xref: /openbmc/linux/fs/binfmt_elf.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/binfmt_elf.c
4  *
5  * These are the functions used to load ELF format executables as used
6  * on SVr4 machines.  Information on the format may be found in the book
7  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8  * Tools".
9  *
10  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/log2.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/slab.h>
25 #include <linux/personality.h>
26 #include <linux/elfcore.h>
27 #include <linux/init.h>
28 #include <linux/highuid.h>
29 #include <linux/compiler.h>
30 #include <linux/highmem.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vmalloc.h>
34 #include <linux/security.h>
35 #include <linux/random.h>
36 #include <linux/elf.h>
37 #include <linux/elf-randomize.h>
38 #include <linux/utsname.h>
39 #include <linux/coredump.h>
40 #include <linux/sched.h>
41 #include <linux/sched/coredump.h>
42 #include <linux/sched/task_stack.h>
43 #include <linux/sched/cputime.h>
44 #include <linux/sizes.h>
45 #include <linux/types.h>
46 #include <linux/cred.h>
47 #include <linux/dax.h>
48 #include <linux/uaccess.h>
49 #include <linux/rseq.h>
50 #include <asm/param.h>
51 #include <asm/page.h>
52 
53 #ifndef ELF_COMPAT
54 #define ELF_COMPAT 0
55 #endif
56 
57 #ifndef user_long_t
58 #define user_long_t long
59 #endif
60 #ifndef user_siginfo_t
61 #define user_siginfo_t siginfo_t
62 #endif
63 
64 /* That's for binfmt_elf_fdpic to deal with */
65 #ifndef elf_check_fdpic
66 #define elf_check_fdpic(ex) false
67 #endif
68 
69 static int load_elf_binary(struct linux_binprm *bprm);
70 
71 #ifdef CONFIG_USELIB
72 static int load_elf_library(struct file *);
73 #else
74 #define load_elf_library NULL
75 #endif
76 
77 /*
78  * If we don't support core dumping, then supply a NULL so we
79  * don't even try.
80  */
81 #ifdef CONFIG_ELF_CORE
82 static int elf_core_dump(struct coredump_params *cprm);
83 #else
84 #define elf_core_dump	NULL
85 #endif
86 
87 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
88 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
89 #else
90 #define ELF_MIN_ALIGN	PAGE_SIZE
91 #endif
92 
93 #ifndef ELF_CORE_EFLAGS
94 #define ELF_CORE_EFLAGS	0
95 #endif
96 
97 #define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1))
98 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
99 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
100 
101 static struct linux_binfmt elf_format = {
102 	.module		= THIS_MODULE,
103 	.load_binary	= load_elf_binary,
104 	.load_shlib	= load_elf_library,
105 #ifdef CONFIG_COREDUMP
106 	.core_dump	= elf_core_dump,
107 	.min_coredump	= ELF_EXEC_PAGESIZE,
108 #endif
109 };
110 
111 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
112 
113 static int set_brk(unsigned long start, unsigned long end, int prot)
114 {
115 	start = ELF_PAGEALIGN(start);
116 	end = ELF_PAGEALIGN(end);
117 	if (end > start) {
118 		/*
119 		 * Map the last of the bss segment.
120 		 * If the header is requesting these pages to be
121 		 * executable, honour that (ppc32 needs this).
122 		 */
123 		int error = vm_brk_flags(start, end - start,
124 				prot & PROT_EXEC ? VM_EXEC : 0);
125 		if (error)
126 			return error;
127 	}
128 	current->mm->start_brk = current->mm->brk = end;
129 	return 0;
130 }
131 
132 /* We need to explicitly zero any fractional pages
133    after the data section (i.e. bss).  This would
134    contain the junk from the file that should not
135    be in memory
136  */
137 static int padzero(unsigned long elf_bss)
138 {
139 	unsigned long nbyte;
140 
141 	nbyte = ELF_PAGEOFFSET(elf_bss);
142 	if (nbyte) {
143 		nbyte = ELF_MIN_ALIGN - nbyte;
144 		if (clear_user((void __user *) elf_bss, nbyte))
145 			return -EFAULT;
146 	}
147 	return 0;
148 }
149 
150 /* Let's use some macros to make this stack manipulation a little clearer */
151 #ifdef CONFIG_STACK_GROWSUP
152 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
153 #define STACK_ROUND(sp, items) \
154 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
155 #define STACK_ALLOC(sp, len) ({ \
156 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
157 	old_sp; })
158 #else
159 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
160 #define STACK_ROUND(sp, items) \
161 	(((unsigned long) (sp - items)) &~ 15UL)
162 #define STACK_ALLOC(sp, len) (sp -= len)
163 #endif
164 
165 #ifndef ELF_BASE_PLATFORM
166 /*
167  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
168  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
169  * will be copied to the user stack in the same manner as AT_PLATFORM.
170  */
171 #define ELF_BASE_PLATFORM NULL
172 #endif
173 
174 static int
175 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
176 		unsigned long interp_load_addr,
177 		unsigned long e_entry, unsigned long phdr_addr)
178 {
179 	struct mm_struct *mm = current->mm;
180 	unsigned long p = bprm->p;
181 	int argc = bprm->argc;
182 	int envc = bprm->envc;
183 	elf_addr_t __user *sp;
184 	elf_addr_t __user *u_platform;
185 	elf_addr_t __user *u_base_platform;
186 	elf_addr_t __user *u_rand_bytes;
187 	const char *k_platform = ELF_PLATFORM;
188 	const char *k_base_platform = ELF_BASE_PLATFORM;
189 	unsigned char k_rand_bytes[16];
190 	int items;
191 	elf_addr_t *elf_info;
192 	elf_addr_t flags = 0;
193 	int ei_index;
194 	const struct cred *cred = current_cred();
195 	struct vm_area_struct *vma;
196 
197 	/*
198 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
199 	 * evictions by the processes running on the same package. One
200 	 * thing we can do is to shuffle the initial stack for them.
201 	 */
202 
203 	p = arch_align_stack(p);
204 
205 	/*
206 	 * If this architecture has a platform capability string, copy it
207 	 * to userspace.  In some cases (Sparc), this info is impossible
208 	 * for userspace to get any other way, in others (i386) it is
209 	 * merely difficult.
210 	 */
211 	u_platform = NULL;
212 	if (k_platform) {
213 		size_t len = strlen(k_platform) + 1;
214 
215 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
216 		if (copy_to_user(u_platform, k_platform, len))
217 			return -EFAULT;
218 	}
219 
220 	/*
221 	 * If this architecture has a "base" platform capability
222 	 * string, copy it to userspace.
223 	 */
224 	u_base_platform = NULL;
225 	if (k_base_platform) {
226 		size_t len = strlen(k_base_platform) + 1;
227 
228 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
229 		if (copy_to_user(u_base_platform, k_base_platform, len))
230 			return -EFAULT;
231 	}
232 
233 	/*
234 	 * Generate 16 random bytes for userspace PRNG seeding.
235 	 */
236 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
237 	u_rand_bytes = (elf_addr_t __user *)
238 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
239 	if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
240 		return -EFAULT;
241 
242 	/* Create the ELF interpreter info */
243 	elf_info = (elf_addr_t *)mm->saved_auxv;
244 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
245 #define NEW_AUX_ENT(id, val) \
246 	do { \
247 		*elf_info++ = id; \
248 		*elf_info++ = val; \
249 	} while (0)
250 
251 #ifdef ARCH_DLINFO
252 	/*
253 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
254 	 * AUXV.
255 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
256 	 * ARCH_DLINFO changes
257 	 */
258 	ARCH_DLINFO;
259 #endif
260 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
261 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
262 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
263 	NEW_AUX_ENT(AT_PHDR, phdr_addr);
264 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
265 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
266 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
267 	if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0)
268 		flags |= AT_FLAGS_PRESERVE_ARGV0;
269 	NEW_AUX_ENT(AT_FLAGS, flags);
270 	NEW_AUX_ENT(AT_ENTRY, e_entry);
271 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
272 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
273 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
274 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
275 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
276 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
277 #ifdef ELF_HWCAP2
278 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
279 #endif
280 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
281 	if (k_platform) {
282 		NEW_AUX_ENT(AT_PLATFORM,
283 			    (elf_addr_t)(unsigned long)u_platform);
284 	}
285 	if (k_base_platform) {
286 		NEW_AUX_ENT(AT_BASE_PLATFORM,
287 			    (elf_addr_t)(unsigned long)u_base_platform);
288 	}
289 	if (bprm->have_execfd) {
290 		NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
291 	}
292 #ifdef CONFIG_RSEQ
293 	NEW_AUX_ENT(AT_RSEQ_FEATURE_SIZE, offsetof(struct rseq, end));
294 	NEW_AUX_ENT(AT_RSEQ_ALIGN, __alignof__(struct rseq));
295 #endif
296 #undef NEW_AUX_ENT
297 	/* AT_NULL is zero; clear the rest too */
298 	memset(elf_info, 0, (char *)mm->saved_auxv +
299 			sizeof(mm->saved_auxv) - (char *)elf_info);
300 
301 	/* And advance past the AT_NULL entry.  */
302 	elf_info += 2;
303 
304 	ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
305 	sp = STACK_ADD(p, ei_index);
306 
307 	items = (argc + 1) + (envc + 1) + 1;
308 	bprm->p = STACK_ROUND(sp, items);
309 
310 	/* Point sp at the lowest address on the stack */
311 #ifdef CONFIG_STACK_GROWSUP
312 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
313 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
314 #else
315 	sp = (elf_addr_t __user *)bprm->p;
316 #endif
317 
318 
319 	/*
320 	 * Grow the stack manually; some architectures have a limit on how
321 	 * far ahead a user-space access may be in order to grow the stack.
