1 /* 2 * linux/fs/binfmt_elf.c 3 * 4 * These are the functions used to load ELF format executables as used 5 * on SVr4 machines. Information on the format may be found in the book 6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 7 * Tools". 8 * 9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 10 */ 11 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/fs.h> 15 #include <linux/mm.h> 16 #include <linux/mman.h> 17 #include <linux/errno.h> 18 #include <linux/signal.h> 19 #include <linux/binfmts.h> 20 #include <linux/string.h> 21 #include <linux/file.h> 22 #include <linux/slab.h> 23 #include <linux/personality.h> 24 #include <linux/elfcore.h> 25 #include <linux/init.h> 26 #include <linux/highuid.h> 27 #include <linux/compiler.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/vmalloc.h> 31 #include <linux/security.h> 32 #include <linux/random.h> 33 #include <linux/elf.h> 34 #include <linux/utsname.h> 35 #include <linux/coredump.h> 36 #include <asm/uaccess.h> 37 #include <asm/param.h> 38 #include <asm/page.h> 39 40 #ifndef user_long_t 41 #define user_long_t long 42 #endif 43 #ifndef user_siginfo_t 44 #define user_siginfo_t siginfo_t 45 #endif 46 47 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs); 48 static int load_elf_library(struct file *); 49 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *, 50 int, int, unsigned long); 51 52 /* 53 * If we don't support core dumping, then supply a NULL so we 54 * don't even try. 55 */ 56 #ifdef CONFIG_ELF_CORE 57 static int elf_core_dump(struct coredump_params *cprm); 58 #else 59 #define elf_core_dump NULL 60 #endif 61 62 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 63 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 64 #else 65 #define ELF_MIN_ALIGN PAGE_SIZE 66 #endif 67 68 #ifndef ELF_CORE_EFLAGS 69 #define ELF_CORE_EFLAGS 0 70 #endif 71 72 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) 73 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 74 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 75 76 static struct linux_binfmt elf_format = { 77 .module = THIS_MODULE, 78 .load_binary = load_elf_binary, 79 .load_shlib = load_elf_library, 80 .core_dump = elf_core_dump, 81 .min_coredump = ELF_EXEC_PAGESIZE, 82 }; 83 84 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE) 85 86 static int set_brk(unsigned long start, unsigned long end) 87 { 88 start = ELF_PAGEALIGN(start); 89 end = ELF_PAGEALIGN(end); 90 if (end > start) { 91 unsigned long addr; 92 addr = vm_brk(start, end - start); 93 if (BAD_ADDR(addr)) 94 return addr; 95 } 96 current->mm->start_brk = current->mm->brk = end; 97 return 0; 98 } 99 100 /* We need to explicitly zero any fractional pages 101 after the data section (i.e. bss). This would 102 contain the junk from the file that should not 103 be in memory 104 */ 105 static int padzero(unsigned long elf_bss) 106 { 107 unsigned long nbyte; 108 109 nbyte = ELF_PAGEOFFSET(elf_bss); 110 if (nbyte) { 111 nbyte = ELF_MIN_ALIGN - nbyte; 112 if (clear_user((void __user *) elf_bss, nbyte)) 113 return -EFAULT; 114 } 115 return 0; 116 } 117 118 /* Let's use some macros to make this stack manipulation a little clearer */ 119 #ifdef CONFIG_STACK_GROWSUP 120 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 121 #define STACK_ROUND(sp, items) \ 122 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 123 #define STACK_ALLOC(sp, len) ({ \ 124 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 125 old_sp; }) 126 #else 127 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 128 #define STACK_ROUND(sp, items) \ 129 (((unsigned long) (sp - items)) &~ 15UL) 130 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) 131 #endif 132 133 #ifndef ELF_BASE_PLATFORM 134 /* 135 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. 136 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value 137 * will be copied to the user stack in the same manner as AT_PLATFORM. 138 */ 139 #define ELF_BASE_PLATFORM NULL 140 #endif 141 142 static int 143 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec, 144 unsigned long load_addr, unsigned long interp_load_addr) 145 { 146 unsigned long p = bprm->p; 147 int argc = bprm->argc; 148 int envc = bprm->envc; 149 elf_addr_t __user *argv; 150 elf_addr_t __user *envp; 151 elf_addr_t __user *sp; 152 elf_addr_t __user *u_platform; 153 elf_addr_t __user *u_base_platform; 154 elf_addr_t __user *u_rand_bytes; 155 const char *k_platform = ELF_PLATFORM; 156 const char *k_base_platform = ELF_BASE_PLATFORM; 157 unsigned char k_rand_bytes[16]; 158 int items; 159 elf_addr_t *elf_info; 160 int ei_index = 0; 161 const struct cred *cred = current_cred(); 162 struct vm_area_struct *vma; 163 164 /* 165 * In some cases (e.g. Hyper-Threading), we want to avoid L1 166 * evictions by the processes running on the same package. One 167 * thing we can do is to shuffle the initial stack for them. 168 */ 169 170 p = arch_align_stack(p); 171 172 /* 173 * If this architecture has a platform capability string, copy it 174 * to userspace. In some cases (Sparc), this info is impossible 175 * for userspace to get any other way, in others (i386) it is 176 * merely difficult. 177 */ 178 u_platform = NULL; 179 if (k_platform) { 180 size_t len = strlen(k_platform) + 1; 181 182 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 183 if (__copy_to_user(u_platform, k_platform, len)) 184 return -EFAULT; 185 } 186 187 /* 188 * If this architecture has a "base" platform capability 189 * string, copy it to userspace. 190 */ 191 u_base_platform = NULL; 192 if (k_base_platform) { 193 size_t len = strlen(k_base_platform) + 1; 194 195 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 196 if (__copy_to_user(u_base_platform, k_base_platform, len)) 197 return -EFAULT; 198 } 199 200 /* 201 * Generate 16 random bytes for userspace PRNG seeding. 202 */ 203 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); 204 u_rand_bytes = (elf_addr_t __user *) 205 STACK_ALLOC(p, sizeof(k_rand_bytes)); 206 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) 207 return -EFAULT; 208 209 /* Create the ELF interpreter info */ 210 elf_info = (elf_addr_t *)current->mm->saved_auxv; 211 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 212 #define NEW_AUX_ENT(id, val) \ 213 do { \ 214 elf_info[ei_index++] = id; \ 215 elf_info[ei_index++] = val; \ 216 } while (0) 217 218 #ifdef ARCH_DLINFO 219 /* 220 * ARCH_DLINFO must come first so PPC can do its special alignment of 221 * AUXV. 222 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 223 * ARCH_DLINFO changes 224 */ 225 ARCH_DLINFO; 226 #endif 227 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 228 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 229 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 230 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); 231 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 232 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 233 NEW_AUX_ENT(AT_BASE, interp_load_addr); 234 NEW_AUX_ENT(AT_FLAGS, 0); 235 NEW_AUX_ENT(AT_ENTRY, exec->e_entry); 236 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid)); 237 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid)); 238 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid)); 239 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid)); 240 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm)); 241 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); 242 NEW_AUX_ENT(AT_EXECFN, bprm->exec); 243 if (k_platform) { 244 NEW_AUX_ENT(AT_PLATFORM, 245 (elf_addr_t)(unsigned long)u_platform); 246 } 247 if (k_base_platform) { 248 NEW_AUX_ENT(AT_BASE_PLATFORM, 249 (elf_addr_t)(unsigned long)u_base_platform); 250 } 251 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) { 252 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data); 253 } 254 #undef NEW_AUX_ENT 255 /* AT_NULL is zero; clear the rest too */ 256 memset(&elf_info[ei_index], 0, 257 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]); 258 259 /* And advance past the AT_NULL entry. */ 260 ei_index += 2; 261 262 sp = STACK_ADD(p, ei_index); 263 264 items = (argc + 1) + (envc + 1) + 1; 265 bprm->p = STACK_ROUND(sp, items); 266 267 /* Point sp at the lowest address on the stack */ 268 #ifdef CONFIG_STACK_GROWSUP 269 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 270 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 271 #else 272 sp = (elf_addr_t __user *)bprm->p; 273 #endif 274 275 276 /* 277 * Grow the stack manually; some architectures have a limit on how 278 * far ahead a user-space access may be in order to grow the stack. 