xref: /openbmc/linux/fs/binfmt_elf.c (revision 9a69abf8)
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <linux/sched.h>
37 #include <asm/uaccess.h>
38 #include <asm/param.h>
39 #include <asm/page.h>
40 
41 #ifndef user_long_t
42 #define user_long_t long
43 #endif
44 #ifndef user_siginfo_t
45 #define user_siginfo_t siginfo_t
46 #endif
47 
48 static int load_elf_binary(struct linux_binprm *bprm);
49 static int load_elf_library(struct file *);
50 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
51 				int, int, unsigned long);
52 
53 /*
54  * If we don't support core dumping, then supply a NULL so we
55  * don't even try.
56  */
57 #ifdef CONFIG_ELF_CORE
58 static int elf_core_dump(struct coredump_params *cprm);
59 #else
60 #define elf_core_dump	NULL
61 #endif
62 
63 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
64 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
65 #else
66 #define ELF_MIN_ALIGN	PAGE_SIZE
67 #endif
68 
69 #ifndef ELF_CORE_EFLAGS
70 #define ELF_CORE_EFLAGS	0
71 #endif
72 
73 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
74 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
75 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
76 
77 static struct linux_binfmt elf_format = {
78 	.module		= THIS_MODULE,
79 	.load_binary	= load_elf_binary,
80 	.load_shlib	= load_elf_library,
81 	.core_dump	= elf_core_dump,
82 	.min_coredump	= ELF_EXEC_PAGESIZE,
83 };
84 
85 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
86 
87 static int set_brk(unsigned long start, unsigned long end)
88 {
89 	start = ELF_PAGEALIGN(start);
90 	end = ELF_PAGEALIGN(end);
91 	if (end > start) {
92 		unsigned long addr;
93 		addr = vm_brk(start, end - start);
94 		if (BAD_ADDR(addr))
95 			return addr;
96 	}
97 	current->mm->start_brk = current->mm->brk = end;
98 	return 0;
99 }
100 
101 /* We need to explicitly zero any fractional pages
102    after the data section (i.e. bss).  This would
103    contain the junk from the file that should not
104    be in memory
105  */
106 static int padzero(unsigned long elf_bss)
107 {
108 	unsigned long nbyte;
109 
110 	nbyte = ELF_PAGEOFFSET(elf_bss);
111 	if (nbyte) {
112 		nbyte = ELF_MIN_ALIGN - nbyte;
113 		if (clear_user((void __user *) elf_bss, nbyte))
114 			return -EFAULT;
115 	}
116 	return 0;
117 }
118 
119 /* Let's use some macros to make this stack manipulation a little clearer */
120 #ifdef CONFIG_STACK_GROWSUP
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
122 #define STACK_ROUND(sp, items) \
123 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ \
125 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
126 	old_sp; })
127 #else
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
129 #define STACK_ROUND(sp, items) \
130 	(((unsigned long) (sp - items)) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
132 #endif
133 
134 #ifndef ELF_BASE_PLATFORM
135 /*
136  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
137  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
138  * will be copied to the user stack in the same manner as AT_PLATFORM.
139  */
140 #define ELF_BASE_PLATFORM NULL
141 #endif
142 
143 static int
144 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
145 		unsigned long load_addr, unsigned long interp_load_addr)
146 {
147 	unsigned long p = bprm->p;
148 	int argc = bprm->argc;
149 	int envc = bprm->envc;
150 	elf_addr_t __user *argv;
151 	elf_addr_t __user *envp;
152 	elf_addr_t __user *sp;
153 	elf_addr_t __user *u_platform;
154 	elf_addr_t __user *u_base_platform;
155 	elf_addr_t __user *u_rand_bytes;
156 	const char *k_platform = ELF_PLATFORM;
157 	const char *k_base_platform = ELF_BASE_PLATFORM;
158 	unsigned char k_rand_bytes[16];
159 	int items;
160 	elf_addr_t *elf_info;
161 	int ei_index = 0;
162 	const struct cred *cred = current_cred();
163 	struct vm_area_struct *vma;
164 
165 	/*
166 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
167 	 * evictions by the processes running on the same package. One
168 	 * thing we can do is to shuffle the initial stack for them.
169 	 */
170 
171 	p = arch_align_stack(p);
172 
173 	/*
174 	 * If this architecture has a platform capability string, copy it
175 	 * to userspace.  In some cases (Sparc), this info is impossible
176 	 * for userspace to get any other way, in others (i386) it is
177 	 * merely difficult.
178 	 */
179 	u_platform = NULL;
180 	if (k_platform) {
181 		size_t len = strlen(k_platform) + 1;
182 
183 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
184 		if (__copy_to_user(u_platform, k_platform, len))
185 			return -EFAULT;
186 	}
187 
188 	/*
189 	 * If this architecture has a "base" platform capability
190 	 * string, copy it to userspace.
191 	 */
192 	u_base_platform = NULL;
193 	if (k_base_platform) {
194 		size_t len = strlen(k_base_platform) + 1;
195 
196 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
197 		if (__copy_to_user(u_base_platform, k_base_platform, len))
198 			return -EFAULT;
199 	}
200 
201 	/*
202 	 * Generate 16 random bytes for userspace PRNG seeding.
203 	 */
204 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
205 	u_rand_bytes = (elf_addr_t __user *)
206 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
207 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
208 		return -EFAULT;
209 
210 	/* Create the ELF interpreter info */
211 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
212 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
213 #define NEW_AUX_ENT(id, val) \
214 	do { \
215 		elf_info[ei_index++] = id; \
216 		elf_info[ei_index++] = val; \
217 	} while (0)
218 
219 #ifdef ARCH_DLINFO
220 	/*
221 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
222 	 * AUXV.
223 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
224 	 * ARCH_DLINFO changes
225 	 */
226 	ARCH_DLINFO;
227 #endif
228 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
229 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
230 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
231 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
232 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
233 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
234 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
235 	NEW_AUX_ENT(AT_FLAGS, 0);
236 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
237 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
238 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
239 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
240 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
241  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
242 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
243 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
244 	if (k_platform) {
245 		NEW_AUX_ENT(AT_PLATFORM,
246 			    (elf_addr_t)(unsigned long)u_platform);
247 	}
248 	if (k_base_platform) {
249 		NEW_AUX_ENT(AT_BASE_PLATFORM,
250 			    (elf_addr_t)(unsigned long)u_base_platform);
251 	}
252 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
253 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
254 	}
255 #undef NEW_AUX_ENT
256 	/* AT_NULL is zero; clear the rest too */
257 	memset(&elf_info[ei_index], 0,
258 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
259 
260 	/* And advance past the AT_NULL entry.  */
261 	ei_index += 2;
262 
263 	sp = STACK_ADD(p, ei_index);
264 
265 	items = (argc + 1) + (envc + 1) + 1;
266 	bprm->p = STACK_ROUND(sp, items);
267 
268 	/* Point sp at the lowest address on the stack */
269 #ifdef CONFIG_STACK_GROWSUP
270 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
271 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
272 #else
273 	sp = (elf_addr_t __user *)bprm->p;
274 #endif
275 
276 
277 	/*
278 	 * Grow the stack manually; some architectures have a limit on how
279 	 * far ahead a user-space access may be in order to grow the stack.
280 	 */
281 	vma = find_extend_vma(current->mm, bprm->p);
282 	if (!vma)
283 		return -EFAULT;
284 
285 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
286 	if (__put_user(argc, sp++))
287 		return -EFAULT;
288 	argv = sp;
289 	envp = argv + argc + 1;
290 
291 	/* Populate argv and envp */
292 	p = current->mm->arg_end = current->mm->arg_start;
293 	while (argc-- > 0) {
294 		size_t len;
295 		if (__put_user((elf_addr_t)p, argv++))
296 			return -EFAULT;
297 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
298 		if (!len || len > MAX_ARG_STRLEN)
299 			return -EINVAL;
300 		p += len;
301 	}
302 	if (__put_user(0, argv))
303 		return -EFAULT;
304 	current->mm->arg_end = current->mm->env_start = p;
305 	while (envc-- > 0) {
306 		size_t len;
307 		if (__put_user((elf_addr_t)p, envp++))
308 			return -EFAULT;
309 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
310 		if (!len || len > MAX_ARG_STRLEN)
311 			return -EINVAL;
312 		p += len;
313 	}
314 	if (__put_user(0, envp))
315 		return -EFAULT;
316 	current->mm->env_end = p;
317 
318 	/* Put the elf_info on the stack in the right place.  */
319 	sp = (elf_addr_t __user *)envp + 1;
320 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
321 		return -EFAULT;
322 	return 0;
323 }
324 
325 #ifndef elf_map
326 
327 static unsigned long elf_map(struct file *filep, unsigned long addr,
328 		struct elf_phdr *eppnt, int prot, int type,
329 		unsigned long total_size)
330 {
331 	unsigned long map_addr;
332 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
333 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
334 	addr = ELF_PAGESTART(addr);
335 	size = ELF_PAGEALIGN(size);
336 
337 	/* mmap() will return -EINVAL if given a zero size, but a
338 	 * segment with zero filesize is perfectly valid */
339 	if (!size)
340 		return addr;
341 
342 	/*
343 	* total_size is the size of the ELF (interpreter) image.