322 	 */
323 	if (mmap_write_lock_killable(mm))
324 		return -EINTR;
325 	vma = find_extend_vma_locked(mm, bprm->p);
326 	mmap_write_unlock(mm);
327 	if (!vma)
328 		return -EFAULT;
329 
330 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
331 	if (put_user(argc, sp++))
332 		return -EFAULT;
333 
334 	/* Populate list of argv pointers back to argv strings. */
335 	p = mm->arg_end = mm->arg_start;
336 	while (argc-- > 0) {
337 		size_t len;
338 		if (put_user((elf_addr_t)p, sp++))
339 			return -EFAULT;
340 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
341 		if (!len || len > MAX_ARG_STRLEN)
342 			return -EINVAL;
343 		p += len;
344 	}
345 	if (put_user(0, sp++))
346 		return -EFAULT;
347 	mm->arg_end = p;
348 
349 	/* Populate list of envp pointers back to envp strings. */
350 	mm->env_end = mm->env_start = p;
351 	while (envc-- > 0) {
352 		size_t len;
353 		if (put_user((elf_addr_t)p, sp++))
354 			return -EFAULT;
355 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
356 		if (!len || len > MAX_ARG_STRLEN)
357 			return -EINVAL;
358 		p += len;
359 	}
360 	if (put_user(0, sp++))
361 		return -EFAULT;
362 	mm->env_end = p;
363 
364 	/* Put the elf_info on the stack in the right place.  */
365 	if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
366 		return -EFAULT;
367 	return 0;
368 }
369 
370 static unsigned long elf_map(struct file *filep, unsigned long addr,
371 		const struct elf_phdr *eppnt, int prot, int type,
372 		unsigned long total_size)
373 {
374 	unsigned long map_addr;
375 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
376 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
377 	addr = ELF_PAGESTART(addr);
378 	size = ELF_PAGEALIGN(size);
379 
380 	/* mmap() will return -EINVAL if given a zero size, but a
381 	 * segment with zero filesize is perfectly valid */
382 	if (!size)
383 		return addr;
384 
385 	/*
386 	* total_size is the size of the ELF (interpreter) image.
387 	* The _first_ mmap needs to know the full size, otherwise
388 	* randomization might put this image into an overlapping
389 	* position with the ELF binary image. (since size < total_size)
390 	* So we first map the 'big' image - and unmap the remainder at
391 	* the end. (which unmap is needed for ELF images with holes.)
392 	*/
393 	if (total_size) {
394 		total_size = ELF_PAGEALIGN(total_size);
395 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
396 		if (!BAD_ADDR(map_addr))
397 			vm_munmap(map_addr+size, total_size-size);
398 	} else
399 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
400 
401 	if ((type & MAP_FIXED_NOREPLACE) &&
402 	    PTR_ERR((void *)map_addr) == -EEXIST)
403 		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
404 			task_pid_nr(current), current->comm, (void *)addr);
405 
406 	return(map_addr);
407 }
408 
409 static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr)
410 {
411 	elf_addr_t min_addr = -1;
412 	elf_addr_t max_addr = 0;
413 	bool pt_load = false;
414 	int i;
415 
416 	for (i = 0; i < nr; i++) {
417 		if (phdr[i].p_type == PT_LOAD) {
418 			min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr));
419 			max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz);
420 			pt_load = true;
421 		}
422 	}
423 	return pt_load ? (max_addr - min_addr) : 0;
424 }
425 
426 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
427 {
428 	ssize_t rv;
429 
430 	rv = kernel_read(file, buf, len, &pos);
431 	if (unlikely(rv != len)) {
432 		return (rv < 0) ? rv : -EIO;
433 	}
434 	return 0;
435 }
436 
437 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
438 {
439 	unsigned long alignment = 0;
440 	int i;
441 
442 	for (i = 0; i < nr; i++) {
443 		if (cmds[i].p_type == PT_LOAD) {
444 			unsigned long p_align = cmds[i].p_align;
445 
446 			/* skip non-power of two alignments as invalid */
447 			if (!is_power_of_2(p_align))
448 				continue;
449 			alignment = max(alignment, p_align);
450 		}
451 	}
452 
453 	/* ensure we align to at least one page */
454 	return ELF_PAGEALIGN(alignment);
455 }
456 
457 /**
458  * load_elf_phdrs() - load ELF program headers
459  * @elf_ex:   ELF header of the binary whose program headers should be loaded
460  * @elf_file: the opened ELF binary file
461  *
462  * Loads ELF program headers from the binary file elf_file, which has the ELF
463  * header pointed to by elf_ex, into a newly allocated array. The caller is
464  * responsible for freeing the allocated data. Returns NULL upon failure.
465  */
466 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
467 				       struct file *elf_file)
468 {
469 	struct elf_phdr *elf_phdata = NULL;
470 	int retval = -1;
471 	unsigned int size;
472 
473 	/*
474 	 * If the size of this structure has changed, then punt, since
475 	 * we will be doing the wrong thing.
476 	 */
477 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
478 		goto out;
479 
480 	/* Sanity check the number of program headers... */
481 	/* ...and their total size. */
482 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
483 	if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
484 		goto out;
485 
486 	elf_phdata = kmalloc(size, GFP_KERNEL);
487 	if (!elf_phdata)
488 		goto out;
489 
490 	/* Read in the program headers */
491 	retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
492 
493 out:
494 	if (retval) {
495 		kfree(elf_phdata);
496 		elf_phdata = NULL;
497 	}
498 	return elf_phdata;
499 }
500 
501 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
502 
503 /**
504  * struct arch_elf_state - arch-specific ELF loading state
505  *
506  * This structure is used to preserve architecture specific data during
507  * the loading of an ELF file, throughout the checking of architecture
508  * specific ELF headers & through to the point where the ELF load is
509  * known to be proceeding (ie. SET_PERSONALITY).
510  *
511  * This implementation is a dummy for architectures which require no
512  * specific state.
513  */
514 struct arch_elf_state {
515 };
516 
517 #define INIT_ARCH_ELF_STATE {}
518 
519 /**
520  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
521  * @ehdr:	The main ELF header
522  * @phdr:	The program header to check
523  * @elf:	The open ELF file
524  * @is_interp:	True if the phdr is from the interpreter of the ELF being
525  *		loaded, else false.
526  * @state:	Architecture-specific state preserved throughout the process
527  *		of loading the ELF.
528  *
529  * Inspects the program header phdr to validate its correctness and/or
530  * suitability for the system. Called once per ELF program header in the
531  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
532  * interpreter.
533  *
534  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
535  *         with that return code.
536  */
537 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
538 				   struct elf_phdr *phdr,
539 				   struct file *elf, bool is_interp,
540 				   struct arch_elf_state *state)
541 {
542 	/* Dummy implementation, always proceed */
543 	return 0;
544 }
545 
546 /**
547  * arch_check_elf() - check an ELF executable
548  * @ehdr:	The main ELF header
549  * @has_interp:	True if the ELF has an interpreter, else false.
550  * @interp_ehdr: The interpreter's ELF header
551  * @state:	Architecture-specific state preserved throughout the process
552  *		of loading the ELF.
553  *
554  * Provides a final opportunity for architecture code to reject the loading
555  * of the ELF & cause an exec syscall to return an error. This is called after
556  * all program headers to be checked by arch_elf_pt_proc have been.
557  *
558  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
559  *         with that return code.