279 */ 280 vma = find_extend_vma(current->mm, bprm->p); 281 if (!vma) 282 return -EFAULT; 283 284 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 285 if (__put_user(argc, sp++)) 286 return -EFAULT; 287 argv = sp; 288 envp = argv + argc + 1; 289 290 /* Populate argv and envp */ 291 p = current->mm->arg_end = current->mm->arg_start; 292 while (argc-- > 0) { 293 size_t len; 294 if (__put_user((elf_addr_t)p, argv++)) 295 return -EFAULT; 296 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 297 if (!len || len > MAX_ARG_STRLEN) 298 return -EINVAL; 299 p += len; 300 } 301 if (__put_user(0, argv)) 302 return -EFAULT; 303 current->mm->arg_end = current->mm->env_start = p; 304 while (envc-- > 0) { 305 size_t len; 306 if (__put_user((elf_addr_t)p, envp++)) 307 return -EFAULT; 308 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 309 if (!len || len > MAX_ARG_STRLEN) 310 return -EINVAL; 311 p += len; 312 } 313 if (__put_user(0, envp)) 314 return -EFAULT; 315 current->mm->env_end = p; 316 317 /* Put the elf_info on the stack in the right place. */ 318 sp = (elf_addr_t __user *)envp + 1; 319 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t))) 320 return -EFAULT; 321 return 0; 322 } 323 324 static unsigned long elf_map(struct file *filep, unsigned long addr, 325 struct elf_phdr *eppnt, int prot, int type, 326 unsigned long total_size) 327 { 328 unsigned long map_addr; 329 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 330 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 331 addr = ELF_PAGESTART(addr); 332 size = ELF_PAGEALIGN(size); 333 334 /* mmap() will return -EINVAL if given a zero size, but a 335 * segment with zero filesize is perfectly valid */ 336 if (!size) 337 return addr; 338 339 /* 340 * total_size is the size of the ELF (interpreter) image. 341 * The _first_ mmap needs to know the full size, otherwise 342 * randomization might put this image into an overlapping 343 * position with the ELF binary image. (since size < total_size) 344 * So we first map the 'big' image - and unmap the remainder at 345 * the end. (which unmap is needed for ELF images with holes.) 346 */ 347 if (total_size) { 348 total_size = ELF_PAGEALIGN(total_size); 349 map_addr = vm_mmap(filep, addr, total_size, prot, type, off); 350 if (!BAD_ADDR(map_addr)) 351 vm_munmap(map_addr+size, total_size-size); 352 } else 353 map_addr = vm_mmap(filep, addr, size, prot, type, off); 354 355 return(map_addr); 356 } 357 358 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr) 359 { 360 int i, first_idx = -1, last_idx = -1; 361 362 for (i = 0; i < nr; i++) { 363 if (cmds[i].p_type == PT_LOAD) { 364 last_idx = i; 365 if (first_idx == -1) 366 first_idx = i; 367 } 368 } 369 if (first_idx == -1) 370 return 0; 371 372 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - 373 ELF_PAGESTART(cmds[first_idx].p_vaddr); 374 } 375 376 377 /* This is much more generalized than the library routine read function, 378 so we keep this separate. Technically the library read function 379 is only provided so that we can read a.out libraries that have 380 an ELF header */ 381 382 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 383 struct file *interpreter, unsigned long *interp_map_addr, 384 unsigned long no_base) 385 { 386 struct elf_phdr *elf_phdata; 387 struct elf_phdr *eppnt; 388 unsigned long load_addr = 0; 389 int load_addr_set = 0; 390 unsigned long last_bss = 0, elf_bss = 0; 391 unsigned long error = ~0UL; 392 unsigned long total_size; 393 int retval, i, size; 394 395 /* First of all, some simple consistency checks */ 396 if (interp_elf_ex->e_type != ET_EXEC && 397 interp_elf_ex->e_type != ET_DYN) 398 goto out; 399 if (!elf_check_arch(interp_elf_ex)) 400 goto out; 401 if (!interpreter->f_op || !interpreter->f_op->mmap) 402 goto out; 403 404 /* 405 * If the size of this structure has changed, then punt, since 406 * we will be doing the wrong thing. 407 */ 408 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) 409 goto out; 410 if (interp_elf_ex->e_phnum < 1 || 411 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr)) 412 goto out; 413 414 /* Now read in all of the header information */ 415 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum; 416 if (size > ELF_MIN_ALIGN) 417 goto out; 418 elf_phdata = kmalloc(size, GFP_KERNEL); 419 if (!elf_phdata) 420 goto out; 421 422 retval = kernel_read(interpreter, interp_elf_ex->e_phoff, 423 (char *)elf_phdata, size); 424 error = -EIO; 425 if (retval != size) { 426 if (retval < 0) 427 error = retval; 428 goto out_close; 429 } 430 431 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum); 432 if (!total_size) { 433 error = -EINVAL; 434 goto out_close; 435 } 436 437 eppnt = elf_phdata; 438 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 439 if (eppnt->p_type == PT_LOAD) { 440 int elf_type = MAP_PRIVATE | MAP_DENYWRITE; 441 int elf_prot = 0; 442 unsigned long vaddr = 0; 443 unsigned long k, map_addr; 444 445 if (eppnt->p_flags & PF_R) 446 elf_prot = PROT_READ; 447 if (eppnt->p_flags & PF_W) 448 elf_prot |= PROT_WRITE; 449 if (eppnt->p_flags & PF_X) 450 elf_prot |= PROT_EXEC; 451 vaddr = eppnt->p_vaddr; 452 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 453 elf_type |= MAP_FIXED; 454 else if (no_base && interp_elf_ex->e_type == ET_DYN) 455 load_addr = -vaddr; 456 457 map_addr = elf_map(interpreter, load_addr + vaddr, 458 eppnt, elf_prot, elf_type, total_size); 459 total_size = 0; 460 if (!*interp_map_addr) 461 *interp_map_addr = map_addr; 462 error = map_addr; 463 if (BAD_ADDR(map_addr)) 464 goto out_close; 465 466 if (!load_addr_set && 467 interp_elf_ex->e_type == ET_DYN) { 468 load_addr = map_addr - ELF_PAGESTART(vaddr); 469 load_addr_set = 1; 470 } 471 472 /* 473 * Check to see if the section's size will overflow the 474 * allowed task size. Note that p_filesz must always be 475 * <= p_memsize so it's only necessary to check p_memsz. 476 */ 477 k = load_addr + eppnt->p_vaddr; 478 if (BAD_ADDR(k) || 479 eppnt->p_filesz > eppnt->p_memsz || 480 eppnt->p_memsz > TASK_SIZE || 481 TASK_SIZE - eppnt->p_memsz < k) { 482 error = -ENOMEM; 483 goto out_close; 484 } 485 486 /* 487 * Find the end of the file mapping for this phdr, and 488 * keep track of the largest address we see for this. 489 */ 490 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; 491 if (k > elf_bss) 492 elf_bss = k; 493 494 /* 495 * Do the same thing for the memory mapping - between 496 * elf_bss and last_bss is the bss section. 497 */ 498 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr; 499 if (k > last_bss) 500 last_bss = k; 501 } 502 } 503 504 if (last_bss > elf_bss) { 505 /* 506 * Now fill out the bss section. First pad the last page up 507 * to the page boundary, and then perform a mmap to make sure 508 * that there are zero-mapped pages up to and including the 509 * last bss page. 510 */ 511 if (padzero(elf_bss)) { 512 error = -EFAULT; 513 goto out_close; 514 } 515 516 /* What we have mapped so far */ 517 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1); 518 519 /* Map the last of the bss segment */ 520 error = vm_brk(elf_bss, last_bss - elf_bss); 521 if (BAD_ADDR(error)) 522 goto out_close; 523 } 524 525 error = load_addr; 526 527 out_close: 528 kfree(elf_phdata); 529 out: 530 return error; 531 } 532 533 /* 534 * These are the functions used to load ELF style executables and shared 535 * libraries. There is no binary dependent code anywhere else. 536 */ 537 538 #define INTERPRETER_NONE 0 539 #define INTERPRETER_ELF 2 540 541 #ifndef STACK_RND_MASK 542 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 543 #endif 544 545 static unsigned long randomize_stack_top(unsigned long stack_top) 546 { 547 unsigned int random_variable = 0; 548 549 if ((current->flags & PF_RANDOMIZE) && 550 !