1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/binfmt_elf.c 4 * 5 * These are the functions used to load ELF format executables as used 6 * on SVr4 machines. Information on the format may be found in the book 7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 8 * Tools". 9 * 10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 11 */ 12 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/fs.h> 16 #include <linux/log2.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/errno.h> 20 #include <linux/signal.h> 21 #include <linux/binfmts.h> 22 #include <linux/string.h> 23 #include <linux/file.h> 24 #include <linux/slab.h> 25 #include <linux/personality.h> 26 #include <linux/elfcore.h> 27 #include <linux/init.h> 28 #include <linux/highuid.h> 29 #include <linux/compiler.h> 30 #include <linux/highmem.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vmalloc.h> 34 #include <linux/security.h> 35 #include <linux/random.h> 36 #include <linux/elf.h> 37 #include <linux/elf-randomize.h> 38 #include <linux/utsname.h> 39 #include <linux/coredump.h> 40 #include <linux/sched.h> 41 #include <linux/sched/coredump.h> 42 #include <linux/sched/task_stack.h> 43 #include <linux/sched/cputime.h> 44 #include <linux/sizes.h> 45 #include <linux/types.h> 46 #include <linux/cred.h> 47 #include <linux/dax.h> 48 #include <linux/uaccess.h> 49 #include <asm/param.h> 50 #include <asm/page.h> 51 52 #ifndef ELF_COMPAT 53 #define ELF_COMPAT 0 54 #endif 55 56 #ifndef user_long_t 57 #define user_long_t long 58 #endif 59 #ifndef user_siginfo_t 60 #define user_siginfo_t siginfo_t 61 #endif 62 63 /* That's for binfmt_elf_fdpic to deal with */ 64 #ifndef elf_check_fdpic 65 #define elf_check_fdpic(ex) false 66 #endif 67 68 static int load_elf_binary(struct linux_binprm *bprm); 69 70 #ifdef CONFIG_USELIB 71 static int load_elf_library(struct file *); 72 #else 73 #define load_elf_library NULL 74 #endif 75 76 /* 77 * If we don't support core dumping, then supply a NULL so we 78 * don't even try. 79 */ 80 #ifdef CONFIG_ELF_CORE 81 static int elf_core_dump(struct coredump_params *cprm); 82 #else 83 #define elf_core_dump NULL 84 #endif 85 86 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 87 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 88 #else 89 #define ELF_MIN_ALIGN PAGE_SIZE 90 #endif 91 92 #ifndef ELF_CORE_EFLAGS 93 #define ELF_CORE_EFLAGS 0 94 #endif 95 96 #define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1)) 97 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 98 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 99 100 static struct linux_binfmt elf_format = { 101 .module = THIS_MODULE, 102 .load_binary = load_elf_binary, 103 .load_shlib = load_elf_library, 104 #ifdef CONFIG_COREDUMP 105 .core_dump = elf_core_dump, 106 .min_coredump = ELF_EXEC_PAGESIZE, 107 #endif 108 }; 109 110 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE)) 111 112 static int set_brk(unsigned long start, unsigned long end, int prot) 113 { 114 start = ELF_PAGEALIGN(start); 115 end = ELF_PAGEALIGN(end); 116 if (end > start) { 117 /* 118 * Map the last of the bss segment. 119 * If the header is requesting these pages to be 120 * executable, honour that (ppc32 needs this). 121 */ 122 int error = vm_brk_flags(start, end - start, 123 prot & PROT_EXEC ? VM_EXEC : 0); 124 if (error) 125 return error; 126 } 127 current->mm->start_brk = current->mm->brk = end; 128 return 0; 129 } 130 131 /* We need to explicitly zero any fractional pages 132 after the data section (i.e. bss). This would 133 contain the junk from the file that should not 134 be in memory 135 */ 136 static int padzero(unsigned long elf_bss) 137 { 138 unsigned long nbyte; 139 140 nbyte = ELF_PAGEOFFSET(elf_bss); 141 if (nbyte) { 142 nbyte = ELF_MIN_ALIGN - nbyte; 143 if (clear_user((void __user *) elf_bss, nbyte)) 144 return -EFAULT; 145 } 146 return 0; 147 } 148 149 /* Let's use some macros to make this stack manipulation a little clearer */ 150 #ifdef CONFIG_STACK_GROWSUP 151 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 152 #define STACK_ROUND(sp, items) \ 153 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 154 #define STACK_ALLOC(sp, len) ({ \ 155 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 156 old_sp; }) 157 #else 158 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 159 #define STACK_ROUND(sp, items) \ 160 (((unsigned long) (sp - items)) &~ 15UL) 161 #define STACK_ALLOC(sp, len) (sp -= len) 162 #endif 163 164 #ifndef ELF_BASE_PLATFORM 165 /* 166 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. 167 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value 168 * will be copied to the user stack in the same manner as AT_PLATFORM. 169 */ 170 #define ELF_BASE_PLATFORM NULL 171 #endif 172 173 static int 174 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec, 175 unsigned long interp_load_addr, 176 unsigned long e_entry, unsigned long phdr_addr) 177 { 178 struct mm_struct *mm = current->mm; 179 unsigned long p = bprm->p; 180 int argc = bprm->argc; 181 int envc = bprm->envc; 182 elf_addr_t __user *sp; 183 elf_addr_t __user *u_platform; 184 elf_addr_t __user *u_base_platform; 185 elf_addr_t __user *u_rand_bytes; 186 const char *k_platform = ELF_PLATFORM; 187 const char *k_base_platform = ELF_BASE_PLATFORM; 188 unsigned char k_rand_bytes[16]; 189 int items; 190 elf_addr_t *elf_info; 191 elf_addr_t flags = 0; 192 int ei_index; 193 const struct cred *cred = current_cred(); 194 struct vm_area_struct *vma; 195 196 /* 197 * In some cases (e.g. Hyper-Threading), we want to avoid L1 198 * evictions by the processes running on the same package. One 199 * thing we can do is to shuffle the initial stack for them. 200 */ 201 202 p = arch_align_stack(p); 203 204 /* 205 * If this architecture has a platform capability string, copy it 206 * to userspace. In some cases (Sparc), this info is impossible 207 * for userspace to get any other way, in others (i386) it is 208 * merely difficult. 209 */ 210 u_platform = NULL; 211 if (k_platform) { 212 size_t len = strlen(k_platform) + 1; 213 214 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 215 if (copy_to_user(u_platform, k_platform, len)) 216 return -EFAULT; 217 } 218 219 /* 220 * If this architecture has a "base" platform capability 221 * string, copy it to userspace. 222 */ 223 u_base_platform = NULL; 224 if (k_base_platform) { 225 size_t len = strlen(k_base_platform) + 1; 226 227 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 228 if (copy_to_user(u_base_platform, k_base_platform, len)) 229 return -EFAULT; 230 } 231 232 /* 233 * Generate 16 random bytes for userspace PRNG seeding. 