xref: /openbmc/linux/fs/binfmt_elf.c (revision 84d517f3)
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <linux/sched.h>
37 #include <asm/uaccess.h>
38 #include <asm/param.h>
39 #include <asm/page.h>
40 
41 #ifndef user_long_t
42 #define user_long_t long
43 #endif
44 #ifndef user_siginfo_t
45 #define user_siginfo_t siginfo_t
46 #endif
47 
48 static int load_elf_binary(struct linux_binprm *bprm);
49 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
50 				int, int, unsigned long);
51 
52 #ifdef CONFIG_USELIB
53 static int load_elf_library(struct file *);
54 #else
55 #define load_elf_library NULL
56 #endif
57 
58 /*
59  * If we don't support core dumping, then supply a NULL so we
60  * don't even try.
61  */
62 #ifdef CONFIG_ELF_CORE
63 static int elf_core_dump(struct coredump_params *cprm);
64 #else
65 #define elf_core_dump	NULL
66 #endif
67 
68 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
69 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
70 #else
71 #define ELF_MIN_ALIGN	PAGE_SIZE
72 #endif
73 
74 #ifndef ELF_CORE_EFLAGS
75 #define ELF_CORE_EFLAGS	0
76 #endif
77 
78 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
79 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
80 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
81 
82 static struct linux_binfmt elf_format = {
83 	.module		= THIS_MODULE,
84 	.load_binary	= load_elf_binary,
85 	.load_shlib	= load_elf_library,
86 	.core_dump	= elf_core_dump,
87 	.min_coredump	= ELF_EXEC_PAGESIZE,
88 };
89 
90 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
91 
92 static int set_brk(unsigned long start, unsigned long end)
93 {
94 	start = ELF_PAGEALIGN(start);
95 	end = ELF_PAGEALIGN(end);
96 	if (end > start) {
97 		unsigned long addr;
98 		addr = vm_brk(start, end - start);
99 		if (BAD_ADDR(addr))
100 			return addr;
101 	}
102 	current->mm->start_brk = current->mm->brk = end;
103 	return 0;
104 }
105 
106 /* We need to explicitly zero any fractional pages
107    after the data section (i.e. bss).  This would
108    contain the junk from the file that should not
109    be in memory
110  */
111 static int padzero(unsigned long elf_bss)
112 {
113 	unsigned long nbyte;
114 
115 	nbyte = ELF_PAGEOFFSET(elf_bss);
116 	if (nbyte) {
117 		nbyte = ELF_MIN_ALIGN - nbyte;
118 		if (clear_user((void __user *) elf_bss, nbyte))
119 			return -EFAULT;
120 	}
121 	return 0;
122 }
123 
124 /* Let's use some macros to make this stack manipulation a little clearer */
125 #ifdef CONFIG_STACK_GROWSUP
126 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
127 #define STACK_ROUND(sp, items) \
128 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
129 #define STACK_ALLOC(sp, len) ({ \
130 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
131 	old_sp; })
132 #else
133 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
134 #define STACK_ROUND(sp, items) \
135 	(((unsigned long) (sp - items)) &~ 15UL)
136 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
137 #endif
138 
139 #ifndef ELF_BASE_PLATFORM
140 /*
141  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
142  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
143  * will be copied to the user stack in the same manner as AT_PLATFORM.
144  */
145 #define ELF_BASE_PLATFORM NULL
146 #endif
147 
148 static int
149 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
150 		unsigned long load_addr, unsigned long interp_load_addr)
151 {
152 	unsigned long p = bprm->p;
153 	int argc = bprm->argc;
154 	int envc = bprm->envc;
155 	elf_addr_t __user *argv;
156 	elf_addr_t __user *envp;
157 	elf_addr_t __user *sp;
158 	elf_addr_t __user *u_platform;
159 	elf_addr_t __user *u_base_platform;
160 	elf_addr_t __user *u_rand_bytes;
161 	const char *k_platform = ELF_PLATFORM;
162 	const char *k_base_platform = ELF_BASE_PLATFORM;
163 	unsigned char k_rand_bytes[16];
164 	int items;
165 	elf_addr_t *elf_info;
166 	int ei_index = 0;
167 	const struct cred *cred = current_cred();
168 	struct vm_area_struct *vma;
169 
170 	/*
171 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
172 	 * evictions by the processes running on the same package. One
173 	 * thing we can do is to shuffle the initial stack for them.
174 	 */
175 
176 	p = arch_align_stack(p);
177 
178 	/*
179 	 * If this architecture has a platform capability string, copy it
180 	 * to userspace.  In some cases (Sparc), this info is impossible
181 	 * for userspace to get any other way, in others (i386) it is
182 	 * merely difficult.
183 	 */
184 	u_platform = NULL;
185 	if (k_platform) {
186 		size_t len = strlen(k_platform) + 1;
187 
188 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
189 		if (__copy_to_user(u_platform, k_platform, len))
190 			return -EFAULT;
191 	}
192 
193 	/*
194 	 * If this architecture has a "base" platform capability
195 	 * string, copy it to userspace.
196 	 */
197 	u_base_platform = NULL;
198 	if (k_base_platform) {
199 		size_t len = strlen(k_base_platform) + 1;
200 
201 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
202 		if (__copy_to_user(u_base_platform, k_base_platform, len))
203 			return -EFAULT;
204 	}
205 
206 	/*
207 	 * Generate 16 random bytes for userspace PRNG seeding.
208 	 */
209 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
210 	u_rand_bytes = (elf_addr_t __user *)
211 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
212 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
213 		return -EFAULT;
214 
215 	/* Create the ELF interpreter info */
216 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
217 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
218 #define NEW_AUX_ENT(id, val) \
219 	do { \
220 		elf_info[ei_index++] = id; \
221 		elf_info[ei_index++] = val; \
222 	} while (0)
223 
224 #ifdef ARCH_DLINFO
225 	/*
226 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
227 	 * AUXV.
228 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
229 	 * ARCH_DLINFO changes
230 	 */
231 	ARCH_DLINFO;
232 #endif
233 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
234 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
235 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
236 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
237 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
238 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
239 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
240 	NEW_AUX_ENT(AT_FLAGS, 0);
241 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
242 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
243 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
244 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
245 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
246  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
247 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
248 #ifdef ELF_HWCAP2
249 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
250 #endif
251 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
252 	if (k_platform) {
253 		NEW_AUX_ENT(AT_PLATFORM,
254 			    (elf_addr_t)(unsigned long)u_platform);
255 	}
256 	if (k_base_platform) {
257 		NEW_AUX_ENT(AT_BASE_PLATFORM,
258 			    (elf_addr_t)(unsigned long)u_base_platform);
259 	}
260 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
261 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
262 	}
263 #undef NEW_AUX_ENT
264 	/* AT_NULL is zero; clear the rest too */
265 	memset(&elf_info[ei_index], 0,
266 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
267 
268 	/* And advance past the AT_NULL entry.  */
269 	ei_index += 2;
270 
271 	sp = STACK_ADD(p, ei_index);
272 
273 	items = (argc + 1) + (envc + 1) + 1;
274 	bprm->p = STACK_ROUND(sp, items);
275 
276 	/* Point sp at the lowest address on the stack */
277 #ifdef CONFIG_STACK_GROWSUP
278 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
279 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
280 #else
281 	sp = (elf_addr_t __user *)bprm->p;
282 #endif
283 
284 
285 	/*
286 	 * Grow the stack manually; some architectures have a limit on how
287 	 * far ahead a user-space access may be in order to grow the stack.
288 	 */
289 	vma = find_extend_vma(current->mm, bprm->p);
290 	if (!vma)
291 		return -EFAULT;
292 
293 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
294 	if (__put_user(argc, sp++))
295 		return -EFAULT;
296 	argv = sp;
297 	envp = argv + argc + 1;
298 
299 	/* Populate argv and envp */
300 	p = current->mm->arg_end = current->mm->arg_start;
301 	while (argc-- > 0) {
302 		size_t len;
303 		if (__put_user((elf_addr_t)p, argv++))
304 			return -EFAULT;
305 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
306 		if (!len || len > MAX_ARG_STRLEN)
307 			return -EINVAL;
308 		p += len;
309 	}
310 	if (__put_user(0, argv))
311 		return -EFAULT;
312 	current->mm->arg_end = current->mm->env_start = p;
313 	while (envc-- > 0) {
314 		size_t len;
315 		if (__put_user((elf_addr_t)p, envp++))
316 			return -EFAULT;
317 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
318 		if (!len || len > MAX_ARG_STRLEN)
319 			return -EINVAL;
320 		p += len;
321 	}
322 	if (__put_user(0, envp))
323 		return -EFAULT;
324 	current->mm->env_end = p;
325 
326 	/* Put the elf_info on the stack in the right place.  */
327 	sp = (elf_addr_t __user *)envp + 1;
328 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
329 		return -EFAULT;
330 	return 0;
331 }
332 
333 #ifndef elf_map
334 
335 static unsigned long elf_map(struct file *filep, unsigned long addr,
336 		struct elf_phdr *eppnt, int prot, int type,
337 		unsigned long total_size)
338 {
339 	unsigned long map_addr;
340 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
341 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
342 	addr = ELF_PAGESTART(addr);
343 	size = ELF_PAGEALIGN(size);
344 
345 	/* mmap() will return -EINVAL if given a zero size, but a
346 	 * segment with zero filesize is perfectly valid */
347 	if (!size)
348 		return addr;
349 
350 	/*
351 	* total_size is the size of the ELF (interpreter) image.
