.utime); 1519 prstatus->pr_stime = ns_to_timeval(cputime.stime); 1520 } else { 1521 u64 utime, stime; 1522 1523 task_cputime(p, &utime, &stime); 1524 prstatus->pr_utime = ns_to_timeval(utime); 1525 prstatus->pr_stime = ns_to_timeval(stime); 1526 } 1527 1528 prstatus->pr_cutime = ns_to_timeval(p->signal->cutime); 1529 prstatus->pr_cstime = ns_to_timeval(p->signal->cstime); 1530 } 1531 1532 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1533 struct mm_struct *mm) 1534 { 1535 const struct cred *cred; 1536 unsigned int i, len; 1537 1538 /* first copy the parameters from user space */ 1539 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1540 1541 len = mm->arg_end - mm->arg_start; 1542 if (len >= ELF_PRARGSZ) 1543 len = ELF_PRARGSZ-1; 1544 if (copy_from_user(&psinfo->pr_psargs, 1545 (const char __user *)mm->arg_start, len)) 1546 return -EFAULT; 1547 for(i = 0; i < len; i++) 1548 if (psinfo->pr_psargs[i] == 0) 1549 psinfo->pr_psargs[i] = ' '; 1550 psinfo->pr_psargs[len] = 0; 1551 1552 rcu_read_lock(); 1553 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1554 rcu_read_unlock(); 1555 psinfo->pr_pid = task_pid_vnr(p); 1556 psinfo->pr_pgrp = task_pgrp_vnr(p); 1557 psinfo->pr_sid = task_session_vnr(p); 1558 1559 i = p->state ? ffz(~p->state) + 1 : 0; 1560 psinfo->pr_state = i; 1561 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1562 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1563 psinfo->pr_nice = task_nice(p); 1564 psinfo->pr_flag = p->flags; 1565 rcu_read_lock(); 1566 cred = __task_cred(p); 1567 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid)); 1568 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid)); 1569 rcu_read_unlock(); 1570 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); 1571 1572 return 0; 1573 } 1574 1575 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1576 { 1577 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1578 int i = 0; 1579 do 1580 i += 2; 1581 while (auxv[i - 2] != AT_NULL); 1582 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1583 } 1584 1585 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata, 1586 const kernel_siginfo_t *siginfo) 1587 { 1588 mm_segment_t old_fs = get_fs(); 1589 set_fs(KERNEL_DS); 1590 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo); 1591 set_fs(old_fs); 1592 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata); 1593 } 1594 1595 #define MAX_FILE_NOTE_SIZE (4*1024*1024) 1596 /* 1597 * Format of NT_FILE note: 1598 * 1599 * long count -- how many files are mapped 1600 * long page_size -- units for file_ofs 1601 * array of [COUNT] elements of 1602 * long start 1603 * long end 1604 * long file_ofs 1605 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... 1606 */ 1607 static int fill_files_note(struct memelfnote *note) 1608 { 1609 struct vm_area_struct *vma; 1610 unsigned count, size, names_ofs, remaining, n; 1611 user_long_t *data; 1612 user_long_t *start_end_ofs; 1613 char *name_base, *name_curpos; 1614 1615 /* *Estimated* file count and total data size needed */ 1616 count = current->mm->map_count; 1617 if (count > UINT_MAX / 64) 1618 return -EINVAL; 1619 size = count * 64; 1620 1621 names_ofs = (2 + 3 * count) * sizeof(data[0]); 1622 alloc: 1623 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */ 1624 return -EINVAL; 1625 size = round_up(size, PAGE_SIZE); 1626 data = kvmalloc(size, GFP_KERNEL); 1627 if (ZERO_OR_NULL_PTR(data)) 1628 return -ENOMEM; 1629 1630 start_end_ofs = data + 2; 1631 name_base = name_curpos = ((char *)data) + names_ofs; 1632 remaining = size - names_ofs; 1633 count = 0; 1634 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) { 1635 struct file *file; 1636 const char *filename; 1637 1638 file = vma->vm_file; 1639 if (!file) 