1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/binfmt_elf.c 4 * 5 * These are the functions used to load ELF format executables as used 6 * on SVr4 machines. Information on the format may be found in the book 7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 8 * Tools". 9 * 10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 11 */ 12 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/fs.h> 16 #include <linux/log2.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/errno.h> 20 #include <linux/signal.h> 21 #include <linux/binfmts.h> 22 #include <linux/string.h> 23 #include <linux/file.h> 24 #include <linux/slab.h> 25 #include <linux/personality.h> 26 #include <linux/elfcore.h> 27 #include <linux/init.h> 28 #include <linux/highuid.h> 29 #include <linux/compiler.h> 30 #include <linux/highmem.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vmalloc.h> 34 #include <linux/security.h> 35 #include <linux/random.h> 36 #include <linux/elf.h> 37 #include <linux/elf-randomize.h> 38 #include <linux/utsname.h> 39 #include <linux/coredump.h> 40 #include <linux/sched.h> 41 #include <linux/sched/coredump.h> 42 #include <linux/sched/task_stack.h> 43 #include <linux/sched/cputime.h> 44 #include <linux/sizes.h> 45 #include <linux/types.h> 46 #include <linux/cred.h> 47 #include <linux/dax.h> 48 #include <linux/uaccess.h> 49 #include <asm/param.h> 50 #include <asm/page.h> 51 52 #ifndef ELF_COMPAT 53 #define ELF_COMPAT 0 54 #endif 55 56 #ifndef user_long_t 57 #define user_long_t long 58 #endif 59 #ifndef user_siginfo_t 60 #define user_siginfo_t siginfo_t 61 #endif 62 63 /* That's for binfmt_elf_fdpic to deal with */ 64 #ifndef elf_check_fdpic 65 #define elf_check_fdpic(ex) false 66 #endif 67 68 static int load_elf_binary(struct linux_binprm *bprm); 69 70 #ifdef CONFIG_USELIB 71 static int load_elf_library(struct file *); 72 #else 73 #define load_elf_library NULL 74 #endif 75 76 /* 77 * If we don't support core dumping, then supply a NULL so we 78 * don't even try. 79 */ 80 #ifdef CONFIG_ELF_CORE 81 static int elf_core_dump(struct coredump_params *cprm); 82 #else 83 #define elf_core_dump NULL 84 #endif 85 86 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 87 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 88 #else 89 #define ELF_MIN_ALIGN PAGE_SIZE 90 #endif 91 92 #ifndef ELF_CORE_EFLAGS 93 #define ELF_CORE_EFLAGS 0 94 #endif 95 96 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) 97 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 98 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 99 100 static struct linux_binfmt elf_format = { 101 .module = THIS_MODULE, 102 .load_binary = load_elf_binary, 103 .load_shlib = load_elf_library, 104 .core_dump = elf_core_dump, 105 .min_coredump = ELF_EXEC_PAGESIZE, 106 }; 107 108 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE)) 109 110 static int set_brk(unsigned long start, unsigned long end, int prot) 111 { 112 start = ELF_PAGEALIGN(start); 113 end = ELF_PAGEALIGN(end); 114 if (end > start) { 115 /* 116 * Map the last of the bss segment. 117 * If the header is requesting these pages to be 118 * executable, honour that (ppc32 needs this). 119 */ 120 int error = vm_brk_flags(start, end - start, 121 prot & PROT_EXEC ? VM_EXEC : 0); 122 if (error) 123 return error; 124 } 125 current->mm->start_brk = current->mm->brk = end; 126 return 0; 127 } 128 129 /* We need to explicitly zero any fractional pages 130 after the data section (i.e. bss). This would 131 contain the junk from the file that should not 132 be in memory 133 */ 134 static int padzero(unsigned long elf_bss) 135 { 136 unsigned long nbyte; 137 138 nbyte = ELF_PAGEOFFSET(elf_bss); 139 if (nbyte) { 140 nbyte = ELF_MIN_ALIGN - nbyte; 141 if (clear_user((void __user *) elf_bss, nbyte)) 142 return -EFAULT; 143 } 144 return 0; 145 } 146 147 /* Let's use some macros to make this stack manipulation a little clearer */ 148 #ifdef CONFIG_STACK_GROWSUP 149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 150 #define STACK_ROUND(sp, items) \ 151 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 152 #define STACK_ALLOC(sp, len) ({ \ 153 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 154 old_sp; }) 155 #else 156 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 157 #define STACK_ROUND(sp, items) \ 158 (((unsigned long) (sp - items)) &~ 15UL) 159 #define STACK_ALLOC(sp, len) (sp -= len) 160 #endif 161 162 #ifndef ELF_BASE_PLATFORM 163 /* 164 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. 165 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value 166 * will be copied to the user stack in the same manner as AT_PLATFORM. 167 */ 168 #define ELF_BASE_PLATFORM NULL 169 #endif 170 171 static int 172 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec, 173 unsigned long load_addr, unsigned long interp_load_addr, 174 unsigned long e_entry) 175 { 176 struct mm_struct *mm = current->mm; 177 unsigned long p = bprm->p; 178 int argc = bprm->argc; 179 int envc = bprm->envc; 180 elf_addr_t __user *sp; 181 elf_addr_t __user *u_platform; 182 elf_addr_t __user *u_base_platform; 183 elf_addr_t __user *u_rand_bytes; 184 const char *k_platform = ELF_PLATFORM; 185 const char *k_base_platform = ELF_BASE_PLATFORM; 186 unsigned char k_rand_bytes[16]; 187 int items; 188 elf_addr_t *elf_info; 189 elf_addr_t flags = 0; 190 int ei_index; 191 const struct cred *cred = current_cred(); 192 struct vm_area_struct *vma; 193 194 /* 195 * In some cases (e.g. Hyper-Threading), we want to avoid L1 196 * evictions by the processes running on the same package. One 197 * thing we can do is to shuffle the initial stack for them. 198 */ 199 200 p = arch_align_stack(p); 201 202 /* 203 * If this architecture has a platform capability string, copy it 204 * to userspace. In some cases (Sparc), this info is impossible 205 * for userspace to get any other way, in others (i386) it is 206 * merely difficult. 207 */ 208 u_platform = NULL; 209 if (k_platform) { 210 size_t len = strlen(k_platform) + 1; 211 212 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 213 if (copy_to_user(u_platform, k_platform, len)) 214 return -EFAULT; 215 } 216 217 /* 218 * If this architecture has a "base" platform capability 219 * string, copy it to userspace. 220 */ 221 u_base_platform = NULL; 222 if (k_base_platform) { 223 size_t len = strlen(k_base_platform) + 1; 224 225 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 226 if (copy_to_user(u_base_platform, k_base_platform, len)) 227 return -EFAULT; 228 } 229 230 /* 231 * Generate 16 random bytes for userspace PRNG seeding. 232 */ 233 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); 234 u_rand_bytes = (elf_addr_t __user *) 235 STACK_ALLOC(p, sizeof(k_rand_bytes)); 236 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) 237 return -EFAULT; 238 239 /* Create the ELF interpreter info */ 240 elf_info = (elf_addr_t *)mm->saved_auxv; 241 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 242 #define NEW_AUX_ENT(id, val) \ 243 do { \ 244 *elf_info++ = id; \ 245 *elf_info++ = val; \ 246 } while (0) 247 248 #ifdef ARCH_DLINFO 249 /* 250 * ARCH_DLINFO must come first so PPC can do its special alignment of 251 * AUXV. 252 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 253 * ARCH_DLINFO changes 254 */ 255 ARCH_DLINFO; 256 #endif 257 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 258 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 259 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 260 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); 261 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 262 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 263 NEW_AUX_ENT(AT_BASE, interp_load_addr); 264 if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0) 265 flags |= AT_FLAGS_PRESERVE_ARGV0; 266 NEW_AUX_ENT(AT_FLAGS, flags); 267 NEW_AUX_ENT(AT_ENTRY, e_entry); 268 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid)); 269 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid)); 270 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid)); 271 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid)); 272 NEW_AUX_ENT(AT_SECURE, bprm->secureexec); 273 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); 274 #ifdef ELF_HWCAP2 275 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2); 276 #endif 277 NEW_AUX_ENT(AT_EXECFN, bprm->exec); 278 if (k_platform) { 279 NEW_AUX_ENT(AT_PLATFORM, 280 (elf_addr_t)(unsigned long)u_platform); 281 } 282 if (k_base_platform) { 283 NEW_AUX_ENT(AT_BASE_PLATFORM, 284 (elf_addr_t)(unsigned long)u_base_platform); 285 } 286 if (bprm->have_execfd) { 287 NEW_AUX_ENT(AT_EXECFD, bprm->execfd); 288 } 289 #undef NEW_AUX_ENT 290 /* AT_NULL is zero; clear the rest too */ 291 memset(elf_info, 0, (char *)mm->saved_auxv + 292 sizeof(mm->saved_auxv) - (char *)elf_info); 293 294 /* And advance past the AT_NULL entry. */ 295 elf_info += 2; 296 297 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv; 298 sp = STACK_ADD(p, ei_index); 299 300 items = (argc + 1) + (envc + 1) + 1; 301 bprm->p = STACK_ROUND(sp, items); 302 303 /* Point sp at the lowest address on the stack */ 304 #ifdef CONFIG_STACK_GROWSUP 305 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 306 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 307 #else 308 sp = (elf_addr_t __user *)bprm->p; 309 #endif 310 311 312 /* 313 * Grow the stack manually; some architectures have a limit on how 314 * far ahead a user-space access may be in order to grow the stack. 