(current->personality & ADDR_NO_RANDOMIZE)) { 551 random_variable = get_random_int() & STACK_RND_MASK; 552 random_variable <<= PAGE_SHIFT; 553 } 554 #ifdef CONFIG_STACK_GROWSUP 555 return PAGE_ALIGN(stack_top) + random_variable; 556 #else 557 return PAGE_ALIGN(stack_top) - random_variable; 558 #endif 559 } 560 561 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs) 562 { 563 struct file *interpreter = NULL; /* to shut gcc up */ 564 unsigned long load_addr = 0, load_bias = 0; 565 int load_addr_set = 0; 566 char * elf_interpreter = NULL; 567 unsigned long error; 568 struct elf_phdr *elf_ppnt, *elf_phdata; 569 unsigned long elf_bss, elf_brk; 570 int retval, i; 571 unsigned int size; 572 unsigned long elf_entry; 573 unsigned long interp_load_addr = 0; 574 unsigned long start_code, end_code, start_data, end_data; 575 unsigned long reloc_func_desc __maybe_unused = 0; 576 int executable_stack = EXSTACK_DEFAULT; 577 unsigned long def_flags = 0; 578 struct { 579 struct elfhdr elf_ex; 580 struct elfhdr interp_elf_ex; 581 } *loc; 582 583 loc = kmalloc(sizeof(*loc), GFP_KERNEL); 584 if (!loc) { 585 retval = -ENOMEM; 586 goto out_ret; 587 } 588 589 /* Get the exec-header */ 590 loc->elf_ex = *((struct elfhdr *)bprm->buf); 591 592 retval = -ENOEXEC; 593 /* First of all, some simple consistency checks */ 594 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 595 goto out; 596 597 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN) 598 goto out; 599 if (!elf_check_arch(&loc->elf_ex)) 600 goto out; 601 if (!bprm->file->f_op || !bprm->file->f_op->mmap) 602 goto out; 603 604 /* Now read in all of the header information */ 605 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr)) 606 goto out; 607 if (loc->elf_ex.e_phnum < 1 || 608 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr)) 609 goto out; 610 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr); 611 retval = -ENOMEM; 612 elf_phdata = kmalloc(size, GFP_KERNEL); 613 if (!elf_phdata) 614 goto out; 615 616 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff, 617 (char *)elf_phdata, size); 618 if (retval != size) { 619 if (retval >= 0) 620 retval = -EIO; 621 goto out_free_ph; 622 } 623 624 elf_ppnt = elf_phdata; 625 elf_bss = 0; 626 elf_brk = 0; 627 628 start_code = ~0UL; 629 end_code = 0; 630 start_data = 0; 631 end_data = 0; 632 633 for (i = 0; i < loc->elf_ex.e_phnum; i++) { 634 if (elf_ppnt->p_type == PT_INTERP) { 635 /* This is the program interpreter used for 636 * shared libraries - for now assume that this 637 * is an a.out format binary 638 */ 639 retval = -ENOEXEC; 640 if (elf_ppnt->p_filesz > PATH_MAX || 641 elf_ppnt->p_filesz < 2) 642 goto out_free_ph; 643 644 retval = -ENOMEM; 645 elf_interpreter = kmalloc(elf_ppnt->p_filesz, 646 GFP_KERNEL); 647 if (!elf_interpreter) 648 goto out_free_ph; 649 650 retval = kernel_read(bprm->file, elf_ppnt->p_offset, 651 elf_interpreter, 652 elf_ppnt->p_filesz); 653 if (retval != elf_ppnt->p_filesz) { 654 if (retval >= 0) 655 retval = -EIO; 656 goto out_free_interp; 657 } 658 /* make sure path is NULL terminated */ 659 retval = -ENOEXEC; 660 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 661 goto out_free_interp; 662 663 interpreter = open_exec(elf_interpreter); 664 retval = PTR_ERR(interpreter); 665 if (IS_ERR(interpreter)) 666 goto out_free_interp; 667 668 /* 669 * If the binary is not readable then enforce 670 * mm->dumpable = 0 regardless of the interpreter's 671 * permissions. 672 */ 673 would_dump(bprm, interpreter); 674 675 retval = kernel_read(interpreter, 0, bprm->buf, 676 BINPRM_BUF_SIZE); 677 if (retval != BINPRM_BUF_SIZE) { 678 if (retval >= 0) 679 retval = -EIO; 680 goto out_free_dentry; 681 } 682 683 /* Get the exec headers */ 684 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf); 685 break; 686 } 687 elf_ppnt++; 688 } 689 690 elf_ppnt = elf_phdata; 691 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) 692 if (elf_ppnt->p_type == PT_GNU_STACK) { 693 if (elf_ppnt->p_flags & PF_X) 694 executable_stack = EXSTACK_ENABLE_X; 695 else 696 executable_stack = EXSTACK_DISABLE_X; 697 break; 698 } 699 700 /* Some simple consistency checks for the interpreter */ 701 if (elf_interpreter) { 702 retval = -ELIBBAD; 703 /* Not an ELF interpreter */ 704 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 705 goto out_free_dentry; 706 /* Verify the interpreter has a valid arch */ 707 if (!elf_check_arch(&loc->interp_elf_ex)) 708 goto out_free_dentry; 709 } 710 711 /* Flush all traces of the currently running executable */ 712 retval = flush_old_exec(bprm); 713 if (retval) 714 goto out_free_dentry; 715 716 /* OK, This is the point of no return */ 717 current->mm->def_flags = def_flags; 718 719 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 720 may depend on the personality. */ 721 SET_PERSONALITY(loc->elf_ex); 722 if (elf_read_implies_exec(loc->elf_ex, executable_stack)) 723 current->personality |= READ_IMPLIES_EXEC; 724 725 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 726 current->flags |= PF_RANDOMIZE; 727 728 setup_new_exec(bprm); 729 730 /* Do this so that we can load the interpreter, if need be. We will 731 change some of these later */ 732 current->mm->free_area_cache = current->mm->mmap_base; 733 current->mm->cached_hole_size = 0; 734 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 735 executable_stack); 736 if (retval < 0) { 737 send_sig(SIGKILL, current, 0); 738 goto out_free_dentry; 739 } 740 741 current->mm->start_stack = bprm->p; 742 743 /* Now we do a little grungy work by mmapping the ELF image into 744 the correct location in memory. */ 745 for(i = 0, elf_ppnt = elf_phdata; 746 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) { 747 int elf_prot = 0, elf_flags; 748 unsigned long k, vaddr; 749 750 if (elf_ppnt->p_type != PT_LOAD) 751 continue; 752 753 if (unlikely (elf_brk > elf_bss)) { 754 unsigned long nbyte; 755 756 /* There was a PT_LOAD segment with p_memsz > p_filesz 757 before this one. Map anonymous pages, if needed, 758 and clear the area. */ 759 retval = set_brk(elf_bss + load_bias, 760 elf_brk + load_bias); 761 if (retval) { 762 send_sig(SIGKILL, current, 0); 763 goto out_free_dentry; 764 } 765 nbyte = ELF_PAGEOFFSET(elf_bss); 766 if (nbyte) { 767 nbyte = ELF_MIN_ALIGN - nbyte; 768 if (nbyte > elf_brk - elf_bss) 769 nbyte = elf_brk - elf_bss; 770 if (clear_user((void __user *)elf_bss + 771 load_bias, nbyte)) { 772 /* 773 * This bss-zeroing can fail if the ELF 774 * file specifies odd protections. So 775 * we don't check the return value 776 */ 777 } 778 } 779 } 780 781 if (elf_ppnt->p_flags & PF_R) 782 elf_prot |= PROT_READ; 783 if (elf_ppnt->p_flags & PF_W) 784 elf_prot |= PROT_WRITE; 785 if (elf_ppnt->p_flags & PF_X) 786 elf_prot |= PROT_EXEC; 787 788 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE; 789 790 vaddr = elf_ppnt->p_vaddr; 791 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) { 792 elf_flags |= MAP_FIXED; 793 } else if (loc->elf_ex.e_type == ET_DYN) { 794 /* Try and get dynamic programs out of the way of the 795 * default mmap base, as well as whatever program they 796 * might try to exec. This is because the brk will 797 * follow the loader, and is not movable. */ 798 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE 799 /* Memory randomization might have been switched off 800 * in runtime via sysctl. 801 * If that is the case, retain the original non-zero 802 * load_bias value in order to establish proper 803 * non-randomized mappings. 804 */ 805 if (current->flags & PF_RANDOMIZE) 806 load_bias = 0; 807 else 808 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr); 809 #else 810 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr); 811 #endif 812 } 813 814 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, 815 elf_prot, elf_flags, 0); 816 if (BAD_ADDR(error)) { 817 send_sig(SIGKILL, current, 0); 818 retval = IS_ERR((void *)error) ? 