344 	* The _first_ mmap needs to know the full size, otherwise
345 	* randomization might put this image into an overlapping
346 	* position with the ELF binary image. (since size < total_size)
347 	* So we first map the 'big' image - and unmap the remainder at
348 	* the end. (which unmap is needed for ELF images with holes.)
349 	*/
350 	if (total_size) {
351 		total_size = ELF_PAGEALIGN(total_size);
352 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
353 		if (!BAD_ADDR(map_addr))
354 			vm_munmap(map_addr+size, total_size-size);
355 	} else
356 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
357 
358 	return(map_addr);
359 }
360 
361 #endif /* !elf_map */
362 
363 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
364 {
365 	int i, first_idx = -1, last_idx = -1;
366 
367 	for (i = 0; i < nr; i++) {
368 		if (cmds[i].p_type == PT_LOAD) {
369 			last_idx = i;
370 			if (first_idx == -1)
371 				first_idx = i;
372 		}
373 	}
374 	if (first_idx == -1)
375 		return 0;
376 
377 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
378 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
379 }
380 
381 
382 /* This is much more generalized than the library routine read function,
383    so we keep this separate.  Technically the library read function
384    is only provided so that we can read a.out libraries that have
385    an ELF header */
386 
387 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
388 		struct file *interpreter, unsigned long *interp_map_addr,
389 		unsigned long no_base)
390 {
391 	struct elf_phdr *elf_phdata;
392 	struct elf_phdr *eppnt;
393 	unsigned long load_addr = 0;
394 	int load_addr_set = 0;
395 	unsigned long last_bss = 0, elf_bss = 0;
396 	unsigned long error = ~0UL;
397 	unsigned long total_size;
398 	int retval, i, size;
399 
400 	/* First of all, some simple consistency checks */
401 	if (interp_elf_ex->e_type != ET_EXEC &&
402 	    interp_elf_ex->e_type != ET_DYN)
403 		goto out;
404 	if (!elf_check_arch(interp_elf_ex))
405 		goto out;
406 	if (!interpreter->f_op || !interpreter->f_op->mmap)
407 		goto out;
408 
409 	/*
410 	 * If the size of this structure has changed, then punt, since
411 	 * we will be doing the wrong thing.
412 	 */
413 	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
414 		goto out;
415 	if (interp_elf_ex->e_phnum < 1 ||
416 		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
417 		goto out;
418 
419 	/* Now read in all of the header information */
420 	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
421 	if (size > ELF_MIN_ALIGN)
422 		goto out;
423 	elf_phdata = kmalloc(size, GFP_KERNEL);
424 	if (!elf_phdata)
425 		goto out;
426 
427 	retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
428 			     (char *)elf_phdata, size);
429 	error = -EIO;
430 	if (retval != size) {
431 		if (retval < 0)
432 			error = retval;
433 		goto out_close;
434 	}
435 
436 	total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
437 	if (!total_size) {
438 		error = -EINVAL;
439 		goto out_close;
440 	}
441 
442 	eppnt = elf_phdata;
443 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
444 		if (eppnt->p_type == PT_LOAD) {
445 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
446 			int elf_prot = 0;
447 			unsigned long vaddr = 0;
448 			unsigned long k, map_addr;
449 
450 			if (eppnt->p_flags & PF_R)
451 		    		elf_prot = PROT_READ;
452 			if (eppnt->p_flags & PF_W)
453 				elf_prot |= PROT_WRITE;
454 			if (eppnt->p_flags & PF_X)
455 				elf_prot |= PROT_EXEC;
456 			vaddr = eppnt->p_vaddr;
457 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
458 				elf_type |= MAP_FIXED;
459 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
460 				load_addr = -vaddr;
461 
462 			map_addr = elf_map(interpreter, load_addr + vaddr,
463 					eppnt, elf_prot, elf_type, total_size);
464 			total_size = 0;
465 			if (!*interp_map_addr)
466 				*interp_map_addr = map_addr;
467 			error = map_addr;
468 			if (BAD_ADDR(map_addr))
469 				goto out_close;
470 
471 			if (!load_addr_set &&
472 			    interp_elf_ex->e_type == ET_DYN) {
473 				load_addr = map_addr - ELF_PAGESTART(vaddr);
474 				load_addr_set = 1;
475 			}
476 
477 			/*
478 			 * Check to see if the section's size will overflow the
479 			 * allowed task size. Note that p_filesz must always be
480 			 * <= p_memsize so it's only necessary to check p_memsz.
481 			 */
482 			k = load_addr + eppnt->p_vaddr;
483 			if (BAD_ADDR(k) ||
484 			    eppnt->p_filesz > eppnt->p_memsz ||
485 			    eppnt->p_memsz > TASK_SIZE ||
486 			    TASK_SIZE - eppnt->p_memsz < k) {
487 				error = -ENOMEM;
488 				goto out_close;
489 			}
490 
491 			/*
492 			 * Find the end of the file mapping for this phdr, and
493 			 * keep track of the largest address we see for this.
494 			 */
495 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
496 			if (k > elf_bss)
497 				elf_bss = k;
498 
499 			/*
500 			 * Do the same thing for the memory mapping - between
501 			 * elf_bss and last_bss is the bss section.
502 			 */
503 			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
504 			if (k > last_bss)
505 				last_bss = k;
506 		}
507 	}
508 
509 	if (last_bss > elf_bss) {
510 		/*
511 		 * Now fill out the bss section.  First pad the last page up
512 		 * to the page boundary, and then perform a mmap to make sure
513 		 * that there are zero-mapped pages up to and including the
514 		 * last bss page.
515 		 */
516 		if (padzero(elf_bss)) {
517 			error = -EFAULT;
518 			goto out_close;
519 		}
520 
521 		/* What we have mapped so far */
522 		elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
523 
524 		/* Map the last of the bss segment */
525 		error = vm_brk(elf_bss, last_bss - elf_bss);
526 		if (BAD_ADDR(error))
527 			goto out_close;
528 	}
529 
530 	error = load_addr;
531 
532 out_close:
533 	kfree(elf_phdata);
534 out:
535 	return error;
536 }
537 
538 /*
539  * These are the functions used to load ELF style executables and shared
540  * libraries.  There is no binary dependent code anywhere else.