234 */ 235 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); 236 u_rand_bytes = (elf_addr_t __user *) 237 STACK_ALLOC(p, sizeof(k_rand_bytes)); 238 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) 239 return -EFAULT; 240 241 /* Create the ELF interpreter info */ 242 elf_info = (elf_addr_t *)mm->saved_auxv; 243 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 244 #define NEW_AUX_ENT(id, val) \ 245 do { \ 246 *elf_info++ = id; \ 247 *elf_info++ = val; \ 248 } while (0) 249 250 #ifdef ARCH_DLINFO 251 /* 252 * ARCH_DLINFO must come first so PPC can do its special alignment of 253 * AUXV. 254 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 255 * ARCH_DLINFO changes 256 */ 257 ARCH_DLINFO; 258 #endif 259 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 260 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 261 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 262 NEW_AUX_ENT(AT_PHDR, phdr_addr); 263 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 264 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 265 NEW_AUX_ENT(AT_BASE, interp_load_addr); 266 if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0) 267 flags |= AT_FLAGS_PRESERVE_ARGV0; 268 NEW_AUX_ENT(AT_FLAGS, flags); 269 NEW_AUX_ENT(AT_ENTRY, e_entry); 270 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid)); 271 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid)); 272 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid)); 273 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid)); 274 NEW_AUX_ENT(AT_SECURE, bprm->secureexec); 275 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); 276 #ifdef ELF_HWCAP2 277 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2); 278 #endif 279 NEW_AUX_ENT(AT_EXECFN, bprm->exec); 280 if (k_platform) { 281 NEW_AUX_ENT(AT_PLATFORM, 282 (elf_addr_t)(unsigned long)u_platform); 283 } 284 if (k_base_platform) { 285 NEW_AUX_ENT(AT_BASE_PLATFORM, 286 (elf_addr_t)(unsigned long)u_base_platform); 287 } 288 if (bprm->have_execfd) { 289 NEW_AUX_ENT(AT_EXECFD, bprm->execfd); 290 } 291 #undef NEW_AUX_ENT 292 /* AT_NULL is zero; clear the rest too */ 293 memset(elf_info, 0, (char *)mm->saved_auxv + 294 sizeof(mm->saved_auxv) - (char *)elf_info); 295 296 /* And advance past the AT_NULL entry. */ 297 elf_info += 2; 298 299 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv; 300 sp = STACK_ADD(p, ei_index); 301 302 items = (argc + 1) + (envc + 1) + 1; 303 bprm->p = STACK_ROUND(sp, items); 304 305 /* Point sp at the lowest address on the stack */ 306 #ifdef CONFIG_STACK_GROWSUP 307 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 308 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 309 #else 310 sp = (elf_addr_t __user *)bprm->p; 311 #endif 312 313 314 /* 315 * Grow the stack manually; some architectures have a limit on how 316 * far ahead a user-space access may be in order to grow the stack. 317 */ 318 if (mmap_read_lock_killable(mm)) 319 return -EINTR; 320 vma = find_extend_vma(mm, bprm->p); 321 mmap_read_unlock(mm); 322 if (!vma) 323 return -EFAULT; 324 325 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 326 if (put_user(argc, sp++)) 327 return -EFAULT; 328 329 /* Populate list of argv pointers back to argv strings. */ 330 p = mm->arg_end = mm->arg_start; 331 while (argc-- > 0) { 332 size_t len; 333 if (put_user((elf_addr_t)p, sp++)) 334 return -EFAULT; 335 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 336 if (!len || len > MAX_ARG_STRLEN) 337 return -EINVAL; 338 p += len; 339 } 340 if (put_user(0, sp++)) 341 return -EFAULT; 342 mm->arg_end = p; 343 344 /* Populate list of envp pointers back to envp strings. */ 345 mm->env_end = mm->env_start = p; 346 while (envc-- > 0) { 347 size_t len; 348 if (put_user((elf_addr_t)p, sp++)) 349 return -EFAULT; 350 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 351 if (!len || len > MAX_ARG_STRLEN) 352 return -EINVAL; 353 p += len; 354 } 355 if (put_user(0, sp++)) 356 return -EFAULT; 357 mm->env_end = p; 358 359 /* Put the elf_info on the stack in the right place. */ 360 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t))) 361 return -EFAULT; 362 return 0; 363 } 364 365 static unsigned long elf_map(struct file *filep, unsigned long addr, 366 const struct elf_phdr *eppnt, int prot, int type, 367 unsigned long total_size) 368 { 369 unsigned long map_addr; 370 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 371 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 372 addr = ELF_PAGESTART(addr); 373 size = ELF_PAGEALIGN(size); 374 375 /* mmap() will return -EINVAL if given a zero size, but a 376 * segment with zero filesize is perfectly valid */ 377 if (!size) 378 return addr; 379 380 /* 381 * total_size is the size of the ELF (interpreter) image. 382 * The _first_ mmap needs to know the full size, otherwise 383 * randomization might put this image into an overlapping 384 * position with the ELF binary image. (since size < total_size) 385 * So we first map the 'big' image - and unmap the remainder at 386 * the end. (which unmap is needed for ELF images with holes.) 387 */ 388 if (total_size) { 389 total_size = ELF_PAGEALIGN(total_size); 390 map_addr = vm_mmap(filep, addr, total_size, prot, type, off); 391 if (!BAD_ADDR(map_addr)) 392 vm_munmap(map_addr+size, total_size-size); 393 } else 394 map_addr = vm_mmap(filep, addr, size, prot, type, off); 395 396 if ((type & MAP_FIXED_NOREPLACE) && 397 PTR_ERR((void *)map_addr) == -EEXIST) 398 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n", 399 task_pid_nr(current), current->comm, (void *)addr); 400 401 return(map_addr); 402 } 403 404 static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr) 405 { 406 elf_addr_t min_addr = -1; 407 elf_addr_t max_addr = 0; 408 bool pt_load = false; 409 int i; 410 411 for (i = 0; i < nr; i++) { 412 if (phdr[i].p_type == PT_LOAD) { 413 min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr)); 414 max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz); 415 pt_load = true; 416 } 417 } 418 return pt_load ? (max_addr - min_addr) : 0; 419 } 420 421 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos) 422 { 423 ssize_t rv; 424 425 rv = kernel_read(file, buf, len, &pos); 426 if (unlikely(rv != len)) { 427 return (rv < 0) ? rv : -EIO; 428 } 429 return 0; 430 } 431 432 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr) 