819 PTR_ERR((void*)error) : -EINVAL; 820 goto out_free_dentry; 821 } 822 823 if (!load_addr_set) { 824 load_addr_set = 1; 825 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); 826 if (loc->elf_ex.e_type == ET_DYN) { 827 load_bias += error - 828 ELF_PAGESTART(load_bias + vaddr); 829 load_addr += load_bias; 830 reloc_func_desc = load_bias; 831 } 832 } 833 k = elf_ppnt->p_vaddr; 834 if (k < start_code) 835 start_code = k; 836 if (start_data < k) 837 start_data = k; 838 839 /* 840 * Check to see if the section's size will overflow the 841 * allowed task size. Note that p_filesz must always be 842 * <= p_memsz so it is only necessary to check p_memsz. 843 */ 844 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 845 elf_ppnt->p_memsz > TASK_SIZE || 846 TASK_SIZE - elf_ppnt->p_memsz < k) { 847 /* set_brk can never work. Avoid overflows. */ 848 send_sig(SIGKILL, current, 0); 849 retval = -EINVAL; 850 goto out_free_dentry; 851 } 852 853 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 854 855 if (k > elf_bss) 856 elf_bss = k; 857 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 858 end_code = k; 859 if (end_data < k) 860 end_data = k; 861 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 862 if (k > elf_brk) 863 elf_brk = k; 864 } 865 866 loc->elf_ex.e_entry += load_bias; 867 elf_bss += load_bias; 868 elf_brk += load_bias; 869 start_code += load_bias; 870 end_code += load_bias; 871 start_data += load_bias; 872 end_data += load_bias; 873 874 /* Calling set_brk effectively mmaps the pages that we need 875 * for the bss and break sections. We must do this before 876 * mapping in the interpreter, to make sure it doesn't wind 877 * up getting placed where the bss needs to go. 878 */ 879 retval = set_brk(elf_bss, elf_brk); 880 if (retval) { 881 send_sig(SIGKILL, current, 0); 882 goto out_free_dentry; 883 } 884 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { 885 send_sig(SIGSEGV, current, 0); 886 retval = -EFAULT; /* Nobody gets to see this, but.. */ 887 goto out_free_dentry; 888 } 889 890 if (elf_interpreter) { 891 unsigned long interp_map_addr = 0; 892 893 elf_entry = load_elf_interp(&loc->interp_elf_ex, 894 interpreter, 895 &interp_map_addr, 896 load_bias); 897 if (!IS_ERR((void *)elf_entry)) { 898 /* 899 * load_elf_interp() returns relocation 900 * adjustment 901 */ 902 interp_load_addr = elf_entry; 903 elf_entry += loc->interp_elf_ex.e_entry; 904 } 905 if (BAD_ADDR(elf_entry)) { 906 force_sig(SIGSEGV, current); 907 retval = IS_ERR((void *)elf_entry) ? 908 (int)elf_entry : -EINVAL; 909 goto out_free_dentry; 910 } 911 reloc_func_desc = interp_load_addr; 912 913 allow_write_access(interpreter); 914 fput(interpreter); 915 kfree(elf_interpreter); 916 } else { 917 elf_entry = loc->elf_ex.e_entry; 918 if (BAD_ADDR(elf_entry)) { 919 force_sig(SIGSEGV, current); 920 retval = -EINVAL; 921 goto out_free_dentry; 922 } 923 } 924 925 kfree(elf_phdata); 926 927 set_binfmt(&elf_format); 928 929 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 930 retval = arch_setup_additional_pages(bprm, !!elf_interpreter); 931 if (retval < 0) { 932 send_sig(SIGKILL, current, 0); 933 goto out; 934 } 935 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 936 937 install_exec_creds(bprm); 938 retval = create_elf_tables(bprm, &loc->elf_ex, 939 load_addr, interp_load_addr); 940 if (retval < 0) { 941 send_sig(SIGKILL, current, 0); 942 goto out; 943 } 944 /* N.B. passed_fileno might not be initialized? */ 945 current->mm->end_code = end_code; 946 current->mm->start_code = start_code; 947 current->mm->start_data = start_data; 948 current->mm->end_data = end_data; 949 current->mm->start_stack = bprm->p; 950 951 #ifdef arch_randomize_brk 952 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { 953 current->mm->brk = current->mm->start_brk = 954 arch_randomize_brk(current->mm); 955 #ifdef CONFIG_COMPAT_BRK 956 current->brk_randomized = 1; 957 #endif 958 } 959 #endif 960 961 if (current->personality & MMAP_PAGE_ZERO) { 962 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 963 and some applications "depend" upon this behavior. 964 Since we do not have the power to recompile these, we 965 emulate the SVr4 behavior. Sigh. */ 966 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 967 MAP_FIXED | MAP_PRIVATE, 0); 968 } 969 970 #ifdef ELF_PLAT_INIT 971 /* 972 * The ABI may specify that certain registers be set up in special 973 * ways (on i386 %edx is the address of a DT_FINI function, for 974 * example. In addition, it may also specify (eg, PowerPC64 ELF) 975 * that the e_entry field is the address of the function descriptor 976 * for the startup routine, rather than the address of the startup 977 * routine itself. This macro performs whatever initialization to 978 * the regs structure is required as well as any relocations to the 979 * function descriptor entries when executing dynamically links apps. 980 */ 981 ELF_PLAT_INIT(regs, reloc_func_desc); 982 #endif 983 984 start_thread(regs, elf_entry, bprm->p); 985 retval = 0; 986 out: 987 kfree(loc); 988 out_ret: 989 return retval; 990 991 /* error cleanup */ 992 out_free_dentry: 993 allow_write_access(interpreter); 994 if (interpreter) 995 fput(interpreter); 996 out_free_interp: 997 kfree(elf_interpreter); 998 out_free_ph: 999 kfree(elf_phdata); 1000 goto out; 1001 } 1002 1003 /* This is really simpleminded and specialized - we are loading an 1004 a.out library that is given an ELF header. */ 1005 static int load_elf_library(struct file *file) 1006 { 1007 struct elf_phdr *elf_phdata; 1008 struct elf_phdr *eppnt; 1009 unsigned long elf_bss, bss, len; 1010 int retval, error, i, j; 1011 struct elfhdr elf_ex; 1012 1013 error = -ENOEXEC; 1014 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex)); 1015 if (retval != sizeof(elf_ex)) 1016 goto out; 1017 1018 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1019 goto out; 1020 1021 /* First of all, some simple consistency checks */ 1022 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1023 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap) 1024 goto out; 1025 1026 /* Now read in all of the header information */ 1027 1028 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1029 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1030 1031 error = -ENOMEM; 1032 elf_phdata = kmalloc(j, GFP_KERNEL); 1033 if (!elf_phdata) 1034 goto out; 1035 1036 eppnt = elf_phdata; 1037 error = -ENOEXEC; 1038 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j); 1039 if (retval != j) 1040 goto out_free_ph; 1041 1042 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1043 if ((eppnt + i)->p_type == PT_LOAD) 1044 j++; 1045 if (j != 1) 1046 goto out_free_ph; 1047 1048 while (eppnt->p_type != PT_LOAD) 1049 eppnt++; 1050 1051 /* Now use mmap to map the library into memory. */ 1052 error = vm_mmap(file, 1053 ELF_PAGESTART(eppnt->p_vaddr), 1054 (eppnt->p_filesz + 1055 ELF_PAGEOFFSET(eppnt->p_vaddr)), 1056 PROT_READ | PROT_WRITE | PROT_EXEC, 1057 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, 1058 (eppnt->p_offset - 1059 ELF_PAGEOFFSET(eppnt->p_vaddr))); 1060 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1061 goto out_free_ph; 1062 1063 elf_bss = eppnt->p_vaddr + eppnt->p_filesz; 1064 if (padzero(elf_bss)) { 1065 error = -EFAULT; 1066 goto out_free_ph; 1067 } 1068 1069 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr + 1070 ELF_MIN_ALIGN - 1); 1071 bss = eppnt->p_memsz + eppnt->p_vaddr; 1072 if (bss > len) 1073 vm_brk(len, bss - len); 1074 error = 0; 1075 1076 out_free_ph: 1077 kfree(elf_phdata); 1078 out: 1079 return error; 1080 } 1081 1082 #ifdef CONFIG_ELF_CORE 1083 /* 1084 * ELF core dumper 1085 * 1086 * Modelled on fs/exec.c:aout_core_dump() 1087 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1088 */ 1089 1090 /* 1091 * The purpose of always_dump_vma() is to make sure that special kernel mappings 1092 * that are useful for post-mortem analysis are included in every core dump. 1093 * In that way we ensure that the core dump is fully interpretable later 1094 * without matching up the same kernel and hardware config to see what PC values 1095 * meant. These special mappings include - vDSO, vsyscall, and other 1096 * architecture specific mappings 1097 */ 1098 static bool always_dump_vma(struct vm_area_struct *vma) 1099 { 1100 /* Any vsyscall mappings? */ 1101 if (vma == get_gate_vma(vma->vm_mm)) 1102 return true; 1103 /* 1104 * arch_vma_name() returns non-NULL for special architecture mappings, 1105 * such as vDSO sections. 