1640 continue; 1641 filename = file_path(file, name_curpos, remaining); 1642 if (IS_ERR(filename)) { 1643 if (PTR_ERR(filename) == -ENAMETOOLONG) { 1644 kvfree(data); 1645 size = size * 5 / 4; 1646 goto alloc; 1647 } 1648 continue; 1649 } 1650 1651 /* file_path() fills at the end, move name down */ 1652 /* n = strlen(filename) + 1: */ 1653 n = (name_curpos + remaining) - filename; 1654 remaining = filename - name_curpos; 1655 memmove(name_curpos, filename, n); 1656 name_curpos += n; 1657 1658 *start_end_ofs++ = vma->vm_start; 1659 *start_end_ofs++ = vma->vm_end; 1660 *start_end_ofs++ = vma->vm_pgoff; 1661 count++; 1662 } 1663 1664 /* Now we know exact count of files, can store it */ 1665 data[0] = count; 1666 data[1] = PAGE_SIZE; 1667 /* 1668 * Count usually is less than current->mm->map_count, 1669 * we need to move filenames down. 1670 */ 1671 n = current->mm->map_count - count; 1672 if (n != 0) { 1673 unsigned shift_bytes = n * 3 * sizeof(data[0]); 1674 memmove(name_base - shift_bytes, name_base, 1675 name_curpos - name_base); 1676 name_curpos -= shift_bytes; 1677 } 1678 1679 size = name_curpos - (char *)data; 1680 fill_note(note, "CORE", NT_FILE, size, data); 1681 return 0; 1682 } 1683 1684 #ifdef CORE_DUMP_USE_REGSET 1685 #include <linux/regset.h> 1686 1687 struct elf_thread_core_info { 1688 struct elf_thread_core_info *next; 1689 struct task_struct *task; 1690 struct elf_prstatus prstatus; 1691 struct memelfnote notes[0]; 1692 }; 1693 1694 struct elf_note_info { 1695 struct elf_thread_core_info *thread; 1696 struct memelfnote psinfo; 1697 struct memelfnote signote; 1698 struct memelfnote auxv; 1699 struct memelfnote files; 1700 user_siginfo_t csigdata; 1701 size_t size; 1702 int thread_notes; 1703 }; 1704 1705 /* 1706 * When a regset has a writeback hook, we call it on each thread before 1707 * dumping user memory. On register window machines, this makes sure the 1708 * user memory backing the register data is up to date before we read it. 1709 */ 1710 static void do_thread_regset_writeback(struct task_struct *task, 1711 const struct user_regset *regset) 1712 { 1713 if (regset->writeback) 1714 regset->writeback(task, regset, 1); 1715 } 1716 1717 #ifndef PRSTATUS_SIZE 1718 #define PRSTATUS_SIZE(S, R) sizeof(S) 1719 #endif 1720 1721 #ifndef SET_PR_FPVALID 1722 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V)) 1723 #endif 1724 1725 static int fill_thread_core_info(struct elf_thread_core_info *t, 1726 const struct user_regset_view *view, 1727 long signr, size_t *total) 1728 { 1729 unsigned int i; 1730 unsigned int regset0_size = regset_size(t->task, &view->regsets[0]); 1731 1732 /* 1733 * NT_PRSTATUS is the one special case, because the regset data 1734 * goes into the pr_reg field inside the note contents, rather 1735 * than being the whole note contents. We fill the reset in here. 1736 * We assume that regset 0 is NT_PRSTATUS. 1737 */ 1738 fill_prstatus(&t->prstatus, t->task, signr); 1739 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size, 1740 &t->prstatus.pr_reg, NULL); 1741 1742 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1743 PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus); 1744 *total += notesize(&t->notes[0]); 1745 1746 do_thread_regset_writeback(t->task, &view->regsets[0]); 1747 1748 /* 1749 * Each other regset might generate a note too. For each regset 1750 * that has no core_note_type or is inactive, we leave t->notes[i] 1751 * all zero and we'll know to skip writing it later. 