541  */
542 
543 #define INTERPRETER_NONE 0
544 #define INTERPRETER_ELF 2
545 
546 #ifndef STACK_RND_MASK
547 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
548 #endif
549 
550 static unsigned long randomize_stack_top(unsigned long stack_top)
551 {
552 	unsigned int random_variable = 0;
553 
554 	if ((current->flags & PF_RANDOMIZE) &&
555 		!(current->personality & ADDR_NO_RANDOMIZE)) {
556 		random_variable = get_random_int() & STACK_RND_MASK;
557 		random_variable <<= PAGE_SHIFT;
558 	}
559 #ifdef CONFIG_STACK_GROWSUP
560 	return PAGE_ALIGN(stack_top) + random_variable;
561 #else
562 	return PAGE_ALIGN(stack_top) - random_variable;
563 #endif
564 }
565 
566 static int load_elf_binary(struct linux_binprm *bprm)
567 {
568 	struct file *interpreter = NULL; /* to shut gcc up */
569  	unsigned long load_addr = 0, load_bias = 0;
570 	int load_addr_set = 0;
571 	char * elf_interpreter = NULL;
572 	unsigned long error;
573 	struct elf_phdr *elf_ppnt, *elf_phdata;
574 	unsigned long elf_bss, elf_brk;
575 	int retval, i;
576 	unsigned int size;
577 	unsigned long elf_entry;
578 	unsigned long interp_load_addr = 0;
579 	unsigned long start_code, end_code, start_data, end_data;
580 	unsigned long reloc_func_desc __maybe_unused = 0;
581 	int executable_stack = EXSTACK_DEFAULT;
582 	unsigned long def_flags = 0;
583 	struct pt_regs *regs = current_pt_regs();
584 	struct {
585 		struct elfhdr elf_ex;
586 		struct elfhdr interp_elf_ex;
587 	} *loc;
588 
589 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
590 	if (!loc) {
591 		retval = -ENOMEM;
592 		goto out_ret;
593 	}
594 
595 	/* Get the exec-header */
596 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
597 
598 	retval = -ENOEXEC;
599 	/* First of all, some simple consistency checks */
600 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
601 		goto out;
602 
603 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
604 		goto out;
605 	if (!elf_check_arch(&loc->elf_ex))
606 		goto out;
607 	if (!bprm->file->f_op || !bprm->file->f_op->mmap)
608 		goto out;
609 
610 	/* Now read in all of the header information */
611 	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
612 		goto out;
613 	if (loc->elf_ex.e_phnum < 1 ||
614 	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
615 		goto out;
616 	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
617 	retval = -ENOMEM;
618 	elf_phdata = kmalloc(size, GFP_KERNEL);
619 	if (!elf_phdata)
620 		goto out;
621 
622 	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
623 			     (char *)elf_phdata, size);
624 	if (retval != size) {
625 		if (retval >= 0)
626 			retval = -EIO;
627 		goto out_free_ph;
628 	}
629 
630 	elf_ppnt = elf_phdata;
631 	elf_bss = 0;
632 	elf_brk = 0;
633 
634 	start_code = ~0UL;
635 	end_code = 0;
636 	start_data = 0;
637 	end_data = 0;
638 
639 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
640 		if (elf_ppnt->p_type == PT_INTERP) {
641 			/* This is the program interpreter used for
642 			 * shared libraries - for now assume that this
643 			 * is an a.out format binary
644 			 */
645 			retval = -ENOEXEC;
646 			if (elf_ppnt->p_filesz > PATH_MAX ||
647 			    elf_ppnt->p_filesz < 2)
648 				goto out_free_ph;
649 
650 			retval = -ENOMEM;
651 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
652 						  GFP_KERNEL);
653 			if (!elf_interpreter)
654 				goto out_free_ph;
655 
656 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
657 					     elf_interpreter,
658 					     elf_ppnt->p_filesz);
659 			if (retval != elf_ppnt->p_filesz) {
660 				if (retval >= 0)
661 					retval = -EIO;
662 				goto out_free_interp;
663 			}
664 			/* make sure path is NULL terminated */
665 			retval = -ENOEXEC;
666 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
667 				goto out_free_interp;
668 
669 			interpreter = open_exec(elf_interpreter);
670 			retval = PTR_ERR(interpreter);
671 			if (IS_ERR(interpreter))
672 				goto out_free_interp;
673 
674 			/*
675 			 * If the binary is not readable then enforce
676 			 * mm->dumpable = 0 regardless of the interpreter's
677 			 * permissions.
678 			 */
679 			would_dump(bprm, interpreter);
680 
681 			retval = kernel_read(interpreter, 0, bprm->buf,
682 					     BINPRM_BUF_SIZE);
683 			if (retval != BINPRM_BUF_SIZE) {
684 				if (retval >= 0)
685 					retval = -EIO;
686 				goto out_free_dentry;
687 			}
688 
689 			/* Get the exec headers */
690 			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
691 			break;
692 		}
693 		elf_ppnt++;
694 	}
695 
696 	elf_ppnt = elf_phdata;
697 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
698 		if (elf_ppnt->p_type == PT_GNU_STACK) {
699 			if (elf_ppnt->p_flags & PF_X)
700 				executable_stack = EXSTACK_ENABLE_X;
701 			else
702 				executable_stack = EXSTACK_DISABLE_X;
703 			break;
704 		}
705 
706 	/* Some simple consistency checks for the interpreter */
707 	if (elf_interpreter) {
708 		retval = -ELIBBAD;
709 		/* Not an ELF interpreter */
710 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
711 			goto out_free_dentry;
712 		/* Verify the interpreter has a valid arch */
713 		if (!elf_check_arch(&loc->interp_elf_ex))
714 			goto out_free_dentry;
715 	}
716 
717 	/* Flush all traces of the currently running executable */
718 	retval = flush_old_exec(bprm);
719 	if (retval)
720 		goto out_free_dentry;
721 
722 	/* OK, This is the point of no return */
723 	current->mm->def_flags = def_flags;
724 
725 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
726 	   may depend on the personality.  */
727 	SET_PERSONALITY(loc->elf_ex);
728 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
729 		current->personality |= READ_IMPLIES_EXEC;
730 
731 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
732 		current->flags |= PF_RANDOMIZE;
733 
734 	setup_new_exec(bprm);
735 
736 	/* Do this so that we can load the interpreter, if need be.  We will
737 	   change some of these later */
738 	current->mm->free_area_cache = current->mm->mmap_base;
739 	current->mm->cached_hole_size = 0;
740 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
741 				 executable_stack);
742 	if (retval < 0) {
743 		send_sig(SIGKILL, current, 0);
744 		goto out_free_dentry;
745 	}
746 
747 	current->mm->start_stack = bprm->p;
748 
749 	/* Now we do a little grungy work by mmapping the ELF image into
750 	   the correct location in memory. */
751 	for(i = 0, elf_ppnt = elf_phdata;
752 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
753 		int elf_prot = 0, elf_flags;
754 		unsigned long k, vaddr;
755 
756 		if (elf_ppnt->p_type != PT_LOAD)
757 			continue;
758 
759 		if (unlikely (elf_brk > elf_bss)) {
760 			unsigned long nbyte;
761 
762 			/* There was a PT_LOAD segment with p_memsz > p_filesz
763 			   before this one. Map anonymous pages, if needed,
764 			   and clear the area.  */
765 			retval = set_brk(elf_bss + load_bias,
766 					 elf_brk + load_bias);
767 			if (retval) {
768 				send_sig(SIGKILL, current, 0);
769 				goto out_free_dentry;
770 			}
771 			nbyte = ELF_PAGEOFFSET(elf_bss);
772 			if (nbyte) {
773 				nbyte = ELF_MIN_ALIGN - nbyte;
774 				if (nbyte > elf_brk - elf_bss)
775 					nbyte = elf_brk - elf_bss;
776 				if (clear_user((void __user *)elf_bss +
777 							load_bias, nbyte)) {
778 					/*
779 					 * This bss-zeroing can fail if the ELF
780 					 * file specifies odd protections. So
781 					 * we don't check the return value
782 					 */
783 				}
784 			}
785 		}
786 
787 		if (elf_ppnt->p_flags & PF_R)
788 			elf_prot |= PROT_READ;
789 		if (elf_ppnt->p_flags & PF_W)
790 			elf_prot |= PROT_WRITE;
791 		if (elf_ppnt->p_flags & PF_X)
792 			elf_prot |= PROT_EXEC;
793 
794 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
795 
796 		vaddr = elf_ppnt->p_vaddr;
797 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
798 			elf_flags |= MAP_FIXED;
799 		} else if (loc->elf_ex.e_type == ET_DYN) {
800 			/* Try and get dynamic programs out of the way of the
801 			 * default mmap base, as well as whatever program they
802 			 * might try to exec.  This is because the brk will
803 			 * follow the loader, and is not movable.  */
804 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
805 			/* Memory randomization might have been switched off
806 			 * in runtime via sysctl.
807 			 * If that is the case, retain the original non-zero
808 			 * load_bias value in order to establish proper
809 			 * non-randomized mappings.
810 			 */
811 			if (current->flags & PF_RANDOMIZE)
812 				load_bias = 0;
813 			else
814 				load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
815 #else
816 			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
817 #endif
818 		}
819 
820 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
821 				elf_prot, elf_flags, 0);
822 		if (BAD_ADDR(error)) {
823 			send_sig(SIGKILL, current, 0);
824 			retval = IS_ERR((void *)error) ?
825 				PTR_ERR((void*)error) : -EINVAL;
826 			goto out_free_dentry;
827 		}
828 
829 		if (!load_addr_set) {
830 			load_addr_set = 1;
831 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
832 			if (loc->elf_ex.e_type == ET_DYN) {
833 				load_bias += error -
834 				             ELF_PAGESTART(load_bias + vaddr);
835 				load_addr += load_bias;
836 				reloc_func_desc = load_bias;
837 			}
838 		}
839 		k = elf_ppnt->p_vaddr;
840 		if (k < start_code)
841 			start_code = k;
842 		if (start_data < k)
843 			start_data = k;
844 
845 		/*
846 		 * Check to see if the section's size will overflow the
847 		 * allowed task size. Note that p_filesz must always be
848 		 * <= p_memsz so it is only necessary to check p_memsz.
849 		 */
850 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
851 		    elf_ppnt->p_memsz > TASK_SIZE ||
852 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
853 			/* set_brk can never work. Avoid overflows. */
854 			send_sig(SIGKILL, current, 0);
855 			retval = -EINVAL;
856 			goto out_free_dentry;
857 		}
858 
859 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
860 
861 		if (k > elf_bss)
862 			elf_bss = k;
863 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
864 			end_code = k;
865 		if (end_data < k)
866 			end_data = k;
867 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
868 		if (k > elf_brk)
869 			elf_brk = k;
870 	}
871 
872 	loc->elf_ex.e_entry += load_bias;
873 	elf_bss += load_bias;
874 	elf_brk += load_bias;
875 	start_code += load_bias;
876 	end_code += load_bias;
877 	start_data += load_bias;
878 	end_data += load_bias;
879 
880 	/* Calling set_brk effectively mmaps the pages that we need
881 	 * for the bss and break sections.  We must do this before
882 	 * mapping in the interpreter, to make sure it doesn't wind
883 	 * up getting placed where the bss needs to go.