1106 */ 1107 if (arch_vma_name(vma)) 1108 return true; 1109 1110 return false; 1111 } 1112 1113 /* 1114 * Decide what to dump of a segment, part, all or none. 1115 */ 1116 static unsigned long vma_dump_size(struct vm_area_struct *vma, 1117 unsigned long mm_flags) 1118 { 1119 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) 1120 1121 /* always dump the vdso and vsyscall sections */ 1122 if (always_dump_vma(vma)) 1123 goto whole; 1124 1125 if (vma->vm_flags & VM_DONTDUMP) 1126 return 0; 1127 1128 /* Hugetlb memory check */ 1129 if (vma->vm_flags & VM_HUGETLB) { 1130 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) 1131 goto whole; 1132 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) 1133 goto whole; 1134 } 1135 1136 /* Do not dump I/O mapped devices or special mappings */ 1137 if (vma->vm_flags & VM_IO) 1138 return 0; 1139 1140 /* By default, dump shared memory if mapped from an anonymous file. */ 1141 if (vma->vm_flags & VM_SHARED) { 1142 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ? 1143 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) 1144 goto whole; 1145 return 0; 1146 } 1147 1148 /* Dump segments that have been written to. */ 1149 if (vma->anon_vma && FILTER(ANON_PRIVATE)) 1150 goto whole; 1151 if (vma->vm_file == NULL) 1152 return 0; 1153 1154 if (FILTER(MAPPED_PRIVATE)) 1155 goto whole; 1156 1157 /* 1158 * If this looks like the beginning of a DSO or executable mapping, 1159 * check for an ELF header. If we find one, dump the first page to 1160 * aid in determining what was mapped here. 1161 */ 1162 if (FILTER(ELF_HEADERS) && 1163 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) { 1164 u32 __user *header = (u32 __user *) vma->vm_start; 1165 u32 word; 1166 mm_segment_t fs = get_fs(); 1167 /* 1168 * Doing it this way gets the constant folded by GCC. 1169 */ 1170 union { 1171 u32 cmp; 1172 char elfmag[SELFMAG]; 1173 } magic; 1174 BUILD_BUG_ON(SELFMAG != sizeof word); 1175 magic.elfmag[EI_MAG0] = ELFMAG0; 1176 magic.elfmag[EI_MAG1] = ELFMAG1; 1177 magic.elfmag[EI_MAG2] = ELFMAG2; 1178 magic.elfmag[EI_MAG3] = ELFMAG3; 1179 /* 1180 * Switch to the user "segment" for get_user(), 1181 * then put back what elf_core_dump() had in place. 1182 */ 1183 set_fs(USER_DS); 1184 if (unlikely(get_user(word, header))) 1185 word = 0; 1186 set_fs(fs); 1187 if (word == magic.cmp) 1188 return PAGE_SIZE; 1189 } 1190 1191 #undef FILTER 1192 1193 return 0; 1194 1195 whole: 1196 return vma->vm_end - vma->vm_start; 1197 } 1198 1199 /* An ELF note in memory */ 1200 struct memelfnote 1201 { 1202 const char *name; 1203 int type; 1204 unsigned int datasz; 1205 void *data; 1206 }; 1207 1208 static int notesize(struct memelfnote *en) 1209 { 1210 int sz; 1211 1212 sz = sizeof(struct elf_note); 1213 sz += roundup(strlen(en->name) + 1, 4); 1214 sz += roundup(en->datasz, 4); 1215 1216 return sz; 1217 } 1218 1219 #define DUMP_WRITE(addr, nr, foffset) \ 1220 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0) 1221 1222 static int alignfile(struct file *file, loff_t *foffset) 1223 { 1224 static const char buf[4] = { 0, }; 1225 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset); 1226 return 1; 1227 } 1228 1229 static int writenote(struct memelfnote *men, struct file *file, 1230 loff_t *foffset) 1231 { 1232 struct elf_note en; 1233 en.n_namesz = strlen(men->name) + 1; 1234 en.n_descsz = men->datasz; 1235 en.n_type = men->type; 1236 1237 DUMP_WRITE(&en, sizeof(en), foffset); 1238 DUMP_WRITE(men->name, en.n_namesz, foffset); 1239 if (!alignfile(file, foffset)) 1240 return 0; 1241 DUMP_WRITE(men->data, men->datasz, foffset); 1242 if (!alignfile(file, foffset)) 1243 return 0; 1244 1245 return 1; 1246 } 1247 #undef DUMP_WRITE 1248 1249 static void fill_elf_header(struct elfhdr *elf, int segs, 1250 u16 machine, u32 flags, u8 osabi) 1251 { 1252 memset(elf, 0, sizeof(*elf)); 1253 1254 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1255 elf->e_ident[EI_CLASS] = ELF_CLASS; 1256 elf->e_ident[EI_DATA] = ELF_DATA; 1257 elf->e_ident[EI_VERSION] = EV_CURRENT; 1258 elf->e_ident[EI_OSABI] = ELF_OSABI; 1259 1260 elf->e_type = ET_CORE; 1261 elf->e_machine = machine; 1262 elf->e_version = EV_CURRENT; 1263 elf->e_phoff = sizeof(struct elfhdr); 1264 elf->e_flags = flags; 1265 elf->e_ehsize = sizeof(struct elfhdr); 1266 elf->e_phentsize = sizeof(struct elf_phdr); 1267 elf->e_phnum = segs; 1268 1269 return; 1270 } 1271 1272 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1273 { 1274 phdr->p_type = PT_NOTE; 1275 phdr->p_offset = offset; 1276 phdr->p_vaddr = 0; 1277 phdr->p_paddr = 0; 1278 phdr->p_filesz = sz; 1279 phdr->p_memsz = 0; 1280 phdr->p_flags = 0; 1281 phdr->p_align = 0; 1282 return; 1283 } 1284 1285 static void fill_note(struct memelfnote *note, const char *name, int type, 1286 unsigned int sz, void *data) 1287 { 1288 note->name = name; 1289 note->type = type; 1290 note->datasz = sz; 1291 note->data = data; 1292 return; 1293 } 1294 1295 /* 1296 * fill up all the fields in prstatus from the given task struct, except 1297 * registers which need to be filled up separately. 1298 */ 1299 static void fill_prstatus(struct elf_prstatus *prstatus, 1300 struct task_struct *p, long signr) 1301 { 1302 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1303 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1304 prstatus->pr_sighold = p->blocked.sig[0]; 1305 rcu_read_lock(); 1306 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1307 rcu_read_unlock(); 1308 prstatus->pr_pid = task_pid_vnr(p); 1309 prstatus->pr_pgrp = task_pgrp_vnr(p); 1310 prstatus->pr_sid = task_session_vnr(p); 1311 if (thread_group_leader(p)) { 1312 struct task_cputime cputime; 1313 1314 /* 1315 * This is the record for the group leader. It shows the 1316 * group-wide total, not its individual thread total. 1317 */ 1318 thread_group_cputime(p, &cputime); 1319 cputime_to_timeval(cputime.utime, &prstatus->pr_utime); 1320 cputime_to_timeval(cputime.stime, &prstatus->pr_stime); 1321 } else { 1322 cputime_to_timeval(p->utime, &prstatus->pr_utime); 1323 cputime_to_timeval(p->stime, &prstatus->pr_stime); 1324 } 1325 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime); 1326 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime); 1327 } 1328 1329 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1330 struct mm_struct *mm) 1331 { 1332 const struct cred *cred; 1333 unsigned int i, len; 1334 1335 /* first copy the parameters from user space */ 1336 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1337 1338 len = mm->arg_end - mm->arg_start; 1339 if (len >= ELF_PRARGSZ) 1340 len = ELF_PRARGSZ-1; 1341 if (copy_from_user(&psinfo->pr_psargs, 1342 (const char __user *)mm->arg_start, len)) 1343 return -EFAULT; 1344 for(i = 0; i < len; i++) 1345 if (psinfo->pr_psargs[i] == 0) 1346 psinfo->pr_psargs[i] = ' '; 1347 psinfo->pr_psargs[len] = 0; 1348 1349 rcu_read_lock(); 1350 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1351 rcu_read_unlock(); 1352 psinfo->pr_pid = task_pid_vnr(p); 1353 psinfo->pr_pgrp = task_pgrp_vnr(p); 1354 psinfo->pr_sid = task_session_vnr(p); 1355 1356 i = p->state ? ffz(~p->state) + 1 : 0; 1357 psinfo->pr_state = i; 1358 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1359 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1360 psinfo->pr_nice = task_nice(p); 1361 psinfo->pr_flag = p->flags; 1362 rcu_read_lock(); 1363 cred = __task_cred(p); 1364 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid)); 1365 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid)); 1366 rcu_read_unlock(); 1367 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); 1368 1369 return 0; 1370 } 1371 1372 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1373 { 1374 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1375 int i = 0; 1376 do 1377 i += 2; 1378 while (auxv[i - 2] != AT_NULL); 1379 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1380 } 1381 1382 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata, 1383 siginfo_t *siginfo) 1384 { 1385 mm_segment_t old_fs = get_fs(); 1386 set_fs(KERNEL_DS); 1387 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo); 1388 set_fs(old_fs); 1389 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata); 1390 } 1391 1392 #define MAX_FILE_NOTE_SIZE (4*1024*1024) 1393 /* 1394 * Format of NT_FILE note: 1395 * 1396 * long count -- how many files are mapped 1397 * long page_size -- units for file_ofs 1398 * array of [COUNT] elements of 1399 * long start 1400 * long end 1401 * long file_ofs 1402 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... 