560  */
561 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
562 				 struct elfhdr *interp_ehdr,
563 				 struct arch_elf_state *state)
564 {
565 	/* Dummy implementation, always proceed */
566 	return 0;
567 }
568 
569 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
570 
571 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
572 			    bool has_interp, bool is_interp)
573 {
574 	int prot = 0;
575 
576 	if (p_flags & PF_R)
577 		prot |= PROT_READ;
578 	if (p_flags & PF_W)
579 		prot |= PROT_WRITE;
580 	if (p_flags & PF_X)
581 		prot |= PROT_EXEC;
582 
583 	return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
584 }
585 
586 /* This is much more generalized than the library routine read function,
587    so we keep this separate.  Technically the library read function
588    is only provided so that we can read a.out libraries that have
589    an ELF header */
590 
591 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
592 		struct file *interpreter,
593 		unsigned long no_base, struct elf_phdr *interp_elf_phdata,
594 		struct arch_elf_state *arch_state)
595 {
596 	struct elf_phdr *eppnt;
597 	unsigned long load_addr = 0;
598 	int load_addr_set = 0;
599 	unsigned long last_bss = 0, elf_bss = 0;
600 	int bss_prot = 0;
601 	unsigned long error = ~0UL;
602 	unsigned long total_size;
603 	int i;
604 
605 	/* First of all, some simple consistency checks */
606 	if (interp_elf_ex->e_type != ET_EXEC &&
607 	    interp_elf_ex->e_type != ET_DYN)
608 		goto out;
609 	if (!elf_check_arch(interp_elf_ex) ||
610 	    elf_check_fdpic(interp_elf_ex))
611 		goto out;
612 	if (!interpreter->f_op->mmap)
613 		goto out;
614 
615 	total_size = total_mapping_size(interp_elf_phdata,
616 					interp_elf_ex->e_phnum);
617 	if (!total_size) {
618 		error = -EINVAL;
619 		goto out;
620 	}
621 
622 	eppnt = interp_elf_phdata;
623 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
624 		if (eppnt->p_type == PT_LOAD) {
625 			int elf_type = MAP_PRIVATE;
626 			int elf_prot = make_prot(eppnt->p_flags, arch_state,
627 						 true, true);
628 			unsigned long vaddr = 0;
629 			unsigned long k, map_addr;
630 
631 			vaddr = eppnt->p_vaddr;
632 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
633 				elf_type |= MAP_FIXED;
634 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
635 				load_addr = -vaddr;
636 
637 			map_addr = elf_map(interpreter, load_addr + vaddr,
638 					eppnt, elf_prot, elf_type, total_size);
639 			total_size = 0;
640 			error = map_addr;
641 			if (BAD_ADDR(map_addr))
642 				goto out;
643 
644 			if (!load_addr_set &&
645 			    interp_elf_ex->e_type == ET_DYN) {
646 				load_addr = map_addr - ELF_PAGESTART(vaddr);
647 				load_addr_set = 1;
648 			}
649 
650 			/*
651 			 * Check to see if the section's size will overflow the
652 			 * allowed task size. Note that p_filesz must always be
653 			 * <= p_memsize so it's only necessary to check p_memsz.
654 			 */
655 			k = load_addr + eppnt->p_vaddr;
656 			if (BAD_ADDR(k) ||
657 			    eppnt->p_filesz > eppnt->p_memsz ||
658 			    eppnt->p_memsz > TASK_SIZE ||
659 			    TASK_SIZE - eppnt->p_memsz < k) {
660 				error = -ENOMEM;
661 				goto out;
662 			}
663 
664 			/*
665 			 * Find the end of the file mapping for this phdr, and
666 			 * keep track of the largest address we see for this.
667 			 */
668 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
669 			if (k > elf_bss)
670 				elf_bss = k;
671 
672 			/*
673 			 * Do the same thing for the memory mapping - between
674 			 * elf_bss and last_bss is the bss section.
675 			 */
676 			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
677 			if (k > last_bss) {
678 				last_bss = k;
679 				bss_prot = elf_prot;
680 			}
681 		}
682 	}
683 
684 	/*
685 	 * Now fill out the bss section: first pad the last page from
686 	 * the file up to the page boundary, and zero it from elf_bss
687 	 * up to the end of the page.
688 	 */
689 	if (padzero(elf_bss)) {
690 		error = -EFAULT;
691 		goto out;
692 	}
693 	/*
694 	 * Next, align both the file and mem bss up to the page size,
695 	 * since this is where elf_bss was just zeroed up to, and where
696 	 * last_bss will end after the vm_brk_flags() below.
697 	 */
698 	elf_bss = ELF_PAGEALIGN(elf_bss);
699 	last_bss = ELF_PAGEALIGN(last_bss);
700 	/* Finally, if there is still more bss to allocate, do it. */
701 	if (last_bss > elf_bss) {
702 		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
703 				bss_prot & PROT_EXEC ? VM_EXEC : 0);
704 		if (error)
705 			goto out;
706 	}
707 
708 	error = load_addr;
709 out:
710 	return error;
711 }
712 
713 /*
714  * These are the functions used to load ELF style executables and shared
715  * libraries.  There is no binary dependent code anywhere else.
716  */
717 
718 static int parse_elf_property(const char *data, size_t *off, size_t datasz,
719 			      struct arch_elf_state *arch,
720 			      bool have_prev_type, u32 *prev_type)
721 {
722 	size_t o, step;
723 	const struct gnu_property *pr;
724 	int ret;
725 
726 	if (*off == datasz)
727 		return -ENOENT;
728 
729 	if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
730 		return -EIO;
731 	o = *off;
732 	datasz -= *off;
733 
734 	if (datasz < sizeof(*pr))
735 		return -ENOEXEC;
736 	pr = (const struct gnu_property *)(data + o);
737 	o += sizeof(*pr);
738 	datasz -= sizeof(*pr);
739 
740 	if (pr->pr_datasz > datasz)
741 		return -ENOEXEC;
742 
743 	WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
744 	step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
745 	if (step > datasz)
746 		return -ENOEXEC;
747 
748 	/* Properties are supposed to be unique and sorted on pr_type: */
749 	if (have_prev_type && pr->pr_type <= *prev_type)
750 		return -ENOEXEC;
751 	*prev_type = pr->pr_type;
752 
753 	ret = arch_parse_elf_property(pr->pr_type, data + o,
754 				      pr->pr_datasz, ELF_COMPAT, arch);
755 	if (ret)
756 		return ret;
757 
758 	*off = o + step;
759 	return 0;
760 }
761 
762 #define NOTE_DATA_SZ SZ_1K
763 #define GNU_PROPERTY_TYPE_0_NAME "GNU"
764 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
765 
766 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
767 				struct arch_elf_state *arch)
768 {
769 	union {
770 		struct elf_note nhdr;
771 		char data[NOTE_DATA_SZ];
772 	} note;
773 	loff_t pos;
774 	ssize_t n;
775 	size_t off, datasz;
776 	int ret;
777 	bool have_prev_type;
778 	u32 prev_type;
779 
780 	if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
781 		return 0;
782 
783 	/* load_elf_binary() shouldn't call us unless this is true... */
784 	if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
785 		return -ENOEXEC;
786 
787 	/* If the properties are crazy large, that's too bad (for now): */
788 	if (phdr->p_filesz > sizeof(note))
789 		return -ENOEXEC;
790 
791 	pos = phdr->p_offset;
792 	n = kernel_read(f, &note, phdr->p_filesz, &pos);
793 
794 	BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
795 	if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
796 		return -EIO;
797 
798 	if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
799 	    note.nhdr.n_namesz != NOTE_NAME_SZ ||
800 	    strncmp(note.data + sizeof(note.nhdr),
801 		    GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
802 		return -ENOEXEC;
803 
804 	off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
805 		       ELF_GNU_PROPERTY_ALIGN);
806 	if (off > n)
807 		return -ENOEXEC;
808 
809 	if (note.nhdr.n_descsz > n - off)
810 		return -ENOEXEC;
811 	datasz = off + note.nhdr.n_descsz;
812 
813 	have_prev_type = false;
814 	do {
815 		ret = parse_elf_property(note.data, &off, datasz, arch,
816 					 have_prev_type, &prev_type);
817 		have_prev_type = true;
818 	} while (!ret);
819 
820 	return ret == -ENOENT ? 0 : ret;
821 }
822 
823 static int load_elf_binary(struct linux_binprm *bprm)
824 {
825 	struct file *interpreter = NULL; /* to shut gcc up */
826 	unsigned long load_bias = 0, phdr_addr = 0;
827 	int first_pt_load = 1;
828 	unsigned long error;
829 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
830 	struct elf_phdr *elf_property_phdata = NULL;
831 	unsigned long elf_bss, elf_brk;
832 	int bss_prot = 0;
833 	int retval, i;
834 	unsigned long elf_entry;
835 	unsigned long e_entry;
836 	unsigned long interp_load_addr = 0;
837 	unsigned long start_code, end_code, start_data, end_data;
838 	unsigned long reloc_func_desc __maybe_unused = 0;
839 	int executable_stack = EXSTACK_DEFAULT;
840 	struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
841 	struct elfhdr *interp_elf_ex = NULL;
842 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
843 	struct mm_struct *mm;
844 	struct pt_regs *regs;
845 
846 	retval = -ENOEXEC;
847 	/* First of all, some simple consistency checks */
848 	if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
849 		goto out;
850 
851 	if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
852 		goto out;
853 	if (!elf_check_arch(elf_ex))
854 		goto out;
855 	if (elf_check_fdpic(elf_ex))
856 		goto out;
857 	if (!bprm->file->f_op->mmap)
858 		goto out;
859 
860 	elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
861 	if (!elf_phdata)
862 		goto out;
863 
864 	elf_ppnt = elf_phdata;
865 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
866 		char *elf_interpreter;
867 
868 		if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
869 			elf_property_phdata = elf_ppnt;
870 			continue;
871 		}
872 
873 		if (elf_ppnt->p_type != PT_INTERP)
874 			continue;
875 
876 		/*
877 		 * This is the program interpreter used for shared libraries -
878 		 * for now assume that this is an a.out format binary.