884 	 */
885 	retval = set_brk(elf_bss, elf_brk);
886 	if (retval) {
887 		send_sig(SIGKILL, current, 0);
888 		goto out_free_dentry;
889 	}
890 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
891 		send_sig(SIGSEGV, current, 0);
892 		retval = -EFAULT; /* Nobody gets to see this, but.. */
893 		goto out_free_dentry;
894 	}
895 
896 	if (elf_interpreter) {
897 		unsigned long interp_map_addr = 0;
898 
899 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
900 					    interpreter,
901 					    &interp_map_addr,
902 					    load_bias);
903 		if (!IS_ERR((void *)elf_entry)) {
904 			/*
905 			 * load_elf_interp() returns relocation
906 			 * adjustment
907 			 */
908 			interp_load_addr = elf_entry;
909 			elf_entry += loc->interp_elf_ex.e_entry;
910 		}
911 		if (BAD_ADDR(elf_entry)) {
912 			force_sig(SIGSEGV, current);
913 			retval = IS_ERR((void *)elf_entry) ?
914 					(int)elf_entry : -EINVAL;
915 			goto out_free_dentry;
916 		}
917 		reloc_func_desc = interp_load_addr;
918 
919 		allow_write_access(interpreter);
920 		fput(interpreter);
921 		kfree(elf_interpreter);
922 	} else {
923 		elf_entry = loc->elf_ex.e_entry;
924 		if (BAD_ADDR(elf_entry)) {
925 			force_sig(SIGSEGV, current);
926 			retval = -EINVAL;
927 			goto out_free_dentry;
928 		}
929 	}
930 
931 	kfree(elf_phdata);
932 
933 	set_binfmt(&elf_format);
934 
935 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
936 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
937 	if (retval < 0) {
938 		send_sig(SIGKILL, current, 0);
939 		goto out;
940 	}
941 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
942 
943 	install_exec_creds(bprm);
944 	retval = create_elf_tables(bprm, &loc->elf_ex,
945 			  load_addr, interp_load_addr);
946 	if (retval < 0) {
947 		send_sig(SIGKILL, current, 0);
948 		goto out;
949 	}
950 	/* N.B. passed_fileno might not be initialized? */
951 	current->mm->end_code = end_code;
952 	current->mm->start_code = start_code;
953 	current->mm->start_data = start_data;
954 	current->mm->end_data = end_data;
955 	current->mm->start_stack = bprm->p;
956 
957 #ifdef arch_randomize_brk
958 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
959 		current->mm->brk = current->mm->start_brk =
960 			arch_randomize_brk(current->mm);
961 #ifdef CONFIG_COMPAT_BRK
962 		current->brk_randomized = 1;
963 #endif
964 	}
965 #endif
966 
967 	if (current->personality & MMAP_PAGE_ZERO) {
968 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
969 		   and some applications "depend" upon this behavior.
970 		   Since we do not have the power to recompile these, we
971 		   emulate the SVr4 behavior. Sigh. */
972 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
973 				MAP_FIXED | MAP_PRIVATE, 0);
974 	}
975 
976 #ifdef ELF_PLAT_INIT
977 	/*
978 	 * The ABI may specify that certain registers be set up in special
979 	 * ways (on i386 %edx is the address of a DT_FINI function, for
980 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
981 	 * that the e_entry field is the address of the function descriptor
982 	 * for the startup routine, rather than the address of the startup
983 	 * routine itself.  This macro performs whatever initialization to
984 	 * the regs structure is required as well as any relocations to the
985 	 * function descriptor entries when executing dynamically links apps.
986 	 */
987 	ELF_PLAT_INIT(regs, reloc_func_desc);
988 #endif
989 
990 	start_thread(regs, elf_entry, bprm->p);
991 	retval = 0;
992 out:
993 	kfree(loc);
994 out_ret:
995 	return retval;
996 
997 	/* error cleanup */
998 out_free_dentry:
999 	allow_write_access(interpreter);
1000 	if (interpreter)
1001 		fput(interpreter);
1002 out_free_interp:
1003 	kfree(elf_interpreter);
1004 out_free_ph:
1005 	kfree(elf_phdata);
1006 	goto out;
1007 }
1008 
1009 /* This is really simpleminded and specialized - we are loading an
1010    a.out library that is given an ELF header. */
1011 static int load_elf_library(struct file *file)
1012 {
1013 	struct elf_phdr *elf_phdata;
1014 	struct elf_phdr *eppnt;
1015 	unsigned long elf_bss, bss, len;
1016 	int retval, error, i, j;
1017 	struct elfhdr elf_ex;
1018 
1019 	error = -ENOEXEC;
1020 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1021 	if (retval != sizeof(elf_ex))
1022 		goto out;
1023 
1024 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1025 		goto out;
1026 
1027 	/* First of all, some simple consistency checks */
1028 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1029 	    !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1030 		goto out;
1031 
1032 	/* Now read in all of the header information */
1033 
1034 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1035 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1036 
1037 	error = -ENOMEM;
1038 	elf_phdata = kmalloc(j, GFP_KERNEL);
1039 	if (!elf_phdata)
1040 		goto out;
1041 
1042 	eppnt = elf_phdata;
1043 	error = -ENOEXEC;
1044 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1045 	if (retval != j)
1046 		goto out_free_ph;
1047 
1048 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1049 		if ((eppnt + i)->p_type == PT_LOAD)
1050 			j++;
1051 	if (j != 1)
1052 		goto out_free_ph;
1053 
1054 	while (eppnt->p_type != PT_LOAD)
1055 		eppnt++;
1056 
1057 	/* Now use mmap to map the library into memory. */
1058 	error = vm_mmap(file,
1059 			ELF_PAGESTART(eppnt->p_vaddr),
1060 			(eppnt->p_filesz +
1061 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1062 			PROT_READ | PROT_WRITE | PROT_EXEC,
1063 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1064 			(eppnt->p_offset -
1065 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1066 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1067 		goto out_free_ph;
1068 
1069 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1070 	if (padzero(elf_bss)) {
1071 		error = -EFAULT;
1072 		goto out_free_ph;
1073 	}
1074 
1075 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1076 			    ELF_MIN_ALIGN - 1);
1077 	bss = eppnt->p_memsz + eppnt->p_vaddr;
1078 	if (bss > len)
1079 		vm_brk(len, bss - len);
1080 	error = 0;
1081 
1082 out_free_ph:
1083 	kfree(elf_phdata);
1084 out:
1085 	return error;
1086 }
1087 
1088 #ifdef CONFIG_ELF_CORE
1089 /*
1090  * ELF core dumper
1091  *
1092  * Modelled on fs/exec.c:aout_core_dump()
1093  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1094  */
1095 
1096 /*
1097  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1098  * that are useful for post-mortem analysis are included in every core dump.
1099  * In that way we ensure that the core dump is fully interpretable later
1100  * without matching up the same kernel and hardware config to see what PC values
1101  * meant. These special mappings include - vDSO, vsyscall, and other
1102  * architecture specific mappings
1103  */
1104 static bool always_dump_vma(struct vm_area_struct *vma)
1105 {
1106 	/* Any vsyscall mappings? */
1107 	if (vma == get_gate_vma(vma->vm_mm))
1108 		return true;
1109 	/*
1110 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1111 	 * such as vDSO sections.
1112 	 */
1113 	if (arch_vma_name(vma))
1114 		return true;
1115 
1116 	return false;
1117 }
1118 
1119 /*
1120  * Decide what to dump of a segment, part, all or none.
1121  */
1122 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1123 				   unsigned long mm_flags)
1124 {
1125 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1126 
1127 	/* always dump the vdso and vsyscall sections */
1128 	if (always_dump_vma(vma))
1129 		goto whole;
1130 
1131 	if (vma->vm_flags & VM_DONTDUMP)
1132 		return 0;
1133 
1134 	/* Hugetlb memory check */
1135 	if (vma->vm_flags & VM_HUGETLB) {
1136 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1137 			goto whole;
1138 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1139 			goto whole;
1140 	}
1141 
1142 	/* Do not dump I/O mapped devices or special mappings */
1143 	if (vma->vm_flags & VM_IO)
1144 		return 0;
1145 
1146 	/* By default, dump shared memory if mapped from an anonymous file. */
1147 	if (vma->vm_flags & VM_SHARED) {
1148 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1149 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1150 			goto whole;
1151 		return 0;
1152 	}
1153 
1154 	/* Dump segments that have been written to.  */
1155 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1156 		goto whole;
1157 	if (vma->vm_file == NULL)
1158 		return 0;
1159 
1160 	if (FILTER(MAPPED_PRIVATE))
1161 		goto whole;
1162 
1163 	/*
1164 	 * If this looks like the beginning of a DSO or executable mapping,
1165 	 * check for an ELF header.  If we find one, dump the first page to
1166 	 * aid in determining what was mapped here.