352 	* The _first_ mmap needs to know the full size, otherwise
353 	* randomization might put this image into an overlapping
354 	* position with the ELF binary image. (since size < total_size)
355 	* So we first map the 'big' image - and unmap the remainder at
356 	* the end. (which unmap is needed for ELF images with holes.)
357 	*/
358 	if (total_size) {
359 		total_size = ELF_PAGEALIGN(total_size);
360 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
361 		if (!BAD_ADDR(map_addr))
362 			vm_munmap(map_addr+size, total_size-size);
363 	} else
364 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
365 
366 	return(map_addr);
367 }
368 
369 #endif /* !elf_map */
370 
371 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
372 {
373 	int i, first_idx = -1, last_idx = -1;
374 
375 	for (i = 0; i < nr; i++) {
376 		if (cmds[i].p_type == PT_LOAD) {
377 			last_idx = i;
378 			if (first_idx == -1)
379 				first_idx = i;
380 		}
381 	}
382 	if (first_idx == -1)
383 		return 0;
384 
385 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
386 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
387 }
388 
389 
390 /* This is much more generalized than the library routine read function,
391    so we keep this separate.  Technically the library read function
392    is only provided so that we can read a.out libraries that have
393    an ELF header */
394 
395 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
396 		struct file *interpreter, unsigned long *interp_map_addr,
397 		unsigned long no_base)
398 {
399 	struct elf_phdr *elf_phdata;
400 	struct elf_phdr *eppnt;
401 	unsigned long load_addr = 0;
402 	int load_addr_set = 0;
403 	unsigned long last_bss = 0, elf_bss = 0;
404 	unsigned long error = ~0UL;
405 	unsigned long total_size;
406 	int retval, i, size;
407 
408 	/* First of all, some simple consistency checks */
409 	if (interp_elf_ex->e_type != ET_EXEC &&
410 	    interp_elf_ex->e_type != ET_DYN)
411 		goto out;
412 	if (!elf_check_arch(interp_elf_ex))
413 		goto out;
414 	if (!interpreter->f_op->mmap)
415 		goto out;
416 
417 	/*
418 	 * If the size of this structure has changed, then punt, since
419 	 * we will be doing the wrong thing.
420 	 */
421 	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
422 		goto out;
423 	if (interp_elf_ex->e_phnum < 1 ||
424 		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
425 		goto out;
426 
427 	/* Now read in all of the header information */
428 	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
429 	if (size > ELF_MIN_ALIGN)
430 		goto out;
431 	elf_phdata = kmalloc(size, GFP_KERNEL);
432 	if (!elf_phdata)
433 		goto out;
434 
435 	retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
436 			     (char *)elf_phdata, size);
437 	error = -EIO;
438 	if (retval != size) {
439 		if (retval < 0)
440 			error = retval;
441 		goto out_close;
442 	}
443 
444 	total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
445 	if (!total_size) {
446 		error = -EINVAL;
447 		goto out_close;
448 	}
449 
450 	eppnt = elf_phdata;
451 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
452 		if (eppnt->p_type == PT_LOAD) {
453 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
454 			int elf_prot = 0;
455 			unsigned long vaddr = 0;
456 			unsigned long k, map_addr;
457 
458 			if (eppnt->p_flags & PF_R)
459 		    		elf_prot = PROT_READ;
460 			if (eppnt->p_flags & PF_W)
461 				elf_prot |= PROT_WRITE;
462 			if (eppnt->p_flags & PF_X)
463 				elf_prot |= PROT_EXEC;
464 			vaddr = eppnt->p_vaddr;
465 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
466 				elf_type |= MAP_FIXED;
467 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
468 				load_addr = -vaddr;
469 
470 			map_addr = elf_map(interpreter, load_addr + vaddr,
471 					eppnt, elf_prot, elf_type, total_size);
472 			total_size = 0;
473 			if (!*interp_map_addr)
474 				*interp_map_addr = map_addr;
475 			error = map_addr;
476 			if (BAD_ADDR(map_addr))
477 				goto out_close;
478 
479 			if (!load_addr_set &&
480 			    interp_elf_ex->e_type == ET_DYN) {
481 				load_addr = map_addr - ELF_PAGESTART(vaddr);
482 				load_addr_set = 1;
483 			}
484 
485 			/*
486 			 * Check to see if the section's size will overflow the
487 			 * allowed task size. Note that p_filesz must always be
488 			 * <= p_memsize so it's only necessary to check p_memsz.
489 			 */
490 			k = load_addr + eppnt->p_vaddr;
491 			if (BAD_ADDR(k) ||
492 			    eppnt->p_filesz > eppnt->p_memsz ||
493 			    eppnt->p_memsz > TASK_SIZE ||
494 			    TASK_SIZE - eppnt->p_memsz < k) {
495 				error = -ENOMEM;
496 				goto out_close;
497 			}
498 
499 			/*
500 			 * Find the end of the file mapping for this phdr, and
501 			 * keep track of the largest address we see for this.
502 			 */
503 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
504 			if (k > elf_bss)
505 				elf_bss = k;
506 
507 			/*
508 			 * Do the same thing for the memory mapping - between
509 			 * elf_bss and last_bss is the bss section.
510 			 */
511 			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
512 			if (k > last_bss)
513 				last_bss = k;
514 		}
515 	}
516 
517 	if (last_bss > elf_bss) {
518 		/*
519 		 * Now fill out the bss section.  First pad the last page up
520 		 * to the page boundary, and then perform a mmap to make sure
521 		 * that there are zero-mapped pages up to and including the
522 		 * last bss page.
523 		 */
524 		if (padzero(elf_bss)) {
525 			error = -EFAULT;
526 			goto out_close;
527 		}
528 
529 		/* What we have mapped so far */
530 		elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
531 
532 		/* Map the last of the bss segment */
533 		error = vm_brk(elf_bss, last_bss - elf_bss);
534 		if (BAD_ADDR(error))
535 			goto out_close;
536 	}
537 
538 	error = load_addr;
539 
540 out_close:
541 	kfree(elf_phdata);
542 out:
543 	return error;
544 }
545 
546 /*
547  * These are the functions used to load ELF style executables and shared
548  * libraries.  There is no binary dependent code anywhere else.