1403 */ 1404 static void fill_files_note(struct memelfnote *note) 1405 { 1406 struct vm_area_struct *vma; 1407 unsigned count, size, names_ofs, remaining, n; 1408 user_long_t *data; 1409 user_long_t *start_end_ofs; 1410 char *name_base, *name_curpos; 1411 1412 /* *Estimated* file count and total data size needed */ 1413 count = current->mm->map_count; 1414 size = count * 64; 1415 1416 names_ofs = (2 + 3 * count) * sizeof(data[0]); 1417 alloc: 1418 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */ 1419 goto err; 1420 size = round_up(size, PAGE_SIZE); 1421 data = vmalloc(size); 1422 if (!data) 1423 goto err; 1424 1425 start_end_ofs = data + 2; 1426 name_base = name_curpos = ((char *)data) + names_ofs; 1427 remaining = size - names_ofs; 1428 count = 0; 1429 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) { 1430 struct file *file; 1431 const char *filename; 1432 1433 file = vma->vm_file; 1434 if (!file) 1435 continue; 1436 filename = d_path(&file->f_path, name_curpos, remaining); 1437 if (IS_ERR(filename)) { 1438 if (PTR_ERR(filename) == -ENAMETOOLONG) { 1439 vfree(data); 1440 size = size * 5 / 4; 1441 goto alloc; 1442 } 1443 continue; 1444 } 1445 1446 /* d_path() fills at the end, move name down */ 1447 /* n = strlen(filename) + 1: */ 1448 n = (name_curpos + remaining) - filename; 1449 remaining = filename - name_curpos; 1450 memmove(name_curpos, filename, n); 1451 name_curpos += n; 1452 1453 *start_end_ofs++ = vma->vm_start; 1454 *start_end_ofs++ = vma->vm_end; 1455 *start_end_ofs++ = vma->vm_pgoff; 1456 count++; 1457 } 1458 1459 /* Now we know exact count of files, can store it */ 1460 data[0] = count; 1461 data[1] = PAGE_SIZE; 1462 /* 1463 * Count usually is less than current->mm->map_count, 1464 * we need to move filenames down. 1465 */ 1466 n = current->mm->map_count - count; 1467 if (n != 0) { 1468 unsigned shift_bytes = n * 3 * sizeof(data[0]); 1469 memmove(name_base - shift_bytes, name_base, 1470 name_curpos - name_base); 1471 name_curpos -= shift_bytes; 1472 } 1473 1474 size = name_curpos - (char *)data; 1475 fill_note(note, "CORE", NT_FILE, size, data); 1476 err: ; 1477 } 1478 1479 #ifdef CORE_DUMP_USE_REGSET 1480 #include <linux/regset.h> 1481 1482 struct elf_thread_core_info { 1483 struct elf_thread_core_info *next; 1484 struct task_struct *task; 1485 struct elf_prstatus prstatus; 1486 struct memelfnote notes[0]; 1487 }; 1488 1489 struct elf_note_info { 1490 struct elf_thread_core_info *thread; 1491 struct memelfnote psinfo; 1492 struct memelfnote signote; 1493 struct memelfnote auxv; 1494 struct memelfnote files; 1495 user_siginfo_t csigdata; 1496 size_t size; 1497 int thread_notes; 1498 }; 1499 1500 /* 1501 * When a regset has a writeback hook, we call it on each thread before 1502 * dumping user memory. On register window machines, this makes sure the 1503 * user memory backing the register data is up to date before we read it. 1504 */ 1505 static void do_thread_regset_writeback(struct task_struct *task, 1506 const struct user_regset *regset) 1507 { 1508 if (regset->writeback) 1509 regset->writeback(task, regset, 1); 1510 } 1511 1512 #ifndef PR_REG_SIZE 1513 #define PR_REG_SIZE(S) sizeof(S) 1514 #endif 1515 1516 #ifndef PRSTATUS_SIZE 1517 #define PRSTATUS_SIZE(S) sizeof(S) 1518 #endif 1519 1520 #ifndef PR_REG_PTR 1521 #define PR_REG_PTR(S) (&((S)->pr_reg)) 1522 #endif 1523 1524 #ifndef SET_PR_FPVALID 1525 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V)) 1526 #endif 1527 1528 static int fill_thread_core_info(struct elf_thread_core_info *t, 1529 const struct user_regset_view *view, 1530 long signr, size_t *total) 1531 { 1532 unsigned int i; 1533 1534 /* 1535 * NT_PRSTATUS is the one special case, because the regset data 1536 * goes into the pr_reg field inside the note contents, rather 1537 * than being the whole note contents. We fill the reset in here. 1538 * We assume that regset 0 is NT_PRSTATUS. 1539 */ 1540 fill_prstatus(&t->prstatus, t->task, signr); 1541 (void) view->regsets[0].get(t->task, &view->regsets[0], 1542 0, PR_REG_SIZE(t->prstatus.pr_reg), 1543 PR_REG_PTR(&t->prstatus), NULL); 1544 1545 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1546 PRSTATUS_SIZE(t->prstatus), &t->prstatus); 1547 *total += notesize(&t->notes[0]); 1548 1549 do_thread_regset_writeback(t->task, &view->regsets[0]); 1550 1551 /* 1552 * Each other regset might generate a note too. For each regset 1553 * that has no core_note_type or is inactive, we leave t->notes[i] 1554 * all zero and we'll know to skip writing it later. 1555 */ 1556 for (i = 1; i < view->n; ++i) { 1557 const struct user_regset *regset = &view->regsets[i]; 1558 do_thread_regset_writeback(t->task, regset); 1559 if (regset->core_note_type && regset->get && 1560 (!regset->active || regset->active(t->task, regset))) { 1561 int ret; 1562 size_t size = regset->n * regset->size; 1563 void *data = kmalloc(size, GFP_KERNEL); 1564 if (unlikely(!data)) 1565 return 0; 1566 ret = regset->get(t->task, regset, 1567 0, size, data, NULL); 1568 if (unlikely(ret)) 1569 kfree(data); 1570 else { 1571 if (regset->core_note_type != NT_PRFPREG) 1572 fill_note(&t->notes[i], "LINUX", 1573 regset->core_note_type, 1574 size, data); 1575 else { 1576 SET_PR_FPVALID(&t->prstatus, 1); 1577 fill_note(&t->notes[i], "CORE", 1578 NT_PRFPREG, size, data); 1579 } 1580 *total += notesize(&t->notes[i]); 1581 } 1582 } 1583 } 1584 1585 return 1; 1586 } 1587 1588 static int fill_note_info(struct elfhdr *elf, int phdrs, 1589 struct elf_note_info *info, 1590 siginfo_t *siginfo, struct pt_regs *regs) 1591 { 1592 struct task_struct *dump_task = current; 1593 const struct user_regset_view *view = task_user_regset_view(dump_task); 1594 struct elf_thread_core_info *t; 1595 struct elf_prpsinfo *psinfo; 1596 struct core_thread *ct; 1597 unsigned int i; 1598 1599 info->size = 0; 1600 info->thread = NULL; 1601 1602 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1603 if (psinfo == NULL) 1604 return 0; 1605 1606 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1607 1608 /* 1609 * Figure out how many notes we're going to need for each thread. 1610 */ 1611 info->thread_notes = 0; 1612 for (i = 0; i < view->n; ++i) 1613 if (view->regsets[i].core_note_type != 0) 1614 ++info->thread_notes; 1615 1616 /* 1617 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1618 * since it is our one special case. 1619 */ 1620 if (unlikely(info->thread_notes == 0) || 1621 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1622 WARN_ON(1); 1623 return 0; 1624 } 1625 1626 /* 1627 * Initialize the ELF file header. 1628 */ 1629 fill_elf_header(elf, phdrs, 1630 view->e_machine, view->e_flags, view->ei_osabi); 1631 1632 /* 1633 * Allocate a structure for each thread. 1634 */ 1635 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) { 1636 t = kzalloc(offsetof(struct elf_thread_core_info, 1637 notes[info->thread_notes]), 1638 GFP_KERNEL); 1639 if (unlikely(!t)) 1640 return 0; 1641 1642 t->task = ct->task; 1643 if (ct->task == dump_task || !info->thread) { 1644 t->next = info->thread; 1645 info->thread = t; 1646 } else { 1647 /* 1648 * Make sure to keep the original task at 1649 * the head of the list. 1650 */ 1651 t->next = info->thread->next; 1652 info->thread->next = t; 1653 } 1654 } 1655 1656 /* 1657 * Now fill in each thread's information. 