879 		 */
880 		retval = -ENOEXEC;
881 		if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
882 			goto out_free_ph;
883 
884 		retval = -ENOMEM;
885 		elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
886 		if (!elf_interpreter)
887 			goto out_free_ph;
888 
889 		retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
890 				  elf_ppnt->p_offset);
891 		if (retval < 0)
892 			goto out_free_interp;
893 		/* make sure path is NULL terminated */
894 		retval = -ENOEXEC;
895 		if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
896 			goto out_free_interp;
897 
898 		interpreter = open_exec(elf_interpreter);
899 		kfree(elf_interpreter);
900 		retval = PTR_ERR(interpreter);
901 		if (IS_ERR(interpreter))
902 			goto out_free_ph;
903 
904 		/*
905 		 * If the binary is not readable then enforce mm->dumpable = 0
906 		 * regardless of the interpreter's permissions.
907 		 */
908 		would_dump(bprm, interpreter);
909 
910 		interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
911 		if (!interp_elf_ex) {
912 			retval = -ENOMEM;
913 			goto out_free_file;
914 		}
915 
916 		/* Get the exec headers */
917 		retval = elf_read(interpreter, interp_elf_ex,
918 				  sizeof(*interp_elf_ex), 0);
919 		if (retval < 0)
920 			goto out_free_dentry;
921 
922 		break;
923 
924 out_free_interp:
925 		kfree(elf_interpreter);
926 		goto out_free_ph;
927 	}
928 
929 	elf_ppnt = elf_phdata;
930 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
931 		switch (elf_ppnt->p_type) {
932 		case PT_GNU_STACK:
933 			if (elf_ppnt->p_flags & PF_X)
934 				executable_stack = EXSTACK_ENABLE_X;
935 			else
936 				executable_stack = EXSTACK_DISABLE_X;
937 			break;
938 
939 		case PT_LOPROC ... PT_HIPROC:
940 			retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
941 						  bprm->file, false,
942 						  &arch_state);
943 			if (retval)
944 				goto out_free_dentry;
945 			break;
946 		}
947 
948 	/* Some simple consistency checks for the interpreter */
949 	if (interpreter) {
950 		retval = -ELIBBAD;
951 		/* Not an ELF interpreter */
952 		if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
953 			goto out_free_dentry;
954 		/* Verify the interpreter has a valid arch */
955 		if (!elf_check_arch(interp_elf_ex) ||
956 		    elf_check_fdpic(interp_elf_ex))
957 			goto out_free_dentry;
958 
959 		/* Load the interpreter program headers */
960 		interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
961 						   interpreter);
962 		if (!interp_elf_phdata)
963 			goto out_free_dentry;
964 
965 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
966 		elf_property_phdata = NULL;
967 		elf_ppnt = interp_elf_phdata;
968 		for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
969 			switch (elf_ppnt->p_type) {
970 			case PT_GNU_PROPERTY:
971 				elf_property_phdata = elf_ppnt;
972 				break;
973 
974 			case PT_LOPROC ... PT_HIPROC:
975 				retval = arch_elf_pt_proc(interp_elf_ex,
976 							  elf_ppnt, interpreter,
977 							  true, &arch_state);
978 				if (retval)
979 					goto out_free_dentry;
980 				break;
981 			}
982 	}
983 
984 	retval = parse_elf_properties(interpreter ?: bprm->file,
985 				      elf_property_phdata, &arch_state);
986 	if (retval)
987 		goto out_free_dentry;
988 
989 	/*
990 	 * Allow arch code to reject the ELF at this point, whilst it's
991 	 * still possible to return an error to the code that invoked
992 	 * the exec syscall.
993 	 */
994 	retval = arch_check_elf(elf_ex,
995 				!!interpreter, interp_elf_ex,
996 				&arch_state);
997 	if (retval)
998 		goto out_free_dentry;
999 
1000 	/* Flush all traces of the currently running executable */
1001 	retval = begin_new_exec(bprm);
1002 	if (retval)
1003 		goto out_free_dentry;
1004 
1005 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
1006 	   may depend on the personality.  */
1007 	SET_PERSONALITY2(*elf_ex, &arch_state);
1008 	if (elf_read_implies_exec(*elf_ex, executable_stack))
1009 		current->personality |= READ_IMPLIES_EXEC;
1010 
1011 	const int snapshot_randomize_va_space = READ_ONCE(randomize_va_space);
1012 	if (!(current->personality & ADDR_NO_RANDOMIZE) && snapshot_randomize_va_space)
1013 		current->flags |= PF_RANDOMIZE;
1014 
1015 	setup_new_exec(bprm);
1016 
1017 	/* Do this so that we can load the interpreter, if need be.  We will
1018 	   change some of these later */
1019 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1020 				 executable_stack);
1021 	if (retval < 0)
1022 		goto out_free_dentry;
1023 
1024 	elf_bss = 0;
1025 	elf_brk = 0;
1026 
1027 	start_code = ~0UL;
1028 	end_code = 0;
1029 	start_data = 0;
1030 	end_data = 0;
1031 
1032 	/* Now we do a little grungy work by mmapping the ELF image into
1033 	   the correct location in memory. */
1034 	for(i = 0, elf_ppnt = elf_phdata;
1035 	    i < elf_ex->e_phnum; i++, elf_ppnt++) {
1036 		int elf_prot, elf_flags;
1037 		unsigned long k, vaddr;
1038 		unsigned long total_size = 0;
1039 		unsigned long alignment;
1040 
1041 		if (elf_ppnt->p_type != PT_LOAD)
1042 			continue;
1043 
1044 		if (unlikely (elf_brk > elf_bss)) {
1045 			unsigned long nbyte;
1046 
1047 			/* There was a PT_LOAD segment with p_memsz > p_filesz
1048 			   before this one. Map anonymous pages, if needed,
1049 			   and clear the area.  */
1050 			retval = set_brk(elf_bss + load_bias,
1051 					 elf_brk + load_bias,
1052 					 bss_prot);
1053 			if (retval)
1054 				goto out_free_dentry;
1055 			nbyte = ELF_PAGEOFFSET(elf_bss);
1056 			if (nbyte) {
1057 				nbyte = ELF_MIN_ALIGN - nbyte;
1058 				if (nbyte > elf_brk - elf_bss)
1059 					nbyte = elf_brk - elf_bss;
1060 				if (clear_user((void __user *)elf_bss +
1061 							load_bias, nbyte)) {
1062 					/*
1063 					 * This bss-zeroing can fail if the ELF
1064 					 * file specifies odd protections. So
1065 					 * we don't check the return value
1066 					 */
1067 				}
1068 			}
1069 		}
1070 
1071 		elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1072 				     !!interpreter, false);
1073 
1074 		elf_flags = MAP_PRIVATE;
1075 
1076 		vaddr = elf_ppnt->p_vaddr;
1077 		/*
1078 		 * The first time through the loop, first_pt_load is true:
1079 		 * layout will be calculated. Once set, use MAP_FIXED since
1080 		 * we know we've already safely mapped the entire region with
1081 		 * MAP_FIXED_NOREPLACE in the once-per-binary logic following.
1082 		 */
1083 		if (!first_pt_load) {
1084 			elf_flags |= MAP_FIXED;
1085 		} else if (elf_ex->e_type == ET_EXEC) {
1086 			/*
1087 			 * This logic is run once for the first LOAD Program
1088 			 * Header for ET_EXEC binaries. No special handling
1089 			 * is needed.
1090 			 */
1091 			elf_flags |= MAP_FIXED_NOREPLACE;
1092 		} else if (elf_ex->e_type == ET_DYN) {
1093 			/*
1094 			 * This logic is run once for the first LOAD Program
1095 			 * Header for ET_DYN binaries to calculate the
1096 			 * randomization (load_bias) for all the LOAD
1097 			 * Program Headers.
1098 			 *
1099 			 * There are effectively two types of ET_DYN
1100 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
1101 			 * and loaders (ET_DYN without INTERP, since they
1102 			 * _are_ the ELF interpreter). The loaders must
1103 			 * be loaded away from programs since the program
1104 			 * may otherwise collide with the loader (especially
1105 			 * for ET_EXEC which does not have a randomized
1106 			 * position). For example to handle invocations of
1107 			 * "./ld.so someprog" to test out a new version of
1108 			 * the loader, the subsequent program that the
1109 			 * loader loads must avoid the loader itself, so
1110 			 * they cannot share the same load range. Sufficient
1111 			 * room for the brk must be allocated with the
1112 			 * loader as well, since brk must be available with
1113 			 * the loader.