1167 	 */
1168 	if (FILTER(ELF_HEADERS) &&
1169 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1170 		u32 __user *header = (u32 __user *) vma->vm_start;
1171 		u32 word;
1172 		mm_segment_t fs = get_fs();
1173 		/*
1174 		 * Doing it this way gets the constant folded by GCC.
1175 		 */
1176 		union {
1177 			u32 cmp;
1178 			char elfmag[SELFMAG];
1179 		} magic;
1180 		BUILD_BUG_ON(SELFMAG != sizeof word);
1181 		magic.elfmag[EI_MAG0] = ELFMAG0;
1182 		magic.elfmag[EI_MAG1] = ELFMAG1;
1183 		magic.elfmag[EI_MAG2] = ELFMAG2;
1184 		magic.elfmag[EI_MAG3] = ELFMAG3;
1185 		/*
1186 		 * Switch to the user "segment" for get_user(),
1187 		 * then put back what elf_core_dump() had in place.
1188 		 */
1189 		set_fs(USER_DS);
1190 		if (unlikely(get_user(word, header)))
1191 			word = 0;
1192 		set_fs(fs);
1193 		if (word == magic.cmp)
1194 			return PAGE_SIZE;
1195 	}
1196 
1197 #undef	FILTER
1198 
1199 	return 0;
1200 
1201 whole:
1202 	return vma->vm_end - vma->vm_start;
1203 }
1204 
1205 /* An ELF note in memory */
1206 struct memelfnote
1207 {
1208 	const char *name;
1209 	int type;
1210 	unsigned int datasz;
1211 	void *data;
1212 };
1213 
1214 static int notesize(struct memelfnote *en)
1215 {
1216 	int sz;
1217 
1218 	sz = sizeof(struct elf_note);
1219 	sz += roundup(strlen(en->name) + 1, 4);
1220 	sz += roundup(en->datasz, 4);
1221 
1222 	return sz;
1223 }
1224 
1225 #define DUMP_WRITE(addr, nr, foffset)	\
1226 	do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1227 
1228 static int alignfile(struct file *file, loff_t *foffset)
1229 {
1230 	static const char buf[4] = { 0, };
1231 	DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1232 	return 1;
1233 }
1234 
1235 static int writenote(struct memelfnote *men, struct file *file,
1236 			loff_t *foffset)
1237 {
1238 	struct elf_note en;
1239 	en.n_namesz = strlen(men->name) + 1;
1240 	en.n_descsz = men->datasz;
1241 	en.n_type = men->type;
1242 
1243 	DUMP_WRITE(&en, sizeof(en), foffset);
1244 	DUMP_WRITE(men->name, en.n_namesz, foffset);
1245 	if (!alignfile(file, foffset))
1246 		return 0;
1247 	DUMP_WRITE(men->data, men->datasz, foffset);
1248 	if (!alignfile(file, foffset))
1249 		return 0;
1250 
1251 	return 1;
1252 }
1253 #undef DUMP_WRITE
1254 
1255 static void fill_elf_header(struct elfhdr *elf, int segs,
1256 			    u16 machine, u32 flags)
1257 {
1258 	memset(elf, 0, sizeof(*elf));
1259 
1260 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1261 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1262 	elf->e_ident[EI_DATA] = ELF_DATA;
1263 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1264 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1265 
1266 	elf->e_type = ET_CORE;
1267 	elf->e_machine = machine;
1268 	elf->e_version = EV_CURRENT;
1269 	elf->e_phoff = sizeof(struct elfhdr);
1270 	elf->e_flags = flags;
1271 	elf->e_ehsize = sizeof(struct elfhdr);
1272 	elf->e_phentsize = sizeof(struct elf_phdr);
1273 	elf->e_phnum = segs;
1274 
1275 	return;
1276 }
1277 
1278 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1279 {
1280 	phdr->p_type = PT_NOTE;
1281 	phdr->p_offset = offset;
1282 	phdr->p_vaddr = 0;
1283 	phdr->p_paddr = 0;
1284 	phdr->p_filesz = sz;
1285 	phdr->p_memsz = 0;
1286 	phdr->p_flags = 0;
1287 	phdr->p_align = 0;
1288 	return;
1289 }
1290 
1291 static void fill_note(struct memelfnote *note, const char *name, int type,
1292 		unsigned int sz, void *data)
1293 {
1294 	note->name = name;
1295 	note->type = type;
1296 	note->datasz = sz;
1297 	note->data = data;
1298 	return;
1299 }
1300 
1301 /*
1302  * fill up all the fields in prstatus from the given task struct, except
1303  * registers which need to be filled up separately.
1304  */
1305 static void fill_prstatus(struct elf_prstatus *prstatus,
1306 		struct task_struct *p, long signr)
1307 {
1308 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1309 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1310 	prstatus->pr_sighold = p->blocked.sig[0];
1311 	rcu_read_lock();
1312 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1313 	rcu_read_unlock();
1314 	prstatus->pr_pid = task_pid_vnr(p);
1315 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1316 	prstatus->pr_sid = task_session_vnr(p);
1317 	if (thread_group_leader(p)) {
1318 		struct task_cputime cputime;
1319 
1320 		/*
1321 		 * This is the record for the group leader.  It shows the
1322 		 * group-wide total, not its individual thread total.
1323 		 */
1324 		thread_group_cputime(p, &cputime);
1325 		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1326 		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1327 	} else {
1328 		cputime_t utime, stime;
1329 
1330 		task_cputime(p, &utime, &stime);
1331 		cputime_to_timeval(utime, &prstatus->pr_utime);
1332 		cputime_to_timeval(stime, &prstatus->pr_stime);
1333 	}
1334 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1335 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1336 }
1337 
1338 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1339 		       struct mm_struct *mm)
1340 {
1341 	const struct cred *cred;
1342 	unsigned int i, len;
1343 
1344 	/* first copy the parameters from user space */
1345 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1346 
1347 	len = mm->arg_end - mm->arg_start;
1348 	if (len >= ELF_PRARGSZ)
1349 		len = ELF_PRARGSZ-1;
1350 	if (copy_from_user(&psinfo->pr_psargs,
1351 		           (const char __user *)mm->arg_start, len))
1352 		return -EFAULT;
1353 	for(i = 0; i < len; i++)
1354 		if (psinfo->pr_psargs[i] == 0)
1355 			psinfo->pr_psargs[i] = ' ';
1356 	psinfo->pr_psargs[len] = 0;
1357 
1358 	rcu_read_lock();
1359 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1360 	rcu_read_unlock();
1361 	psinfo->pr_pid = task_pid_vnr(p);
1362 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1363 	psinfo->pr_sid = task_session_vnr(p);
1364 
1365 	i = p->state ? ffz(~p->state) + 1 : 0;
1366 	psinfo->pr_state = i;
1367 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1368 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1369 	psinfo->pr_nice = task_nice(p);
1370 	psinfo->pr_flag = p->flags;
1371 	rcu_read_lock();
1372 	cred = __task_cred(p);
1373 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1374 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1375 	rcu_read_unlock();
1376 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1377 
1378 	return 0;
1379 }
1380 
1381 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1382 {
1383 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1384 	int i = 0;
1385 	do
1386 		i += 2;
1387 	while (auxv[i - 2] != AT_NULL);
1388 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1389 }
1390 
1391 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1392 		siginfo_t *siginfo)
1393 {
1394 	mm_segment_t old_fs = get_fs();
1395 	set_fs(KERNEL_DS);
1396 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1397 	set_fs(old_fs);
1398 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1399 }
1400 
1401 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1402 /*
1403  * Format of NT_FILE note:
1404  *
1405  * long count     -- how many files are mapped
1406  * long page_size -- units for file_ofs
1407  * array of [COUNT] elements of
1408  *   long start
1409  *   long end
1410  *   long file_ofs
1411  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1412  */
1413 static void fill_files_note(struct memelfnote *note)
1414 {
1415 	struct vm_area_struct *vma;
1416 	unsigned count, size, names_ofs, remaining, n;
1417 	user_long_t *data;
1418 	user_long_t *start_end_ofs;
1419 	char *name_base, *name_curpos;
1420 
1421 	/* *Estimated* file count and total data size needed */
1422 	count = current->mm->map_count;
1423 	size = count * 64;
1424 
1425 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1426  alloc:
1427 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1428 		goto err;
1429 	size = round_up(size, PAGE_SIZE);
1430 	data = vmalloc(size);
1431 	if (!data)
1432 		goto err;
1433 
1434 	start_end_ofs = data + 2;
1435 	name_base = name_curpos = ((char *)data) + names_ofs;
1436 	remaining = size - names_ofs;
1437 	count = 0;
1438 	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1439 		struct file *file;
1440 		const char *filename;
1441 
1442 		file = vma->vm_file;
1443 		if (!file)
1444 			continue;
1445 		filename = d_path(&file->f_path, name_curpos, remaining);
1446 		if (IS_ERR(filename)) {
1447 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1448 				vfree(data);
1449 				size = size * 5 / 4;
1450 				goto alloc;
1451 			}
1452 			continue;
1453 		}
1454 
1455 		/* d_path() fills at the end, move name down */
1456 		/* n = strlen(filename) + 1: */
1457 		n = (name_curpos + remaining) - filename;
1458 		remaining = filename - name_curpos;
1459 		memmove(name_curpos, filename, n);
1460 		name_curpos += n;
1461 
1462 		*start_end_ofs++ = vma->vm_start;
1463 		*start_end_ofs++ = vma->vm_end;
1464 		*start_end_ofs++ = vma->vm_pgoff;
1465 		count++;
1466 	}
1467 
1468 	/* Now we know exact count of files, can store it */
1469 	data[0] = count;
1470 	data[1] = PAGE_SIZE;
1471 	/*
1472 	 * Count usually is less than current->mm->map_count,
1473 	 * we need to move filenames down.