315 */ 316 if (mmap_read_lock_killable(mm)) 317 return -EINTR; 318 vma = find_extend_vma(mm, bprm->p); 319 mmap_read_unlock(mm); 320 if (!vma) 321 return -EFAULT; 322 323 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 324 if (put_user(argc, sp++)) 325 return -EFAULT; 326 327 /* Populate list of argv pointers back to argv strings. */ 328 p = mm->arg_end = mm->arg_start; 329 while (argc-- > 0) { 330 size_t len; 331 if (put_user((elf_addr_t)p, sp++)) 332 return -EFAULT; 333 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 334 if (!len || len > MAX_ARG_STRLEN) 335 return -EINVAL; 336 p += len; 337 } 338 if (put_user(0, sp++)) 339 return -EFAULT; 340 mm->arg_end = p; 341 342 /* Populate list of envp pointers back to envp strings. */ 343 mm->env_end = mm->env_start = p; 344 while (envc-- > 0) { 345 size_t len; 346 if (put_user((elf_addr_t)p, sp++)) 347 return -EFAULT; 348 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 349 if (!len || len > MAX_ARG_STRLEN) 350 return -EINVAL; 351 p += len; 352 } 353 if (put_user(0, sp++)) 354 return -EFAULT; 355 mm->env_end = p; 356 357 /* Put the elf_info on the stack in the right place. */ 358 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t))) 359 return -EFAULT; 360 return 0; 361 } 362 363 static unsigned long elf_map(struct file *filep, unsigned long addr, 364 const struct elf_phdr *eppnt, int prot, int type, 365 unsigned long total_size) 366 { 367 unsigned long map_addr; 368 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 369 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 370 addr = ELF_PAGESTART(addr); 371 size = ELF_PAGEALIGN(size); 372 373 /* mmap() will return -EINVAL if given a zero size, but a 374 * segment with zero filesize is perfectly valid */ 375 if (!size) 376 return addr; 377 378 /* 379 * total_size is the size of the ELF (interpreter) image. 380 * The _first_ mmap needs to know the full size, otherwise 381 * randomization might put this image into an overlapping 382 * position with the ELF binary image. (since size < total_size) 383 * So we first map the 'big' image - and unmap the remainder at 384 * the end. (which unmap is needed for ELF images with holes.) 385 */ 386 if (total_size) { 387 total_size = ELF_PAGEALIGN(total_size); 388 map_addr = vm_mmap(filep, addr, total_size, prot, type, off); 389 if (!BAD_ADDR(map_addr)) 390 vm_munmap(map_addr+size, total_size-size); 391 } else 392 map_addr = vm_mmap(filep, addr, size, prot, type, off); 393 394 if ((type & MAP_FIXED_NOREPLACE) && 395 PTR_ERR((void *)map_addr) == -EEXIST) 396 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n", 397 task_pid_nr(current), current->comm, (void *)addr); 398 399 return(map_addr); 400 } 401 402 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr) 403 { 404 int i, first_idx = -1, last_idx = -1; 405 406 for (i = 0; i < nr; i++) { 407 if (cmds[i].p_type == PT_LOAD) { 408 last_idx = i; 409 if (first_idx == -1) 410 first_idx = i; 411 } 412 } 413 if (first_idx == -1) 414 return 0; 415 416 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - 417 ELF_PAGESTART(cmds[first_idx].p_vaddr); 418 } 419 420 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos) 421 { 422 ssize_t rv; 423 424 rv = kernel_read(file, buf, len, &pos); 425 if (unlikely(rv != len)) { 426 return (rv < 0) ? rv : -EIO; 427 } 428 return 0; 429 } 430 431 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr) 432 { 433 unsigned long alignment = 0; 434 int i; 435 436 for (i = 0; i < nr; i++) { 437 if (cmds[i].p_type == PT_LOAD) { 438 unsigned long p_align = cmds[i].p_align; 439 440 /* skip non-power of two alignments as invalid */ 441 if (!is_power_of_2(p_align)) 442 continue; 443 alignment = max(alignment, p_align); 444 } 445 } 446 447 /* ensure we align to at least one page */ 448 return ELF_PAGEALIGN(alignment); 449 } 450 451 /** 452 * load_elf_phdrs() - load ELF program headers 453 * @elf_ex: ELF header of the binary whose program headers should be loaded 454 * @elf_file: the opened ELF binary file 455 * 456 * Loads ELF program headers from the binary file elf_file, which has the ELF 457 * header pointed to by elf_ex, into a newly allocated array. The caller is 458 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure. 459 */ 460 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex, 461 struct file *elf_file) 462 { 463 struct elf_phdr *elf_phdata = NULL; 464 int retval, err = -1; 465 unsigned int size; 466 467 /* 468 * If the size of this structure has changed, then punt, since 469 * we will be doing the wrong thing. 470 */ 471 if (elf_ex->e_phentsize != sizeof(struct elf_phdr)) 472 goto out; 473 474 /* Sanity check the number of program headers... */ 475 /* ...and their total size. */ 476 size = sizeof(struct elf_phdr) * elf_ex->e_phnum; 477 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN) 478 goto out; 479 480 elf_phdata = kmalloc(size, GFP_KERNEL); 481 if (!elf_phdata) 482 goto out; 483 484 /* Read in the program headers */ 485 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff); 486 if (retval < 0) { 487 err = retval; 488 goto out; 489 } 490 491 /* Success! */ 492 err = 0; 493 out: 494 if (err) { 495 kfree(elf_phdata); 496 elf_phdata = NULL; 497 } 498 return elf_phdata; 499 } 500 501 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE 502 503 /** 504 * struct arch_elf_state - arch-specific ELF loading state 505 * 506 * This structure is used to preserve architecture specific data during 507 * the loading of an ELF file, throughout the checking of architecture 508 * specific ELF headers & through to the point where the ELF load is 509 * known to be proceeding (ie. SET_PERSONALITY). 510 * 511 * This implementation is a dummy for architectures which require no 512 * specific state. 513 */ 514 struct arch_elf_state { 515 }; 516 517 #define INIT_ARCH_ELF_STATE {} 518 519 /** 520 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header 521 * @ehdr: The main ELF header 522 * @phdr: The program header to check 523 * @elf: The open ELF file 524 * @is_interp: True if the phdr is from the interpreter of the ELF being 525 * loaded, else false. 526 * @state: Architecture-specific state preserved throughout the process 527 * of loading the ELF. 528 * 529 * Inspects the program header phdr to validate its correctness and/or 530 * suitability for the system. Called once per ELF program header in the 531 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its 532 * interpreter. 533 * 534 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 535 * with that return code. 536 */ 537 static inline int arch_elf_pt_proc(struct elfhdr *ehdr, 538 struct elf_phdr *phdr, 539 struct file *elf, bool is_interp, 540 struct arch_elf_state *state) 541 { 542 /* Dummy implementation, always proceed */ 543 return 0; 544 } 545 546 /** 547 * arch_check_elf() - check an ELF executable 548 * @ehdr: The main ELF header 549 * @has_interp: True if the ELF has an interpreter, else false. 