433 { 434 unsigned long alignment = 0; 435 int i; 436 437 for (i = 0; i < nr; i++) { 438 if (cmds[i].p_type == PT_LOAD) { 439 unsigned long p_align = cmds[i].p_align; 440 441 /* skip non-power of two alignments as invalid */ 442 if (!is_power_of_2(p_align)) 443 continue; 444 alignment = max(alignment, p_align); 445 } 446 } 447 448 /* ensure we align to at least one page */ 449 return ELF_PAGEALIGN(alignment); 450 } 451 452 /** 453 * load_elf_phdrs() - load ELF program headers 454 * @elf_ex: ELF header of the binary whose program headers should be loaded 455 * @elf_file: the opened ELF binary file 456 * 457 * Loads ELF program headers from the binary file elf_file, which has the ELF 458 * header pointed to by elf_ex, into a newly allocated array. The caller is 459 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure. 460 */ 461 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex, 462 struct file *elf_file) 463 { 464 struct elf_phdr *elf_phdata = NULL; 465 int retval, err = -1; 466 unsigned int size; 467 468 /* 469 * If the size of this structure has changed, then punt, since 470 * we will be doing the wrong thing. 471 */ 472 if (elf_ex->e_phentsize != sizeof(struct elf_phdr)) 473 goto out; 474 475 /* Sanity check the number of program headers... */ 476 /* ...and their total size. */ 477 size = sizeof(struct elf_phdr) * elf_ex->e_phnum; 478 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN) 479 goto out; 480 481 elf_phdata = kmalloc(size, GFP_KERNEL); 482 if (!elf_phdata) 483 goto out; 484 485 /* Read in the program headers */ 486 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff); 487 if (retval < 0) { 488 err = retval; 489 goto out; 490 } 491 492 /* Success! */ 493 err = 0; 494 out: 495 if (err) { 496 kfree(elf_phdata); 497 elf_phdata = NULL; 498 } 499 return elf_phdata; 500 } 501 502 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE 503 504 /** 505 * struct arch_elf_state - arch-specific ELF loading state 506 * 507 * This structure is used to preserve architecture specific data during 508 * the loading of an ELF file, throughout the checking of architecture 509 * specific ELF headers & through to the point where the ELF load is 510 * known to be proceeding (ie. SET_PERSONALITY). 511 * 512 * This implementation is a dummy for architectures which require no 513 * specific state. 514 */ 515 struct arch_elf_state { 516 }; 517 518 #define INIT_ARCH_ELF_STATE {} 519 520 /** 521 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header 522 * @ehdr: The main ELF header 523 * @phdr: The program header to check 524 * @elf: The open ELF file 525 * @is_interp: True if the phdr is from the interpreter of the ELF being 526 * loaded, else false. 527 * @state: Architecture-specific state preserved throughout the process 528 * of loading the ELF. 529 * 530 * Inspects the program header phdr to validate its correctness and/or 531 * suitability for the system. Called once per ELF program header in the 532 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its 533 * interpreter. 534 * 535 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 536 * with that return code. 537 */ 538 static inline int arch_elf_pt_proc(struct elfhdr *ehdr, 539 struct elf_phdr *phdr, 540 struct file *elf, bool is_interp, 541 struct arch_elf_state *state) 542 { 543 /* Dummy implementation, always proceed */ 544 return 0; 545 } 546 547 /** 548 * arch_check_elf() - check an ELF executable 549 * @ehdr: The main ELF header 550 * @has_interp: True if the ELF has an interpreter, else false. 551 * @interp_ehdr: The interpreter's ELF header 552 * @state: Architecture-specific state preserved throughout the process 553 * of loading the ELF. 554 * 555 * Provides a final opportunity for architecture code to reject the loading 556 * of the ELF & cause an exec syscall to return an error. This is called after 557 * all program headers to be checked by arch_elf_pt_proc have been. 558 * 559 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 560 * with that return code. 561 */ 562 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp, 563 struct elfhdr *interp_ehdr, 564 struct arch_elf_state *state) 565 { 566 /* Dummy implementation, always proceed */ 567 return 0; 568 } 569 570 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */ 571 572 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state, 573 bool has_interp, bool is_interp) 574 { 575 int prot = 0; 576 577 if (p_flags & PF_R) 578 prot |= PROT_READ; 579 if (p_flags & PF_W) 580 prot |= PROT_WRITE; 581 if (p_flags & PF_X) 582 prot |= PROT_EXEC; 583 584 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp); 585 } 586 587 /* This is much more generalized than the library routine read function, 588 so we keep this separate. Technically the library read function 589 is only provided so that we can read a.out libraries that have 590 an ELF header */ 591 592 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 593 struct file *interpreter, 594 unsigned long no_base, struct elf_phdr *interp_elf_phdata, 595 struct arch_elf_state *arch_state) 596 { 597 struct elf_phdr *eppnt; 598 unsigned long load_addr = 0; 599 int load_addr_set = 0; 600 unsigned long last_bss = 0, elf_bss = 0; 601 int bss_prot = 0; 602 unsigned long error = ~0UL; 603 unsigned long total_size; 604 int i; 605 606 /* First of all, some simple consistency checks */ 607 if (interp_elf_ex->e_type != ET_EXEC && 608 interp_elf_ex->e_type != ET_DYN) 609 goto out; 610 if (!elf_check_arch(interp_elf_ex) || 611 elf_check_fdpic(interp_elf_ex)) 612 goto out; 613 if (!interpreter->f_op->mmap) 614 goto out; 615 616 total_size = total_mapping_size(interp_elf_phdata, 617 interp_elf_ex->e_phnum); 618 if (!total_size) { 619 error = -EINVAL; 620 goto out; 621 } 622 623 eppnt = interp_elf_phdata; 624 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 625 if (eppnt->p_type == PT_LOAD) { 626 int elf_type = MAP_PRIVATE; 627 int elf_prot = make_prot(eppnt->p_flags, arch_state, 628 true, true); 629 unsigned long vaddr = 0; 630 unsigned long k, map_addr; 631 632 vaddr = eppnt->p_vaddr; 633 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 634 elf_type |= MAP_FIXED; 635 else if (no_base && interp_elf_ex->e_type == ET_DYN) 636 load_addr = -vaddr; 637 638 map_addr = elf_map(interpreter, load_addr + vaddr, 639 eppnt, elf_prot, elf_type, total_size); 640 total_size = 0; 641 error = map_addr; 642 if (BAD_ADDR(map_addr)) 643 goto out; 644 645 if (!load_addr_set && 646 interp_elf_ex->e_type == ET_DYN) { 647 load_addr = map_addr - ELF_PAGESTART(vaddr); 648 load_addr_set = 1; 649 } 650 651 /* 652 * Check to see if the section's size will overflow the 653 * allowed task size. Note that p_filesz must always be 654 * <= p_memsize so it's only necessary to check p_memsz. 