1114 			 *
1115 			 * Therefore, programs are loaded offset from
1116 			 * ELF_ET_DYN_BASE and loaders are loaded into the
1117 			 * independently randomized mmap region (0 load_bias
1118 			 * without MAP_FIXED nor MAP_FIXED_NOREPLACE).
1119 			 */
1120 			if (interpreter) {
1121 				load_bias = ELF_ET_DYN_BASE;
1122 				if (current->flags & PF_RANDOMIZE)
1123 					load_bias += arch_mmap_rnd();
1124 				alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1125 				if (alignment)
1126 					load_bias &= ~(alignment - 1);
1127 				elf_flags |= MAP_FIXED_NOREPLACE;
1128 			} else
1129 				load_bias = 0;
1130 
1131 			/*
1132 			 * Since load_bias is used for all subsequent loading
1133 			 * calculations, we must lower it by the first vaddr
1134 			 * so that the remaining calculations based on the
1135 			 * ELF vaddrs will be correctly offset. The result
1136 			 * is then page aligned.
1137 			 */
1138 			load_bias = ELF_PAGESTART(load_bias - vaddr);
1139 
1140 			/*
1141 			 * Calculate the entire size of the ELF mapping
1142 			 * (total_size), used for the initial mapping,
1143 			 * due to load_addr_set which is set to true later
1144 			 * once the initial mapping is performed.
1145 			 *
1146 			 * Note that this is only sensible when the LOAD
1147 			 * segments are contiguous (or overlapping). If
1148 			 * used for LOADs that are far apart, this would
1149 			 * cause the holes between LOADs to be mapped,
1150 			 * running the risk of having the mapping fail,
1151 			 * as it would be larger than the ELF file itself.
1152 			 *
1153 			 * As a result, only ET_DYN does this, since
1154 			 * some ET_EXEC (e.g. ia64) may have large virtual
1155 			 * memory holes between LOADs.
1156 			 *
1157 			 */
1158 			total_size = total_mapping_size(elf_phdata,
1159 							elf_ex->e_phnum);
1160 			if (!total_size) {
1161 				retval = -EINVAL;
1162 				goto out_free_dentry;
1163 			}
1164 		}
1165 
1166 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1167 				elf_prot, elf_flags, total_size);
1168 		if (BAD_ADDR(error)) {
1169 			retval = IS_ERR_VALUE(error) ?
1170 				PTR_ERR((void*)error) : -EINVAL;
1171 			goto out_free_dentry;
1172 		}
1173 
1174 		if (first_pt_load) {
1175 			first_pt_load = 0;
1176 			if (elf_ex->e_type == ET_DYN) {
1177 				load_bias += error -
1178 				             ELF_PAGESTART(load_bias + vaddr);
1179 				reloc_func_desc = load_bias;
1180 			}
1181 		}
1182 
1183 		/*
1184 		 * Figure out which segment in the file contains the Program
1185 		 * Header table, and map to the associated memory address.
1186 		 */
1187 		if (elf_ppnt->p_offset <= elf_ex->e_phoff &&
1188 		    elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) {
1189 			phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset +
1190 				    elf_ppnt->p_vaddr;
1191 		}
1192 
1193 		k = elf_ppnt->p_vaddr;
1194 		if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1195 			start_code = k;
1196 		if (start_data < k)
1197 			start_data = k;
1198 
1199 		/*
1200 		 * Check to see if the section's size will overflow the
1201 		 * allowed task size. Note that p_filesz must always be
1202 		 * <= p_memsz so it is only necessary to check p_memsz.
1203 		 */
1204 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1205 		    elf_ppnt->p_memsz > TASK_SIZE ||
1206 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1207 			/* set_brk can never work. Avoid overflows. */
1208 			retval = -EINVAL;
1209 			goto out_free_dentry;
1210 		}
1211 
1212 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1213 
1214 		if (k > elf_bss)
1215 			elf_bss = k;
1216 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1217 			end_code = k;
1218 		if (end_data < k)
1219 			end_data = k;
1220 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1221 		if (k > elf_brk) {
1222 			bss_prot = elf_prot;
1223 			elf_brk = k;
1224 		}
1225 	}
1226 
1227 	e_entry = elf_ex->e_entry + load_bias;
1228 	phdr_addr += load_bias;
1229 	elf_bss += load_bias;
1230 	elf_brk += load_bias;
1231 	start_code += load_bias;
1232 	end_code += load_bias;
1233 	start_data += load_bias;
1234 	end_data += load_bias;
1235 
1236 	/* Calling set_brk effectively mmaps the pages that we need
1237 	 * for the bss and break sections.  We must do this before
1238 	 * mapping in the interpreter, to make sure it doesn't wind
1239 	 * up getting placed where the bss needs to go.
1240 	 */
1241 	retval = set_brk(elf_bss, elf_brk, bss_prot);
1242 	if (retval)
1243 		goto out_free_dentry;
1244 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1245 		retval = -EFAULT; /* Nobody gets to see this, but.. */
1246 		goto out_free_dentry;
1247 	}
1248 
1249 	if (interpreter) {
1250 		elf_entry = load_elf_interp(interp_elf_ex,
1251 					    interpreter,
1252 					    load_bias, interp_elf_phdata,
1253 					    &arch_state);
1254 		if (!IS_ERR_VALUE(elf_entry)) {
1255 			/*
1256 			 * load_elf_interp() returns relocation
1257 			 * adjustment
1258 			 */
1259 			interp_load_addr = elf_entry;
1260 			elf_entry += interp_elf_ex->e_entry;
1261 		}
1262 		if (BAD_ADDR(elf_entry)) {
1263 			retval = IS_ERR_VALUE(elf_entry) ?
1264 					(int)elf_entry : -EINVAL;
1265 			goto out_free_dentry;
1266 		}
1267 		reloc_func_desc = interp_load_addr;
1268 
1269 		allow_write_access(interpreter);
1270 		fput(interpreter);
1271 
1272 		kfree(interp_elf_ex);
1273 		kfree(interp_elf_phdata);
1274 	} else {
1275 		elf_entry = e_entry;
1276 		if (BAD_ADDR(elf_entry)) {
1277 			retval = -EINVAL;
1278 			goto out_free_dentry;
1279 		}
1280 	}
1281 
1282 	kfree(elf_phdata);
1283 
1284 	set_binfmt(&elf_format);
1285 
1286 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1287 	retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter);
1288 	if (retval < 0)
1289 		goto out;
1290 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1291 
1292 	retval = create_elf_tables(bprm, elf_ex, interp_load_addr,
1293 				   e_entry, phdr_addr);
1294 	if (retval < 0)
1295 		goto out;
1296 
1297 	mm = current->mm;
1298 	mm->end_code = end_code;
1299 	mm->start_code = start_code;
1300 	mm->start_data = start_data;
1301 	mm->end_data = end_data;
1302 	mm->start_stack = bprm->p;
1303 
1304 	if ((current->flags & PF_RANDOMIZE) && (snapshot_randomize_va_space > 1)) {
1305 		/*
1306 		 * For architectures with ELF randomization, when executing
1307 		 * a loader directly (i.e. no interpreter listed in ELF
1308 		 * headers), move the brk area out of the mmap region
1309 		 * (since it grows up, and may collide early with the stack
1310 		 * growing down), and into the unused ELF_ET_DYN_BASE region.
1311 		 */
1312 		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1313 		    elf_ex->e_type == ET_DYN && !interpreter) {
1314 			mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1315 		}
1316 
1317 		mm->brk = mm->start_brk = arch_randomize_brk(mm);
1318 #ifdef compat_brk_randomized
1319 		current->brk_randomized = 1;
1320 #endif
1321 	}
1322 
1323 	if (current->personality & MMAP_PAGE_ZERO) {
1324 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1325 		   and some applications "depend" upon this behavior.
1326 		   Since we do not have the power to recompile these, we
1327 		   emulate the SVr4 behavior. Sigh. */
1328 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1329 				MAP_FIXED | MAP_PRIVATE, 0);
1330 	}
1331 
1332 	regs = current_pt_regs();
1333 #ifdef ELF_PLAT_INIT
1334 	/*
1335 	 * The ABI may specify that certain registers be set up in special
1336 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1337 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1338 	 * that the e_entry field is the address of the function descriptor
1339 	 * for the startup routine, rather than the address of the startup
1340 	 * routine itself.  This macro performs whatever initialization to
1341 	 * the regs structure is required as well as any relocations to the
1342 	 * function descriptor entries when executing dynamically links apps.