549  */
550 
551 #ifndef STACK_RND_MASK
552 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
553 #endif
554 
555 static unsigned long randomize_stack_top(unsigned long stack_top)
556 {
557 	unsigned int random_variable = 0;
558 
559 	if ((current->flags & PF_RANDOMIZE) &&
560 		!(current->personality & ADDR_NO_RANDOMIZE)) {
561 		random_variable = get_random_int() & STACK_RND_MASK;
562 		random_variable <<= PAGE_SHIFT;
563 	}
564 #ifdef CONFIG_STACK_GROWSUP
565 	return PAGE_ALIGN(stack_top) + random_variable;
566 #else
567 	return PAGE_ALIGN(stack_top) - random_variable;
568 #endif
569 }
570 
571 static int load_elf_binary(struct linux_binprm *bprm)
572 {
573 	struct file *interpreter = NULL; /* to shut gcc up */
574  	unsigned long load_addr = 0, load_bias = 0;
575 	int load_addr_set = 0;
576 	char * elf_interpreter = NULL;
577 	unsigned long error;
578 	struct elf_phdr *elf_ppnt, *elf_phdata;
579 	unsigned long elf_bss, elf_brk;
580 	int retval, i;
581 	unsigned int size;
582 	unsigned long elf_entry;
583 	unsigned long interp_load_addr = 0;
584 	unsigned long start_code, end_code, start_data, end_data;
585 	unsigned long reloc_func_desc __maybe_unused = 0;
586 	int executable_stack = EXSTACK_DEFAULT;
587 	struct pt_regs *regs = current_pt_regs();
588 	struct {
589 		struct elfhdr elf_ex;
590 		struct elfhdr interp_elf_ex;
591 	} *loc;
592 
593 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
594 	if (!loc) {
595 		retval = -ENOMEM;
596 		goto out_ret;
597 	}
598 
599 	/* Get the exec-header */
600 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
601 
602 	retval = -ENOEXEC;
603 	/* First of all, some simple consistency checks */
604 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
605 		goto out;
606 
607 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
608 		goto out;
609 	if (!elf_check_arch(&loc->elf_ex))
610 		goto out;
611 	if (!bprm->file->f_op->mmap)
612 		goto out;
613 
614 	/* Now read in all of the header information */
615 	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
616 		goto out;
617 	if (loc->elf_ex.e_phnum < 1 ||
618 	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
619 		goto out;
620 	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
621 	retval = -ENOMEM;
622 	elf_phdata = kmalloc(size, GFP_KERNEL);
623 	if (!elf_phdata)
624 		goto out;
625 
626 	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
627 			     (char *)elf_phdata, size);
628 	if (retval != size) {
629 		if (retval >= 0)
630 			retval = -EIO;
631 		goto out_free_ph;
632 	}
633 
634 	elf_ppnt = elf_phdata;
635 	elf_bss = 0;
636 	elf_brk = 0;
637 
638 	start_code = ~0UL;
639 	end_code = 0;
640 	start_data = 0;
641 	end_data = 0;
642 
643 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
644 		if (elf_ppnt->p_type == PT_INTERP) {
645 			/* This is the program interpreter used for
646 			 * shared libraries - for now assume that this
647 			 * is an a.out format binary
648 			 */
649 			retval = -ENOEXEC;
650 			if (elf_ppnt->p_filesz > PATH_MAX ||
651 			    elf_ppnt->p_filesz < 2)
652 				goto out_free_ph;
653 
654 			retval = -ENOMEM;
655 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
656 						  GFP_KERNEL);
657 			if (!elf_interpreter)
658 				goto out_free_ph;
659 
660 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
661 					     elf_interpreter,
662 					     elf_ppnt->p_filesz);
663 			if (retval != elf_ppnt->p_filesz) {
664 				if (retval >= 0)
665 					retval = -EIO;
666 				goto out_free_interp;
667 			}
668 			/* make sure path is NULL terminated */
669 			retval = -ENOEXEC;
670 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
671 				goto out_free_interp;
672 
673 			interpreter = open_exec(elf_interpreter);
674 			retval = PTR_ERR(interpreter);
675 			if (IS_ERR(interpreter))
676 				goto out_free_interp;
677 
678 			/*
679 			 * If the binary is not readable then enforce
680 			 * mm->dumpable = 0 regardless of the interpreter's
681 			 * permissions.
682 			 */
683 			would_dump(bprm, interpreter);
684 
685 			retval = kernel_read(interpreter, 0, bprm->buf,
686 					     BINPRM_BUF_SIZE);
687 			if (retval != BINPRM_BUF_SIZE) {
688 				if (retval >= 0)
689 					retval = -EIO;
690 				goto out_free_dentry;
691 			}
692 
693 			/* Get the exec headers */
694 			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
695 			break;
696 		}
697 		elf_ppnt++;
698 	}
699 
700 	elf_ppnt = elf_phdata;
701 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
702 		if (elf_ppnt->p_type == PT_GNU_STACK) {
703 			if (elf_ppnt->p_flags & PF_X)
704 				executable_stack = EXSTACK_ENABLE_X;
705 			else
706 				executable_stack = EXSTACK_DISABLE_X;
707 			break;
708 		}
709 
710 	/* Some simple consistency checks for the interpreter */
711 	if (elf_interpreter) {
712 		retval = -ELIBBAD;
713 		/* Not an ELF interpreter */
714 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
715 			goto out_free_dentry;
716 		/* Verify the interpreter has a valid arch */
717 		if (!elf_check_arch(&loc->interp_elf_ex))
718 			goto out_free_dentry;
719 	}
720 
721 	/* Flush all traces of the currently running executable */
722 	retval = flush_old_exec(bprm);
723 	if (retval)
724 		goto out_free_dentry;
725 
726 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
727 	   may depend on the personality.  */
728 	SET_PERSONALITY(loc->elf_ex);
729 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
730 		current->personality |= READ_IMPLIES_EXEC;
731 
732 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
733 		current->flags |= PF_RANDOMIZE;
734 
735 	setup_new_exec(bprm);
736 
737 	/* Do this so that we can load the interpreter, if need be.  We will
738 	   change some of these later */
739 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
740 				 executable_stack);
741 	if (retval < 0) {
742 		send_sig(SIGKILL, current, 0);
743 		goto out_free_dentry;
744 	}
745 
746 	current->mm->start_stack = bprm->p;
747 
748 	/* Now we do a little grungy work by mmapping the ELF image into
749 	   the correct location in memory. */
750 	for(i = 0, elf_ppnt = elf_phdata;
751 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
752 		int elf_prot = 0, elf_flags;
753 		unsigned long k, vaddr;
754 
755 		if (elf_ppnt->p_type != PT_LOAD)
756 			continue;
757 
758 		if (unlikely (elf_brk > elf_bss)) {
759 			unsigned long nbyte;
760 
761 			/* There was a PT_LOAD segment with p_memsz > p_filesz
762 			   before this one. Map anonymous pages, if needed,
763 			   and clear the area.  */
764 			retval = set_brk(elf_bss + load_bias,
765 					 elf_brk + load_bias);
766 			if (retval) {
767 				send_sig(SIGKILL, current, 0);
768 				goto out_free_dentry;
769 			}
770 			nbyte = ELF_PAGEOFFSET(elf_bss);
771 			if (nbyte) {
772 				nbyte = ELF_MIN_ALIGN - nbyte;
773 				if (nbyte > elf_brk - elf_bss)
774 					nbyte = elf_brk - elf_bss;
775 				if (clear_user((void __user *)elf_bss +
776 							load_bias, nbyte)) {
777 					/*
778 					 * This bss-zeroing can fail if the ELF
779 					 * file specifies odd protections. So
780 					 * we don't check the return value
781 					 */
782 				}
783 			}
784 		}
785 
786 		if (elf_ppnt->p_flags & PF_R)
787 			elf_prot |= PROT_READ;
788 		if (elf_ppnt->p_flags & PF_W)
789 			elf_prot |= PROT_WRITE;
790 		if (elf_ppnt->p_flags & PF_X)
791 			elf_prot |= PROT_EXEC;
792 
793 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
794 
795 		vaddr = elf_ppnt->p_vaddr;
796 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
797 			elf_flags |= MAP_FIXED;
798 		} else if (loc->elf_ex.e_type == ET_DYN) {
799 			/* Try and get dynamic programs out of the way of the
800 			 * default mmap base, as well as whatever program they
801 			 * might try to exec.  This is because the brk will
802 			 * follow the loader, and is not movable.  */
803 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
804 			/* Memory randomization might have been switched off
805 			 * in runtime via sysctl or explicit setting of
806 			 * personality flags.
807 			 * If that is the case, retain the original non-zero
808 			 * load_bias value in order to establish proper
809 			 * non-randomized mappings.
810 			 */
811 			if (current->flags & PF_RANDOMIZE)
812 				load_bias = 0;
813 			else
814 				load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
815 #else
816 			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
817 #endif
818 		}
819 
820 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
821 				elf_prot, elf_flags, 0);
822 		if (BAD_ADDR(error)) {
823 			send_sig(SIGKILL, current, 0);
824 			retval = IS_ERR((void *)error) ?
825 				PTR_ERR((void*)error) : -EINVAL;
826 			goto out_free_dentry;
827 		}
828 
829 		if (!load_addr_set) {
830 			load_addr_set = 1;
831 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
832 			if (loc->elf_ex.e_type == ET_DYN) {
833 				load_bias += error -
834 				             ELF_PAGESTART(load_bias + vaddr);
835 				load_addr += load_bias;
836 				reloc_func_desc = load_bias;
837 			}
838 		}
839 		k = elf_ppnt->p_vaddr;
840 		if (k < start_code)
841 			start_code = k;
842 		if (start_data < k)
843 			start_data = k;
844 
845 		/*
846 		 * Check to see if the section's size will overflow the
847 		 * allowed task size. Note that p_filesz must always be
848 		 * <= p_memsz so it is only necessary to check p_memsz.