1658 */ 1659 for (t = info->thread; t != NULL; t = t->next) 1660 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size)) 1661 return 0; 1662 1663 /* 1664 * Fill in the two process-wide notes. 1665 */ 1666 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1667 info->size += notesize(&info->psinfo); 1668 1669 fill_siginfo_note(&info->signote, &info->csigdata, siginfo); 1670 info->size += notesize(&info->signote); 1671 1672 fill_auxv_note(&info->auxv, current->mm); 1673 info->size += notesize(&info->auxv); 1674 1675 fill_files_note(&info->files); 1676 info->size += notesize(&info->files); 1677 1678 return 1; 1679 } 1680 1681 static size_t get_note_info_size(struct elf_note_info *info) 1682 { 1683 return info->size; 1684 } 1685 1686 /* 1687 * Write all the notes for each thread. When writing the first thread, the 1688 * process-wide notes are interleaved after the first thread-specific note. 1689 */ 1690 static int write_note_info(struct elf_note_info *info, 1691 struct file *file, loff_t *foffset) 1692 { 1693 bool first = 1; 1694 struct elf_thread_core_info *t = info->thread; 1695 1696 do { 1697 int i; 1698 1699 if (!writenote(&t->notes[0], file, foffset)) 1700 return 0; 1701 1702 if (first && !writenote(&info->psinfo, file, foffset)) 1703 return 0; 1704 if (first && !writenote(&info->signote, file, foffset)) 1705 return 0; 1706 if (first && !writenote(&info->auxv, file, foffset)) 1707 return 0; 1708 if (first && !writenote(&info->files, file, foffset)) 1709 return 0; 1710 1711 for (i = 1; i < info->thread_notes; ++i) 1712 if (t->notes[i].data && 1713 !writenote(&t->notes[i], file, foffset)) 1714 return 0; 1715 1716 first = 0; 1717 t = t->next; 1718 } while (t); 1719 1720 return 1; 1721 } 1722 1723 static void free_note_info(struct elf_note_info *info) 1724 { 1725 struct elf_thread_core_info *threads = info->thread; 1726 while (threads) { 1727 unsigned int i; 1728 struct elf_thread_core_info *t = threads; 1729 threads = t->next; 1730 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1731 for (i = 1; i < info->thread_notes; ++i) 1732 kfree(t->notes[i].data); 1733 kfree(t); 1734 } 1735 kfree(info->psinfo.data); 1736 vfree(info->files.data); 1737 } 1738 1739 #else 1740 1741 /* Here is the structure in which status of each thread is captured. */ 1742 struct elf_thread_status 1743 { 1744 struct list_head list; 1745 struct elf_prstatus prstatus; /* NT_PRSTATUS */ 1746 elf_fpregset_t fpu; /* NT_PRFPREG */ 1747 struct task_struct *thread; 1748 #ifdef ELF_CORE_COPY_XFPREGS 1749 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 1750 #endif 1751 struct memelfnote notes[3]; 1752 int num_notes; 1753 }; 1754 1755 /* 1756 * In order to add the specific thread information for the elf file format, 1757 * we need to keep a linked list of every threads pr_status and then create 1758 * a single section for them in the final core file. 1759 */ 1760 static int elf_dump_thread_status(long signr, struct elf_thread_status *t) 1761 { 1762 int sz = 0; 1763 struct task_struct *p = t->thread; 1764 t->num_notes = 0; 1765 1766 fill_prstatus(&t->prstatus, p, signr); 1767 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 1768 1769 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 1770 &(t->prstatus)); 1771 t->num_notes++; 1772 sz += notesize(&t->notes[0]); 1773 1774 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, 1775 &t->fpu))) { 1776 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), 1777 &(t->fpu)); 1778 t->num_notes++; 1779 sz += notesize(&t->notes[1]); 1780 } 1781 1782 #ifdef ELF_CORE_COPY_XFPREGS 1783 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) { 1784 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE, 1785 sizeof(t->xfpu), &t->xfpu); 1786 t->num_notes++; 1787 sz += notesize(&t->notes[2]); 1788 } 1789 #endif 1790 return sz; 1791 } 1792 1793 struct elf_note_info { 1794 struct memelfnote *notes; 1795 struct elf_prstatus *prstatus; /* NT_PRSTATUS */ 1796 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 1797 struct list_head thread_list; 1798 elf_fpregset_t *fpu; 1799 #ifdef ELF_CORE_COPY_XFPREGS 1800 elf_fpxregset_t *xfpu; 1801 #endif 1802 user_siginfo_t csigdata; 1803 int thread_status_size; 1804 int numnote; 1805 }; 1806 1807 static int elf_note_info_init(struct elf_note_info *info) 1808 { 1809 memset(info, 0, sizeof(*info)); 1810 INIT_LIST_HEAD(&info->thread_list); 1811 1812 /* Allocate space for ELF notes */ 1813 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL); 1814 if (!info->notes) 1815 return 0; 1816 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); 1817 if (!info->psinfo) 1818 return 0; 1819 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); 1820 if (!info->prstatus) 1821 return 0; 1822 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); 1823 if (!info->fpu) 1824 return 0; 1825 #ifdef ELF_CORE_COPY_XFPREGS 1826 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL); 1827 if (!info->xfpu) 1828 return 0; 1829 #endif 1830 return 1; 1831 } 1832 1833 static int fill_note_info(struct elfhdr *elf, int phdrs, 1834 struct elf_note_info *info, 1835 siginfo_t *siginfo, struct pt_regs *regs) 1836 { 1837 struct list_head *t; 1838 1839 if (!elf_note_info_init(info)) 1840 return 0; 1841 1842 if (siginfo->si_signo) { 1843 struct core_thread *ct; 1844 struct elf_thread_status *ets; 1845 1846 for (ct = current->mm->core_state->dumper.next; 1847 ct; ct = ct->next) { 1848 ets = kzalloc(sizeof(*ets), GFP_KERNEL); 1849 if (!ets) 1850 return 0; 1851 1852 ets->thread = ct->task; 1853 list_add(&ets->list, &info->thread_list); 1854 } 1855 1856 list_for_each(t, &info->thread_list) { 1857 int sz; 1858 1859 ets = list_entry(t, struct elf_thread_status, list); 1860 sz = elf_dump_thread_status(siginfo->si_signo, ets); 1861 info->thread_status_size += sz; 1862 } 1863 } 1864 /* now collect the dump for the current */ 1865 memset(info->prstatus, 0, sizeof(*info->prstatus)); 1866 fill_prstatus(info->prstatus, current, siginfo->si_signo); 1867 elf_core_copy_regs(&info->prstatus->pr_reg, regs); 1868 1869 /* Set up header */ 1870 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI); 1871 1872 /* 1873 * Set up the notes in similar form to SVR4 core dumps made 1874 * with info from their /proc. 1875 */ 1876 1877 fill_note(info->notes + 0, "CORE", NT_PRSTATUS, 1878 sizeof(*info->prstatus), info->prstatus); 1879 fill_psinfo(info->psinfo, current->group_leader, current->mm); 1880 fill_note(info->notes + 1, "CORE", NT_PRPSINFO, 1881 sizeof(*info->psinfo), info->psinfo); 1882 1883 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo); 1884 fill_auxv_note(info->notes + 3, current->mm); 1885 fill_files_note(info->notes + 4); 1886 1887 info->numnote = 5; 1888 1889 /* Try to dump the FPU. */ 1890 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs, 1891 info->fpu); 1892 if (info->prstatus->pr_fpvalid) 1893 fill_note(info->notes + info->numnote++, 1894 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); 1895 #ifdef ELF_CORE_COPY_XFPREGS 1896 if (elf_core_copy_task_xfpregs(current, info->xfpu)) 1897 fill_note(info->notes + info->numnote++, 1898 "LINUX", ELF_CORE_XFPREG_TYPE, 1899 sizeof(*info->xfpu), info->xfpu); 1900 #endif 1901 1902 return 1; 1903 } 1904 1905 static size_t get_note_info_size(struct elf_note_info *info) 1906 { 1907 int sz = 0; 1908 int i; 1909 1910 for (i = 0; i < info->numnote; i++) 1911 sz += notesize(info->notes + i); 1912 1913 sz += info->thread_status_size; 1914 1915 return sz; 1916 } 1917 1918 static int write_note_info(struct elf_note_info *info, 1919 struct file *file, loff_t *foffset) 1920 { 1921 int i; 1922 struct list_head *t; 1923 1924 for (i = 0; i < info->numnote; i++) 1925 if (!writenote(info->notes + i, file, foffset)) 1926 return 0; 1927 1928 /* write out the thread status notes section */ 1929 list_for_each(t, &info->thread_list) { 1930 struct elf_thread_status *tmp = 1931 list_entry(t, struct elf_thread_status, list); 1932 1933 for (i = 0; i < tmp->num_notes; i++) 1934 if (!writenote(&tmp->notes[i], file, foffset)) 1935 return 0; 1936 } 1937 1938 return 1; 1939 } 1940 1941 static void free_note_info(struct elf_note_info *info) 1942 { 1943 while (!list_empty(&info->thread_list)) { 1944 struct list_head *tmp = info->thread_list.next; 1945 list_del(tmp); 1946 kfree(list_entry(tmp, struct elf_thread_status, list)); 1947 } 1948 1949 /* Free data allocated by fill_files_note(): */ 1950 vfree(info->notes[4].data); 1951 1952 kfree(info->prstatus); 1953 kfree(info->psinfo); 1954 kfree(info->notes); 1955 kfree(info->fpu); 1956 #ifdef ELF_CORE_COPY_XFPREGS 1957 kfree(info->xfpu); 1958 #endif 1959 } 1960 1961 #endif 1962 1963 static struct vm_area_struct *first_vma(struct task_struct *tsk, 1964 struct vm_area_struct *gate_vma) 1965 { 1966 struct vm_area_struct *ret = tsk->mm->mmap; 1967 1968 if (ret) 1969 return ret; 1970 return gate_vma; 1971 } 1972 /* 1973 * Helper function for iterating across a vma list. It ensures that the caller 1974 * will visit `gate_vma' prior to terminating the search. 