1343 	 */
1344 	ELF_PLAT_INIT(regs, reloc_func_desc);
1345 #endif
1346 
1347 	finalize_exec(bprm);
1348 	START_THREAD(elf_ex, regs, elf_entry, bprm->p);
1349 	retval = 0;
1350 out:
1351 	return retval;
1352 
1353 	/* error cleanup */
1354 out_free_dentry:
1355 	kfree(interp_elf_ex);
1356 	kfree(interp_elf_phdata);
1357 out_free_file:
1358 	allow_write_access(interpreter);
1359 	if (interpreter)
1360 		fput(interpreter);
1361 out_free_ph:
1362 	kfree(elf_phdata);
1363 	goto out;
1364 }
1365 
1366 #ifdef CONFIG_USELIB
1367 /* This is really simpleminded and specialized - we are loading an
1368    a.out library that is given an ELF header. */
1369 static int load_elf_library(struct file *file)
1370 {
1371 	struct elf_phdr *elf_phdata;
1372 	struct elf_phdr *eppnt;
1373 	unsigned long elf_bss, bss, len;
1374 	int retval, error, i, j;
1375 	struct elfhdr elf_ex;
1376 
1377 	error = -ENOEXEC;
1378 	retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1379 	if (retval < 0)
1380 		goto out;
1381 
1382 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1383 		goto out;
1384 
1385 	/* First of all, some simple consistency checks */
1386 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1387 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1388 		goto out;
1389 	if (elf_check_fdpic(&elf_ex))
1390 		goto out;
1391 
1392 	/* Now read in all of the header information */
1393 
1394 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1395 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1396 
1397 	error = -ENOMEM;
1398 	elf_phdata = kmalloc(j, GFP_KERNEL);
1399 	if (!elf_phdata)
1400 		goto out;
1401 
1402 	eppnt = elf_phdata;
1403 	error = -ENOEXEC;
1404 	retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1405 	if (retval < 0)
1406 		goto out_free_ph;
1407 
1408 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1409 		if ((eppnt + i)->p_type == PT_LOAD)
1410 			j++;
1411 	if (j != 1)
1412 		goto out_free_ph;
1413 
1414 	while (eppnt->p_type != PT_LOAD)
1415 		eppnt++;
1416 
1417 	/* Now use mmap to map the library into memory. */
1418 	error = vm_mmap(file,
1419 			ELF_PAGESTART(eppnt->p_vaddr),
1420 			(eppnt->p_filesz +
1421 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1422 			PROT_READ | PROT_WRITE | PROT_EXEC,
1423 			MAP_FIXED_NOREPLACE | MAP_PRIVATE,
1424 			(eppnt->p_offset -
1425 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1426 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1427 		goto out_free_ph;
1428 
1429 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1430 	if (padzero(elf_bss)) {
1431 		error = -EFAULT;
1432 		goto out_free_ph;
1433 	}
1434 
1435 	len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1436 	bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1437 	if (bss > len) {
1438 		error = vm_brk(len, bss - len);
1439 		if (error)
1440 			goto out_free_ph;
1441 	}
1442 	error = 0;
1443 
1444 out_free_ph:
1445 	kfree(elf_phdata);
1446 out:
1447 	return error;
1448 }
1449 #endif /* #ifdef CONFIG_USELIB */
1450 
1451 #ifdef CONFIG_ELF_CORE
1452 /*
1453  * ELF core dumper
1454  *
1455  * Modelled on fs/exec.c:aout_core_dump()
1456  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1457  */
1458 
1459 /* An ELF note in memory */
1460 struct memelfnote
1461 {
1462 	const char *name;
1463 	int type;
1464 	unsigned int datasz;
1465 	void *data;
1466 };
1467 
1468 static int notesize(struct memelfnote *en)
1469 {
1470 	int sz;
1471 
1472 	sz = sizeof(struct elf_note);
1473 	sz += roundup(strlen(en->name) + 1, 4);
1474 	sz += roundup(en->datasz, 4);
1475 
1476 	return sz;
1477 }
1478 
1479 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1480 {
1481 	struct elf_note en;
1482 	en.n_namesz = strlen(men->name) + 1;
1483 	en.n_descsz = men->datasz;
1484 	en.n_type = men->type;
1485 
1486 	return dump_emit(cprm, &en, sizeof(en)) &&
1487 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1488 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1489 }
1490 
1491 static void fill_elf_header(struct elfhdr *elf, int segs,
1492 			    u16 machine, u32 flags)
1493 {
1494 	memset(elf, 0, sizeof(*elf));
1495 
1496 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1497 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1498 	elf->e_ident[EI_DATA] = ELF_DATA;
1499 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1500 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1501 
1502 	elf->e_type = ET_CORE;
1503 	elf->e_machine = machine;
1504 	elf->e_version = EV_CURRENT;
1505 	elf->e_phoff = sizeof(struct elfhdr);
1506 	elf->e_flags = flags;
1507 	elf->e_ehsize = sizeof(struct elfhdr);
1508 	elf->e_phentsize = sizeof(struct elf_phdr);
1509 	elf->e_phnum = segs;
1510 }
1511 
1512 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1513 {
1514 	phdr->p_type = PT_NOTE;
1515 	phdr->p_offset = offset;
1516 	phdr->p_vaddr = 0;
1517 	phdr->p_paddr = 0;
1518 	phdr->p_filesz = sz;
1519 	phdr->p_memsz = 0;
1520 	phdr->p_flags = 0;
1521 	phdr->p_align = 4;
1522 }
1523 
1524 static void fill_note(struct memelfnote *note, const char *name, int type,
1525 		unsigned int sz, void *data)
1526 {
1527 	note->name = name;
1528 	note->type = type;
1529 	note->datasz = sz;
1530 	note->data = data;
1531 }
1532 
1533 /*
1534  * fill up all the fields in prstatus from the given task struct, except
1535  * registers which need to be filled up separately.
1536  */
1537 static void fill_prstatus(struct elf_prstatus_common *prstatus,
1538 		struct task_struct *p, long signr)
1539 {
1540 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1541 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1542 	prstatus->pr_sighold = p->blocked.sig[0];
1543 	rcu_read_lock();
1544 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1545 	rcu_read_unlock();
1546 	prstatus->pr_pid = task_pid_vnr(p);
1547 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1548 	prstatus->pr_sid = task_session_vnr(p);
1549 	if (thread_group_leader(p)) {
1550 		struct task_cputime cputime;
1551 
1552 		/*
1553 		 * This is the record for the group leader.  It shows the
1554 		 * group-wide total, not its individual thread total.
1555 		 */
1556 		thread_group_cputime(p, &cputime);
1557 		prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1558 		prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1559 	} else {
1560 		u64 utime, stime;
1561 
1562 		task_cputime(p, &utime, &stime);
1563 		prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1564 		prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1565 	}
1566 
1567 	prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1568 	prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1569 }
1570 
1571 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1572 		       struct mm_struct *mm)
1573 {
1574 	const struct cred *cred;
1575 	unsigned int i, len;
1576 	unsigned int state;
1577 
1578 	/* first copy the parameters from user space */
1579 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1580 
1581 	len = mm->arg_end - mm->arg_start;
1582 	if (len >= ELF_PRARGSZ)
1583 		len = ELF_PRARGSZ-1;
1584 	if (copy_from_user(&psinfo->pr_psargs,
1585 		           (const char __user *)mm->arg_start, len))
1586 		return -EFAULT;
1587 	for(i = 0; i < len; i++)
1588 		if (psinfo->pr_psargs[i] == 0)
1589 			psinfo->pr_psargs[i] = ' ';
1590 	psinfo->pr_psargs[len] = 0;
1591 
1592 	rcu_read_lock();
1593 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1594 	rcu_read_unlock();
1595 	psinfo->pr_pid = task_pid_vnr(p);
1596 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1597 	psinfo->pr_sid = task_session_vnr(p);
1598 
1599 	state = READ_ONCE(p->__state);
1600 	i = state ? ffz(~state) + 1 : 0;
1601 	psinfo->pr_state = i;
1602 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1603 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1604 	psinfo->pr_nice = task_nice(p);
1605 	psinfo->pr_flag = p->flags;
1606 	rcu_read_lock();
1607 	cred = __task_cred(p);
1608 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1609 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1610 	rcu_read_unlock();
1611 	get_task_comm(psinfo->pr_fname, p);
1612 
1613 	return 0;
1614 }
1615 
1616 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1617 {
1618 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1619 	int i = 0;
1620 	do
1621 		i += 2;
1622 	while (auxv[i - 2] != AT_NULL);
1623 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1624 }
1625 
1626 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1627 		const kernel_siginfo_t *siginfo)
1628 {
1629 	copy_siginfo_to_external(csigdata, siginfo);
1630 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1631 }
1632 
1633 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1634 /*
1635  * Format of NT_FILE note:
1636  *
1637  * long count     -- how many files are mapped
1638  * long page_size -- units for file_ofs
1639  * array of [COUNT] elements of
1640  *   long start
1641  *   long end
1642  *   long file_ofs
1643  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1644  */
1645 static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm)
1646 {
1647 	unsigned count, size, names_ofs, remaining, n;
1648 	user_long_t *data;
1649 	user_long_t *start_end_ofs;
1650 	char *name_base, *name_curpos;
1651 	int i;
1652 
1653 	/* *Estimated* file count and total data size needed */
1654 	count = cprm->vma_count;
1655 	if (count > UINT_MAX / 64)
1656 		return -EINVAL;
1657 	size = count * 64;
1658 
1659 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1660  alloc:
1661 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1662 		return -EINVAL;
1663 	size = round_up(size, PAGE_SIZE);
1664 	/*
1665 	 * "size" can be 0 here legitimately.