550 * @interp_ehdr: The interpreter's ELF header 551 * @state: Architecture-specific state preserved throughout the process 552 * of loading the ELF. 553 * 554 * Provides a final opportunity for architecture code to reject the loading 555 * of the ELF & cause an exec syscall to return an error. This is called after 556 * all program headers to be checked by arch_elf_pt_proc have been. 557 * 558 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 559 * with that return code. 560 */ 561 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp, 562 struct elfhdr *interp_ehdr, 563 struct arch_elf_state *state) 564 { 565 /* Dummy implementation, always proceed */ 566 return 0; 567 } 568 569 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */ 570 571 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state, 572 bool has_interp, bool is_interp) 573 { 574 int prot = 0; 575 576 if (p_flags & PF_R) 577 prot |= PROT_READ; 578 if (p_flags & PF_W) 579 prot |= PROT_WRITE; 580 if (p_flags & PF_X) 581 prot |= PROT_EXEC; 582 583 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp); 584 } 585 586 /* This is much more generalized than the library routine read function, 587 so we keep this separate. Technically the library read function 588 is only provided so that we can read a.out libraries that have 589 an ELF header */ 590 591 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 592 struct file *interpreter, 593 unsigned long no_base, struct elf_phdr *interp_elf_phdata, 594 struct arch_elf_state *arch_state) 595 { 596 struct elf_phdr *eppnt; 597 unsigned long load_addr = 0; 598 int load_addr_set = 0; 599 unsigned long last_bss = 0, elf_bss = 0; 600 int bss_prot = 0; 601 unsigned long error = ~0UL; 602 unsigned long total_size; 603 int i; 604 605 /* First of all, some simple consistency checks */ 606 if (interp_elf_ex->e_type != ET_EXEC && 607 interp_elf_ex->e_type != ET_DYN) 608 goto out; 609 if (!elf_check_arch(interp_elf_ex) || 610 elf_check_fdpic(interp_elf_ex)) 611 goto out; 612 if (!interpreter->f_op->mmap) 613 goto out; 614 615 total_size = total_mapping_size(interp_elf_phdata, 616 interp_elf_ex->e_phnum); 617 if (!total_size) { 618 error = -EINVAL; 619 goto out; 620 } 621 622 eppnt = interp_elf_phdata; 623 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 624 if (eppnt->p_type == PT_LOAD) { 625 int elf_type = MAP_PRIVATE; 626 int elf_prot = make_prot(eppnt->p_flags, arch_state, 627 true, true); 628 unsigned long vaddr = 0; 629 unsigned long k, map_addr; 630 631 vaddr = eppnt->p_vaddr; 632 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 633 elf_type |= MAP_FIXED; 634 else if (no_base && interp_elf_ex->e_type == ET_DYN) 635 load_addr = -vaddr; 636 637 map_addr = elf_map(interpreter, load_addr + vaddr, 638 eppnt, elf_prot, elf_type, total_size); 639 total_size = 0; 640 error = map_addr; 641 if (BAD_ADDR(map_addr)) 642 goto out; 643 644 if (!load_addr_set && 645 interp_elf_ex->e_type == ET_DYN) { 646 load_addr = map_addr - ELF_PAGESTART(vaddr); 647 load_addr_set = 1; 648 } 649 650 /* 651 * Check to see if the section's size will overflow the 652 * allowed task size. Note that p_filesz must always be 653 * <= p_memsize so it's only necessary to check p_memsz. 654 */ 655 k = load_addr + eppnt->p_vaddr; 656 if (BAD_ADDR(k) || 657 eppnt->p_filesz > eppnt->p_memsz || 658 eppnt->p_memsz > TASK_SIZE || 659 TASK_SIZE - eppnt->p_memsz < k) { 660 error = -ENOMEM; 661 goto out; 662 } 663 664 /* 665 * Find the end of the file mapping for this phdr, and 666 * keep track of the largest address we see for this. 667 */ 668 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; 669 if (k > elf_bss) 670 elf_bss = k; 671 672 /* 673 * Do the same thing for the memory mapping - between 674 * elf_bss and last_bss is the bss section. 675 */ 676 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz; 677 if (k > last_bss) { 678 last_bss = k; 679 bss_prot = elf_prot; 680 } 681 } 682 } 683 684 /* 685 * Now fill out the bss section: first pad the last page from 686 * the file up to the page boundary, and zero it from elf_bss 687 * up to the end of the page. 688 */ 689 if (padzero(elf_bss)) { 690 error = -EFAULT; 691 goto out; 692 } 693 /* 694 * Next, align both the file and mem bss up to the page size, 695 * since this is where elf_bss was just zeroed up to, and where 696 * last_bss will end after the vm_brk_flags() below. 697 */ 698 elf_bss = ELF_PAGEALIGN(elf_bss); 699 last_bss = ELF_PAGEALIGN(last_bss); 700 /* Finally, if there is still more bss to allocate, do it. */ 701 if (last_bss > elf_bss) { 702 error = vm_brk_flags(elf_bss, last_bss - elf_bss, 703 bss_prot & PROT_EXEC ? VM_EXEC : 0); 704 if (error) 705 goto out; 706 } 707 708 error = load_addr; 709 out: 710 return error; 711 } 712 713 /* 714 * These are the functions used to load ELF style executables and shared 715 * libraries. There is no binary dependent code anywhere else. 716 */ 717 718 static int parse_elf_property(const char *data, size_t *off, size_t datasz, 719 struct arch_elf_state *arch, 720 bool have_prev_type, u32 *prev_type) 721 { 722 size_t o, step; 723 const struct gnu_property *pr; 724 int ret; 725 726 if (*off == datasz) 727 return -ENOENT; 728 729 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN)) 730 return -EIO; 731 o = *off; 732 datasz -= *off; 733 734 if (datasz < sizeof(*pr)) 735 return -ENOEXEC; 736 pr = (const struct gnu_property *)(data + o); 737 o += sizeof(*pr); 738 datasz -= sizeof(*pr); 739 740 if (pr->pr_datasz > datasz) 741 return -ENOEXEC; 742 743 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN); 744 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN); 745 if (step > datasz) 746 return -ENOEXEC; 747 748 /* Properties are supposed to be unique and sorted on pr_type: */ 749 if (have_prev_type && pr->pr_type <= *prev_type) 750 return -ENOEXEC; 751 *prev_type = pr->pr_type; 752 753 ret = arch_parse_elf_property(pr->pr_type, data + o, 754 pr->pr_datasz, ELF_COMPAT, arch); 755 if (ret) 756 return ret; 757 758 *off = o + step; 759 return 0; 760 } 761 762 #define NOTE_DATA_SZ SZ_1K 763 #define GNU_PROPERTY_TYPE_0_NAME "GNU" 764 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME)) 765 766 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr, 767 struct arch_elf_state *arch) 768 { 769 union { 770 struct elf_note nhdr; 771 char data[NOTE_DATA_SZ]; 772 } note; 773 loff_t pos; 774 ssize_t n; 775 size_t off, datasz; 776 int ret; 777 bool have_prev_type; 778 u32 prev_type; 779 780 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr) 781 return 0; 782 783 /* load_elf_binary() shouldn't call us unless this is true... */ 784 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY)) 785 return -ENOEXEC; 786 787 /* If the properties are crazy large, that's too bad (for now): */ 788 if (phdr->p_filesz > sizeof(note)) 789 return -ENOEXEC; 790 791 pos = phdr->p_offset; 792 n = kernel_read(f, ¬e, phdr->p_filesz, &pos); 793 794 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ); 795 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ) 796 return -EIO; 797 798 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 799 note.nhdr.n_namesz != NOTE_NAME_SZ || 800 strncmp(note.data + sizeof(note.nhdr), 801 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr))) 802 return -ENOEXEC; 803 804 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ, 805 ELF_GNU_PROPERTY_ALIGN); 806 if (off > n) 807 return -ENOEXEC; 808 809 if (note.nhdr.n_descsz > n - off) 810 return -ENOEXEC; 811 datasz = off + note.nhdr.n_descsz; 812 813 have_prev_type = false; 814 do { 815 ret = parse_elf_property(note.data, &off, datasz, arch, 816 have_prev_type, &prev_type); 817 have_prev_type = true; 818 } while (!ret); 819 820 return ret == -ENOENT ? 0 : ret; 821 } 822 823 static int load_elf_binary(struct linux_binprm *bprm) 824 { 825 struct file *interpreter = NULL; /* to shut gcc up */ 826 unsigned long load_addr = 0, load_bias = 0; 827 int load_addr_set = 0; 828 unsigned long error; 829 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL; 830 struct elf_phdr *elf_property_phdata = NULL; 831 unsigned long elf_bss, elf_brk; 832 int bss_prot = 0; 833 int retval, i; 834 unsigned long elf_entry; 835 unsigned long e_entry; 836 unsigned long interp_load_addr = 0; 837 unsigned long start_code, end_code, start_data, end_data; 838 unsigned long reloc_func_desc __maybe_unused = 0; 839 int executable_stack = EXSTACK_DEFAULT; 840 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf; 841 struct elfhdr *interp_elf_ex = NULL; 842 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE; 843 struct mm_struct *mm; 844 struct pt_regs *regs; 845 846 retval = -ENOEXEC; 847 /* First of all, some simple consistency checks */ 848 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 849 goto out; 850 851 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN) 852 goto out; 853 if (!elf_check_arch(elf_ex)) 854 goto out; 855 if (elf_check_fdpic(elf_ex)) 856 goto out; 857 if (!bprm->file->f_op->mmap) 858 goto out; 859 860 elf_phdata = load_elf_phdrs(elf_ex, bprm->file); 861 if (!elf_phdata) 862 goto out; 863 864 elf_ppnt = elf_phdata; 865 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) { 866 char *elf_interpreter; 867 868 if (elf_ppnt->p_type == PT_GNU_PROPERTY) { 869 elf_property_phdata = elf_ppnt; 870 continue; 871 } 872 873 if (elf_ppnt->p_type != PT_INTERP) 874 continue; 875 876 /* 877 * This is the program interpreter used for shared libraries - 878 * for now assume that this is an a.out format binary. 