1752 */ 1753 for (i = 1; i < view->n; ++i) { 1754 const struct user_regset *regset = &view->regsets[i]; 1755 do_thread_regset_writeback(t->task, regset); 1756 if (regset->core_note_type && regset->get && 1757 (!regset->active || regset->active(t->task, regset) > 0)) { 1758 int ret; 1759 size_t size = regset_size(t->task, regset); 1760 void *data = kmalloc(size, GFP_KERNEL); 1761 if (unlikely(!data)) 1762 return 0; 1763 ret = regset->get(t->task, regset, 1764 0, size, data, NULL); 1765 if (unlikely(ret)) 1766 kfree(data); 1767 else { 1768 if (regset->core_note_type != NT_PRFPREG) 1769 fill_note(&t->notes[i], "LINUX", 1770 regset->core_note_type, 1771 size, data); 1772 else { 1773 SET_PR_FPVALID(&t->prstatus, 1774 1, regset0_size); 1775 fill_note(&t->notes[i], "CORE", 1776 NT_PRFPREG, size, data); 1777 } 1778 *total += notesize(&t->notes[i]); 1779 } 1780 } 1781 } 1782 1783 return 1; 1784 } 1785 1786 static int fill_note_info(struct elfhdr *elf, int phdrs, 1787 struct elf_note_info *info, 1788 const kernel_siginfo_t *siginfo, struct pt_regs *regs) 1789 { 1790 struct task_struct *dump_task = current; 1791 const struct user_regset_view *view = task_user_regset_view(dump_task); 1792 struct elf_thread_core_info *t; 1793 struct elf_prpsinfo *psinfo; 1794 struct core_thread *ct; 1795 unsigned int i; 1796 1797 info->size = 0; 1798 info->thread = NULL; 1799 1800 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1801 if (psinfo == NULL) { 1802 info->psinfo.data = NULL; /* So we don't free this wrongly */ 1803 return 0; 1804 } 1805 1806 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1807 1808 /* 1809 * Figure out how many notes we're going to need for each thread. 1810 */ 1811 info->thread_notes = 0; 1812 for (i = 0; i < view->n; ++i) 1813 if (view->regsets[i].core_note_type != 0) 1814 ++info->thread_notes; 1815 1816 /* 1817 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1818 * since it is our one special case. 1819 */ 1820 if (unlikely(info->thread_notes == 0) || 1821 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1822 WARN_ON(1); 1823 return 0; 1824 } 1825 1826 /* 1827 * Initialize the ELF file header. 1828 */ 1829 fill_elf_header(elf, phdrs, 1830 view->e_machine, view->e_flags); 1831 1832 /* 1833 * Allocate a structure for each thread. 1834 */ 1835 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) { 1836 t = kzalloc(offsetof(struct elf_thread_core_info, 1837 notes[info->thread_notes]), 1838 GFP_KERNEL); 1839 if (unlikely(!t)) 1840 return 0; 1841 1842 t->task = ct->task; 1843 if (ct->task == dump_task || !info->thread) { 1844 t->next = info->thread; 1845 info->thread = t; 1846 } else { 1847 /* 1848 * Make sure to keep the original task at 1849 * the head of the list. 1850 */ 1851 t->next = info->thread->next; 1852 info->thread->next = t; 1853 } 1854 } 1855 1856 /* 1857 * Now fill in each thread's information. 1858 */ 1859 for (t = info->thread; t != NULL; t = t->next) 1860 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size)) 1861 return 0; 1862 1863 /* 1864 * Fill in the two process-wide notes. 1865 */ 1866 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1867 info->size += notesize(&info->psinfo); 1868 1869 fill_siginfo_note(&info->signote, &info->csigdata, siginfo); 1870 info->size += notesize(&info->signote); 1871 1872 fill_auxv_note(&info->auxv, current->mm); 1873 info->size += notesize(&info->auxv); 1874 1875 if (fill_files_note(&info->files) == 0) 1876 info->size += notesize(&info->files); 1877 1878 return 1; 1879 } 1880 1881 static size_t get_note_info_size(struct elf_note_info *info) 1882 { 1883 return info->size; 1884 } 1885 1886 /* 1887 * Write all the notes for each thread. When writing the first thread, the 1888 * process-wide notes are interleaved after the first thread-specific note. 1889 */ 1890 static int write_note_info(struct elf_note_info *info, 1891 struct coredump_params *cprm) 1892 { 1893 bool first = true; 1894 struct elf_thread_core_info *t = info->thread; 