1666 	 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1667 	 */
1668 	data = kvmalloc(size, GFP_KERNEL);
1669 	if (ZERO_OR_NULL_PTR(data))
1670 		return -ENOMEM;
1671 
1672 	start_end_ofs = data + 2;
1673 	name_base = name_curpos = ((char *)data) + names_ofs;
1674 	remaining = size - names_ofs;
1675 	count = 0;
1676 	for (i = 0; i < cprm->vma_count; i++) {
1677 		struct core_vma_metadata *m = &cprm->vma_meta[i];
1678 		struct file *file;
1679 		const char *filename;
1680 
1681 		file = m->file;
1682 		if (!file)
1683 			continue;
1684 		filename = file_path(file, name_curpos, remaining);
1685 		if (IS_ERR(filename)) {
1686 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1687 				kvfree(data);
1688 				size = size * 5 / 4;
1689 				goto alloc;
1690 			}
1691 			continue;
1692 		}
1693 
1694 		/* file_path() fills at the end, move name down */
1695 		/* n = strlen(filename) + 1: */
1696 		n = (name_curpos + remaining) - filename;
1697 		remaining = filename - name_curpos;
1698 		memmove(name_curpos, filename, n);
1699 		name_curpos += n;
1700 
1701 		*start_end_ofs++ = m->start;
1702 		*start_end_ofs++ = m->end;
1703 		*start_end_ofs++ = m->pgoff;
1704 		count++;
1705 	}
1706 
1707 	/* Now we know exact count of files, can store it */
1708 	data[0] = count;
1709 	data[1] = PAGE_SIZE;
1710 	/*
1711 	 * Count usually is less than mm->map_count,
1712 	 * we need to move filenames down.
1713 	 */
1714 	n = cprm->vma_count - count;
1715 	if (n != 0) {
1716 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1717 		memmove(name_base - shift_bytes, name_base,
1718 			name_curpos - name_base);
1719 		name_curpos -= shift_bytes;
1720 	}
1721 
1722 	size = name_curpos - (char *)data;
1723 	fill_note(note, "CORE", NT_FILE, size, data);
1724 	return 0;
1725 }
1726 
1727 #include <linux/regset.h>
1728 
1729 struct elf_thread_core_info {
1730 	struct elf_thread_core_info *next;
1731 	struct task_struct *task;
1732 	struct elf_prstatus prstatus;
1733 	struct memelfnote notes[];
1734 };
1735 
1736 struct elf_note_info {
1737 	struct elf_thread_core_info *thread;
1738 	struct memelfnote psinfo;
1739 	struct memelfnote signote;
1740 	struct memelfnote auxv;
1741 	struct memelfnote files;
1742 	user_siginfo_t csigdata;
1743 	size_t size;
1744 	int thread_notes;
1745 };
1746 
1747 #ifdef CORE_DUMP_USE_REGSET
1748 /*
1749  * When a regset has a writeback hook, we call it on each thread before
1750  * dumping user memory.  On register window machines, this makes sure the
1751  * user memory backing the register data is up to date before we read it.
1752  */
1753 static void do_thread_regset_writeback(struct task_struct *task,
1754 				       const struct user_regset *regset)
1755 {
1756 	if (regset->writeback)
1757 		regset->writeback(task, regset, 1);
1758 }
1759 
1760 #ifndef PRSTATUS_SIZE
1761 #define PRSTATUS_SIZE sizeof(struct elf_prstatus)
1762 #endif
1763 
1764 #ifndef SET_PR_FPVALID
1765 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1)
1766 #endif
1767 
1768 static int fill_thread_core_info(struct elf_thread_core_info *t,
1769 				 const struct user_regset_view *view,
1770 				 long signr, struct elf_note_info *info)
1771 {
1772 	unsigned int note_iter, view_iter;
1773 
1774 	/*
1775 	 * NT_PRSTATUS is the one special case, because the regset data
1776 	 * goes into the pr_reg field inside the note contents, rather
1777 	 * than being the whole note contents.  We fill the regset in here.
1778 	 * We assume that regset 0 is NT_PRSTATUS.
1779 	 */
1780 	fill_prstatus(&t->prstatus.common, t->task, signr);
1781 	regset_get(t->task, &view->regsets[0],
1782 		   sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1783 
1784 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1785 		  PRSTATUS_SIZE, &t->prstatus);
1786 	info->size += notesize(&t->notes[0]);
1787 
1788 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1789 
1790 	/*
1791 	 * Each other regset might generate a note too.  For each regset
1792 	 * that has no core_note_type or is inactive, skip it.
1793 	 */
1794 	note_iter = 1;
1795 	for (view_iter = 1; view_iter < view->n; ++view_iter) {
1796 		const struct user_regset *regset = &view->regsets[view_iter];
1797 		int note_type = regset->core_note_type;
1798 		bool is_fpreg = note_type == NT_PRFPREG;
1799 		void *data;
1800 		int ret;
1801 
1802 		do_thread_regset_writeback(t->task, regset);
1803 		if (!note_type) // not for coredumps
1804 			continue;
1805 		if (regset->active && regset->active(t->task, regset) <= 0)
1806 			continue;
1807 
1808 		ret = regset_get_alloc(t->task, regset, ~0U, &data);
1809 		if (ret < 0)
1810 			continue;
1811 
1812 		if (WARN_ON_ONCE(note_iter >= info->thread_notes))
1813 			break;
1814 
1815 		if (is_fpreg)
1816 			SET_PR_FPVALID(&t->prstatus);
1817 
1818 		fill_note(&t->notes[note_iter], is_fpreg ? "CORE" : "LINUX",
1819 			  note_type, ret, data);
1820 
1821 		info->size += notesize(&t->notes[note_iter]);
1822 		note_iter++;
1823 	}
1824 
1825 	return 1;
1826 }
1827 #else
1828 static int fill_thread_core_info(struct elf_thread_core_info *t,
1829 				 const struct user_regset_view *view,
1830 				 long signr, struct elf_note_info *info)
1831 {
1832 	struct task_struct *p = t->task;
1833 	elf_fpregset_t *fpu;
1834 
1835 	fill_prstatus(&t->prstatus.common, p, signr);
1836 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1837 
1838 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1839 		  &(t->prstatus));
1840 	info->size += notesize(&t->notes[0]);
1841 
1842 	fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL);
1843 	if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) {
1844 		kfree(fpu);
1845 		return 1;
1846 	}
1847 
1848 	t->prstatus.pr_fpvalid = 1;
1849 	fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(*fpu), fpu);
1850 	info->size += notesize(&t->notes[1]);
1851 
1852 	return 1;
1853 }
1854 #endif
1855 
1856 static int fill_note_info(struct elfhdr *elf, int phdrs,
1857 			  struct elf_note_info *info,
1858 			  struct coredump_params *cprm)
1859 {
1860 	struct task_struct *dump_task = current;
1861 	const struct user_regset_view *view;
1862 	struct elf_thread_core_info *t;
1863 	struct elf_prpsinfo *psinfo;
1864 	struct core_thread *ct;
1865 
1866 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1867 	if (!psinfo)
1868 		return 0;
1869 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1870 
1871 #ifdef CORE_DUMP_USE_REGSET
1872 	view = task_user_regset_view(dump_task);
1873 
1874 	/*
1875 	 * Figure out how many notes we're going to need for each thread.
1876 	 */
1877 	info->thread_notes = 0;
1878 	for (int i = 0; i < view->n; ++i)
1879 		if (view->regsets[i].core_note_type != 0)
1880 			++info->thread_notes;
1881 
1882 	/*
1883 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1884 	 * since it is our one special case.
1885 	 */
1886 	if (unlikely(info->thread_notes == 0) ||
1887 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1888 		WARN_ON(1);
1889 		return 0;
1890 	}
1891 
1892 	/*
1893 	 * Initialize the ELF file header.
1894 	 */
1895 	fill_elf_header(elf, phdrs,
1896 			view->e_machine, view->e_flags);
1897 #else
1898 	view = NULL;
1899 	info->thread_notes = 2;
1900 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1901 #endif
1902 
1903 	/*
1904 	 * Allocate a structure for each thread.