879 */ 880 retval = -ENOEXEC; 881 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2) 882 goto out_free_ph; 883 884 retval = -ENOMEM; 885 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL); 886 if (!elf_interpreter) 887 goto out_free_ph; 888 889 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz, 890 elf_ppnt->p_offset); 891 if (retval < 0) 892 goto out_free_interp; 893 /* make sure path is NULL terminated */ 894 retval = -ENOEXEC; 895 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 896 goto out_free_interp; 897 898 interpreter = open_exec(elf_interpreter); 899 kfree(elf_interpreter); 900 retval = PTR_ERR(interpreter); 901 if (IS_ERR(interpreter)) 902 goto out_free_ph; 903 904 /* 905 * If the binary is not readable then enforce mm->dumpable = 0 906 * regardless of the interpreter's permissions. 907 */ 908 would_dump(bprm, interpreter); 909 910 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL); 911 if (!interp_elf_ex) { 912 retval = -ENOMEM; 913 goto out_free_ph; 914 } 915 916 /* Get the exec headers */ 917 retval = elf_read(interpreter, interp_elf_ex, 918 sizeof(*interp_elf_ex), 0); 919 if (retval < 0) 920 goto out_free_dentry; 921 922 break; 923 924 out_free_interp: 925 kfree(elf_interpreter); 926 goto out_free_ph; 927 } 928 929 elf_ppnt = elf_phdata; 930 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) 931 switch (elf_ppnt->p_type) { 932 case PT_GNU_STACK: 933 if (elf_ppnt->p_flags & PF_X) 934 executable_stack = EXSTACK_ENABLE_X; 935 else 936 executable_stack = EXSTACK_DISABLE_X; 937 break; 938 939 case PT_LOPROC ... PT_HIPROC: 940 retval = arch_elf_pt_proc(elf_ex, elf_ppnt, 941 bprm->file, false, 942 &arch_state); 943 if (retval) 944 goto out_free_dentry; 945 break; 946 } 947 948 /* Some simple consistency checks for the interpreter */ 949 if (interpreter) { 950 retval = -ELIBBAD; 951 /* Not an ELF interpreter */ 952 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 953 goto out_free_dentry; 954 /* Verify the interpreter has a valid arch */ 955 if (!elf_check_arch(interp_elf_ex) || 956 elf_check_fdpic(interp_elf_ex)) 957 goto out_free_dentry; 958 959 /* Load the interpreter program headers */ 960 interp_elf_phdata = load_elf_phdrs(interp_elf_ex, 961 interpreter); 962 if (!interp_elf_phdata) 963 goto out_free_dentry; 964 965 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */ 966 elf_property_phdata = NULL; 967 elf_ppnt = interp_elf_phdata; 968 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++) 969 switch (elf_ppnt->p_type) { 970 case PT_GNU_PROPERTY: 971 elf_property_phdata = elf_ppnt; 972 break; 973 974 case PT_LOPROC ... PT_HIPROC: 975 retval = arch_elf_pt_proc(interp_elf_ex, 976 elf_ppnt, interpreter, 977 true, &arch_state); 978 if (retval) 979 goto out_free_dentry; 980 break; 981 } 982 } 983 984 retval = parse_elf_properties(interpreter ?: bprm->file, 985 elf_property_phdata, &arch_state); 986 if (retval) 987 goto out_free_dentry; 988 989 /* 990 * Allow arch code to reject the ELF at this point, whilst it's 991 * still possible to return an error to the code that invoked 992 * the exec syscall. 993 */ 994 retval = arch_check_elf(elf_ex, 995 !!interpreter, interp_elf_ex, 996 &arch_state); 997 if (retval) 998 goto out_free_dentry; 999 1000 /* Flush all traces of the currently running executable */ 1001 retval = begin_new_exec(bprm); 1002 if (retval) 1003 goto out_free_dentry; 1004 1005 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 1006 may depend on the personality. */ 1007 SET_PERSONALITY2(*elf_ex, &arch_state); 1008 if (elf_read_implies_exec(*elf_ex, executable_stack)) 1009 current->personality |= READ_IMPLIES_EXEC; 1010 1011 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1012 current->flags |= PF_RANDOMIZE; 1013 1014 setup_new_exec(bprm); 1015 1016 /* Do this so that we can load the interpreter, if need be. We will 1017 change some of these later */ 1018 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 1019 executable_stack); 1020 if (retval < 0) 1021 goto out_free_dentry; 1022 1023 elf_bss = 0; 1024 elf_brk = 0; 1025 1026 start_code = ~0UL; 1027 end_code = 0; 1028 start_data = 0; 1029 end_data = 0; 1030 1031 /* Now we do a little grungy work by mmapping the ELF image into 1032 the correct location in memory. */ 1033 for(i = 0, elf_ppnt = elf_phdata; 1034 i < elf_ex->e_phnum; i++, elf_ppnt++) { 1035 int elf_prot, elf_flags; 1036 unsigned long k, vaddr; 1037 unsigned long total_size = 0; 1038 unsigned long alignment; 1039 1040 if (elf_ppnt->p_type != PT_LOAD) 1041 continue; 1042 1043 if (unlikely (elf_brk > elf_bss)) { 1044 unsigned long nbyte; 1045 1046 /* There was a PT_LOAD segment with p_memsz > p_filesz 1047 before this one. Map anonymous pages, if needed, 1048 and clear the area. */ 1049 retval = set_brk(elf_bss + load_bias, 1050 elf_brk + load_bias, 1051 bss_prot); 1052 if (retval) 1053 goto out_free_dentry; 1054 nbyte = ELF_PAGEOFFSET(elf_bss); 1055 if (nbyte) { 1056 nbyte = ELF_MIN_ALIGN - nbyte; 1057 if (nbyte > elf_brk - elf_bss) 1058 nbyte = elf_brk - elf_bss; 1059 if (clear_user((void __user *)elf_bss + 1060 load_bias, nbyte)) { 1061 /* 1062 * This bss-zeroing can fail if the ELF 1063 * file specifies odd protections. So 1064 * we don't check the return value 1065 */ 1066 } 1067 } 1068 } 1069 1070 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state, 1071 !!interpreter, false); 1072 1073 elf_flags = MAP_PRIVATE; 1074 1075 vaddr = elf_ppnt->p_vaddr; 1076 /* 1077 * The first time through the loop, load_addr_set is false: 1078 * layout will be calculated. Once set, use MAP_FIXED since 1079 * we know we've already safely mapped the entire region with 1080 * MAP_FIXED_NOREPLACE in the once-per-binary logic following. 1081 */ 1082 if (load_addr_set) { 1083 elf_flags |= MAP_FIXED; 1084 } else if (elf_ex->e_type == ET_EXEC) { 1085 /* 1086 * This logic is run once for the first LOAD Program 1087 * Header for ET_EXEC binaries. No special handling 1088 * is needed. 1089 */ 1090 elf_flags |= MAP_FIXED_NOREPLACE; 1091 } else if (elf_ex->e_type == ET_DYN) { 1092 /* 1093 * This logic is run once for the first LOAD Program 1094 * Header for ET_DYN binaries to calculate the 1095 * randomization (load_bias) for all the LOAD 1096 * Program Headers. 1097 * 1098 * There are effectively two types of ET_DYN 1099 * binaries: programs (i.e. PIE: ET_DYN with INTERP) 1100 * and loaders (ET_DYN without INTERP, since they 1101 * _are_ the ELF interpreter). The loaders must 1102 * be loaded away from programs since the program 1103 * may otherwise collide with the loader (especially 1104 * for ET_EXEC which does not have a randomized 1105 * position). For example to handle invocations of 1106 * "./ld.so someprog" to test out a new version of 1107 * the loader, the subsequent program that the 1108 * loader loads must avoid the loader itself, so 1109 * they cannot share the same load range. Sufficient 1110 * room for the brk must be allocated with the 1111 * loader as well, since brk must be available with 1112 * the loader. 1113 * 1114 * Therefore, programs are loaded offset from 1115 * ELF_ET_DYN_BASE and loaders are loaded into the 1116 * independently randomized mmap region (0 load_bias 1117 * without MAP_FIXED nor MAP_FIXED_NOREPLACE). 1118 */ 1119 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum); 1120 if (interpreter || alignment > ELF_MIN_ALIGN) { 1121 load_bias = ELF_ET_DYN_BASE; 1122 if (current->flags & PF_RANDOMIZE) 1123 load_bias += arch_mmap_rnd(); 1124 if (alignment) 1125 load_bias &= ~(alignment - 1); 1126 elf_flags |= MAP_FIXED_NOREPLACE; 1127 } else 1128 load_bias = 0; 1129 1130 /* 1131 * Since load_bias is used for all subsequent loading 1132 * calculations, we must lower it by the first vaddr 1133 * so that the remaining calculations based on the 1134 * ELF vaddrs will be correctly offset. The result 1135 * is then page aligned. 1136 */ 1137 load_bias = ELF_PAGESTART(load_bias - vaddr); 1138 1139 /* 1140 * Calculate the entire size of the ELF mapping 1141 * (total_size), used for the initial mapping, 1142 * due to load_addr_set which is set to true later 1143 * once the initial mapping is performed. 1144 * 1145 * Note that this is only sensible when the LOAD 1146 * segments are contiguous (or overlapping). If 1147 * used for LOADs that are far apart, this would 1148 * cause the holes between LOADs to be mapped, 1149 * running the risk of having the mapping fail, 1150 * as it would be larger than the ELF file itself. 