849 		 */
850 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
851 		    elf_ppnt->p_memsz > TASK_SIZE ||
852 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
853 			/* set_brk can never work. Avoid overflows. */
854 			send_sig(SIGKILL, current, 0);
855 			retval = -EINVAL;
856 			goto out_free_dentry;
857 		}
858 
859 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
860 
861 		if (k > elf_bss)
862 			elf_bss = k;
863 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
864 			end_code = k;
865 		if (end_data < k)
866 			end_data = k;
867 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
868 		if (k > elf_brk)
869 			elf_brk = k;
870 	}
871 
872 	loc->elf_ex.e_entry += load_bias;
873 	elf_bss += load_bias;
874 	elf_brk += load_bias;
875 	start_code += load_bias;
876 	end_code += load_bias;
877 	start_data += load_bias;
878 	end_data += load_bias;
879 
880 	/* Calling set_brk effectively mmaps the pages that we need
881 	 * for the bss and break sections.  We must do this before
882 	 * mapping in the interpreter, to make sure it doesn't wind
883 	 * up getting placed where the bss needs to go.
884 	 */
885 	retval = set_brk(elf_bss, elf_brk);
886 	if (retval) {
887 		send_sig(SIGKILL, current, 0);
888 		goto out_free_dentry;
889 	}
890 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
891 		send_sig(SIGSEGV, current, 0);
892 		retval = -EFAULT; /* Nobody gets to see this, but.. */
893 		goto out_free_dentry;
894 	}
895 
896 	if (elf_interpreter) {
897 		unsigned long interp_map_addr = 0;
898 
899 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
900 					    interpreter,
901 					    &interp_map_addr,
902 					    load_bias);
903 		if (!IS_ERR((void *)elf_entry)) {
904 			/*
905 			 * load_elf_interp() returns relocation
906 			 * adjustment
907 			 */
908 			interp_load_addr = elf_entry;
909 			elf_entry += loc->interp_elf_ex.e_entry;
910 		}
911 		if (BAD_ADDR(elf_entry)) {
912 			force_sig(SIGSEGV, current);
913 			retval = IS_ERR((void *)elf_entry) ?
914 					(int)elf_entry : -EINVAL;
915 			goto out_free_dentry;
916 		}
917 		reloc_func_desc = interp_load_addr;
918 
919 		allow_write_access(interpreter);
920 		fput(interpreter);
921 		kfree(elf_interpreter);
922 	} else {
923 		elf_entry = loc->elf_ex.e_entry;
924 		if (BAD_ADDR(elf_entry)) {
925 			force_sig(SIGSEGV, current);
926 			retval = -EINVAL;
927 			goto out_free_dentry;
928 		}
929 	}
930 
931 	kfree(elf_phdata);
932 
933 	set_binfmt(&elf_format);
934 
935 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
936 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
937 	if (retval < 0) {
938 		send_sig(SIGKILL, current, 0);
939 		goto out;
940 	}
941 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
942 
943 	install_exec_creds(bprm);
944 	retval = create_elf_tables(bprm, &loc->elf_ex,
945 			  load_addr, interp_load_addr);
946 	if (retval < 0) {
947 		send_sig(SIGKILL, current, 0);
948 		goto out;
949 	}
950 	/* N.B. passed_fileno might not be initialized? */
951 	current->mm->end_code = end_code;
952 	current->mm->start_code = start_code;
953 	current->mm->start_data = start_data;
954 	current->mm->end_data = end_data;
955 	current->mm->start_stack = bprm->p;
956 
957 #ifdef arch_randomize_brk
958 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
959 		current->mm->brk = current->mm->start_brk =
960 			arch_randomize_brk(current->mm);
961 #ifdef CONFIG_COMPAT_BRK
962 		current->brk_randomized = 1;
963 #endif
964 	}
965 #endif
966 
967 	if (current->personality & MMAP_PAGE_ZERO) {
968 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
969 		   and some applications "depend" upon this behavior.
970 		   Since we do not have the power to recompile these, we
971 		   emulate the SVr4 behavior. Sigh. */
972 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
973 				MAP_FIXED | MAP_PRIVATE, 0);
974 	}
975 
976 #ifdef ELF_PLAT_INIT
977 	/*
978 	 * The ABI may specify that certain registers be set up in special
979 	 * ways (on i386 %edx is the address of a DT_FINI function, for
980 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
981 	 * that the e_entry field is the address of the function descriptor
982 	 * for the startup routine, rather than the address of the startup
983 	 * routine itself.  This macro performs whatever initialization to
984 	 * the regs structure is required as well as any relocations to the
985 	 * function descriptor entries when executing dynamically links apps.
986 	 */
987 	ELF_PLAT_INIT(regs, reloc_func_desc);
988 #endif
989 
990 	start_thread(regs, elf_entry, bprm->p);
991 	retval = 0;
992 out:
993 	kfree(loc);
994 out_ret:
995 	return retval;
996 
997 	/* error cleanup */
998 out_free_dentry:
999 	allow_write_access(interpreter);
1000 	if (interpreter)
1001 		fput(interpreter);
1002 out_free_interp:
1003 	kfree(elf_interpreter);
1004 out_free_ph:
1005 	kfree(elf_phdata);
1006 	goto out;
1007 }
1008 
1009 #ifdef CONFIG_USELIB
1010 /* This is really simpleminded and specialized - we are loading an
1011    a.out library that is given an ELF header. */
1012 static int load_elf_library(struct file *file)
1013 {
1014 	struct elf_phdr *elf_phdata;
1015 	struct elf_phdr *eppnt;
1016 	unsigned long elf_bss, bss, len;
1017 	int retval, error, i, j;
1018 	struct elfhdr elf_ex;
1019 
1020 	error = -ENOEXEC;
1021 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1022 	if (retval != sizeof(elf_ex))
1023 		goto out;
1024 
1025 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1026 		goto out;
1027 
1028 	/* First of all, some simple consistency checks */
1029 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1030 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1031 		goto out;
1032 
1033 	/* Now read in all of the header information */
1034 
1035 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1036 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1037 
1038 	error = -ENOMEM;
1039 	elf_phdata = kmalloc(j, GFP_KERNEL);
1040 	if (!elf_phdata)
1041 		goto out;
1042 
1043 	eppnt = elf_phdata;
1044 	error = -ENOEXEC;
1045 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1046 	if (retval != j)
1047 		goto out_free_ph;
1048 
1049 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1050 		if ((eppnt + i)->p_type == PT_LOAD)
1051 			j++;
1052 	if (j != 1)
1053 		goto out_free_ph;
1054 
1055 	while (eppnt->p_type != PT_LOAD)
1056 		eppnt++;
1057 
1058 	/* Now use mmap to map the library into memory. */
1059 	error = vm_mmap(file,
1060 			ELF_PAGESTART(eppnt->p_vaddr),
1061 			(eppnt->p_filesz +
1062 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1063 			PROT_READ | PROT_WRITE | PROT_EXEC,
1064 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1065 			(eppnt->p_offset -
1066 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1067 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1068 		goto out_free_ph;
1069 
1070 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1071 	if (padzero(elf_bss)) {
1072 		error = -EFAULT;
1073 		goto out_free_ph;
1074 	}
1075 
1076 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1077 			    ELF_MIN_ALIGN - 1);
1078 	bss = eppnt->p_memsz + eppnt->p_vaddr;
1079 	if (bss > len)
1080 		vm_brk(len, bss - len);
1081 	error = 0;
1082 
1083 out_free_ph:
1084 	kfree(elf_phdata);
1085 out:
1086 	return error;
1087 }
1088 #endif /* #ifdef CONFIG_USELIB */
1089 
1090 #ifdef CONFIG_ELF_CORE
1091 /*
1092  * ELF core dumper
1093  *
1094  * Modelled on fs/exec.c:aout_core_dump()
1095  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1096  */
1097 
1098 /*
1099  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1100  * that are useful for post-mortem analysis are included in every core dump.
1101  * In that way we ensure that the core dump is fully interpretable later
1102  * without matching up the same kernel and hardware config to see what PC values
1103  * meant. These special mappings include - vDSO, vsyscall, and other
1104  * architecture specific mappings
1105  */
1106 static bool always_dump_vma(struct vm_area_struct *vma)
1107 {
1108 	/* Any vsyscall mappings? */
1109 	if (vma == get_gate_vma(vma->vm_mm))
1110 		return true;
1111 	/*
1112 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1113 	 * such as vDSO sections.
1114 	 */
1115 	if (arch_vma_name(vma))
1116 		return true;
1117 
1118 	return false;
1119 }
1120 
1121 /*
1122  * Decide what to dump of a segment, part, all or none.