1895 1896 do { 1897 int i; 1898 1899 if (!writenote(&t->notes[0], cprm)) 1900 return 0; 1901 1902 if (first && !writenote(&info->psinfo, cprm)) 1903 return 0; 1904 if (first && !writenote(&info->signote, cprm)) 1905 return 0; 1906 if (first && !writenote(&info->auxv, cprm)) 1907 return 0; 1908 if (first && info->files.data && 1909 !writenote(&info->files, cprm)) 1910 return 0; 1911 1912 for (i = 1; i < info->thread_notes; ++i) 1913 if (t->notes[i].data && 1914 !writenote(&t->notes[i], cprm)) 1915 return 0; 1916 1917 first = false; 1918 t = t->next; 1919 } while (t); 1920 1921 return 1; 1922 } 1923 1924 static void free_note_info(struct elf_note_info *info) 1925 { 1926 struct elf_thread_core_info *threads = info->thread; 1927 while (threads) { 1928 unsigned int i; 1929 struct elf_thread_core_info *t = threads; 1930 threads = t->next; 1931 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1932 for (i = 1; i < info->thread_notes; ++i) 1933 kfree(t->notes[i].data); 1934 kfree(t); 1935 } 1936 kfree(info->psinfo.data); 1937 kvfree(info->files.data); 1938 } 1939 1940 #else 1941 1942 /* Here is the structure in which status of each thread is captured. */ 1943 struct elf_thread_status 1944 { 1945 struct list_head list; 1946 struct elf_prstatus prstatus; /* NT_PRSTATUS */ 1947 elf_fpregset_t fpu; /* NT_PRFPREG */ 1948 struct task_struct *thread; 1949 #ifdef ELF_CORE_COPY_XFPREGS 1950 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 1951 #endif 1952 struct memelfnote notes[3]; 1953 int num_notes; 1954 }; 1955 1956 /* 1957 * In order to add the specific thread information for the elf file format, 1958 * we need to keep a linked list of every threads pr_status and then create 1959 * a single section for them in the final core file. 1960 */ 1961 static int elf_dump_thread_status(long signr, struct elf_thread_status *t) 1962 { 1963 int sz = 0; 1964 struct task_struct *p = t->thread; 1965 t->num_notes = 0; 1966 1967 fill_prstatus(&t->prstatus, p, signr); 1968 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 1969 1970 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 1971 &(t->prstatus)); 1972 t->num_notes++; 1973 sz += notesize(&t->notes[0]); 1974 1975 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, 1976 &t->fpu))) { 1977 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), 1978 &(t->fpu)); 1979 t->num_notes++; 1980 sz += notesize(&t->notes[1]); 1981 } 1982 1983 #ifdef ELF_CORE_COPY_XFPREGS 1984 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) { 1985 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE, 1986 sizeof(t->xfpu), &t->xfpu); 1987 t->num_notes++; 1988 sz += notesize(&t->notes[2]); 1989 } 1990 #endif 1991 return sz; 1992 } 1993 1994 struct elf_note_info { 1995 struct memelfnote *notes; 1996 struct memelfnote *notes_files; 1997 struct elf_prstatus *prstatus; /* NT_PRSTATUS */ 1998 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 1999 struct list_head thread_list; 2000 elf_fpregset_t *fpu; 2001 #ifdef ELF_CORE_COPY_XFPREGS 2002 elf_fpxregset_t *xfpu; 2003 #endif 2004 user_siginfo_t csigdata; 2005 int thread_status_size; 2006 int numnote; 2007 }; 2008 2009 static int elf_note_info_init(struct elf_note_info *info) 2010 { 2011 memset(info, 0, sizeof(*info)); 2012 INIT_LIST_HEAD(&info->thread_list); 2013 2014 /* Allocate space for ELF notes */ 2015 info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL); 2016 if (!info->notes) 2017 return 0; 2018 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); 2019 if (!info->psinfo) 2020 return 0; 2021 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); 2022 if (!info->prstatus) 2023 return 0; 2024 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); 2025 if (!info->fpu) 2026 