1474 	 */
1475 	n = current->mm->map_count - count;
1476 	if (n != 0) {
1477 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1478 		memmove(name_base - shift_bytes, name_base,
1479 			name_curpos - name_base);
1480 		name_curpos -= shift_bytes;
1481 	}
1482 
1483 	size = name_curpos - (char *)data;
1484 	fill_note(note, "CORE", NT_FILE, size, data);
1485  err: ;
1486 }
1487 
1488 #ifdef CORE_DUMP_USE_REGSET
1489 #include <linux/regset.h>
1490 
1491 struct elf_thread_core_info {
1492 	struct elf_thread_core_info *next;
1493 	struct task_struct *task;
1494 	struct elf_prstatus prstatus;
1495 	struct memelfnote notes[0];
1496 };
1497 
1498 struct elf_note_info {
1499 	struct elf_thread_core_info *thread;
1500 	struct memelfnote psinfo;
1501 	struct memelfnote signote;
1502 	struct memelfnote auxv;
1503 	struct memelfnote files;
1504 	user_siginfo_t csigdata;
1505 	size_t size;
1506 	int thread_notes;
1507 };
1508 
1509 /*
1510  * When a regset has a writeback hook, we call it on each thread before
1511  * dumping user memory.  On register window machines, this makes sure the
1512  * user memory backing the register data is up to date before we read it.
1513  */
1514 static void do_thread_regset_writeback(struct task_struct *task,
1515 				       const struct user_regset *regset)
1516 {
1517 	if (regset->writeback)
1518 		regset->writeback(task, regset, 1);
1519 }
1520 
1521 #ifndef PR_REG_SIZE
1522 #define PR_REG_SIZE(S) sizeof(S)
1523 #endif
1524 
1525 #ifndef PRSTATUS_SIZE
1526 #define PRSTATUS_SIZE(S) sizeof(S)
1527 #endif
1528 
1529 #ifndef PR_REG_PTR
1530 #define PR_REG_PTR(S) (&((S)->pr_reg))
1531 #endif
1532 
1533 #ifndef SET_PR_FPVALID
1534 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1535 #endif
1536 
1537 static int fill_thread_core_info(struct elf_thread_core_info *t,
1538 				 const struct user_regset_view *view,
1539 				 long signr, size_t *total)
1540 {
1541 	unsigned int i;
1542 
1543 	/*
1544 	 * NT_PRSTATUS is the one special case, because the regset data
1545 	 * goes into the pr_reg field inside the note contents, rather
1546 	 * than being the whole note contents.  We fill the reset in here.
1547 	 * We assume that regset 0 is NT_PRSTATUS.
1548 	 */
1549 	fill_prstatus(&t->prstatus, t->task, signr);
1550 	(void) view->regsets[0].get(t->task, &view->regsets[0],
1551 				    0, PR_REG_SIZE(t->prstatus.pr_reg),
1552 				    PR_REG_PTR(&t->prstatus), NULL);
1553 
1554 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1555 		  PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1556 	*total += notesize(&t->notes[0]);
1557 
1558 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1559 
1560 	/*
1561 	 * Each other regset might generate a note too.  For each regset
1562 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1563 	 * all zero and we'll know to skip writing it later.
1564 	 */
1565 	for (i = 1; i < view->n; ++i) {
1566 		const struct user_regset *regset = &view->regsets[i];
1567 		do_thread_regset_writeback(t->task, regset);
1568 		if (regset->core_note_type && regset->get &&
1569 		    (!regset->active || regset->active(t->task, regset))) {
1570 			int ret;
1571 			size_t size = regset->n * regset->size;
1572 			void *data = kmalloc(size, GFP_KERNEL);
1573 			if (unlikely(!data))
1574 				return 0;
1575 			ret = regset->get(t->task, regset,
1576 					  0, size, data, NULL);
1577 			if (unlikely(ret))
1578 				kfree(data);
1579 			else {
1580 				if (regset->core_note_type != NT_PRFPREG)
1581 					fill_note(&t->notes[i], "LINUX",
1582 						  regset->core_note_type,
1583 						  size, data);
1584 				else {
1585 					SET_PR_FPVALID(&t->prstatus, 1);
1586 					fill_note(&t->notes[i], "CORE",
1587 						  NT_PRFPREG, size, data);
1588 				}
1589 				*total += notesize(&t->notes[i]);
1590 			}
1591 		}
1592 	}
1593 
1594 	return 1;
1595 }
1596 
1597 static int fill_note_info(struct elfhdr *elf, int phdrs,
1598 			  struct elf_note_info *info,
1599 			  siginfo_t *siginfo, struct pt_regs *regs)
1600 {
1601 	struct task_struct *dump_task = current;
1602 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1603 	struct elf_thread_core_info *t;
1604 	struct elf_prpsinfo *psinfo;
1605 	struct core_thread *ct;
1606 	unsigned int i;
1607 
1608 	info->size = 0;
1609 	info->thread = NULL;
1610 
1611 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1612 	if (psinfo == NULL) {
1613 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1614 		return 0;
1615 	}
1616 
1617 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1618 
1619 	/*
1620 	 * Figure out how many notes we're going to need for each thread.
1621 	 */
1622 	info->thread_notes = 0;
1623 	for (i = 0; i < view->n; ++i)
1624 		if (view->regsets[i].core_note_type != 0)
1625 			++info->thread_notes;
1626 
1627 	/*
1628 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1629 	 * since it is our one special case.
1630 	 */
1631 	if (unlikely(info->thread_notes == 0) ||
1632 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1633 		WARN_ON(1);
1634 		return 0;
1635 	}
1636 
1637 	/*
1638 	 * Initialize the ELF file header.
1639 	 */
1640 	fill_elf_header(elf, phdrs,
1641 			view->e_machine, view->e_flags);
1642 
1643 	/*
1644 	 * Allocate a structure for each thread.
1645 	 */
1646 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1647 		t = kzalloc(offsetof(struct elf_thread_core_info,
1648 				     notes[info->thread_notes]),
1649 			    GFP_KERNEL);
1650 		if (unlikely(!t))
1651 			return 0;
1652 
1653 		t->task = ct->task;
1654 		if (ct->task == dump_task || !info->thread) {
1655 			t->next = info->thread;
1656 			info->thread = t;
1657 		} else {
1658 			/*
1659 			 * Make sure to keep the original task at
1660 			 * the head of the list.
1661 			 */
1662 			t->next = info->thread->next;
1663 			info->thread->next = t;
1664 		}
1665 	}
1666 
1667 	/*
1668 	 * Now fill in each thread's information.
1669 	 */
1670 	for (t = info->thread; t != NULL; t = t->next)
1671 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1672 			return 0;
1673 
1674 	/*
1675 	 * Fill in the two process-wide notes.
1676 	 */
1677 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1678 	info->size += notesize(&info->psinfo);
1679 
1680 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1681 	info->size += notesize(&info->signote);
1682 
1683 	fill_auxv_note(&info->auxv, current->mm);
1684 	info->size += notesize(&info->auxv);
1685 
1686 	fill_files_note(&info->files);
1687 	info->size += notesize(&info->files);
1688 
1689 	return 1;
1690 }
1691 
1692 static size_t get_note_info_size(struct elf_note_info *info)
1693 {
1694 	return info->size;
1695 }
1696 
1697 /*
1698  * Write all the notes for each thread.  When writing the first thread, the
1699  * process-wide notes are interleaved after the first thread-specific note.