1123  */
1124 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1125 				   unsigned long mm_flags)
1126 {
1127 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1128 
1129 	/* always dump the vdso and vsyscall sections */
1130 	if (always_dump_vma(vma))
1131 		goto whole;
1132 
1133 	if (vma->vm_flags & VM_DONTDUMP)
1134 		return 0;
1135 
1136 	/* Hugetlb memory check */
1137 	if (vma->vm_flags & VM_HUGETLB) {
1138 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1139 			goto whole;
1140 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1141 			goto whole;
1142 		return 0;
1143 	}
1144 
1145 	/* Do not dump I/O mapped devices or special mappings */
1146 	if (vma->vm_flags & VM_IO)
1147 		return 0;
1148 
1149 	/* By default, dump shared memory if mapped from an anonymous file. */
1150 	if (vma->vm_flags & VM_SHARED) {
1151 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1152 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1153 			goto whole;
1154 		return 0;
1155 	}
1156 
1157 	/* Dump segments that have been written to.  */
1158 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1159 		goto whole;
1160 	if (vma->vm_file == NULL)
1161 		return 0;
1162 
1163 	if (FILTER(MAPPED_PRIVATE))
1164 		goto whole;
1165 
1166 	/*
1167 	 * If this looks like the beginning of a DSO or executable mapping,
1168 	 * check for an ELF header.  If we find one, dump the first page to
1169 	 * aid in determining what was mapped here.
1170 	 */
1171 	if (FILTER(ELF_HEADERS) &&
1172 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1173 		u32 __user *header = (u32 __user *) vma->vm_start;
1174 		u32 word;
1175 		mm_segment_t fs = get_fs();
1176 		/*
1177 		 * Doing it this way gets the constant folded by GCC.
1178 		 */
1179 		union {
1180 			u32 cmp;
1181 			char elfmag[SELFMAG];
1182 		} magic;
1183 		BUILD_BUG_ON(SELFMAG != sizeof word);
1184 		magic.elfmag[EI_MAG0] = ELFMAG0;
1185 		magic.elfmag[EI_MAG1] = ELFMAG1;
1186 		magic.elfmag[EI_MAG2] = ELFMAG2;
1187 		magic.elfmag[EI_MAG3] = ELFMAG3;
1188 		/*
1189 		 * Switch to the user "segment" for get_user(),
1190 		 * then put back what elf_core_dump() had in place.
1191 		 */
1192 		set_fs(USER_DS);
1193 		if (unlikely(get_user(word, header)))
1194 			word = 0;
1195 		set_fs(fs);
1196 		if (word == magic.cmp)
1197 			return PAGE_SIZE;
1198 	}
1199 
1200 #undef	FILTER
1201 
1202 	return 0;
1203 
1204 whole:
1205 	return vma->vm_end - vma->vm_start;
1206 }
1207 
1208 /* An ELF note in memory */
1209 struct memelfnote
1210 {
1211 	const char *name;
1212 	int type;
1213 	unsigned int datasz;
1214 	void *data;
1215 };
1216 
1217 static int notesize(struct memelfnote *en)
1218 {
1219 	int sz;
1220 
1221 	sz = sizeof(struct elf_note);
1222 	sz += roundup(strlen(en->name) + 1, 4);
1223 	sz += roundup(en->datasz, 4);
1224 
1225 	return sz;
1226 }
1227 
1228 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1229 {
1230 	struct elf_note en;
1231 	en.n_namesz = strlen(men->name) + 1;
1232 	en.n_descsz = men->datasz;
1233 	en.n_type = men->type;
1234 
1235 	return dump_emit(cprm, &en, sizeof(en)) &&
1236 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1237 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1238 }
1239 
1240 static void fill_elf_header(struct elfhdr *elf, int segs,
1241 			    u16 machine, u32 flags)
1242 {
1243 	memset(elf, 0, sizeof(*elf));
1244 
1245 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1246 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1247 	elf->e_ident[EI_DATA] = ELF_DATA;
1248 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1249 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1250 
1251 	elf->e_type = ET_CORE;
1252 	elf->e_machine = machine;
1253 	elf->e_version = EV_CURRENT;
1254 	elf->e_phoff = sizeof(struct elfhdr);
1255 	elf->e_flags = flags;
1256 	elf->e_ehsize = sizeof(struct elfhdr);
1257 	elf->e_phentsize = sizeof(struct elf_phdr);
1258 	elf->e_phnum = segs;
1259 
1260 	return;
1261 }
1262 
1263 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1264 {
1265 	phdr->p_type = PT_NOTE;
1266 	phdr->p_offset = offset;
1267 	phdr->p_vaddr = 0;
1268 	phdr->p_paddr = 0;
1269 	phdr->p_filesz = sz;
1270 	phdr->p_memsz = 0;
1271 	phdr->p_flags = 0;
1272 	phdr->p_align = 0;
1273 	return;
1274 }
1275 
1276 static void fill_note(struct memelfnote *note, const char *name, int type,
1277 		unsigned int sz, void *data)
1278 {
1279 	note->name = name;
1280 	note->type = type;
1281 	note->datasz = sz;
1282 	note->data = data;
1283 	return;
1284 }
1285 
1286 /*
1287  * fill up all the fields in prstatus from the given task struct, except
1288  * registers which need to be filled up separately.
1289  */
1290 static void fill_prstatus(struct elf_prstatus *prstatus,
1291 		struct task_struct *p, long signr)
1292 {
1293 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1294 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1295 	prstatus->pr_sighold = p->blocked.sig[0];
1296 	rcu_read_lock();
1297 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1298 	rcu_read_unlock();
1299 	prstatus->pr_pid = task_pid_vnr(p);
1300 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1301 	prstatus->pr_sid = task_session_vnr(p);
1302 	if (thread_group_leader(p)) {
1303 		struct task_cputime cputime;
1304 
1305 		/*
1306 		 * This is the record for the group leader.  It shows the
1307 		 * group-wide total, not its individual thread total.
1308 		 */
1309 		thread_group_cputime(p, &cputime);
1310 		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1311 		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1312 	} else {
1313 		cputime_t utime, stime;
1314 
1315 		task_cputime(p, &utime, &stime);
1316 		cputime_to_timeval(utime, &prstatus->pr_utime);
1317 		cputime_to_timeval(stime, &prstatus->pr_stime);
1318 	}
1319 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1320 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1321 }
1322 
1323 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1324 		       struct mm_struct *mm)
1325 {
1326 	const struct cred *cred;
1327 	unsigned int i, len;
1328 
1329 	/* first copy the parameters from user space */
1330 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1331 
1332 	len = mm->arg_end - mm->arg_start;
1333 	if (len >= ELF_PRARGSZ)
1334 		len = ELF_PRARGSZ-1;
1335 	if (copy_from_user(&psinfo->pr_psargs,
1336 		           (const char __user *)mm->arg_start, len))
1337 		return -EFAULT;
1338 	for(i = 0; i < len; i++)
1339 		if (psinfo->pr_psargs[i] == 0)
1340 			psinfo->pr_psargs[i] = ' ';
1341 	psinfo->pr_psargs[len] = 0;
1342 
1343 	rcu_read_lock();
1344 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1345 	rcu_read_unlock();
1346 	psinfo->pr_pid = task_pid_vnr(p);
1347 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1348 	psinfo->pr_sid = task_session_vnr(p);
1349 
1350 	i = p->state ? ffz(~p->state) + 1 : 0;
1351 	psinfo->pr_state = i;
1352 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1353 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1354 	psinfo->pr_nice = task_nice(p);
1355 	psinfo->pr_flag = p->flags;
1356 	rcu_read_lock();
1357 	cred = __task_cred(p);
1358 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1359 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1360 	rcu_read_unlock();
1361 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1362 
1363 	return 0;
1364 }
1365 
1366 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1367 {
1368 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1369 	int i = 0;
1370 	do
1371 		i += 2;
1372 	while (auxv[i - 2] != AT_NULL);
1373 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1374 }
1375 
1376 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1377 		const siginfo_t *siginfo)
1378 {
1379 	mm_segment_t old_fs = get_fs();
1380 	set_fs(KERNEL_DS);
1381 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1382 	set_fs(old_fs);
1383 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1384 }
1385 
1386 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1387 /*
1388  * Format of NT_FILE note:
1389  *
1390  * long count     -- how many files are mapped
1391  * long page_size -- units for file_ofs
1392  * array of [COUNT] elements of
1393  *   long start
1394  *   long end
1395  *   long file_ofs
1396  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1397  */
1398 static int fill_files_note(struct memelfnote *note)
1399 {
1400 	struct vm_area_struct *vma;
1401 	unsigned count, size, names_ofs, remaining, n;
1402 	user_long_t *data;
1403 	user_long_t *start_end_ofs;
1404 	char *name_base, *name_curpos;
1405 
1406 	/* *Estimated* file count and total data size needed */
1407 	count = current->mm->map_count;
1408 	size = count * 64;
1409 
1410 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1411  alloc:
1412 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1413 		return -EINVAL;
1414 	size = round_up(size, PAGE_SIZE);
1415 	data = vmalloc(size);
1416 	if (!data)
1417 		return -ENOMEM;
1418 
1419 	start_end_ofs = data + 2;
1420 	name_base = name_curpos = ((char *)data) + names_ofs;
1421 	remaining = size - names_ofs;
1422 	count = 0;
1423 	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1424 		struct file *file;
1425 		const char *filename;
1426 
1427 		file = vma->vm_file;
1428 		if (!file)
1429 			continue;
1430 		filename = d_path(&file->f_path, name_curpos, remaining);
1431 		if (IS_ERR(filename)) {
1432 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1433 				vfree(data);
1434 				size = size * 5 / 4;
1435 				goto alloc;
1436 			}
1437 			continue;
1438 		}
1439 
1440 		/* d_path() fills at the end, move name down */
1441 		/* n = strlen(filename) + 1: */
1442 		n = (name_curpos + remaining) - filename;
1443 		remaining = filename - name_curpos;
1444 		memmove(name_curpos, filename, n);
1445 		name_curpos += n;
1446 
1447 		*start_end_ofs++ = vma->vm_start;
1448 		*start_end_ofs++ = vma->vm_end;
1449 		*start_end_ofs++ = vma->vm_pgoff;
1450 		count++;
1451 	}
1452 
1453 	/* Now we know exact count of files, can store it */
1454 	data[0] = count;
1455 	data[1] = PAGE_SIZE;
1456 	/*
1457 	 * Count usually is less than current->mm->map_count,
1458 	 * we need to move filenames down.