return 0; 2027 #ifdef ELF_CORE_COPY_XFPREGS 2028 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL); 2029 if (!info->xfpu) 2030 return 0; 2031 #endif 2032 return 1; 2033 } 2034 2035 static int fill_note_info(struct elfhdr *elf, int phdrs, 2036 struct elf_note_info *info, 2037 const kernel_siginfo_t *siginfo, struct pt_regs *regs) 2038 { 2039 struct core_thread *ct; 2040 struct elf_thread_status *ets; 2041 2042 if (!elf_note_info_init(info)) 2043 return 0; 2044 2045 for (ct = current->mm->core_state->dumper.next; 2046 ct; ct = ct->next) { 2047 ets = kzalloc(sizeof(*ets), GFP_KERNEL); 2048 if (!ets) 2049 return 0; 2050 2051 ets->thread = ct->task; 2052 list_add(&ets->list, &info->thread_list); 2053 } 2054 2055 list_for_each_entry(ets, &info->thread_list, list) { 2056 int sz; 2057 2058 sz = elf_dump_thread_status(siginfo->si_signo, ets); 2059 info->thread_status_size += sz; 2060 } 2061 /* now collect the dump for the current */ 2062 memset(info->prstatus, 0, sizeof(*info->prstatus)); 2063 fill_prstatus(info->prstatus, current, siginfo->si_signo); 2064 elf_core_copy_regs(&info->prstatus->pr_reg, regs); 2065 2066 /* Set up header */ 2067 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS); 2068 2069 /* 2070 * Set up the notes in similar form to SVR4 core dumps made 2071 * with info from their /proc. 2072 */ 2073 2074 fill_note(info->notes + 0, "CORE", NT_PRSTATUS, 2075 sizeof(*info->prstatus), info->prstatus); 2076 fill_psinfo(info->psinfo, current->group_leader, current->mm); 2077 fill_note(info->notes + 1, "CORE", NT_PRPSINFO, 2078 sizeof(*info->psinfo), info->psinfo); 2079 2080 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo); 2081 fill_auxv_note(info->notes + 3, current->mm); 2082 info->numnote = 4; 2083 2084 if (fill_files_note(info->notes + info->numnote) == 0) { 2085 info->notes_files = info->notes + info->numnote; 2086 info->numnote++; 2087 } 2088 2089 /* Try to dump the FPU. */ 2090 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs, 2091 info->fpu); 2092 if (info->prstatus->pr_fpvalid) 2093 fill_note(info->notes + info->numnote++, 2094 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); 2095 #ifdef ELF_CORE_COPY_XFPREGS 2096 if (elf_core_copy_task_xfpregs(current, info->xfpu)) 2097 fill_note(info->notes + info->numnote++, 2098 "LINUX", ELF_CORE_XFPREG_TYPE, 2099 sizeof(*info->xfpu), info->xfpu); 2100 #endif 2101 2102 return 1; 2103 } 2104 2105 static size_t get_note_info_size(struct elf_note_info *info) 2106 { 2107 int sz = 0; 2108 int i; 2109 2110 for (i = 0; i < info->numnote; i++) 2111 sz += notesize(info->notes + i); 2112 2113 sz += info->thread_status_size; 2114 2115 return sz; 2116 } 2117 2118 static int write_note_info(struct elf_note_info *info, 2119 struct coredump_params *cprm) 2120 { 2121 struct elf_thread_status *ets; 2122 int i; 2123 2124 for (i = 0; i < info->numnote; i++) 2125 if (!writenote(info->notes + i, cprm)) 2126 return 0; 2127 2128 /* write out the thread status notes section */ 2129 list_for_each_entry(ets, &info->thread_list, list) { 2130 for (i = 0; i < ets->num_notes; i++) 2131 if (!writenote(&ets->notes[i], cprm)) 2132 return 0; 2133 } 2134 2135 return 1; 2136 } 2137 2138 static void free_note_info(struct elf_note_info *info) 2139 { 2140 while (!list_empty(&info->thread_list)) { 2141 struct list_head *tmp = info->thread_list.next; 2142 list_del(tmp); 2143 kfree(list_entry(tmp, struct elf_thread_status, list)); 2144 } 2145 2146 /* Free data possibly allocated by fill_files_note(): */ 2147 if (info->notes_files) 2148 kvfree(info->notes_files->data); 2149 2150 kfree(info->prstatus); 2151 kfree(info->psinfo); 2152 kfree(info->notes); 2153 kfree(info->fpu); 2154 #ifdef ELF_CORE_COPY_XFPREGS 2155 kfree(info->xfpu); 2156 #endif 2157 } 2158 2159 #endif 2160 2161 static struct vm_area_struct *first_vma(struct task_struct *tsk, 2162 struct vm_area_struct *gate_vma) 2163 { 2164 struct vm_area_struct *ret = tsk->mm->mmap; 2165 2166 if (ret) 2167 return ret; 2168 return gate_vma; 2169 } 2170 /* 2171 * Helper function for iterating across a vma list. It ensures that the caller 2172 * will visit `gate_vma' prior to terminating the search. 