655 */ 656 k = load_addr + eppnt->p_vaddr; 657 if (BAD_ADDR(k) || 658 eppnt->p_filesz > eppnt->p_memsz || 659 eppnt->p_memsz > TASK_SIZE || 660 TASK_SIZE - eppnt->p_memsz < k) { 661 error = -ENOMEM; 662 goto out; 663 } 664 665 /* 666 * Find the end of the file mapping for this phdr, and 667 * keep track of the largest address we see for this. 668 */ 669 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; 670 if (k > elf_bss) 671 elf_bss = k; 672 673 /* 674 * Do the same thing for the memory mapping - between 675 * elf_bss and last_bss is the bss section. 676 */ 677 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz; 678 if (k > last_bss) { 679 last_bss = k; 680 bss_prot = elf_prot; 681 } 682 } 683 } 684 685 /* 686 * Now fill out the bss section: first pad the last page from 687 * the file up to the page boundary, and zero it from elf_bss 688 * up to the end of the page. 689 */ 690 if (padzero(elf_bss)) { 691 error = -EFAULT; 692 goto out; 693 } 694 /* 695 * Next, align both the file and mem bss up to the page size, 696 * since this is where elf_bss was just zeroed up to, and where 697 * last_bss will end after the vm_brk_flags() below. 698 */ 699 elf_bss = ELF_PAGEALIGN(elf_bss); 700 last_bss = ELF_PAGEALIGN(last_bss); 701 /* Finally, if there is still more bss to allocate, do it. */ 702 if (last_bss > elf_bss) { 703 error = vm_brk_flags(elf_bss, last_bss - elf_bss, 704 bss_prot & PROT_EXEC ? VM_EXEC : 0); 705 if (error) 706 goto out; 707 } 708 709 error = load_addr; 710 out: 711 return error; 712 } 713 714 /* 715 * These are the functions used to load ELF style executables and shared 716 * libraries. There is no binary dependent code anywhere else. 717 */ 718 719 static int parse_elf_property(const char *data, size_t *off, size_t datasz, 720 struct arch_elf_state *arch, 721 bool have_prev_type, u32 *prev_type) 722 { 723 size_t o, step; 724 const struct gnu_property *pr; 725 int ret; 726 727 if (*off == datasz) 728 return -ENOENT; 729 730 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN)) 731 return -EIO; 732 o = *off; 733 datasz -= *off; 734 735 if (datasz < sizeof(*pr)) 736 return -ENOEXEC; 737 pr = (const struct gnu_property *)(data + o); 738 o += sizeof(*pr); 739 datasz -= sizeof(*pr); 740 741 if (pr->pr_datasz > datasz) 742 return -ENOEXEC; 743 744 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN); 745 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN); 746 if (step > datasz) 747 return -ENOEXEC; 748 749 /* Properties are supposed to be unique and sorted on pr_type: */ 750 if (have_prev_type && pr->pr_type <= *prev_type) 751 return -ENOEXEC; 752 *prev_type = pr->pr_type; 753 754 ret = arch_parse_elf_property(pr->pr_type, data + o, 755 pr->pr_datasz, ELF_COMPAT, arch); 756 if (ret) 757 return ret; 758 759 *off = o + step; 760 return 0; 761 } 762 763 #define NOTE_DATA_SZ SZ_1K 764 #define GNU_PROPERTY_TYPE_0_NAME "GNU" 765 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME)) 766 767 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr, 768 struct arch_elf_state *arch) 769 { 770 union { 771 struct elf_note nhdr; 772 char data[NOTE_DATA_SZ]; 773 } note; 774 loff_t pos; 775 ssize_t n; 776 size_t off, datasz; 777 int ret; 778 bool have_prev_type; 779 u32 prev_type; 780 781 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr) 782 return 0; 783 784 /* load_elf_binary() shouldn't call us unless this is true... */ 785 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY)) 786 return -ENOEXEC; 787 788 /* If the properties are crazy large, that's too bad (for now): */ 789 if (phdr->p_filesz > sizeof(note)) 790 return -ENOEXEC; 791 792 pos = phdr->p_offset; 793 n = kernel_read(f, ¬e, phdr->p_filesz, &pos); 794 795 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ); 796 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ) 797 return -EIO; 798 799 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 800 note.nhdr.n_namesz != NOTE_NAME_SZ || 801 strncmp(note.data + sizeof(note.nhdr), 802 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr))) 803 return -ENOEXEC; 804 805 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ, 806 ELF_GNU_PROPERTY_ALIGN); 807 if (off > n) 808 return -ENOEXEC; 809 810 if (note.nhdr.n_descsz > n - off) 811 return -ENOEXEC; 812 datasz = off + note.nhdr.n_descsz; 813 814 have_prev_type = false; 815 do { 816 ret = parse_elf_property(note.data, &off, datasz, arch, 817 have_prev_type, &prev_type); 818 have_prev_type = true; 819 } while (!ret); 820 821 return ret == -ENOENT ? 0 : ret; 822 } 823 824 static int load_elf_binary(struct linux_binprm *bprm) 825 { 826 struct file *interpreter = NULL; /* to shut gcc up */ 827 unsigned long load_bias = 0, phdr_addr = 0; 828 int first_pt_load = 1; 829 unsigned long error; 830 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL; 831 struct elf_phdr *elf_property_phdata = NULL; 832 unsigned long elf_bss, elf_brk; 833 int bss_prot = 0; 834 int retval, i; 835 unsigned long elf_entry; 836 unsigned long e_entry; 837 unsigned long interp_load_addr = 0; 838 unsigned long start_code, end_code, start_data, end_data; 839 unsigned long reloc_func_desc __maybe_unused = 0; 840 int executable_stack = EXSTACK_DEFAULT; 841 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf; 842 struct elfhdr *interp_elf_ex = NULL; 843 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE; 844 struct mm_struct *mm; 845 struct pt_regs *regs; 846 847 retval = -ENOEXEC; 848 /* First of all, some simple consistency checks */ 849 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 850 goto out; 851 852 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN) 853 goto out; 854 if (!elf_check_arch(elf_ex)) 855 goto out; 856 if (elf_check_fdpic(elf_ex)) 857 goto out; 858 if (!bprm->file->f_op->mmap) 859 goto out; 860 861 elf_phdata = load_elf_phdrs(elf_ex, bprm->file); 862 if (!elf_phdata) 863 goto out; 864 865 elf_ppnt = elf_phdata; 866 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) { 867 char *elf_interpreter; 868 869 if (elf_ppnt->p_type == PT_GNU_PROPERTY) { 870 elf_property_phdata = elf_ppnt; 871 continue; 872 } 873 874 if (elf_ppnt->p_type != PT_INTERP) 875 continue; 876 877 /* 878 * This is the program interpreter used for shared libraries - 879 * for now assume that this is an a.out format binary. 