1700  */
1701 static int write_note_info(struct elf_note_info *info,
1702 			   struct file *file, loff_t *foffset)
1703 {
1704 	bool first = 1;
1705 	struct elf_thread_core_info *t = info->thread;
1706 
1707 	do {
1708 		int i;
1709 
1710 		if (!writenote(&t->notes[0], file, foffset))
1711 			return 0;
1712 
1713 		if (first && !writenote(&info->psinfo, file, foffset))
1714 			return 0;
1715 		if (first && !writenote(&info->signote, file, foffset))
1716 			return 0;
1717 		if (first && !writenote(&info->auxv, file, foffset))
1718 			return 0;
1719 		if (first && !writenote(&info->files, file, foffset))
1720 			return 0;
1721 
1722 		for (i = 1; i < info->thread_notes; ++i)
1723 			if (t->notes[i].data &&
1724 			    !writenote(&t->notes[i], file, foffset))
1725 				return 0;
1726 
1727 		first = 0;
1728 		t = t->next;
1729 	} while (t);
1730 
1731 	return 1;
1732 }
1733 
1734 static void free_note_info(struct elf_note_info *info)
1735 {
1736 	struct elf_thread_core_info *threads = info->thread;
1737 	while (threads) {
1738 		unsigned int i;
1739 		struct elf_thread_core_info *t = threads;
1740 		threads = t->next;
1741 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1742 		for (i = 1; i < info->thread_notes; ++i)
1743 			kfree(t->notes[i].data);
1744 		kfree(t);
1745 	}
1746 	kfree(info->psinfo.data);
1747 	vfree(info->files.data);
1748 }
1749 
1750 #else
1751 
1752 /* Here is the structure in which status of each thread is captured. */
1753 struct elf_thread_status
1754 {
1755 	struct list_head list;
1756 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1757 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1758 	struct task_struct *thread;
1759 #ifdef ELF_CORE_COPY_XFPREGS
1760 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1761 #endif
1762 	struct memelfnote notes[3];
1763 	int num_notes;
1764 };
1765 
1766 /*
1767  * In order to add the specific thread information for the elf file format,
1768  * we need to keep a linked list of every threads pr_status and then create
1769  * a single section for them in the final core file.
1770  */
1771 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1772 {
1773 	int sz = 0;
1774 	struct task_struct *p = t->thread;
1775 	t->num_notes = 0;
1776 
1777 	fill_prstatus(&t->prstatus, p, signr);
1778 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1779 
1780 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1781 		  &(t->prstatus));
1782 	t->num_notes++;
1783 	sz += notesize(&t->notes[0]);
1784 
1785 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1786 								&t->fpu))) {
1787 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1788 			  &(t->fpu));
1789 		t->num_notes++;
1790 		sz += notesize(&t->notes[1]);
1791 	}
1792 
1793 #ifdef ELF_CORE_COPY_XFPREGS
1794 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1795 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1796 			  sizeof(t->xfpu), &t->xfpu);
1797 		t->num_notes++;
1798 		sz += notesize(&t->notes[2]);
1799 	}
1800 #endif
1801 	return sz;
1802 }
1803 
1804 struct elf_note_info {
1805 	struct memelfnote *notes;
1806 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1807 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1808 	struct list_head thread_list;
1809 	elf_fpregset_t *fpu;
1810 #ifdef ELF_CORE_COPY_XFPREGS
1811 	elf_fpxregset_t *xfpu;
1812 #endif
1813 	user_siginfo_t csigdata;
1814 	int thread_status_size;
1815 	int numnote;
1816 };
1817 
1818 static int elf_note_info_init(struct elf_note_info *info)
1819 {
1820 	memset(info, 0, sizeof(*info));
1821 	INIT_LIST_HEAD(&info->thread_list);
1822 
1823 	/* Allocate space for ELF notes */
1824 	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1825 	if (!info->notes)
1826 		return 0;
1827 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1828 	if (!info->psinfo)
1829 		return 0;
1830 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1831 	if (!info->prstatus)
1832 		return 0;
1833 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1834 	if (!info->fpu)
1835 		return 0;
1836 #ifdef ELF_CORE_COPY_XFPREGS
1837 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1838 	if (!info->xfpu)
1839 		return 0;
1840 #endif
1841 	return 1;
1842 }
1843 
1844 static int fill_note_info(struct elfhdr *elf, int phdrs,
1845 			  struct elf_note_info *info,
1846 			  siginfo_t *siginfo, struct pt_regs *regs)
1847 {
1848 	struct list_head *t;
1849 
1850 	if (!elf_note_info_init(info))
1851 		return 0;
1852 
1853 	if (siginfo->si_signo) {
1854 		struct core_thread *ct;
1855 		struct elf_thread_status *ets;
1856 
1857 		for (ct = current->mm->core_state->dumper.next;
1858 						ct; ct = ct->next) {
1859 			ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1860 			if (!ets)
1861 				return 0;
1862 
1863 			ets->thread = ct->task;
1864 			list_add(&ets->list, &info->thread_list);
1865 		}
1866 
1867 		list_for_each(t, &info->thread_list) {
1868 			int sz;
1869 
1870 			ets = list_entry(t, struct elf_thread_status, list);
1871 			sz = elf_dump_thread_status(siginfo->si_signo, ets);
1872 			info->thread_status_size += sz;
1873 		}
1874 	}
1875 	/* now collect the dump for the current */
1876 	memset(info->prstatus, 0, sizeof(*info->prstatus));
1877 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
1878 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1879 
1880 	/* Set up header */
1881 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1882 
1883 	/*
1884 	 * Set up the notes in similar form to SVR4 core dumps made
1885 	 * with info from their /proc.
1886 	 */
1887 
1888 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1889 		  sizeof(*info->prstatus), info->prstatus);
1890 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1891 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1892 		  sizeof(*info->psinfo), info->psinfo);
1893 
1894 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1895 	fill_auxv_note(info->notes + 3, current->mm);
1896 	fill_files_note(info->notes + 4);
1897 
1898 	info->numnote = 5;
1899 
1900 	/* Try to dump the FPU. */
1901 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1902 							       info->fpu);
1903 	if (info->prstatus->pr_fpvalid)
1904 		fill_note(info->notes + info->numnote++,
1905 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1906 #ifdef ELF_CORE_COPY_XFPREGS
1907 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
1908 		fill_note(info->notes + info->numnote++,
1909 			  "LINUX", ELF_CORE_XFPREG_TYPE,
1910 			  sizeof(*info->xfpu), info->xfpu);
1911 #endif
1912 
1913 	return 1;
1914 }
1915 
1916 static size_t get_note_info_size(struct elf_note_info *info)
1917 {
1918 	int sz = 0;
1919 	int i;
1920 
1921 	for (i = 0; i < info->numnote; i++)
1922 		sz += notesize(info->notes + i);
1923 
1924 	sz += info->thread_status_size;
1925 
1926 	return sz;
1927 }
1928 
1929 static int write_note_info(struct elf_note_info *info,
1930 			   struct file *file, loff_t *foffset)
1931 {
1932 	int i;
1933 	struct list_head *t;
1934 
1935 	for (i = 0; i < info->numnote; i++)
1936 		if (!writenote(info->notes + i, file, foffset))
1937 			return 0;
1938 
1939 	/* write out the thread status notes section */
1940 	list_for_each(t, &info->thread_list) {
1941 		struct elf_thread_status *tmp =
1942 				list_entry(t, struct elf_thread_status, list);
1943 
1944 		for (i = 0; i < tmp->num_notes; i++)
1945 			if (!writenote(&tmp->notes[i], file, foffset))
1946 				return 0;
1947 	}
1948 
1949 	return 1;
1950 }
1951 
1952 static void free_note_info(struct elf_note_info *info)
1953 {
1954 	while (!list_empty(&info->thread_list)) {
1955 		struct list_head *tmp = info->thread_list.next;
1956 		list_del(tmp);
1957 		kfree(list_entry(tmp, struct elf_thread_status, list));
1958 	}
1959 
1960 	/* Free data allocated by fill_files_note(): */
1961 	vfree(info->notes[4].data);
1962 
1963 	kfree(info->prstatus);
1964 	kfree(info->psinfo);
1965 	kfree(info->notes);
1966 	kfree(info->fpu);
1967 #ifdef ELF_CORE_COPY_XFPREGS
1968 	kfree(info->xfpu);
1969 #endif
1970 }
1971 
1972 #endif
1973 
1974 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1975 					struct vm_area_struct *gate_vma)
1976 {
1977 	struct vm_area_struct *ret = tsk->mm->mmap;
1978 
1979 	if (ret)
1980 		return ret;
1981 	return gate_vma;
1982 }
1983 /*
1984  * Helper function for iterating across a vma list.  It ensures that the caller
1985  * will visit `gate_vma' prior to terminating the search.