1459 	 */
1460 	n = current->mm->map_count - count;
1461 	if (n != 0) {
1462 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1463 		memmove(name_base - shift_bytes, name_base,
1464 			name_curpos - name_base);
1465 		name_curpos -= shift_bytes;
1466 	}
1467 
1468 	size = name_curpos - (char *)data;
1469 	fill_note(note, "CORE", NT_FILE, size, data);
1470 	return 0;
1471 }
1472 
1473 #ifdef CORE_DUMP_USE_REGSET
1474 #include <linux/regset.h>
1475 
1476 struct elf_thread_core_info {
1477 	struct elf_thread_core_info *next;
1478 	struct task_struct *task;
1479 	struct elf_prstatus prstatus;
1480 	struct memelfnote notes[0];
1481 };
1482 
1483 struct elf_note_info {
1484 	struct elf_thread_core_info *thread;
1485 	struct memelfnote psinfo;
1486 	struct memelfnote signote;
1487 	struct memelfnote auxv;
1488 	struct memelfnote files;
1489 	user_siginfo_t csigdata;
1490 	size_t size;
1491 	int thread_notes;
1492 };
1493 
1494 /*
1495  * When a regset has a writeback hook, we call it on each thread before
1496  * dumping user memory.  On register window machines, this makes sure the
1497  * user memory backing the register data is up to date before we read it.
1498  */
1499 static void do_thread_regset_writeback(struct task_struct *task,
1500 				       const struct user_regset *regset)
1501 {
1502 	if (regset->writeback)
1503 		regset->writeback(task, regset, 1);
1504 }
1505 
1506 #ifndef PR_REG_SIZE
1507 #define PR_REG_SIZE(S) sizeof(S)
1508 #endif
1509 
1510 #ifndef PRSTATUS_SIZE
1511 #define PRSTATUS_SIZE(S) sizeof(S)
1512 #endif
1513 
1514 #ifndef PR_REG_PTR
1515 #define PR_REG_PTR(S) (&((S)->pr_reg))
1516 #endif
1517 
1518 #ifndef SET_PR_FPVALID
1519 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1520 #endif
1521 
1522 static int fill_thread_core_info(struct elf_thread_core_info *t,
1523 				 const struct user_regset_view *view,
1524 				 long signr, size_t *total)
1525 {
1526 	unsigned int i;
1527 
1528 	/*
1529 	 * NT_PRSTATUS is the one special case, because the regset data
1530 	 * goes into the pr_reg field inside the note contents, rather
1531 	 * than being the whole note contents.  We fill the reset in here.
1532 	 * We assume that regset 0 is NT_PRSTATUS.
1533 	 */
1534 	fill_prstatus(&t->prstatus, t->task, signr);
1535 	(void) view->regsets[0].get(t->task, &view->regsets[0],
1536 				    0, PR_REG_SIZE(t->prstatus.pr_reg),
1537 				    PR_REG_PTR(&t->prstatus), NULL);
1538 
1539 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1540 		  PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1541 	*total += notesize(&t->notes[0]);
1542 
1543 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1544 
1545 	/*
1546 	 * Each other regset might generate a note too.  For each regset
1547 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1548 	 * all zero and we'll know to skip writing it later.
1549 	 */
1550 	for (i = 1; i < view->n; ++i) {
1551 		const struct user_regset *regset = &view->regsets[i];
1552 		do_thread_regset_writeback(t->task, regset);
1553 		if (regset->core_note_type && regset->get &&
1554 		    (!regset->active || regset->active(t->task, regset))) {
1555 			int ret;
1556 			size_t size = regset->n * regset->size;
1557 			void *data = kmalloc(size, GFP_KERNEL);
1558 			if (unlikely(!data))
1559 				return 0;
1560 			ret = regset->get(t->task, regset,
1561 					  0, size, data, NULL);
1562 			if (unlikely(ret))
1563 				kfree(data);
1564 			else {
1565 				if (regset->core_note_type != NT_PRFPREG)
1566 					fill_note(&t->notes[i], "LINUX",
1567 						  regset->core_note_type,
1568 						  size, data);
1569 				else {
1570 					SET_PR_FPVALID(&t->prstatus, 1);
1571 					fill_note(&t->notes[i], "CORE",
1572 						  NT_PRFPREG, size, data);
1573 				}
1574 				*total += notesize(&t->notes[i]);
1575 			}
1576 		}
1577 	}
1578 
1579 	return 1;
1580 }
1581 
1582 static int fill_note_info(struct elfhdr *elf, int phdrs,
1583 			  struct elf_note_info *info,
1584 			  const siginfo_t *siginfo, struct pt_regs *regs)
1585 {
1586 	struct task_struct *dump_task = current;
1587 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1588 	struct elf_thread_core_info *t;
1589 	struct elf_prpsinfo *psinfo;
1590 	struct core_thread *ct;
1591 	unsigned int i;
1592 
1593 	info->size = 0;
1594 	info->thread = NULL;
1595 
1596 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1597 	if (psinfo == NULL) {
1598 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1599 		return 0;
1600 	}
1601 
1602 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1603 
1604 	/*
1605 	 * Figure out how many notes we're going to need for each thread.
1606 	 */
1607 	info->thread_notes = 0;
1608 	for (i = 0; i < view->n; ++i)
1609 		if (view->regsets[i].core_note_type != 0)
1610 			++info->thread_notes;
1611 
1612 	/*
1613 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1614 	 * since it is our one special case.
1615 	 */
1616 	if (unlikely(info->thread_notes == 0) ||
1617 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1618 		WARN_ON(1);
1619 		return 0;
1620 	}
1621 
1622 	/*
1623 	 * Initialize the ELF file header.
1624 	 */
1625 	fill_elf_header(elf, phdrs,
1626 			view->e_machine, view->e_flags);
1627 
1628 	/*
1629 	 * Allocate a structure for each thread.
1630 	 */
1631 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1632 		t = kzalloc(offsetof(struct elf_thread_core_info,
1633 				     notes[info->thread_notes]),
1634 			    GFP_KERNEL);
1635 		if (unlikely(!t))
1636 			return 0;
1637 
1638 		t->task = ct->task;
1639 		if (ct->task == dump_task || !info->thread) {
1640 			t->next = info->thread;
1641 			info->thread = t;
1642 		} else {
1643 			/*
1644 			 * Make sure to keep the original task at
1645 			 * the head of the list.
1646 			 */
1647 			t->next = info->thread->next;
1648 			info->thread->next = t;
1649 		}
1650 	}
1651 
1652 	/*
1653 	 * Now fill in each thread's information.
1654 	 */
1655 	for (t = info->thread; t != NULL; t = t->next)
1656 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1657 			return 0;
1658 
1659 	/*
1660 	 * Fill in the two process-wide notes.