1151 * 1152 * As a result, only ET_DYN does this, since 1153 * some ET_EXEC (e.g. ia64) may have large virtual 1154 * memory holes between LOADs. 1155 * 1156 */ 1157 total_size = total_mapping_size(elf_phdata, 1158 elf_ex->e_phnum); 1159 if (!total_size) { 1160 retval = -EINVAL; 1161 goto out_free_dentry; 1162 } 1163 } 1164 1165 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, 1166 elf_prot, elf_flags, total_size); 1167 if (BAD_ADDR(error)) { 1168 retval = IS_ERR((void *)error) ? 1169 PTR_ERR((void*)error) : -EINVAL; 1170 goto out_free_dentry; 1171 } 1172 1173 if (!load_addr_set) { 1174 load_addr_set = 1; 1175 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); 1176 if (elf_ex->e_type == ET_DYN) { 1177 load_bias += error - 1178 ELF_PAGESTART(load_bias + vaddr); 1179 load_addr += load_bias; 1180 reloc_func_desc = load_bias; 1181 } 1182 } 1183 k = elf_ppnt->p_vaddr; 1184 if ((elf_ppnt->p_flags & PF_X) && k < start_code) 1185 start_code = k; 1186 if (start_data < k) 1187 start_data = k; 1188 1189 /* 1190 * Check to see if the section's size will overflow the 1191 * allowed task size. Note that p_filesz must always be 1192 * <= p_memsz so it is only necessary to check p_memsz. 1193 */ 1194 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 1195 elf_ppnt->p_memsz > TASK_SIZE || 1196 TASK_SIZE - elf_ppnt->p_memsz < k) { 1197 /* set_brk can never work. Avoid overflows. */ 1198 retval = -EINVAL; 1199 goto out_free_dentry; 1200 } 1201 1202 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 1203 1204 if (k > elf_bss) 1205 elf_bss = k; 1206 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 1207 end_code = k; 1208 if (end_data < k) 1209 end_data = k; 1210 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 1211 if (k > elf_brk) { 1212 bss_prot = elf_prot; 1213 elf_brk = k; 1214 } 1215 } 1216 1217 e_entry = elf_ex->e_entry + load_bias; 1218 elf_bss += load_bias; 1219 elf_brk += load_bias; 1220 start_code += load_bias; 1221 end_code += load_bias; 1222 start_data += load_bias; 1223 end_data += load_bias; 1224 1225 /* Calling set_brk effectively mmaps the pages that we need 1226 * for the bss and break sections. We must do this before 1227 * mapping in the interpreter, to make sure it doesn't wind 1228 * up getting placed where the bss needs to go. 1229 */ 1230 retval = set_brk(elf_bss, elf_brk, bss_prot); 1231 if (retval) 1232 goto out_free_dentry; 1233 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { 1234 retval = -EFAULT; /* Nobody gets to see this, but.. */ 1235 goto out_free_dentry; 1236 } 1237 1238 if (interpreter) { 1239 elf_entry = load_elf_interp(interp_elf_ex, 1240 interpreter, 1241 load_bias, interp_elf_phdata, 1242 &arch_state); 1243 if (!IS_ERR((void *)elf_entry)) { 1244 /* 1245 * load_elf_interp() returns relocation 1246 * adjustment 1247 */ 1248 interp_load_addr = elf_entry; 1249 elf_entry += interp_elf_ex->e_entry; 1250 } 1251 if (BAD_ADDR(elf_entry)) { 1252 retval = IS_ERR((void *)elf_entry) ? 1253 (int)elf_entry : -EINVAL; 1254 goto out_free_dentry; 1255 } 1256 reloc_func_desc = interp_load_addr; 1257 1258 allow_write_access(interpreter); 1259 fput(interpreter); 1260 1261 kfree(interp_elf_ex); 1262 kfree(interp_elf_phdata); 1263 } else { 1264 elf_entry = e_entry; 1265 if (BAD_ADDR(elf_entry)) { 1266 retval = -EINVAL; 1267 goto out_free_dentry; 1268 } 1269 } 1270 1271 kfree(elf_phdata); 1272 1273 set_binfmt(&elf_format); 1274 1275 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 1276 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter); 1277 if (retval < 0) 1278 goto out; 1279 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 1280 1281 retval = create_elf_tables(bprm, elf_ex, 1282 load_addr, interp_load_addr, e_entry); 1283 if (retval < 0) 1284 goto out; 1285 1286 mm = current->mm; 1287 mm->end_code = end_code; 1288 mm->start_code = start_code; 1289 mm->start_data = start_data; 1290 mm->end_data = end_data; 1291 mm->start_stack = bprm->p; 1292 1293 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { 1294 /* 1295 * For architectures with ELF randomization, when executing 1296 * a loader directly (i.e. no interpreter listed in ELF 1297 * headers), move the brk area out of the mmap region 1298 * (since it grows up, and may collide early with the stack 1299 * growing down), and into the unused ELF_ET_DYN_BASE region. 1300 */ 1301 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && 1302 elf_ex->e_type == ET_DYN && !interpreter) { 1303 mm->brk = mm->start_brk = ELF_ET_DYN_BASE; 1304 } 1305 1306 mm->brk = mm->start_brk = arch_randomize_brk(mm); 1307 #ifdef compat_brk_randomized 1308 current->brk_randomized = 1; 1309 #endif 1310 } 1311 1312 if (current->personality & MMAP_PAGE_ZERO) { 1313 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 1314 and some applications "depend" upon this behavior. 1315 Since we do not have the power to recompile these, we 1316 emulate the SVr4 behavior. Sigh. */ 1317 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 1318 MAP_FIXED | MAP_PRIVATE, 0); 1319 } 1320 1321 regs = current_pt_regs(); 1322 #ifdef ELF_PLAT_INIT 1323 /* 1324 * The ABI may specify that certain registers be set up in special 1325 * ways (on i386 %edx is the address of a DT_FINI function, for 1326 * example. In addition, it may also specify (eg, PowerPC64 ELF) 1327 * that the e_entry field is the address of the function descriptor 1328 * for the startup routine, rather than the address of the startup 1329 * routine itself. This macro performs whatever initialization to 1330 * the regs structure is required as well as any relocations to the 1331 * function descriptor entries when executing dynamically links apps. 1332 */ 1333 ELF_PLAT_INIT(regs, reloc_func_desc); 1334 #endif 1335 1336 finalize_exec(bprm); 1337 START_THREAD(elf_ex, regs, elf_entry, bprm->p); 1338 retval = 0; 1339 out: 1340 return retval; 1341 1342 /* error cleanup */ 1343 out_free_dentry: 1344 kfree(interp_elf_ex); 1345 kfree(interp_elf_phdata); 1346 allow_write_access(interpreter); 1347 if (interpreter) 1348 fput(interpreter); 1349 out_free_ph: 1350 kfree(elf_phdata); 1351 goto out; 1352 } 1353 1354 #ifdef CONFIG_USELIB 1355 /* This is really simpleminded and specialized - we are loading an 1356 a.out library that is given an ELF header. */ 1357 static int load_elf_library(struct file *file) 1358 { 1359 struct elf_phdr *elf_phdata; 1360 struct elf_phdr *eppnt; 1361 unsigned long elf_bss, bss, len; 1362 int retval, error, i, j; 1363 struct elfhdr elf_ex; 1364 1365 error = -ENOEXEC; 1366 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0); 1367 if (retval < 0) 1368 goto out; 1369 1370 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1371 goto out; 1372 1373 /* First of all, some simple consistency checks */ 1374 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1375 !elf_check_arch(&elf_ex) || !file->f_op->mmap) 1376 goto out; 1377 if (elf_check_fdpic(&elf_ex)) 1378 goto out; 1379 1380 /* Now read in all of the header information */ 1381 1382 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1383 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1384 1385 error = -ENOMEM; 1386 elf_phdata = kmalloc(j, GFP_KERNEL); 1387 if (!elf_phdata) 1388 goto out; 1389 1390 eppnt = elf_phdata; 1391 error = -ENOEXEC; 1392 retval = elf_read(file, eppnt, j, elf_ex.e_phoff); 1393 if (retval < 0) 1394 goto out_free_ph; 1395 1396 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1397 if ((eppnt + i)->p_type == PT_LOAD) 1398 j++; 1399 if (j != 1) 1400 goto out_free_ph; 1401 1402 while (eppnt->p_type != PT_LOAD) 1403 eppnt++; 1404 1405 /* Now use mmap to map the library into memory. */ 1406 error = vm_mmap(file, 1407 ELF_PAGESTART(eppnt->p_vaddr), 1408 (eppnt->p_filesz + 1409 ELF_PAGEOFFSET(eppnt->p_vaddr)), 1410 PROT_READ | PROT_WRITE | PROT_EXEC, 1411 MAP_FIXED_NOREPLACE | MAP_PRIVATE, 1412 (eppnt->p_offset - 1413 ELF_PAGEOFFSET(eppnt->p_vaddr))); 1414 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1415 goto out_free_ph; 1416 1417 elf_bss = eppnt->p_vaddr + eppnt->p_filesz; 1418 if (padzero(elf_bss)) { 1419 error = -EFAULT; 1420 goto out_free_ph; 1421 } 1422 1423 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr); 1424 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr); 1425 if (bss > len) { 1426 error = vm_brk(len, bss - len); 1427 if (error) 1428 goto out_free_ph; 1429 } 1430 error = 0; 1431 1432 out_free_ph: 1433 kfree(elf_phdata); 1434 out: 1435 return error; 1436 } 1437 #endif /* #ifdef CONFIG_USELIB */ 1438 1439 #ifdef CONFIG_ELF_CORE 1440 /* 1441 * ELF core dumper 1442 * 1443 * Modelled on fs/exec.c:aout_core_dump() 1444 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1445 */ 1446 1447 /* An ELF note in memory */ 1448 struct memelfnote 1449 { 1450 const char *name; 1451 int type; 1452 unsigned int datasz; 1453 void *data; 1454 }; 1455 1456 static int notesize(struct memelfnote *en) 1457 { 1458 int sz; 1459 1460 sz = sizeof(struct elf_note); 1461 sz += roundup(strlen(en->name) + 1, 4); 1462 sz += roundup(en->datasz, 4); 1463 1464 return sz; 1465 } 1466 1467 static int writenote(struct memelfnote *men, struct coredump_params *cprm) 1468 { 1469 struct elf_note en; 1470 en.n_namesz = strlen(men->name) + 1; 1471 en.n_descsz = men->datasz; 1472 en.n_type = men->type; 1473 1474 return dump_emit(cprm, &en, sizeof(en)) && 1475 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) && 1476 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4); 1477 } 1478 1479 static void fill_elf_header(struct elfhdr *elf, int segs, 1480 u16 machine, u32 flags) 1481 { 1482 memset(elf, 0, sizeof(*elf)); 1483 1484 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1485 elf->e_ident[EI_CLASS] = ELF_CLASS; 1486 elf->e_ident[EI_DATA] = ELF_DATA; 1487 elf->e_ident[EI_VERSION] = EV_CURRENT; 1488 elf->e_ident[EI_OSABI] = ELF_OSABI; 1489 1490 elf->e_type = ET_CORE; 1491 elf->e_machine = machine; 1492 elf->e_version = EV_CURRENT; 1493 elf->e_phoff = sizeof(struct elfhdr); 1494 elf->e_flags = flags; 1495 elf->e_ehsize = sizeof(struct elfhdr); 1496 elf->e_phentsize = sizeof(struct elf_phdr); 1497 elf->e_phnum = segs; 1498 } 1499 1500 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1501 { 1502 phdr->p_type = PT_NOTE; 1503 phdr->p_offset = offset; 1504 phdr->p_vaddr = 0; 1505 phdr->p_paddr = 0; 1506 phdr->p_filesz = sz; 1507 phdr->p_memsz = 0; 1508 phdr->p_flags = 0; 1509 phdr->p_align = 0; 1510 } 1511 1512 static void fill_note(struct memelfnote *note, const char *name, int type, 1513 unsigned int sz, void *data) 1514 { 1515 note->name = name; 1516 note->type = type; 1517 note->datasz = sz; 1518 note->data = data; 1519 } 1520 1521 /* 1522 * fill up all the fields in prstatus from the given task struct, except 1523 * registers which need to be filled up separately. 1524 */ 1525 static void fill_prstatus(struct elf_prstatus_common *prstatus, 1526 struct task_struct *p, long signr) 1527 { 1528 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1529 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1530 prstatus->pr_sighold = p->blocked.sig[0]; 1531 rcu_read_lock(); 1532 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1533 rcu_read_unlock(); 1534 prstatus->pr_pid = task_pid_vnr(p); 1535 prstatus->pr_pgrp = task_pgrp_vnr(p); 1536 prstatus->pr_sid = task_session_vnr(p); 1537 if (thread_group_leader(p)) { 1538 struct task_cputime cputime; 1539 1540 /* 1541 * This is the record for the group leader. It shows the 1542 * group-wide total, not its individual thread total. 1543 */ 1544 thread_group_cputime(p, &cputime); 1545 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime); 1546 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime); 1547 } else { 1548 u64 utime, stime; 1549 1550 task_cputime(p, &utime, &stime); 1551 prstatus->pr_utime = ns_to_kernel_old_timeval(utime); 1552 prstatus->pr_stime = ns_to_kernel_old_timeval(stime); 1553 } 1554 1555 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime); 1556 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime); 1557 } 1558 1559 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1560 struct mm_struct *mm) 1561 { 1562 const struct cred *cred; 1563 unsigned int i, len; 1564 unsigned int state; 1565 1566 /* first copy the parameters from user space */ 1567 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1568 1569 len = mm->arg_end - mm->arg_start; 1570 if (len >= ELF_PRARGSZ) 1571 len = ELF_PRARGSZ-1; 1572 if (copy_from_user(&psinfo->pr_psargs, 1573 (const char __user *)mm->arg_start, len)) 1574 return -EFAULT; 1575 for(i = 0; i < len; i++) 1576 if (psinfo->pr_psargs[i] == 0) 1577 psinfo->pr_psargs[i] = ' '; 1578 psinfo->pr_psargs[len] = 0; 1579 1580 rcu_read_lock(); 1581 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1582 rcu_read_unlock(); 1583 psinfo->pr_pid = task_pid_vnr(p); 1584 psinfo->pr_pgrp = task_pgrp_vnr(p); 1585 psinfo->pr_sid = task_session_vnr(p); 1586 1587 state = READ_ONCE(p->__state); 1588 i = state ? ffz(~state) + 1 : 0; 1589 psinfo->pr_state = i; 1590 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1591 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1592 psinfo->pr_nice = task_nice(p); 1593 psinfo->pr_flag = p->flags; 1594 rcu_read_lock(); 1595 cred = __task_cred(p); 1596 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid)); 1597 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid)); 1598 rcu_read_unlock(); 1599 get_task_comm(psinfo->pr_fname, p); 1600 1601 return 0; 1602 } 1603 1604 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1605 { 1606 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1607 int i = 0; 1608 do 1609 i += 2; 1610 while (auxv[i - 2] != AT_NULL); 1611 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1612 } 1613 1614 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata, 1615 const kernel_siginfo_t *siginfo) 1616 { 1617 copy_siginfo_to_external(csigdata, siginfo); 1618 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata); 1619 } 1620 1621 #define MAX_FILE_NOTE_SIZE (4*1024*1024) 1622 /* 1623 * Format of NT_FILE note: 1624 * 1625 * long count -- how many files are mapped 1626 * long page_size -- units for file_ofs 1627 * array of [COUNT] elements of 1628 * long start 1629 * long end 1630 * long file_ofs 1631 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... 1632 */ 1633 static int fill_files_note(struct memelfnote *note) 1634 { 1635 struct mm_struct *mm = current->mm; 1636 struct vm_area_struct *vma; 1637 unsigned count, size, names_ofs, remaining, n; 1638 user_long_t *data; 1639 user_long_t *start_end_ofs; 1640 char *name_base, *name_curpos; 1641 1642 /* *Estimated* file count and total data size needed */ 1643 count = mm->map_count; 1644 if (count > UINT_MAX / 64) 1645 return -EINVAL; 1646 size = count * 64; 1647 1648 names_ofs = (2 + 3 * count) * sizeof(data[0]); 1649 alloc: 1650 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */ 1651 return -EINVAL; 1652 size = round_up(size, PAGE_SIZE); 1653 /* 1654 * "size" can be 0 here legitimately. 1655 * Let it ENOMEM and omit NT_FILE section which will be empty anyway. 1656 */ 1657 data = kvmalloc(size, GFP_KERNEL); 1658 if (ZERO_OR_NULL_PTR(data)) 1659 return -ENOMEM; 1660 1661 start_end_ofs = data + 2; 1662 name_base = name_curpos = ((char *)data) + names_ofs; 1663 remaining = size - names_ofs; 1664 count = 0; 1665 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) { 1666 struct file *file; 1667 const char *filename; 1668 1669 file = vma->vm_file; 1670 if (!file) 1671 continue; 1672 filename = file_path(file, name_curpos, remaining); 1673 if (IS_ERR(filename)) { 1674 if (PTR_ERR(filename) == -ENAMETOOLONG) { 1675 kvfree(data); 1676 size = size * 5 / 4; 1677 goto alloc; 1678 } 1679 continue; 1680 } 1681 1682 /* file_path() fills at the end, move name down */ 1683 /* n = strlen(filename) + 1: */ 1684 n = (name_curpos + remaining) - filename; 1685 remaining = filename - name_curpos; 1686 memmove(name_curpos, filename, n); 1687 name_curpos += n; 1688 1689 *start_end_ofs++ = vma->vm_start; 1690 *start_end_ofs++ = vma->vm_end; 1691 *start_end_ofs++ = vma->vm_pgoff; 1692 count++; 1693 } 1694 1695 /* Now we know exact count of files, can store it */ 1696 data[0] = count; 1697 data[1] = PAGE_SIZE; 1698 /* 1699 * Count usually is less than mm->map_count, 1700 * we need to move filenames down. 1701 */ 1702 n = mm->map_count - count; 1703 if (n != 0) { 1704 unsigned shift_bytes = n * 3 * sizeof(data[0]); 1705 memmove(name_base - shift_bytes, name_base, 1706 name_curpos - name_base); 1707 name_curpos -= shift_bytes; 1708 } 1709 1710 size = name_curpos - (char *)data; 1711 fill_note(note, "CORE", NT_FILE, size, data); 1712 return 0; 1713 } 1714 1715 #ifdef CORE_DUMP_USE_REGSET 1716 #include <linux/regset.h> 1717 1718 struct elf_thread_core_info { 1719 struct elf_thread_core_info *next; 1720 struct task_struct *task; 1721 struct elf_prstatus prstatus; 1722 struct memelfnote notes[]; 1723 }; 1724 1725 struct elf_note_info { 1726 struct elf_thread_core_info *thread; 1727 struct memelfnote psinfo; 1728 struct memelfnote signote; 1729 struct memelfnote auxv; 1730 struct memelfnote files; 1731 user_siginfo_t csigdata; 1732 size_t size; 1733 int thread_notes; 1734 }; 1735 1736 /* 1737 * When a regset has a writeback hook, we call it on each thread before 1738 * dumping user memory. On register window machines, this makes sure the 1739 * user memory backing the register data is up to date before we read it. 1740 */ 1741 static void do_thread_regset_writeback(struct task_struct *task, 1742 const struct user_regset *regset) 1743 { 1744 if (regset->writeback) 1745 regset->writeback(task, regset, 1); 1746 } 1747 1748 #ifndef PRSTATUS_SIZE 1749 #define PRSTATUS_SIZE sizeof(struct elf_prstatus) 1750 #endif 1751 1752 #ifndef SET_PR_FPVALID 1753 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1) 1754 #endif 1755 1756 static int fill_thread_core_info(struct elf_thread_core_info *t, 1757 const struct user_regset_view *view, 1758 long signr, size_t *total) 1759 { 1760 unsigned int i; 1761 1762 /* 1763 * NT_PRSTATUS is the one special case, because the regset data 1764 * goes into the pr_reg field inside the note contents, rather 1765 * than being the whole note contents. We fill the reset in here. 1766 * We assume that regset 0 is NT_PRSTATUS. 