880 */ 881 retval = -ENOEXEC; 882 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2) 883 goto out_free_ph; 884 885 retval = -ENOMEM; 886 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL); 887 if (!elf_interpreter) 888 goto out_free_ph; 889 890 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz, 891 elf_ppnt->p_offset); 892 if (retval < 0) 893 goto out_free_interp; 894 /* make sure path is NULL terminated */ 895 retval = -ENOEXEC; 896 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 897 goto out_free_interp; 898 899 interpreter = open_exec(elf_interpreter); 900 kfree(elf_interpreter); 901 retval = PTR_ERR(interpreter); 902 if (IS_ERR(interpreter)) 903 goto out_free_ph; 904 905 /* 906 * If the binary is not readable then enforce mm->dumpable = 0 907 * regardless of the interpreter's permissions. 908 */ 909 would_dump(bprm, interpreter); 910 911 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL); 912 if (!interp_elf_ex) { 913 retval = -ENOMEM; 914 goto out_free_file; 915 } 916 917 /* Get the exec headers */ 918 retval = elf_read(interpreter, interp_elf_ex, 919 sizeof(*interp_elf_ex), 0); 920 if (retval < 0) 921 goto out_free_dentry; 922 923 break; 924 925 out_free_interp: 926 kfree(elf_interpreter); 927 goto out_free_ph; 928 } 929 930 elf_ppnt = elf_phdata; 931 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) 932 switch (elf_ppnt->p_type) { 933 case PT_GNU_STACK: 934 if (elf_ppnt->p_flags & PF_X) 935 executable_stack = EXSTACK_ENABLE_X; 936 else 937 executable_stack = EXSTACK_DISABLE_X; 938 break; 939 940 case PT_LOPROC ... PT_HIPROC: 941 retval = arch_elf_pt_proc(elf_ex, elf_ppnt, 942 bprm->file, false, 943 &arch_state); 944 if (retval) 945 goto out_free_dentry; 946 break; 947 } 948 949 /* Some simple consistency checks for the interpreter */ 950 if (interpreter) { 951 retval = -ELIBBAD; 952 /* Not an ELF interpreter */ 953 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 954 goto out_free_dentry; 955 /* Verify the interpreter has a valid arch */ 956 if (!elf_check_arch(interp_elf_ex) || 957 elf_check_fdpic(interp_elf_ex)) 958 goto out_free_dentry; 959 960 /* Load the interpreter program headers */ 961 interp_elf_phdata = load_elf_phdrs(interp_elf_ex, 962 interpreter); 963 if (!interp_elf_phdata) 964 goto out_free_dentry; 965 966 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */ 967 elf_property_phdata = NULL; 968 elf_ppnt = interp_elf_phdata; 969 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++) 970 switch (elf_ppnt->p_type) { 971 case PT_GNU_PROPERTY: 972 elf_property_phdata = elf_ppnt; 973 break; 974 975 case PT_LOPROC ... PT_HIPROC: 976 retval = arch_elf_pt_proc(interp_elf_ex, 977 elf_ppnt, interpreter, 978 true, &arch_state); 979 if (retval) 980 goto out_free_dentry; 981 break; 982 } 983 } 984 985 retval = parse_elf_properties(interpreter ?: bprm->file, 986 elf_property_phdata, &arch_state); 987 if (retval) 988 goto out_free_dentry; 989 990 /* 991 * Allow arch code to reject the ELF at this point, whilst it's 992 * still possible to return an error to the code that invoked 993 * the exec syscall. 994 */ 995 retval = arch_check_elf(elf_ex, 996 !!interpreter, interp_elf_ex, 997 &arch_state); 998 if (retval) 999 goto out_free_dentry; 1000 1001 /* Flush all traces of the currently running executable */ 1002 retval = begin_new_exec(bprm); 1003 if (retval) 1004 goto out_free_dentry; 1005 1006 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 1007 may depend on the personality. */ 1008 SET_PERSONALITY2(*elf_ex, &arch_state); 1009 if (elf_read_implies_exec(*elf_ex, executable_stack)) 1010 current->personality |= READ_IMPLIES_EXEC; 1011 1012 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1013 current->flags |= PF_RANDOMIZE; 1014 1015 setup_new_exec(bprm); 1016 1017 /* Do this so that we can load the interpreter, if need be. We will 1018 change some of these later */ 1019 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 1020 executable_stack); 1021 if (retval < 0) 1022 goto out_free_dentry; 1023 1024 elf_bss = 0; 1025 elf_brk = 0; 1026 1027 start_code = ~0UL; 1028 end_code = 0; 1029 start_data = 0; 1030 end_data = 0; 1031 1032 /* Now we do a little grungy work by mmapping the ELF image into 1033 the correct location in memory. */ 1034 for(i = 0, elf_ppnt = elf_phdata; 1035 i < elf_ex->e_phnum; i++, elf_ppnt++) { 1036 int elf_prot, elf_flags; 1037 unsigned long k, vaddr; 1038 unsigned long total_size = 0; 1039 unsigned long alignment; 1040 1041 if (elf_ppnt->p_type != PT_LOAD) 1042 continue; 1043 1044 if (unlikely (elf_brk > elf_bss)) { 1045 unsigned long nbyte; 1046 1047 /* There was a PT_LOAD segment with p_memsz > p_filesz 1048 before this one. Map anonymous pages, if needed, 1049 and clear the area. */ 1050 retval = set_brk(elf_bss + load_bias, 1051 elf_brk + load_bias, 1052 bss_prot); 1053 if (retval) 1054 goto out_free_dentry; 1055 nbyte = ELF_PAGEOFFSET(elf_bss); 1056 if (nbyte) { 1057 nbyte = ELF_MIN_ALIGN - nbyte; 1058 if (nbyte > elf_brk - elf_bss) 1059 nbyte = elf_brk - elf_bss; 1060 if (clear_user((void __user *)elf_bss + 1061 load_bias, nbyte)) { 1062 /* 1063 * This bss-zeroing can fail if the ELF 1064 * file specifies odd protections. So 1065 * we don't check the return value 1066 */ 1067 } 1068 } 1069 } 1070 1071 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state, 1072 !!interpreter, false); 1073 1074 elf_flags = MAP_PRIVATE; 1075 1076 vaddr = elf_ppnt->p_vaddr; 1077 /* 1078 * The first time through the loop, first_pt_load is true: 1079 * layout will be calculated. Once set, use MAP_FIXED since 1080 * we know we've already safely mapped the entire region with 1081 * MAP_FIXED_NOREPLACE in the once-per-binary logic following. 1082 */ 1083 if (!first_pt_load) { 1084 elf_flags |= MAP_FIXED; 1085 } else if (elf_ex->e_type == ET_EXEC) { 1086 /* 1087 * This logic is run once for the first LOAD Program 1088 * Header for ET_EXEC binaries. No special handling 1089 * is needed. 1090 */ 1091 elf_flags |= MAP_FIXED_NOREPLACE; 1092 } else if (elf_ex->e_type == ET_DYN) { 1093 /* 1094 * This logic is run once for the first LOAD Program 1095 * Header for ET_DYN binaries to calculate the 1096 * randomization (load_bias) for all the LOAD 1097 * Program Headers. 