1975 */ 1976 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, 1977 struct vm_area_struct *gate_vma) 1978 { 1979 struct vm_area_struct *ret; 1980 1981 ret = this_vma->vm_next; 1982 if (ret) 1983 return ret; 1984 if (this_vma == gate_vma) 1985 return NULL; 1986 return gate_vma; 1987 } 1988 1989 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, 1990 elf_addr_t e_shoff, int segs) 1991 { 1992 elf->e_shoff = e_shoff; 1993 elf->e_shentsize = sizeof(*shdr4extnum); 1994 elf->e_shnum = 1; 1995 elf->e_shstrndx = SHN_UNDEF; 1996 1997 memset(shdr4extnum, 0, sizeof(*shdr4extnum)); 1998 1999 shdr4extnum->sh_type = SHT_NULL; 2000 shdr4extnum->sh_size = elf->e_shnum; 2001 shdr4extnum->sh_link = elf->e_shstrndx; 2002 shdr4extnum->sh_info = segs; 2003 } 2004 2005 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma, 2006 unsigned long mm_flags) 2007 { 2008 struct vm_area_struct *vma; 2009 size_t size = 0; 2010 2011 for (vma = first_vma(current, gate_vma); vma != NULL; 2012 vma = next_vma(vma, gate_vma)) 2013 size += vma_dump_size(vma, mm_flags); 2014 return size; 2015 } 2016 2017 /* 2018 * Actual dumper 2019 * 2020 * This is a two-pass process; first we find the offsets of the bits, 2021 * and then they are actually written out. If we run out of core limit 2022 * we just truncate. 2023 */ 2024 static int elf_core_dump(struct coredump_params *cprm) 2025 { 2026 int has_dumped = 0; 2027 mm_segment_t fs; 2028 int segs; 2029 size_t size = 0; 2030 struct vm_area_struct *vma, *gate_vma; 2031 struct elfhdr *elf = NULL; 2032 loff_t offset = 0, dataoff, foffset; 2033 struct elf_note_info info; 2034 struct elf_phdr *phdr4note = NULL; 2035 struct elf_shdr *shdr4extnum = NULL; 2036 Elf_Half e_phnum; 2037 elf_addr_t e_shoff; 2038 2039 /* 2040 * We no longer stop all VM operations. 2041 * 2042 * This is because those proceses that could possibly change map_count 2043 * or the mmap / vma pages are now blocked in do_exit on current 2044 * finishing this core dump. 2045 * 2046 * Only ptrace can touch these memory addresses, but it doesn't change 2047 * the map_count or the pages allocated. So no possibility of crashing 2048 * exists while dumping the mm->vm_next areas to the core file. 2049 */ 2050 2051 /* alloc memory for large data structures: too large to be on stack */ 2052 elf = kmalloc(sizeof(*elf), GFP_KERNEL); 2053 if (!elf) 2054 goto out; 2055 /* 2056 * The number of segs are recored into ELF header as 16bit value. 2057 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. 2058 */ 2059 segs = current->mm->map_count; 2060 segs += elf_core_extra_phdrs(); 2061 2062 gate_vma = get_gate_vma(current->mm); 2063 if (gate_vma != NULL) 2064 segs++; 2065 2066 /* for notes section */ 2067 segs++; 2068 2069 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid 2070 * this, kernel supports extended numbering. Have a look at 2071 * include/linux/elf.h for further information. */ 2072 e_phnum = segs > PN_XNUM ? PN_XNUM : segs; 2073 2074 /* 2075 * Collect all the non-memory information about the process for the 2076 * notes. This also sets up the file header. 2077 */ 2078 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs)) 2079 goto cleanup; 2080 2081 has_dumped = 1; 2082 current->flags |= PF_DUMPCORE; 2083 2084 fs = get_fs(); 2085 set_fs(KERNEL_DS); 2086 2087 offset += sizeof(*elf); /* Elf header */ 2088 offset += segs * sizeof(struct elf_phdr); /* Program headers */ 2089 foffset = offset; 2090 2091 /* Write notes phdr entry */ 2092 { 2093 size_t sz = get_note_info_size(&info); 2094 2095 sz += elf_coredump_extra_notes_size(); 2096 2097 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); 2098 if (!phdr4note) 2099 goto end_coredump; 2100 2101 fill_elf_note_phdr(phdr4note, sz, offset); 2102 offset += sz; 2103 } 2104 2105 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 2106 2107 offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags); 2108 offset += elf_core_extra_data_size(); 2109 e_shoff = offset; 2110 2111 if (e_phnum == PN_XNUM) { 2112 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); 2113 if (!shdr4extnum) 2114 goto end_coredump; 2115 fill_extnum_info(elf, shdr4extnum, e_shoff, segs); 2116 } 2117 2118 offset = dataoff; 2119 2120 size += sizeof(*elf); 2121 if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf))) 2122 goto end_coredump; 2123 2124 size += sizeof(*phdr4note); 2125 if (size > cprm->limit 2126 || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note))) 2127 goto end_coredump; 2128 2129 /* Write program headers for segments dump */ 2130 for (vma = first_vma(current, gate_vma); vma != NULL; 2131 vma = next_vma(vma, gate_vma)) { 2132 struct elf_phdr phdr; 2133 2134 phdr.p_type = PT_LOAD; 2135 phdr.p_offset = offset; 2136 phdr.p_vaddr = vma->vm_start; 2137 phdr.p_paddr = 0; 2138 phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags); 2139 phdr.p_memsz = vma->vm_end - vma->vm_start; 2140 offset += phdr.p_filesz; 2141 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; 2142 if (vma->vm_flags & VM_WRITE) 2143 phdr.p_flags |= PF_W; 2144 if (vma->vm_flags & VM_EXEC) 2145 phdr.p_flags |= PF_X; 2146 phdr.p_align = ELF_EXEC_PAGESIZE; 2147 2148 size += sizeof(phdr); 2149 if (size > cprm->limit 2150 || !dump_write(cprm->file, &phdr, sizeof(phdr))) 2151 goto end_coredump; 2152 } 2153 2154 if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit)) 2155 goto end_coredump; 2156 2157 /* write out the notes section */ 2158 if (!write_note_info(&info, cprm->file, &foffset)) 2159 goto end_coredump; 2160 2161 if (elf_coredump_extra_notes_write(cprm->file, &foffset)) 2162 goto end_coredump; 2163 2164 /* Align to page */ 2165 if (!dump_seek(cprm->file, dataoff - foffset)) 2166 goto end_coredump; 2167 2168 for (vma = first_vma(current, gate_vma); vma != NULL; 2169 vma = next_vma(vma, gate_vma)) { 2170 unsigned long addr; 2171 unsigned long end; 2172 2173 end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags); 2174 2175 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) { 2176 struct page *page; 2177 int stop; 2178 2179 page = get_dump_page(addr); 2180 if (page) { 2181 void *kaddr = kmap(page); 2182 stop = ((size += PAGE_SIZE) > cprm->limit) || 2183 !dump_write(cprm->file, kaddr, 2184 PAGE_SIZE); 2185 kunmap(page); 2186 page_cache_release(page); 2187 } else 2188 stop = !dump_seek(cprm->file, PAGE_SIZE); 2189 if (stop) 2190 goto end_coredump; 2191 } 2192 } 2193 2194 if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit)) 2195 goto end_coredump; 2196 2197 if (e_phnum == PN_XNUM) { 2198 size += sizeof(*shdr4extnum); 2199 if (size > cprm->limit 2200 || !dump_write(cprm->file, shdr4extnum, 2201 sizeof(*shdr4extnum))) 2202 goto end_coredump; 2203 } 2204 2205 end_coredump: 2206 set_fs(fs); 2207 2208 cleanup: 2209 free_note_info(&info); 2210 kfree(shdr4extnum); 2211 kfree(phdr4note); 2212 kfree(elf); 2213 out: 2214 return has_dumped; 2215 } 2216 2217 #endif /* CONFIG_ELF_CORE */ 2218 2219 static int __init init_elf_binfmt(void) 2220 { 2221 register_binfmt(&elf_format); 2222 return 0; 2223 } 2224 2225 static void __exit exit_elf_binfmt(void) 2226 { 2227 /* Remove the COFF and ELF loaders. */ 2228 unregister_binfmt(&elf_format); 2229 } 2230 2231 core_initcall(init_elf_binfmt); 2232 module_exit(exit_elf_binfmt); 2233 MODULE_LICENSE("GPL"); 2234