2173 */ 2174 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, 2175 struct vm_area_struct *gate_vma) 2176 { 2177 struct vm_area_struct *ret; 2178 2179 ret = this_vma->vm_next; 2180 if (ret) 2181 return ret; 2182 if (this_vma == gate_vma) 2183 return NULL; 2184 return gate_vma; 2185 } 2186 2187 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, 2188 elf_addr_t e_shoff, int segs) 2189 { 2190 elf->e_shoff = e_shoff; 2191 elf->e_shentsize = sizeof(*shdr4extnum); 2192 elf->e_shnum = 1; 2193 elf->e_shstrndx = SHN_UNDEF; 2194 2195 memset(shdr4extnum, 0, sizeof(*shdr4extnum)); 2196 2197 shdr4extnum->sh_type = SHT_NULL; 2198 shdr4extnum->sh_size = elf->e_shnum; 2199 shdr4extnum->sh_link = elf->e_shstrndx; 2200 shdr4extnum->sh_info = segs; 2201 } 2202 2203 /* 2204 * Actual dumper 2205 * 2206 * This is a two-pass process; first we find the offsets of the bits, 2207 * and then they are actually written out. If we run out of core limit 2208 * we just truncate. 2209 */ 2210 static int elf_core_dump(struct coredump_params *cprm) 2211 { 2212 int has_dumped = 0; 2213 mm_segment_t fs; 2214 int segs, i; 2215 size_t vma_data_size = 0; 2216 struct vm_area_struct *vma, *gate_vma; 2217 struct elfhdr *elf = NULL; 2218 loff_t offset = 0, dataoff; 2219 struct elf_note_info info = { }; 2220 struct elf_phdr *phdr4note = NULL; 2221 struct elf_shdr *shdr4extnum = NULL; 2222 Elf_Half e_phnum; 2223 elf_addr_t e_shoff; 2224 elf_addr_t *vma_filesz = NULL; 2225 2226 /* 2227 * We no longer stop all VM operations. 2228 * 2229 * This is because those proceses that could possibly change map_count 2230 * or the mmap / vma pages are now blocked in do_exit on current 2231 * finishing this core dump. 2232 * 2233 * Only ptrace can touch these memory addresses, but it doesn't change 2234 * the map_count or the pages allocated. So no possibility of crashing 2235 * exists while dumping the mm->vm_next areas to the core file. 2236 */ 2237 2238 /* alloc memory for large data structures: too large to be on stack */ 2239 elf = kmalloc(sizeof(*elf), GFP_KERNEL); 2240 if (!elf) 2241 goto out; 2242 /* 2243 * The number of segs are recored into ELF header as 16bit value. 2244 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. 2245 */ 2246 segs = current->mm->map_count; 2247 segs += elf_core_extra_phdrs(); 2248 2249 gate_vma = get_gate_vma(current->mm); 2250 if (gate_vma != NULL) 2251 segs++; 2252 2253 /* for notes section */ 2254 segs++; 2255 2256 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid 2257 * this, kernel supports extended numbering. Have a look at 2258 * include/linux/elf.h for further information. */ 2259 e_phnum = segs > PN_XNUM ? PN_XNUM : segs; 2260 2261 /* 2262 * Collect all the non-memory information about the process for the 2263 * notes. This also sets up the file header. 