1661 	 */
1662 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1663 	info->size += notesize(&info->psinfo);
1664 
1665 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1666 	info->size += notesize(&info->signote);
1667 
1668 	fill_auxv_note(&info->auxv, current->mm);
1669 	info->size += notesize(&info->auxv);
1670 
1671 	if (fill_files_note(&info->files) == 0)
1672 		info->size += notesize(&info->files);
1673 
1674 	return 1;
1675 }
1676 
1677 static size_t get_note_info_size(struct elf_note_info *info)
1678 {
1679 	return info->size;
1680 }
1681 
1682 /*
1683  * Write all the notes for each thread.  When writing the first thread, the
1684  * process-wide notes are interleaved after the first thread-specific note.
1685  */
1686 static int write_note_info(struct elf_note_info *info,
1687 			   struct coredump_params *cprm)
1688 {
1689 	bool first = 1;
1690 	struct elf_thread_core_info *t = info->thread;
1691 
1692 	do {
1693 		int i;
1694 
1695 		if (!writenote(&t->notes[0], cprm))
1696 			return 0;
1697 
1698 		if (first && !writenote(&info->psinfo, cprm))
1699 			return 0;
1700 		if (first && !writenote(&info->signote, cprm))
1701 			return 0;
1702 		if (first && !writenote(&info->auxv, cprm))
1703 			return 0;
1704 		if (first && info->files.data &&
1705 				!writenote(&info->files, cprm))
1706 			return 0;
1707 
1708 		for (i = 1; i < info->thread_notes; ++i)
1709 			if (t->notes[i].data &&
1710 			    !writenote(&t->notes[i], cprm))
1711 				return 0;
1712 
1713 		first = 0;
1714 		t = t->next;
1715 	} while (t);
1716 
1717 	return 1;
1718 }
1719 
1720 static void free_note_info(struct elf_note_info *info)
1721 {
1722 	struct elf_thread_core_info *threads = info->thread;
1723 	while (threads) {
1724 		unsigned int i;
1725 		struct elf_thread_core_info *t = threads;
1726 		threads = t->next;
1727 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1728 		for (i = 1; i < info->thread_notes; ++i)
1729 			kfree(t->notes[i].data);
1730 		kfree(t);
1731 	}
1732 	kfree(info->psinfo.data);
1733 	vfree(info->files.data);
1734 }
1735 
1736 #else
1737 
1738 /* Here is the structure in which status of each thread is captured. */
1739 struct elf_thread_status
1740 {
1741 	struct list_head list;
1742 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1743 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1744 	struct task_struct *thread;
1745 #ifdef ELF_CORE_COPY_XFPREGS
1746 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1747 #endif
1748 	struct memelfnote notes[3];
1749 	int num_notes;
1750 };
1751 
1752 /*
1753  * In order to add the specific thread information for the elf file format,
1754  * we need to keep a linked list of every threads pr_status and then create
1755  * a single section for them in the final core file.
1756  */
1757 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1758 {
1759 	int sz = 0;
1760 	struct task_struct *p = t->thread;
1761 	t->num_notes = 0;
1762 
1763 	fill_prstatus(&t->prstatus, p, signr);
1764 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1765 
1766 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1767 		  &(t->prstatus));
1768 	t->num_notes++;
1769 	sz += notesize(&t->notes[0]);
1770 
1771 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1772 								&t->fpu))) {
1773 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1774 			  &(t->fpu));
1775 		t->num_notes++;
1776 		sz += notesize(&t->notes[1]);
1777 	}
1778 
1779 #ifdef ELF_CORE_COPY_XFPREGS
1780 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1781 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1782 			  sizeof(t->xfpu), &t->xfpu);
1783 		t->num_notes++;
1784 		sz += notesize(&t->notes[2]);
1785 	}
1786 #endif
1787 	return sz;
1788 }
1789 
1790 struct elf_note_info {
1791 	struct memelfnote *notes;
1792 	struct memelfnote *notes_files;
1793 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1794 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1795 	struct list_head thread_list;
1796 	elf_fpregset_t *fpu;
1797 #ifdef ELF_CORE_COPY_XFPREGS
1798 	elf_fpxregset_t *xfpu;
1799 #endif
1800 	user_siginfo_t csigdata;
1801 	int thread_status_size;
1802 	int numnote;
1803 };
1804 
1805 static int elf_note_info_init(struct elf_note_info *info)
1806 {
1807 	memset(info, 0, sizeof(*info));
1808 	INIT_LIST_HEAD(&info->thread_list);
1809 
1810 	/* Allocate space for ELF notes */
1811 	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1812 	if (!info->notes)
1813 		return 0;
1814 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1815 	if (!info->psinfo)
1816 		return 0;
1817 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1818 	if (!info->prstatus)
1819 		return 0;
1820 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1821 	if (!info->fpu)
1822 		return 0;
1823 #ifdef ELF_CORE_COPY_XFPREGS
1824 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1825 	if (!info->xfpu)
1826 		return 0;
1827 #endif
1828 	return 1;
1829 }
1830 
1831 static int fill_note_info(struct elfhdr *elf, int phdrs,
1832 			  struct elf_note_info *info,
1833 			  const siginfo_t *siginfo, struct pt_regs *regs)
1834 {
1835 	struct list_head *t;
1836 	struct core_thread *ct;
1837 	struct elf_thread_status *ets;
1838 
1839 	if (!elf_note_info_init(info))
1840 		return 0;
1841 
1842 	for (ct = current->mm->core_state->dumper.next;
1843 					ct; ct = ct->next) {
1844 		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1845 		if (!ets)
1846 			return 0;
1847 
1848 		ets->thread = ct->task;
1849 		list_add(&ets->list, &info->thread_list);
1850 	}
1851 
1852 	list_for_each(t, &info->thread_list) {
1853 		int sz;
1854 
1855 		ets = list_entry(t, struct elf_thread_status, list);
1856 		sz = elf_dump_thread_status(siginfo->si_signo, ets);
1857 		info->thread_status_size += sz;
1858 	}
1859 	/* now collect the dump for the current */
1860 	memset(info->prstatus, 0, sizeof(*info->prstatus));
1861 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
1862 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1863 
1864 	/* Set up header */
1865 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1866 
1867 	/*
1868 	 * Set up the notes in similar form to SVR4 core dumps made
1869 	 * with info from their /proc.
1870 	 */
1871 
1872 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1873 		  sizeof(*info->prstatus), info->prstatus);
1874 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1875 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1876 		  sizeof(*info->psinfo), info->psinfo);
1877 
1878 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1879 	fill_auxv_note(info->notes + 3, current->mm);
1880 	info->numnote = 4;
1881 
1882 	if (fill_files_note(info->notes + info->numnote) == 0) {
1883 		info->notes_files = info->notes + info->numnote;
1884 		info->numnote++;
1885 	}
1886 
1887 	/* Try to dump the FPU. */
1888 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1889 							       info->fpu);
1890 	if (info->prstatus->pr_fpvalid)
1891 		fill_note(info->notes + info->numnote++,
1892 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1893 #ifdef ELF_CORE_COPY_XFPREGS
1894 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
1895 		fill_note(info->notes + info->numnote++,
1896 			  "LINUX", ELF_CORE_XFPREG_TYPE,
1897 			  sizeof(*info->xfpu), info->xfpu);
1898 #endif
1899 
1900 	return 1;
1901 }
1902 
1903 static size_t get_note_info_size(struct elf_note_info *info)
1904 {
1905 	int sz = 0;
1906 	int i;
1907 
1908 	for (i = 0; i < info->numnote; i++)
1909 		sz += notesize(info->notes + i);
1910 
1911 	sz += info->thread_status_size;
1912 
1913 	return sz;
1914 }
1915 
1916 static int write_note_info(struct elf_note_info *info,
1917 			   struct coredump_params *cprm)
1918 {
1919 	int i;
1920 	struct list_head *t;
1921 
1922 	for (i = 0; i < info->numnote; i++)
1923 		if (!writenote(info->notes + i, cprm))
1924 			return 0;
1925 
1926 	/* write out the thread status notes section */
1927 	list_for_each(t, &info->thread_list) {
1928 		struct elf_thread_status *tmp =
1929 				list_entry(t, struct elf_thread_status, list);
1930 
1931 		for (i = 0; i < tmp->num_notes; i++)
1932 			if (!writenote(&tmp->notes[i], cprm))
1933 				return 0;
1934 	}
1935 
1936 	return 1;
1937 }
1938 
1939 static void free_note_info(struct elf_note_info *info)
1940 {
1941 	while (!list_empty(&info->thread_list)) {
1942 		struct list_head *tmp = info->thread_list.next;
1943 		list_del(tmp);
1944 		kfree(list_entry(tmp, struct elf_thread_status, list));
1945 	}
1946 
1947 	/* Free data possibly allocated by fill_files_note(): */
1948 	if (info->notes_files)
1949 		vfree(info->notes_files->data);
1950 
1951 	kfree(info->prstatus);
1952 	kfree(info->psinfo);
1953 	kfree(info->notes);
1954 	kfree(info->fpu);
1955 #ifdef ELF_CORE_COPY_XFPREGS
1956 	kfree(info->xfpu);
1957 #endif
1958 }
1959 
1960 #endif
1961 
1962 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1963 					struct vm_area_struct *gate_vma)
1964 {
1965 	struct vm_area_struct *ret = tsk->mm->mmap;
1966 
1967 	if (ret)
1968 		return ret;
1969 	return gate_vma;
1970 }
1971 /*
1972  * Helper function for iterating across a vma list.  It ensures that the caller
1973  * will visit `gate_vma' prior to terminating the search.