1098 * 1099 * There are effectively two types of ET_DYN 1100 * binaries: programs (i.e. PIE: ET_DYN with INTERP) 1101 * and loaders (ET_DYN without INTERP, since they 1102 * _are_ the ELF interpreter). The loaders must 1103 * be loaded away from programs since the program 1104 * may otherwise collide with the loader (especially 1105 * for ET_EXEC which does not have a randomized 1106 * position). For example to handle invocations of 1107 * "./ld.so someprog" to test out a new version of 1108 * the loader, the subsequent program that the 1109 * loader loads must avoid the loader itself, so 1110 * they cannot share the same load range. Sufficient 1111 * room for the brk must be allocated with the 1112 * loader as well, since brk must be available with 1113 * the loader. 1114 * 1115 * Therefore, programs are loaded offset from 1116 * ELF_ET_DYN_BASE and loaders are loaded into the 1117 * independently randomized mmap region (0 load_bias 1118 * without MAP_FIXED nor MAP_FIXED_NOREPLACE). 1119 */ 1120 if (interpreter) { 1121 load_bias = ELF_ET_DYN_BASE; 1122 if (current->flags & PF_RANDOMIZE) 1123 load_bias += arch_mmap_rnd(); 1124 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum); 1125 if (alignment) 1126 load_bias &= ~(alignment - 1); 1127 elf_flags |= MAP_FIXED_NOREPLACE; 1128 } else 1129 load_bias = 0; 1130 1131 /* 1132 * Since load_bias is used for all subsequent loading 1133 * calculations, we must lower it by the first vaddr 1134 * so that the remaining calculations based on the 1135 * ELF vaddrs will be correctly offset. The result 1136 * is then page aligned. 1137 */ 1138 load_bias = ELF_PAGESTART(load_bias - vaddr); 1139 1140 /* 1141 * Calculate the entire size of the ELF mapping 1142 * (total_size), used for the initial mapping, 1143 * due to load_addr_set which is set to true later 1144 * once the initial mapping is performed. 1145 * 1146 * Note that this is only sensible when the LOAD 1147 * segments are contiguous (or overlapping). If 1148 * used for LOADs that are far apart, this would 1149 * cause the holes between LOADs to be mapped, 1150 * running the risk of having the mapping fail, 1151 * as it would be larger than the ELF file itself. 1152 * 1153 * As a result, only ET_DYN does this, since 1154 * some ET_EXEC (e.g. ia64) may have large virtual 1155 * memory holes between LOADs. 1156 * 1157 */ 1158 total_size = total_mapping_size(elf_phdata, 1159 elf_ex->e_phnum); 1160 if (!total_size) { 1161 retval = -EINVAL; 1162 goto out_free_dentry; 1163 } 1164 } 1165 1166 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, 1167 elf_prot, elf_flags, total_size); 1168 if (BAD_ADDR(error)) { 1169 retval = IS_ERR((void *)error) ? 1170 PTR_ERR((void*)error) : -EINVAL; 1171 goto out_free_dentry; 1172 } 1173 1174 if (first_pt_load) { 1175 first_pt_load = 0; 1176 if (elf_ex->e_type == ET_DYN) { 1177 load_bias += error - 1178 ELF_PAGESTART(load_bias + vaddr); 1179 reloc_func_desc = load_bias; 1180 } 1181 } 1182 1183 /* 1184 * Figure out which segment in the file contains the Program 1185 * Header table, and map to the associated memory address. 1186 */ 1187 if (elf_ppnt->p_offset <= elf_ex->e_phoff && 1188 elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) { 1189 phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset + 1190 elf_ppnt->p_vaddr; 1191 } 1192 1193 k = elf_ppnt->p_vaddr; 1194 if ((elf_ppnt->p_flags & PF_X) && k < start_code) 1195 start_code = k; 1196 if (start_data < k) 1197 start_data = k; 1198 1199 /* 1200 * Check to see if the section's size will overflow the 1201 * allowed task size. Note that p_filesz must always be 1202 * <= p_memsz so it is only necessary to check p_memsz. 1203 */ 1204 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 1205 elf_ppnt->p_memsz > TASK_SIZE || 1206 TASK_SIZE - elf_ppnt->p_memsz < k) { 1207 /* set_brk can never work. Avoid overflows. */ 1208 retval = -EINVAL; 1209 goto out_free_dentry; 1210 } 1211 1212 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 1213 1214 if (k > elf_bss) 1215 elf_bss = k; 1216 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 1217 end_code = k; 1218 if (end_data < k) 1219 end_data = k; 1220 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 1221 if (k > elf_brk) { 1222 bss_prot = elf_prot; 1223 elf_brk = k; 1224 } 1225 } 1226 1227 e_entry = elf_ex->e_entry + load_bias; 1228 phdr_addr += load_bias; 1229 elf_bss += load_bias; 1230 elf_brk += load_bias; 1231 start_code += load_bias; 1232 end_code += load_bias; 1233 start_data += load_bias; 1234 end_data += load_bias; 1235 1236 /* Calling set_brk effectively mmaps the pages that we need 1237 * for the bss and break sections. We must do this before 1238 * mapping in the interpreter, to make sure it doesn't wind 1239 * up getting placed where the bss needs to go. 1240 */ 1241 retval = set_brk(elf_bss, elf_brk, bss_prot); 1242 if (retval) 1243 goto out_free_dentry; 1244 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { 1245 retval = -EFAULT; /* Nobody gets to see this, but.. */ 1246 goto out_free_dentry; 1247 } 1248 1249 if (interpreter) { 1250 elf_entry = load_elf_interp(interp_elf_ex, 1251 interpreter, 1252 load_bias, interp_elf_phdata, 1253 &arch_state); 1254 if (!IS_ERR((void *)elf_entry)) { 1255 /* 1256 * load_elf_interp() returns relocation 1257 * adjustment 1258 */ 1259 interp_load_addr = elf_entry; 1260 elf_entry += interp_elf_ex->e_entry; 1261 } 1262 if (BAD_ADDR(elf_entry)) { 1263 retval = IS_ERR((void *)elf_entry) ? 1264 (int)elf_entry : -EINVAL; 1265 goto out_free_dentry; 1266 } 1267 reloc_func_desc = interp_load_addr; 1268 1269 allow_write_access(interpreter); 1270 fput(interpreter); 1271 1272 kfree(interp_elf_ex); 1273 kfree(interp_elf_phdata); 1274 } else { 1275 elf_entry = e_entry; 1276 if (BAD_ADDR(elf_entry)) { 1277 retval = -EINVAL; 1278 goto out_free_dentry; 1279 } 1280 } 1281 1282 kfree(elf_phdata); 1283 1284 set_binfmt(&elf_format); 1285 1286 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 1287 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter); 1288 if (retval < 0) 1289 goto out; 1290 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 1291 1292 retval = create_elf_tables(bprm, elf_ex, interp_load_addr, 1293 e_entry, phdr_addr); 1294 if (retval < 0) 1295 goto out; 1296 1297 mm = current->mm; 1298 mm->end_code = end_code; 1299 mm->start_code = start_code; 1300 mm->start_data = start_data; 1301 mm->end_data = end_data; 1302 mm->start_stack = bprm->p; 1303 1304 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { 1305 /* 1306 * For architectures with ELF randomization, when executing 1307 * a loader directly (i.e. no interpreter listed in ELF 1308 * headers), move the brk area out of the mmap region 1309 * (since it grows up, and may collide early with the stack 1310 * growing down), and into the unused ELF_ET_DYN_BASE region. 