2264 */ 2265 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs)) 2266 goto cleanup; 2267 2268 has_dumped = 1; 2269 2270 fs = get_fs(); 2271 set_fs(KERNEL_DS); 2272 2273 offset += sizeof(*elf); /* Elf header */ 2274 offset += segs * sizeof(struct elf_phdr); /* Program headers */ 2275 2276 /* Write notes phdr entry */ 2277 { 2278 size_t sz = get_note_info_size(&info); 2279 2280 sz += elf_coredump_extra_notes_size(); 2281 2282 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); 2283 if (!phdr4note) 2284 goto end_coredump; 2285 2286 fill_elf_note_phdr(phdr4note, sz, offset); 2287 offset += sz; 2288 } 2289 2290 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 2291 2292 if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz)) 2293 goto end_coredump; 2294 vma_filesz = kvmalloc(array_size(sizeof(*vma_filesz), (segs - 1)), 2295 GFP_KERNEL); 2296 if (ZERO_OR_NULL_PTR(vma_filesz)) 2297 goto end_coredump; 2298 2299 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL; 2300 vma = next_vma(vma, gate_vma)) { 2301 unsigned long dump_size; 2302 2303 dump_size = vma_dump_size(vma, cprm->mm_flags); 2304 vma_filesz[i++] = dump_size; 2305 vma_data_size += dump_size; 2306 } 2307 2308 offset += vma_data_size; 2309 offset += elf_core_extra_data_size(); 2310 e_shoff = offset; 2311 2312 if (e_phnum == PN_XNUM) { 2313 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); 2314 if (!shdr4extnum) 2315 goto end_coredump; 2316 fill_extnum_info(elf, shdr4extnum, e_shoff, segs); 2317 } 2318 2319 offset = dataoff; 2320 2321 if (!dump_emit(cprm, elf, sizeof(*elf))) 2322 goto end_coredump; 2323 2324 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note))) 2325 goto end_coredump; 2326 2327 /* Write program headers for segments dump */ 2328 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL; 2329 vma = next_vma(vma, gate_vma)) { 2330 struct elf_phdr phdr; 2331 2332 phdr.p_type = PT_LOAD; 2333 phdr.p_offset = offset; 2334 phdr.p_vaddr = vma->vm_start; 2335 phdr.p_paddr = 0; 2336 phdr.p_filesz = vma_filesz[i++]; 2337 phdr.p_memsz = vma->vm_end - vma->vm_start; 2338 offset += phdr.p_filesz; 2339 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; 2340 if (vma->vm_flags & VM_WRITE) 2341 phdr.p_flags |= PF_W; 2342 if (vma->vm_flags & VM_EXEC) 2343 phdr.p_flags |= PF_X; 2344 phdr.p_align = ELF_EXEC_PAGESIZE; 2345 2346 if (!dump_emit(cprm, &phdr, sizeof(phdr))) 2347 goto end_coredump; 2348 } 2349 2350 if (!elf_core_write_extra_phdrs(cprm, offset)) 2351 goto end_coredump; 2352 2353 /* write out the notes section */ 2354 if (!write_note_info(&info, cprm)) 2355 goto end_coredump; 2356 2357 if (elf_coredump_extra_notes_write(cprm)) 2358 goto end_coredump; 2359 2360 /* Align to page */ 2361 if (!dump_skip(cprm, dataoff - cprm->pos)) 2362 goto end_coredump; 2363 2364 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL; 2365 vma = next_vma(vma, gate_vma)) { 2366 unsigned long addr; 2367 unsigned long end; 2368 2369 end = vma->vm_start + vma_filesz[i++]; 2370 2371 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) { 2372 struct page *page; 2373 int stop; 2374 2375 page = get_dump_page(addr); 2376 if (page) { 2377 void *kaddr = kmap(page); 2378 stop = !dump_emit(cprm, kaddr, PAGE_SIZE); 2379 kunmap(page); 2380 put_page(page); 2381 } else 2382 stop = !dump_skip(cprm, PAGE_SIZE); 2383 if (stop) 2384 goto end_coredump; 2385 } 2386 } 2387 dump_truncate(cprm); 2388 2389 if (!elf_core_write_extra_data(cprm)) 2390 goto end_coredump; 2391 2392 if (e_phnum == PN_XNUM) { 2393 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum))) 2394 goto end_coredump; 2395 } 2396 2397 end_coredump: 2398 set_fs(fs); 2399 2400 cleanup: 2401 free_note_info(&info); 2402 kfree(shdr4extnum); 2403 kvfree(vma_filesz); 2404 kfree(phdr4note); 2405 kfree(elf); 2406 out: 2407 return has_dumped; 2408 } 2409 2410 #endif /* CONFIG_ELF_CORE */ 2411 2412 static int __init init_elf_binfmt(void) 2413 { 2414 register_binfmt(&elf_format); 2415 return 0; 2416 } 2417 2418 static void __exit exit_elf_binfmt(void) 2419 { 2420 /* Remove the COFF and ELF loaders. */ 2421 unregister_binfmt(&elf_format); 2422 } 2423 2424 core_initcall(init_elf_binfmt); 2425 module_exit(exit_elf_binfmt); 2426 MODULE_LICENSE("GPL"); 2427