1767 */ 1768 fill_prstatus(&t->prstatus.common, t->task, signr); 1769 regset_get(t->task, &view->regsets[0], 1770 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg); 1771 1772 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1773 PRSTATUS_SIZE, &t->prstatus); 1774 *total += notesize(&t->notes[0]); 1775 1776 do_thread_regset_writeback(t->task, &view->regsets[0]); 1777 1778 /* 1779 * Each other regset might generate a note too. For each regset 1780 * that has no core_note_type or is inactive, we leave t->notes[i] 1781 * all zero and we'll know to skip writing it later. 1782 */ 1783 for (i = 1; i < view->n; ++i) { 1784 const struct user_regset *regset = &view->regsets[i]; 1785 int note_type = regset->core_note_type; 1786 bool is_fpreg = note_type == NT_PRFPREG; 1787 void *data; 1788 int ret; 1789 1790 do_thread_regset_writeback(t->task, regset); 1791 if (!note_type) // not for coredumps 1792 continue; 1793 if (regset->active && regset->active(t->task, regset) <= 0) 1794 continue; 1795 1796 ret = regset_get_alloc(t->task, regset, ~0U, &data); 1797 if (ret < 0) 1798 continue; 1799 1800 if (is_fpreg) 1801 SET_PR_FPVALID(&t->prstatus); 1802 1803 fill_note(&t->notes[i], is_fpreg ? "CORE" : "LINUX", 1804 note_type, ret, data); 1805 1806 *total += notesize(&t->notes[i]); 1807 } 1808 1809 return 1; 1810 } 1811 1812 static int fill_note_info(struct elfhdr *elf, int phdrs, 1813 struct elf_note_info *info, 1814 const kernel_siginfo_t *siginfo, struct pt_regs *regs) 1815 { 1816 struct task_struct *dump_task = current; 1817 const struct user_regset_view *view = task_user_regset_view(dump_task); 1818 struct elf_thread_core_info *t; 1819 struct elf_prpsinfo *psinfo; 1820 struct core_thread *ct; 1821 unsigned int i; 1822 1823 info->size = 0; 1824 info->thread = NULL; 1825 1826 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1827 if (psinfo == NULL) { 1828 info->psinfo.data = NULL; /* So we don't free this wrongly */ 1829 return 0; 1830 } 1831 1832 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1833 1834 /* 1835 * Figure out how many notes we're going to need for each thread. 1836 */ 1837 info->thread_notes = 0; 1838 for (i = 0; i < view->n; ++i) 1839 if (view->regsets[i].core_note_type != 0) 1840 ++info->thread_notes; 1841 1842 /* 1843 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1844 * since it is our one special case. 1845 */ 1846 if (unlikely(info->thread_notes == 0) || 1847 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1848 WARN_ON(1); 1849 return 0; 1850 } 1851 1852 /* 1853 * Initialize the ELF file header. 1854 */ 1855 fill_elf_header(elf, phdrs, 1856 view->e_machine, view->e_flags); 1857 1858 /* 1859 * Allocate a structure for each thread. 1860 */ 1861 for (ct = &dump_task->signal->core_state->dumper; ct; ct = ct->next) { 1862 t = kzalloc(offsetof(struct elf_thread_core_info, 1863 notes[info->thread_notes]), 1864 GFP_KERNEL); 1865 if (unlikely(!t)) 1866 return 0; 1867 1868 t->task = ct->task; 1869 if (ct->task == dump_task || !info->thread) { 1870 t->next = info->thread; 1871 info->thread = t; 1872 } else { 1873 /* 1874 * Make sure to keep the original task at 1875 * the head of the list. 1876 */ 1877 t->next = info->thread->next; 1878 info->thread->next = t; 1879 } 1880 } 1881 1882 /* 1883 * Now fill in each thread's information. 1884 */ 1885 for (t = info->thread; t != NULL; t = t->next) 1886 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size)) 1887 return 0; 1888 1889 /* 1890 * Fill in the two process-wide notes. 1891 */ 1892 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1893 info->size += notesize(&info->psinfo); 1894 1895 fill_siginfo_note(&info->signote, &info->csigdata, siginfo); 1896 info->size += notesize(&info->signote); 1897 1898 fill_auxv_note(&info->auxv, current->mm); 1899 info->size += notesize(&info->auxv); 1900 1901 if (fill_files_note(&info->files) == 0) 1902 info->size += notesize(&info->files); 1903 1904 return 1; 1905 } 1906 1907 static size_t get_note_info_size(struct elf_note_info *info) 1908 { 1909 return info->size; 1910 } 1911 1912 /* 1913 * Write all the notes for each thread. When writing the first thread, the 1914 * process-wide notes are interleaved after the first thread-specific note. 1915 */ 1916 static int write_note_info(struct elf_note_info *info, 1917 struct coredump_params *cprm) 1918 { 1919 bool first = true; 1920 struct elf_thread_core_info *t = info->thread; 1921 1922 do { 1923 int i; 1924 1925 if (!writenote(&t->notes[0], cprm)) 1926 return 0; 1927 1928 if (first && !writenote(&info->psinfo, cprm)) 1929 return 0; 1930 if (first && !writenote(&info->signote, cprm)) 1931 return 0; 1932 if (first && !writenote(&info->auxv, cprm)) 1933 return 0; 1934 if (first && info->files.data && 1935 !writenote(&info->files, cprm)) 1936 return 0; 1937 1938 for (i = 1; i < info->thread_notes; ++i) 1939 if (t->notes[i].data && 1940 !writenote(&t->notes[i], cprm)) 1941 return 0; 1942 1943 first = false; 1944 t = t->next; 1945 } while (t); 1946 1947 return 1; 1948 } 1949 1950 static void free_note_info(struct elf_note_info *info) 1951 { 1952 struct elf_thread_core_info *threads = info->thread; 1953 while (threads) { 1954 unsigned int i; 1955 struct elf_thread_core_info *t = threads; 1956 threads = t->next; 1957 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1958 for (i = 1; i < info->thread_notes; ++i) 1959 kfree(t->notes[i].data); 1960 kfree(t); 1961 } 1962 kfree(info->psinfo.data); 1963 kvfree(info->files.data); 1964 } 1965 1966 #else 1967 1968 /* Here is the structure in which status of each thread is captured. */ 1969 struct elf_thread_status 1970 { 1971 struct list_head list; 1972 struct elf_prstatus prstatus; /* NT_PRSTATUS */ 1973 elf_fpregset_t fpu; /* NT_PRFPREG */ 1974 struct task_struct *thread; 1975 struct memelfnote notes[3]; 1976 int num_notes; 1977 }; 1978 1979 /* 1980 * In order to add the specific thread information for the elf file format, 1981 * we need to keep a linked list of every threads pr_status and then create 1982 * a single section for them in the final core file. 1983 */ 1984 static int elf_dump_thread_status(long signr, struct elf_thread_status *t) 1985 { 1986 int sz = 0; 1987 struct task_struct *p = t->thread; 1988 t->num_notes = 0; 1989 1990 fill_prstatus(&t->prstatus.common, p, signr); 1991 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 1992 1993 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 1994 &(t->prstatus)); 1995 t->num_notes++; 1996 sz += notesize(&t->notes[0]); 1997 1998 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, 1999 &t->fpu))) { 2000 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), 2001 &(t->fpu)); 2002 t->num_notes++; 2003 sz += notesize(&t->notes[1]); 2004 } 2005 return sz; 2006 } 2007 2008 struct elf_note_info { 2009 struct memelfnote *notes; 2010 struct memelfnote *notes_files; 2011 struct elf_prstatus *prstatus; /* NT_PRSTATUS */ 2012 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2013 struct list_head thread_list; 2014 elf_fpregset_t *fpu; 2015 user_siginfo_t csigdata; 2016 int thread_status_size; 2017 int numnote; 2018 }; 2019 2020 static int elf_note_info_init(struct elf_note_info *info) 2021 { 2022 memset(info, 0, sizeof(*info)); 2023 INIT_LIST_HEAD(&info->thread_list); 2024 2025 /* Allocate space for ELF notes */ 2026 info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL); 2027 if (!info->notes) 2028 return 0; 2029 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); 2030 