1311 */ 1312 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && 1313 elf_ex->e_type == ET_DYN && !interpreter) { 1314 mm->brk = mm->start_brk = ELF_ET_DYN_BASE; 1315 } 1316 1317 mm->brk = mm->start_brk = arch_randomize_brk(mm); 1318 #ifdef compat_brk_randomized 1319 current->brk_randomized = 1; 1320 #endif 1321 } 1322 1323 if (current->personality & MMAP_PAGE_ZERO) { 1324 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 1325 and some applications "depend" upon this behavior. 1326 Since we do not have the power to recompile these, we 1327 emulate the SVr4 behavior. Sigh. */ 1328 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 1329 MAP_FIXED | MAP_PRIVATE, 0); 1330 } 1331 1332 regs = current_pt_regs(); 1333 #ifdef ELF_PLAT_INIT 1334 /* 1335 * The ABI may specify that certain registers be set up in special 1336 * ways (on i386 %edx is the address of a DT_FINI function, for 1337 * example. In addition, it may also specify (eg, PowerPC64 ELF) 1338 * that the e_entry field is the address of the function descriptor 1339 * for the startup routine, rather than the address of the startup 1340 * routine itself. This macro performs whatever initialization to 1341 * the regs structure is required as well as any relocations to the 1342 * function descriptor entries when executing dynamically links apps. 1343 */ 1344 ELF_PLAT_INIT(regs, reloc_func_desc); 1345 #endif 1346 1347 finalize_exec(bprm); 1348 START_THREAD(elf_ex, regs, elf_entry, bprm->p); 1349 retval = 0; 1350 out: 1351 return retval; 1352 1353 /* error cleanup */ 1354 out_free_dentry: 1355 kfree(interp_elf_ex); 1356 kfree(interp_elf_phdata); 1357 out_free_file: 1358 allow_write_access(interpreter); 1359 if (interpreter) 1360 fput(interpreter); 1361 out_free_ph: 1362 kfree(elf_phdata); 1363 goto out; 1364 } 1365 1366 #ifdef CONFIG_USELIB 1367 /* This is really simpleminded and specialized - we are loading an 1368 a.out library that is given an ELF header. */ 1369 static int load_elf_library(struct file *file) 1370 { 1371 struct elf_phdr *elf_phdata; 1372 struct elf_phdr *eppnt; 1373 unsigned long elf_bss, bss, len; 1374 int retval, error, i, j; 1375 struct elfhdr elf_ex; 1376 1377 error = -ENOEXEC; 1378 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0); 1379 if (retval < 0) 1380 goto out; 1381 1382 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1383 goto out; 1384 1385 /* First of all, some simple consistency checks */ 1386 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1387 !elf_check_arch(&elf_ex) || !file->f_op->mmap) 1388 goto out; 1389 if (elf_check_fdpic(&elf_ex)) 1390 goto out; 1391 1392 /* Now read in all of the header information */ 1393 1394 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1395 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1396 1397 error = -ENOMEM; 1398 elf_phdata = kmalloc(j, GFP_KERNEL); 1399 if (!elf_phdata) 1400 goto out; 1401 1402 eppnt = elf_phdata; 1403 error = -ENOEXEC; 1404 retval = elf_read(file, eppnt, j, elf_ex.e_phoff); 1405 if (retval < 0) 1406 goto out_free_ph; 1407 1408 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1409 if ((eppnt + i)->p_type == PT_LOAD) 1410 j++; 1411 if (j != 1) 1412 goto out_free_ph; 1413 1414 while (eppnt->p_type != PT_LOAD) 1415 eppnt++; 1416 1417 /* Now use mmap to map the library into memory. */ 1418 error = vm_mmap(file, 1419 ELF_PAGESTART(eppnt->p_vaddr), 1420 (eppnt->p_filesz + 1421 ELF_PAGEOFFSET(eppnt->p_vaddr)), 1422 PROT_READ | PROT_WRITE | PROT_EXEC, 1423 MAP_FIXED_NOREPLACE | MAP_PRIVATE, 1424 (eppnt->p_offset - 1425 ELF_PAGEOFFSET(eppnt->p_vaddr))); 1426 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1427 goto out_free_ph; 1428 1429 elf_bss = eppnt->p_vaddr + eppnt->p_filesz; 1430 if (padzero(elf_bss)) { 1431 error = -EFAULT; 1432 goto out_free_ph; 1433 } 1434 1435 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr); 1436 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr); 1437 if (bss > len) { 1438 error = vm_brk(len, bss - len); 1439 if (error) 1440 goto out_free_ph; 1441 } 1442 error = 0; 1443 1444 out_free_ph: 1445 kfree(elf_phdata); 1446 out: 1447 return error; 1448 } 1449 #endif /* #ifdef CONFIG_USELIB */ 1450 1451 #ifdef CONFIG_ELF_CORE 1452 /* 1453 * ELF core dumper 1454 * 1455 * Modelled on fs/exec.c:aout_core_dump() 1456 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1457 */ 1458 1459 /* An ELF note in memory */ 1460 struct memelfnote 1461 { 1462 const char *name; 1463 int type; 1464 unsigned int datasz; 1465 void *data; 1466 }; 1467 1468 static int notesize(struct memelfnote *en) 1469 { 1470 int sz; 1471 1472 sz = sizeof(struct elf_note); 1473 sz += roundup(strlen(en->name) + 1, 4); 1474 sz += roundup(en->datasz, 4); 1475 1476 return sz; 1477 } 1478 1479 static int writenote(struct memelfnote *men, struct coredump_params *cprm) 1480 { 1481 struct elf_note en; 1482 en.n_namesz = strlen(men->name) + 1; 1483 en.n_descsz = men->datasz; 1484 en.n_type = men->type; 1485 1486 return dump_emit(cprm, &en, sizeof(en)) && 1487 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) && 1488 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4); 1489 } 1490 1491 static void fill_elf_header(struct elfhdr *elf, int segs, 1492 u16 machine, u32 flags) 1493 { 1494 memset(elf, 0, sizeof(*elf)); 1495 1496 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1497 elf->e_ident[EI_CLASS] = ELF_CLASS; 1498 elf->e_ident[EI_DATA] = ELF_DATA; 1499 elf->e_ident[EI_VERSION] = EV_CURRENT; 1500 elf->e_ident[EI_OSABI] = ELF_OSABI; 1501 1502 elf->e_type = ET_CORE; 1503 elf->e_machine = machine; 1504 elf->e_version = EV_CURRENT; 1505 elf->e_phoff = sizeof(struct elfhdr); 1506 elf->e_flags = flags; 1507 elf->e_ehsize = sizeof(struct elfhdr); 1508 elf->e_phentsize = sizeof(struct elf_phdr); 1509 elf->e_phnum = segs; 1510 } 1511 1512 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1513 { 1514 phdr->p_type = PT_NOTE; 1515 phdr->p_offset = offset; 1516 phdr->p_vaddr = 0; 1517 phdr->p_paddr = 0; 1518 phdr->p_filesz = sz; 1519 phdr->p_memsz = 0; 1520 phdr->p_flags = 0; 1521 phdr->p_align = 0; 1522 } 1523 1524 static void fill_note(struct memelfnote *note, const char *name, int type, 1525 unsigned int sz, void *data) 1526 { 1527 note->name = name; 1528 note->type = type; 1529 note->datasz = sz; 1530 note->data = data; 1531 } 1532 1533 /* 1534 * fill up all the fields in prstatus from the given task struct, except 1535 * registers which need to be filled up separately. 