1905 	 */
1906 	info->thread = kzalloc(offsetof(struct elf_thread_core_info,
1907 				     notes[info->thread_notes]),
1908 			    GFP_KERNEL);
1909 	if (unlikely(!info->thread))
1910 		return 0;
1911 
1912 	info->thread->task = dump_task;
1913 	for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) {
1914 		t = kzalloc(offsetof(struct elf_thread_core_info,
1915 				     notes[info->thread_notes]),
1916 			    GFP_KERNEL);
1917 		if (unlikely(!t))
1918 			return 0;
1919 
1920 		t->task = ct->task;
1921 		t->next = info->thread->next;
1922 		info->thread->next = t;
1923 	}
1924 
1925 	/*
1926 	 * Now fill in each thread's information.
1927 	 */
1928 	for (t = info->thread; t != NULL; t = t->next)
1929 		if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info))
1930 			return 0;
1931 
1932 	/*
1933 	 * Fill in the two process-wide notes.
1934 	 */
1935 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1936 	info->size += notesize(&info->psinfo);
1937 
1938 	fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo);
1939 	info->size += notesize(&info->signote);
1940 
1941 	fill_auxv_note(&info->auxv, current->mm);
1942 	info->size += notesize(&info->auxv);
1943 
1944 	if (fill_files_note(&info->files, cprm) == 0)
1945 		info->size += notesize(&info->files);
1946 
1947 	return 1;
1948 }
1949 
1950 /*
1951  * Write all the notes for each thread.  When writing the first thread, the
1952  * process-wide notes are interleaved after the first thread-specific note.
1953  */
1954 static int write_note_info(struct elf_note_info *info,
1955 			   struct coredump_params *cprm)
1956 {
1957 	bool first = true;
1958 	struct elf_thread_core_info *t = info->thread;
1959 
1960 	do {
1961 		int i;
1962 
1963 		if (!writenote(&t->notes[0], cprm))
1964 			return 0;
1965 
1966 		if (first && !writenote(&info->psinfo, cprm))
1967 			return 0;
1968 		if (first && !writenote(&info->signote, cprm))
1969 			return 0;
1970 		if (first && !writenote(&info->auxv, cprm))
1971 			return 0;
1972 		if (first && info->files.data &&
1973 				!writenote(&info->files, cprm))
1974 			return 0;
1975 
1976 		for (i = 1; i < info->thread_notes; ++i)
1977 			if (t->notes[i].data &&
1978 			    !writenote(&t->notes[i], cprm))
1979 				return 0;
1980 
1981 		first = false;
1982 		t = t->next;
1983 	} while (t);
1984 
1985 	return 1;
1986 }
1987 
1988 static void free_note_info(struct elf_note_info *info)
1989 {
1990 	struct elf_thread_core_info *threads = info->thread;
1991 	while (threads) {
1992 		unsigned int i;
1993 		struct elf_thread_core_info *t = threads;
1994 		threads = t->next;
1995 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1996 		for (i = 1; i < info->thread_notes; ++i)
1997 			kfree(t->notes[i].data);
1998 		kfree(t);
1999 	}
2000 	kfree(info->psinfo.data);
2001 	kvfree(info->files.data);
2002 }
2003 
2004 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2005 			     elf_addr_t e_shoff, int segs)
2006 {
2007 	elf->e_shoff = e_shoff;
2008 	elf->e_shentsize = sizeof(*shdr4extnum);
2009 	elf->e_shnum = 1;
2010 	elf->e_shstrndx = SHN_UNDEF;
2011 
2012 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2013 
2014 	shdr4extnum->sh_type = SHT_NULL;
2015 	shdr4extnum->sh_size = elf->e_shnum;
2016 	shdr4extnum->sh_link = elf->e_shstrndx;
2017 	shdr4extnum->sh_info = segs;
2018 }
2019 
2020 /*
2021  * Actual dumper
2022  *
2023  * This is a two-pass process; first we find the offsets of the bits,
2024  * and then they are actually written out.  If we run out of core limit
2025  * we just truncate.
2026  */
2027 static int elf_core_dump(struct coredump_params *cprm)
2028 {
2029 	int has_dumped = 0;
2030 	int segs, i;
2031 	struct elfhdr elf;
2032 	loff_t offset = 0, dataoff;
2033 	struct elf_note_info info = { };
2034 	struct elf_phdr *phdr4note = NULL;
2035 	struct elf_shdr *shdr4extnum = NULL;
2036 	Elf_Half e_phnum;
2037 	elf_addr_t e_shoff;
2038 
2039 	/*
2040 	 * The number of segs are recored into ELF header as 16bit value.
2041 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2042 	 */
2043 	segs = cprm->vma_count + elf_core_extra_phdrs(cprm);
2044 
2045 	/* for notes section */
2046 	segs++;
2047 
2048 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2049 	 * this, kernel supports extended numbering. Have a look at
2050 	 * include/linux/elf.h for further information. */
2051 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2052 
2053 	/*
2054 	 * Collect all the non-memory information about the process for the
2055 	 * notes.  This also sets up the file header.
2056 	 */
2057 	if (!fill_note_info(&elf, e_phnum, &info, cprm))
2058 		goto end_coredump;
2059 
2060 	has_dumped = 1;
2061 
2062 	offset += sizeof(elf);				/* ELF header */
2063 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2064 
2065 	/* Write notes phdr entry */
2066 	{
2067 		size_t sz = info.size;
2068 
2069 		/* For cell spufs */
2070 		sz += elf_coredump_extra_notes_size();
2071 
2072 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2073 		if (!phdr4note)
2074 			goto end_coredump;
2075 
2076 		fill_elf_note_phdr(phdr4note, sz, offset);
2077 		offset += sz;
2078 	}
2079 
2080 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2081 
2082 	offset += cprm->vma_data_size;
2083 	offset += elf_core_extra_data_size(cprm);
2084 	e_shoff = offset;
2085 
2086 	if (e_phnum == PN_XNUM) {
2087 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2088 		if (!shdr4extnum)
2089 			goto end_coredump;
2090 		fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2091 	}
2092 
2093 	offset = dataoff;
2094 
2095 	if (!dump_emit(cprm, &elf, sizeof(elf)))
2096 		goto end_coredump;
2097 
2098 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2099 		goto end_coredump;
2100 
2101 	/* Write program headers for segments dump */
2102 	for (i = 0; i < cprm->vma_count; i++) {
2103 		struct core_vma_metadata *meta = cprm->vma_meta + i;
2104 		struct elf_phdr phdr;
2105 
2106 		phdr.p_type = PT_LOAD;
2107 		phdr.p_offset = offset;
2108 		phdr.p_vaddr = meta->start;
2109 		phdr.p_paddr = 0;
2110 		phdr.p_filesz = meta->dump_size;
2111 		phdr.p_memsz = meta->end - meta->start;
2112 		offset += phdr.p_filesz;
2113 		phdr.p_flags = 0;
2114 		if (meta->flags & VM_READ)
2115 			phdr.p_flags |= PF_R;
2116 		if (meta->flags & VM_WRITE)
2117 			phdr.p_flags |= PF_W;
2118 		if (meta->flags & VM_EXEC)
2119 			phdr.p_flags |= PF_X;
2120 		phdr.p_align = ELF_EXEC_PAGESIZE;
2121 
2122 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2123 			goto end_coredump;
2124 	}
2125 
2126 	if (!elf_core_write_extra_phdrs(cprm, offset))
2127 		goto end_coredump;
2128 
2129 	/* write out the notes section */
2130 	if (!write_note_info(&info, cprm))
2131 		goto end_coredump;
2132 
2133 	/* For cell spufs */
2134 	if (elf_coredump_extra_notes_write(cprm))
2135 		goto end_coredump;
2136 
2137 	/* Align to page */
2138 	dump_skip_to(cprm, dataoff);
2139 
2140 	for (i = 0; i < cprm->vma_count; i++) {
2141 		struct core_vma_metadata *meta = cprm->vma_meta + i;
2142 
2143 		if (!dump_user_range(cprm, meta->start, meta->dump_size))
2144 			goto end_coredump;
2145 	}
2146 
2147 	if (!elf_core_write_extra_data(cprm))
2148 		goto end_coredump;
2149 
2150 	if (e_phnum == PN_XNUM) {
2151 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2152 			goto end_coredump;
2153 	}
2154 
2155 end_coredump:
2156 	free_note_info(&info);
2157 	kfree(shdr4extnum);
2158 	kfree(phdr4note);
2159 	return has_dumped;
2160 }
2161 
2162 #endif		/* CONFIG_ELF_CORE */
2163 
2164 static int __init init_elf_binfmt(void)
2165 {
2166 	register_binfmt(&elf_format);
2167 	return 0;
2168 }
2169 
2170 static void __exit exit_elf_binfmt(void)
2171 {
2172 	/* Remove the COFF and ELF loaders. */
2173 	unregister_binfmt(&elf_format);
2174 }
2175 
2176 core_initcall(init_elf_binfmt);
2177 module_exit(exit_elf_binfmt);
2178 
2179 #ifdef CONFIG_BINFMT_ELF_KUNIT_TEST
2180 #include "binfmt_elf_test.c"
2181 #endif
2182