if (!info->psinfo) 2031 return 0; 2032 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); 2033 if (!info->prstatus) 2034 return 0; 2035 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); 2036 if (!info->fpu) 2037 return 0; 2038 return 1; 2039 } 2040 2041 static int fill_note_info(struct elfhdr *elf, int phdrs, 2042 struct elf_note_info *info, 2043 const kernel_siginfo_t *siginfo, struct pt_regs *regs) 2044 { 2045 struct core_thread *ct; 2046 struct elf_thread_status *ets; 2047 2048 if (!elf_note_info_init(info)) 2049 return 0; 2050 2051 for (ct = current->signal->core_state->dumper.next; 2052 ct; ct = ct->next) { 2053 ets = kzalloc(sizeof(*ets), GFP_KERNEL); 2054 if (!ets) 2055 return 0; 2056 2057 ets->thread = ct->task; 2058 list_add(&ets->list, &info->thread_list); 2059 } 2060 2061 list_for_each_entry(ets, &info->thread_list, list) { 2062 int sz; 2063 2064 sz = elf_dump_thread_status(siginfo->si_signo, ets); 2065 info->thread_status_size += sz; 2066 } 2067 /* now collect the dump for the current */ 2068 memset(info->prstatus, 0, sizeof(*info->prstatus)); 2069 fill_prstatus(&info->prstatus->common, current, siginfo->si_signo); 2070 elf_core_copy_regs(&info->prstatus->pr_reg, regs); 2071 2072 /* Set up header */ 2073 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS); 2074 2075 /* 2076 * Set up the notes in similar form to SVR4 core dumps made 2077 * with info from their /proc. 2078 */ 2079 2080 fill_note(info->notes + 0, "CORE", NT_PRSTATUS, 2081 sizeof(*info->prstatus), info->prstatus); 2082 fill_psinfo(info->psinfo, current->group_leader, current->mm); 2083 fill_note(info->notes + 1, "CORE", NT_PRPSINFO, 2084 sizeof(*info->psinfo), info->psinfo); 2085 2086 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo); 2087 fill_auxv_note(info->notes + 3, current->mm); 2088 info->numnote = 4; 2089 2090 if (fill_files_note(info->notes + info->numnote) == 0) { 2091 info->notes_files = info->notes + info->numnote; 2092 info->numnote++; 2093 } 2094 2095 /* Try to dump the FPU. */ 2096 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs, 2097 info->fpu); 2098 if (info->prstatus->pr_fpvalid) 2099 fill_note(info->notes + info->numnote++, 2100 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); 2101 return 1; 2102 } 2103 2104 static size_t get_note_info_size(struct elf_note_info *info) 2105 { 2106 int sz = 0; 2107 int i; 2108 2109 for (i = 0; i < info->numnote; i++) 2110 sz += notesize(info->notes + i); 2111 2112 sz += info->thread_status_size; 2113 2114 return sz; 2115 } 2116 2117 static int write_note_info(struct elf_note_info *info, 2118 struct coredump_params *cprm) 2119 { 2120 struct elf_thread_status *ets; 2121 int i; 2122 2123 for (i = 0; i < info->numnote; i++) 2124 if (!writenote(info->notes + i, cprm)) 2125 return 0; 2126 2127 /* write out the thread status notes section */ 2128 list_for_each_entry(ets, &info->thread_list, list) { 2129 for (i = 0; i < ets->num_notes; i++) 2130 if (!writenote(&ets->notes[i], cprm)) 2131 return 0; 2132 } 2133 2134 return 1; 2135 } 2136 2137 static void free_note_info(struct elf_note_info *info) 2138 { 2139 while (!list_empty(&info->thread_list)) { 2140 struct list_head *tmp = info->thread_list.next; 2141 list_del(tmp); 2142 kfree(list_entry(tmp, struct elf_thread_status, list)); 2143 } 2144 2145 /* Free data possibly allocated by fill_files_note(): */ 2146 if (info->notes_files) 2147 kvfree(info->notes_files->data); 2148 2149 kfree(info->prstatus); 2150 kfree(info->psinfo); 2151 kfree(info->notes); 2152 kfree(info->fpu); 2153 } 2154 2155 #endif 2156 2157 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, 2158 elf_addr_t e_shoff, int segs) 2159 { 2160 elf->e_shoff = e_shoff; 2161 elf->e_shentsize = sizeof(*shdr4extnum); 2162 elf->e_shnum = 1; 2163 elf->e_shstrndx = SHN_UNDEF; 2164 2165 memset(shdr4extnum, 0, sizeof(*shdr4extnum)); 2166 2167 shdr4extnum->sh_type = SHT_NULL; 2168 shdr4extnum->sh_size = elf->e_shnum; 2169 shdr4extnum->sh_link = elf->e_shstrndx; 2170 shdr4extnum->sh_info = segs; 2171 } 2172 2173 /* 2174 * Actual dumper 2175 * 2176 * This is a two-pass process; first we find the offsets of the bits, 2177 * and then they are actually written out. If we run out of core limit 2178 * we just truncate. 2179 */ 2180 static int elf_core_dump(struct coredump_params *cprm) 2181 { 2182 int has_dumped = 0; 2183 int vma_count, segs, i; 2184 size_t vma_data_size; 2185 struct elfhdr elf; 2186 loff_t offset = 0, dataoff; 2187 struct elf_note_info info = { }; 2188 struct elf_phdr *phdr4note = NULL; 2189 struct elf_shdr *shdr4extnum = NULL; 2190 Elf_Half e_phnum; 2191 elf_addr_t e_shoff; 2192 struct core_vma_metadata *vma_meta; 2193 2194 if (dump_vma_snapshot(cprm, &vma_count, &vma_meta, &vma_data_size)) 2195 return 0; 2196 2197 /* 2198 * The number of segs are recored into ELF header as 16bit value. 2199 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. 2200 */ 2201 segs = vma_count + elf_core_extra_phdrs(); 2202 2203 /* for notes section */ 2204 segs++; 2205 2206 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid 2207 * this, kernel supports extended numbering. Have a look at 2208 * include/linux/elf.h for further information. */ 2209 e_phnum = segs > PN_XNUM ? PN_XNUM : segs; 2210 2211 /* 2212 * Collect all the non-memory information about the process for the 2213 * notes. This also sets up the file header. 2214 */ 2215 if (!fill_note_info(&elf, e_phnum, &info, cprm->siginfo, cprm->regs)) 2216 goto end_coredump; 2217 2218 has_dumped = 1; 2219 2220 offset += sizeof(elf); /* Elf header */ 2221 offset += segs * sizeof(struct elf_phdr); /* Program headers */ 2222 2223 /* Write notes phdr entry */ 2224 { 2225 size_t sz = get_note_info_size(&info); 2226 2227 /* For cell spufs */ 2228 sz += elf_coredump_extra_notes_size(); 2229 2230 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); 2231 if (!phdr4note) 2232 goto end_coredump; 2233 2234 fill_elf_note_phdr(phdr4note, sz, offset); 2235 offset += sz; 2236 } 2237 2238 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 2239 2240 offset += vma_data_size; 2241 offset += elf_core_extra_data_size(); 2242 e_shoff = offset; 2243 2244 if (e_phnum == PN_XNUM) { 2245 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); 2246 if (!shdr4extnum) 2247 goto end_coredump; 2248 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs); 2249 } 2250 2251 offset = dataoff; 2252 2253 if (!dump_emit(cprm, &elf, sizeof(elf))) 2254 goto end_coredump; 2255 2256 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note))) 2257 goto end_coredump; 2258 2259 /* Write program headers for segments dump */ 2260 for (i = 0; i < vma_count; i++) { 2261 struct core_vma_metadata *meta = vma_meta + i; 2262 struct elf_phdr phdr; 2263 2264 phdr.p_type = PT_LOAD; 2265 phdr.p_offset = offset; 2266 phdr.p_vaddr = meta->start; 2267 phdr.p_paddr = 0; 2268 phdr.p_filesz = meta->dump_size; 2269 phdr.p_memsz = meta->end - meta->start; 2270 offset += phdr.p_filesz; 2271 phdr.p_flags = 0; 2272 if (meta->flags & VM_READ) 2273 phdr.p_flags |= PF_R; 2274 if (meta->flags & VM_WRITE) 2275 phdr.p_flags |= PF_W; 2276 if (meta->flags & VM_EXEC) 2277 phdr.p_flags |= PF_X; 2278 phdr.p_align = ELF_EXEC_PAGESIZE; 2279 2280 if (!dump_emit(cprm, &phdr, sizeof(phdr))) 2281 goto end_coredump; 2282 } 2283 2284 if (!elf_core_write_extra_phdrs(cprm, offset)) 2285 goto end_coredump; 2286 2287 /* write out the notes section */ 2288 if (!write_note_info(&info, cprm)) 2289 goto end_coredump; 2290 2291 /* For cell spufs */ 2292 if (elf_coredump_extra_notes_write(cprm)) 2293 goto end_coredump; 2294 2295 /* Align to page */ 2296 dump_skip_to(cprm, dataoff); 2297 2298 for (i = 0; i < vma_count; i++) { 2299 struct core_vma_metadata *meta = vma_meta + i; 2300 2301 if (!dump_user_range(cprm, meta->start, meta->dump_size)) 2302 goto end_coredump; 2303 } 2304 2305 if (!elf_core_write_extra_data(cprm)) 2306 goto end_coredump; 2307 2308 if (e_phnum == PN_XNUM) { 2309 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum))) 2310 goto end_coredump; 2311 } 2312 2313 end_coredump: 2314 free_note_info(&info); 2315 kfree(shdr4extnum); 2316 kvfree(vma_meta); 2317 kfree(phdr4note); 2318 return has_dumped; 2319 } 2320 2321 #endif /* CONFIG_ELF_CORE */ 2322 2323 static int __init init_elf_binfmt(void) 2324 { 2325 register_binfmt(&elf_format); 2326 return 0; 2327 } 2328 2329 static void __exit exit_elf_binfmt(void) 2330 { 2331 /* Remove the COFF and ELF loaders. */ 2332 unregister_binfmt(&elf_format); 2333 } 2334 2335 core_initcall(init_elf_binfmt); 2336 module_exit(exit_elf_binfmt); 2337 MODULE_LICENSE("GPL"); 2338