1974  */
1975 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1976 					struct vm_area_struct *gate_vma)
1977 {
1978 	struct vm_area_struct *ret;
1979 
1980 	ret = this_vma->vm_next;
1981 	if (ret)
1982 		return ret;
1983 	if (this_vma == gate_vma)
1984 		return NULL;
1985 	return gate_vma;
1986 }
1987 
1988 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1989 			     elf_addr_t e_shoff, int segs)
1990 {
1991 	elf->e_shoff = e_shoff;
1992 	elf->e_shentsize = sizeof(*shdr4extnum);
1993 	elf->e_shnum = 1;
1994 	elf->e_shstrndx = SHN_UNDEF;
1995 
1996 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1997 
1998 	shdr4extnum->sh_type = SHT_NULL;
1999 	shdr4extnum->sh_size = elf->e_shnum;
2000 	shdr4extnum->sh_link = elf->e_shstrndx;
2001 	shdr4extnum->sh_info = segs;
2002 }
2003 
2004 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
2005 				     unsigned long mm_flags)
2006 {
2007 	struct vm_area_struct *vma;
2008 	size_t size = 0;
2009 
2010 	for (vma = first_vma(current, gate_vma); vma != NULL;
2011 	     vma = next_vma(vma, gate_vma))
2012 		size += vma_dump_size(vma, mm_flags);
2013 	return size;
2014 }
2015 
2016 /*
2017  * Actual dumper
2018  *
2019  * This is a two-pass process; first we find the offsets of the bits,
2020  * and then they are actually written out.  If we run out of core limit
2021  * we just truncate.
2022  */
2023 static int elf_core_dump(struct coredump_params *cprm)
2024 {
2025 	int has_dumped = 0;
2026 	mm_segment_t fs;
2027 	int segs;
2028 	struct vm_area_struct *vma, *gate_vma;
2029 	struct elfhdr *elf = NULL;
2030 	loff_t offset = 0, dataoff;
2031 	struct elf_note_info info = { };
2032 	struct elf_phdr *phdr4note = NULL;
2033 	struct elf_shdr *shdr4extnum = NULL;
2034 	Elf_Half e_phnum;
2035 	elf_addr_t e_shoff;
2036 
2037 	/*
2038 	 * We no longer stop all VM operations.
2039 	 *
2040 	 * This is because those proceses that could possibly change map_count
2041 	 * or the mmap / vma pages are now blocked in do_exit on current
2042 	 * finishing this core dump.
2043 	 *
2044 	 * Only ptrace can touch these memory addresses, but it doesn't change
2045 	 * the map_count or the pages allocated. So no possibility of crashing
2046 	 * exists while dumping the mm->vm_next areas to the core file.
2047 	 */
2048 
2049 	/* alloc memory for large data structures: too large to be on stack */
2050 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2051 	if (!elf)
2052 		goto out;
2053 	/*
2054 	 * The number of segs are recored into ELF header as 16bit value.
2055 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2056 	 */
2057 	segs = current->mm->map_count;
2058 	segs += elf_core_extra_phdrs();
2059 
2060 	gate_vma = get_gate_vma(current->mm);
2061 	if (gate_vma != NULL)
2062 		segs++;
2063 
2064 	/* for notes section */
2065 	segs++;
2066 
2067 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2068 	 * this, kernel supports extended numbering. Have a look at
2069 	 * include/linux/elf.h for further information. */
2070 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2071 
2072 	/*
2073 	 * Collect all the non-memory information about the process for the
2074 	 * notes.  This also sets up the file header.
2075 	 */
2076 	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2077 		goto cleanup;
2078 
2079 	has_dumped = 1;
2080 
2081 	fs = get_fs();
2082 	set_fs(KERNEL_DS);
2083 
2084 	offset += sizeof(*elf);				/* Elf header */
2085 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2086 
2087 	/* Write notes phdr entry */
2088 	{
2089 		size_t sz = get_note_info_size(&info);
2090 
2091 		sz += elf_coredump_extra_notes_size();
2092 
2093 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2094 		if (!phdr4note)
2095 			goto end_coredump;
2096 
2097 		fill_elf_note_phdr(phdr4note, sz, offset);
2098 		offset += sz;
2099 	}
2100 
2101 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2102 
2103 	offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
2104 	offset += elf_core_extra_data_size();
2105 	e_shoff = offset;
2106 
2107 	if (e_phnum == PN_XNUM) {
2108 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2109 		if (!shdr4extnum)
2110 			goto end_coredump;
2111 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2112 	}
2113 
2114 	offset = dataoff;
2115 
2116 	if (!dump_emit(cprm, elf, sizeof(*elf)))
2117 		goto end_coredump;
2118 
2119 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2120 		goto end_coredump;
2121 
2122 	/* Write program headers for segments dump */
2123 	for (vma = first_vma(current, gate_vma); vma != NULL;
2124 			vma = next_vma(vma, gate_vma)) {
2125 		struct elf_phdr phdr;
2126 
2127 		phdr.p_type = PT_LOAD;
2128 		phdr.p_offset = offset;
2129 		phdr.p_vaddr = vma->vm_start;
2130 		phdr.p_paddr = 0;
2131 		phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
2132 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2133 		offset += phdr.p_filesz;
2134 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2135 		if (vma->vm_flags & VM_WRITE)
2136 			phdr.p_flags |= PF_W;
2137 		if (vma->vm_flags & VM_EXEC)
2138 			phdr.p_flags |= PF_X;
2139 		phdr.p_align = ELF_EXEC_PAGESIZE;
2140 
2141 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2142 			goto end_coredump;
2143 	}
2144 
2145 	if (!elf_core_write_extra_phdrs(cprm, offset))
2146 		goto end_coredump;
2147 
2148  	/* write out the notes section */
2149 	if (!write_note_info(&info, cprm))
2150 		goto end_coredump;
2151 
2152 	if (elf_coredump_extra_notes_write(cprm))
2153 		goto end_coredump;
2154 
2155 	/* Align to page */
2156 	if (!dump_skip(cprm, dataoff - cprm->written))
2157 		goto end_coredump;
2158 
2159 	for (vma = first_vma(current, gate_vma); vma != NULL;
2160 			vma = next_vma(vma, gate_vma)) {
2161 		unsigned long addr;
2162 		unsigned long end;
2163 
2164 		end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2165 
2166 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2167 			struct page *page;
2168 			int stop;
2169 
2170 			page = get_dump_page(addr);
2171 			if (page) {
2172 				void *kaddr = kmap(page);
2173 				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2174 				kunmap(page);
2175 				page_cache_release(page);
2176 			} else
2177 				stop = !dump_skip(cprm, PAGE_SIZE);
2178 			if (stop)
2179 				goto end_coredump;
2180 		}
2181 	}
2182 
2183 	if (!elf_core_write_extra_data(cprm))
2184 		goto end_coredump;
2185 
2186 	if (e_phnum == PN_XNUM) {
2187 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2188 			goto end_coredump;
2189 	}
2190 
2191 end_coredump:
2192 	set_fs(fs);
2193 
2194 cleanup:
2195 	free_note_info(&info);
2196 	kfree(shdr4extnum);
2197 	kfree(phdr4note);
2198 	kfree(elf);
2199 out:
2200 	return has_dumped;
2201 }
2202 
2203 #endif		/* CONFIG_ELF_CORE */
2204 
2205 static int __init init_elf_binfmt(void)
2206 {
2207 	register_binfmt(&elf_format);
2208 	return 0;
2209 }
2210 
2211 static void __exit exit_elf_binfmt(void)
2212 {
2213 	/* Remove the COFF and ELF loaders. */
2214 	unregister_binfmt(&elf_format);
2215 }
2216 
2217 core_initcall(init_elf_binfmt);
2218 module_exit(exit_elf_binfmt);
2219 MODULE_LICENSE("GPL");
2220