1986  */
1987 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1988 					struct vm_area_struct *gate_vma)
1989 {
1990 	struct vm_area_struct *ret;
1991 
1992 	ret = this_vma->vm_next;
1993 	if (ret)
1994 		return ret;
1995 	if (this_vma == gate_vma)
1996 		return NULL;
1997 	return gate_vma;
1998 }
1999 
2000 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2001 			     elf_addr_t e_shoff, int segs)
2002 {
2003 	elf->e_shoff = e_shoff;
2004 	elf->e_shentsize = sizeof(*shdr4extnum);
2005 	elf->e_shnum = 1;
2006 	elf->e_shstrndx = SHN_UNDEF;
2007 
2008 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2009 
2010 	shdr4extnum->sh_type = SHT_NULL;
2011 	shdr4extnum->sh_size = elf->e_shnum;
2012 	shdr4extnum->sh_link = elf->e_shstrndx;
2013 	shdr4extnum->sh_info = segs;
2014 }
2015 
2016 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
2017 				     unsigned long mm_flags)
2018 {
2019 	struct vm_area_struct *vma;
2020 	size_t size = 0;
2021 
2022 	for (vma = first_vma(current, gate_vma); vma != NULL;
2023 	     vma = next_vma(vma, gate_vma))
2024 		size += vma_dump_size(vma, mm_flags);
2025 	return size;
2026 }
2027 
2028 /*
2029  * Actual dumper
2030  *
2031  * This is a two-pass process; first we find the offsets of the bits,
2032  * and then they are actually written out.  If we run out of core limit
2033  * we just truncate.
2034  */
2035 static int elf_core_dump(struct coredump_params *cprm)
2036 {
2037 	int has_dumped = 0;
2038 	mm_segment_t fs;
2039 	int segs;
2040 	size_t size = 0;
2041 	struct vm_area_struct *vma, *gate_vma;
2042 	struct elfhdr *elf = NULL;
2043 	loff_t offset = 0, dataoff, foffset;
2044 	struct elf_note_info info;
2045 	struct elf_phdr *phdr4note = NULL;
2046 	struct elf_shdr *shdr4extnum = NULL;
2047 	Elf_Half e_phnum;
2048 	elf_addr_t e_shoff;
2049 
2050 	/*
2051 	 * We no longer stop all VM operations.
2052 	 *
2053 	 * This is because those proceses that could possibly change map_count
2054 	 * or the mmap / vma pages are now blocked in do_exit on current
2055 	 * finishing this core dump.
2056 	 *
2057 	 * Only ptrace can touch these memory addresses, but it doesn't change
2058 	 * the map_count or the pages allocated. So no possibility of crashing
2059 	 * exists while dumping the mm->vm_next areas to the core file.
2060 	 */
2061 
2062 	/* alloc memory for large data structures: too large to be on stack */
2063 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2064 	if (!elf)
2065 		goto out;
2066 	/*
2067 	 * The number of segs are recored into ELF header as 16bit value.
2068 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2069 	 */
2070 	segs = current->mm->map_count;
2071 	segs += elf_core_extra_phdrs();
2072 
2073 	gate_vma = get_gate_vma(current->mm);
2074 	if (gate_vma != NULL)
2075 		segs++;
2076 
2077 	/* for notes section */
2078 	segs++;
2079 
2080 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2081 	 * this, kernel supports extended numbering. Have a look at
2082 	 * include/linux/elf.h for further information. */
2083 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2084 
2085 	/*
2086 	 * Collect all the non-memory information about the process for the
2087 	 * notes.  This also sets up the file header.
2088 	 */
2089 	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2090 		goto cleanup;
2091 
2092 	has_dumped = 1;
2093 	current->flags |= PF_DUMPCORE;
2094 
2095 	fs = get_fs();
2096 	set_fs(KERNEL_DS);
2097 
2098 	offset += sizeof(*elf);				/* Elf header */
2099 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2100 	foffset = offset;
2101 
2102 	/* Write notes phdr entry */
2103 	{
2104 		size_t sz = get_note_info_size(&info);
2105 
2106 		sz += elf_coredump_extra_notes_size();
2107 
2108 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2109 		if (!phdr4note)
2110 			goto end_coredump;
2111 
2112 		fill_elf_note_phdr(phdr4note, sz, offset);
2113 		offset += sz;
2114 	}
2115 
2116 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2117 
2118 	offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
2119 	offset += elf_core_extra_data_size();
2120 	e_shoff = offset;
2121 
2122 	if (e_phnum == PN_XNUM) {
2123 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2124 		if (!shdr4extnum)
2125 			goto end_coredump;
2126 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2127 	}
2128 
2129 	offset = dataoff;
2130 
2131 	size += sizeof(*elf);
2132 	if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
2133 		goto end_coredump;
2134 
2135 	size += sizeof(*phdr4note);
2136 	if (size > cprm->limit
2137 	    || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
2138 		goto end_coredump;
2139 
2140 	/* Write program headers for segments dump */
2141 	for (vma = first_vma(current, gate_vma); vma != NULL;
2142 			vma = next_vma(vma, gate_vma)) {
2143 		struct elf_phdr phdr;
2144 
2145 		phdr.p_type = PT_LOAD;
2146 		phdr.p_offset = offset;
2147 		phdr.p_vaddr = vma->vm_start;
2148 		phdr.p_paddr = 0;
2149 		phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
2150 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2151 		offset += phdr.p_filesz;
2152 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2153 		if (vma->vm_flags & VM_WRITE)
2154 			phdr.p_flags |= PF_W;
2155 		if (vma->vm_flags & VM_EXEC)
2156 			phdr.p_flags |= PF_X;
2157 		phdr.p_align = ELF_EXEC_PAGESIZE;
2158 
2159 		size += sizeof(phdr);
2160 		if (size > cprm->limit
2161 		    || !dump_write(cprm->file, &phdr, sizeof(phdr)))
2162 			goto end_coredump;
2163 	}
2164 
2165 	if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
2166 		goto end_coredump;
2167 
2168  	/* write out the notes section */
2169 	if (!write_note_info(&info, cprm->file, &foffset))
2170 		goto end_coredump;
2171 
2172 	if (elf_coredump_extra_notes_write(cprm->file, &foffset))
2173 		goto end_coredump;
2174 
2175 	/* Align to page */
2176 	if (!dump_seek(cprm->file, dataoff - foffset))
2177 		goto end_coredump;
2178 
2179 	for (vma = first_vma(current, gate_vma); vma != NULL;
2180 			vma = next_vma(vma, gate_vma)) {
2181 		unsigned long addr;
2182 		unsigned long end;
2183 
2184 		end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2185 
2186 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2187 			struct page *page;
2188 			int stop;
2189 
2190 			page = get_dump_page(addr);
2191 			if (page) {
2192 				void *kaddr = kmap(page);
2193 				stop = ((size += PAGE_SIZE) > cprm->limit) ||
2194 					!dump_write(cprm->file, kaddr,
2195 						    PAGE_SIZE);
2196 				kunmap(page);
2197 				page_cache_release(page);
2198 			} else
2199 				stop = !dump_seek(cprm->file, PAGE_SIZE);
2200 			if (stop)
2201 				goto end_coredump;
2202 		}
2203 	}
2204 
2205 	if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
2206 		goto end_coredump;
2207 
2208 	if (e_phnum == PN_XNUM) {
2209 		size += sizeof(*shdr4extnum);
2210 		if (size > cprm->limit
2211 		    || !dump_write(cprm->file, shdr4extnum,
2212 				   sizeof(*shdr4extnum)))
2213 			goto end_coredump;
2214 	}
2215 
2216 end_coredump:
2217 	set_fs(fs);
2218 
2219 cleanup:
2220 	free_note_info(&info);
2221 	kfree(shdr4extnum);
2222 	kfree(phdr4note);
2223 	kfree(elf);
2224 out:
2225 	return has_dumped;
2226 }
2227 
2228 #endif		/* CONFIG_ELF_CORE */
2229 
2230 static int __init init_elf_binfmt(void)
2231 {
2232 	register_binfmt(&elf_format);
2233 	return 0;
2234 }
2235 
2236 static void __exit exit_elf_binfmt(void)
2237 {
2238 	/* Remove the COFF and ELF loaders. */
2239 	unregister_binfmt(&elf_format);
2240 }
2241 
2242 core_initcall(init_elf_binfmt);
2243 module_exit(exit_elf_binfmt);
2244 MODULE_LICENSE("GPL");
2245