1536 */ 1537 static void fill_prstatus(struct elf_prstatus_common *prstatus, 1538 struct task_struct *p, long signr) 1539 { 1540 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1541 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1542 prstatus->pr_sighold = p->blocked.sig[0]; 1543 rcu_read_lock(); 1544 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1545 rcu_read_unlock(); 1546 prstatus->pr_pid = task_pid_vnr(p); 1547 prstatus->pr_pgrp = task_pgrp_vnr(p); 1548 prstatus->pr_sid = task_session_vnr(p); 1549 if (thread_group_leader(p)) { 1550 struct task_cputime cputime; 1551 1552 /* 1553 * This is the record for the group leader. It shows the 1554 * group-wide total, not its individual thread total. 1555 */ 1556 thread_group_cputime(p, &cputime); 1557 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime); 1558 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime); 1559 } else { 1560 u64 utime, stime; 1561 1562 task_cputime(p, &utime, &stime); 1563 prstatus->pr_utime = ns_to_kernel_old_timeval(utime); 1564 prstatus->pr_stime = ns_to_kernel_old_timeval(stime); 1565 } 1566 1567 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime); 1568 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime); 1569 } 1570 1571 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1572 struct mm_struct *mm) 1573 { 1574 const struct cred *cred; 1575 unsigned int i, len; 1576 unsigned int state; 1577 1578 /* first copy the parameters from user space */ 1579 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1580 1581 len = mm->arg_end - mm->arg_start; 1582 if (len >= ELF_PRARGSZ) 1583 len = ELF_PRARGSZ-1; 1584 if (copy_from_user(&psinfo->pr_psargs, 1585 (const char __user *)mm->arg_start, len)) 1586 return -EFAULT; 1587 for(i = 0; i < len; i++) 1588 if (psinfo->pr_psargs[i] == 0) 1589 psinfo->pr_psargs[i] = ' '; 1590 psinfo->pr_psargs[len] = 0; 1591 1592 rcu_read_lock(); 1593 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1594 rcu_read_unlock(); 1595 psinfo->pr_pid = task_pid_vnr(p); 1596 psinfo->pr_pgrp = task_pgrp_vnr(p); 1597 psinfo->pr_sid = task_session_vnr(p); 1598 1599 state = READ_ONCE(p->__state); 1600 i = state ? ffz(~state) + 1 : 0; 1601 psinfo->pr_state = i; 1602 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1603 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1604 psinfo->pr_nice = task_nice(p); 1605 psinfo->pr_flag = p->flags; 1606 rcu_read_lock(); 1607 cred = __task_cred(p); 1608 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid)); 1609 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid)); 1610 rcu_read_unlock(); 1611 get_task_comm(psinfo->pr_fname, p); 1612 1613 return 0; 1614 } 1615 1616 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1617 { 1618 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1619 int i = 0; 1620 do 1621 i += 2; 1622 while (auxv[i - 2] != AT_NULL); 1623 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1624 } 1625 1626 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata, 1627 const kernel_siginfo_t *siginfo) 1628 { 1629 copy_siginfo_to_external(csigdata, siginfo); 1630 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata); 1631 } 1632 1633 #define MAX_FILE_NOTE_SIZE (4*1024*1024) 1634 /* 1635 * Format of NT_FILE note: 1636 * 1637 * long count -- how many files are mapped 1638 * long page_size -- units for file_ofs 1639 * array of [COUNT] elements of 1640 * long start 1641 * long end 1642 * long file_ofs 1643 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... 1644 */ 1645 static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm) 1646 { 1647 unsigned count, size, names_ofs, remaining, n; 1648 user_long_t *data; 1649 user_long_t *start_end_ofs; 1650 char *name_base, *name_curpos; 1651 int i; 1652 1653 /* *Estimated* file count and total data size needed */ 1654 count = cprm->vma_count; 1655 if (count > UINT_MAX / 64) 1656 return -EINVAL; 1657 size = count * 64; 1658 1659 names_ofs = (2 + 3 * count) * sizeof(data[0]); 1660 alloc: 1661 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */ 1662 return -EINVAL; 1663 size = round_up(size, PAGE_SIZE); 1664 /* 1665 * "size" can be 0 here legitimately. 1666 * Let it ENOMEM and omit NT_FILE section which will be empty anyway. 1667 */ 1668 data = kvmalloc(size, GFP_KERNEL); 1669 if (ZERO_OR_NULL_PTR(data)) 1670 return -ENOMEM; 1671 1672 start_end_ofs = data + 2; 1673 name_base = name_curpos = ((char *)data) + names_ofs; 1674 remaining = size - names_ofs; 1675 count = 0; 1676 for (i = 0; i < cprm->vma_count; i++) { 1677 struct core_vma_metadata *m = &cprm->vma_meta[i]; 1678 struct file *file; 1679 const char *filename; 1680 1681 file = m->file; 1682 if (!file) 1683 continue; 1684 filename = file_path(file, name_curpos, remaining); 1685 if (IS_ERR(filename)) { 1686 if (PTR_ERR(filename) == -ENAMETOOLONG) { 1687 kvfree(data); 1688 size = size * 5 / 4; 1689 goto alloc; 1690 } 1691 continue; 1692 } 1693 1694 /* file_path() fills at the end, move name down */ 1695 /* n = strlen(filename) + 1: */ 1696 n = (name_curpos + remaining) - filename; 1697 remaining = filename - name_curpos; 1698 memmove(name_curpos, filename, n); 1699 name_curpos += n; 1700 1701 *start_end_ofs++ = m->start; 1702 *start_end_ofs++ = m->end; 1703 *start_end_ofs++ = m->pgoff; 1704 count++; 1705 } 1706 1707 /* Now we know exact count of files, can store it */ 1708 data[0] = count; 1709 data[1] = PAGE_SIZE; 1710 /* 1711 * Count usually is less than mm->map_count, 1712 * we need to move filenames down. 1713 */ 1714 n = cprm->vma_count - count; 1715 if (n != 0) { 1716 unsigned shift_bytes = n * 3 * sizeof(data[0]); 1717 memmove(name_base - shift_bytes, name_base, 1718 name_curpos - name_base); 1719 name_curpos -= shift_bytes; 1720 } 1721 1722 size = name_curpos - (char *)data; 1723 fill_note(note, "CORE", NT_FILE, size, data); 1724 return 0; 1725 } 1726 1727 #ifdef CORE_DUMP_USE_REGSET 1728 #include <linux/regset.h> 1729 1730 struct elf_thread_core_info { 1731 struct elf_thread_core_info *next; 1732 struct task_struct *task; 1733 struct elf_prstatus prstatus; 1734 struct memelfnote notes[]; 1735 }; 1736 1737 struct elf_note_info { 1738 struct elf_thread_core_info *thread; 1739 struct memelfnote psinfo; 1740 struct memelfnote signote; 1741 struct memelfnote auxv; 1742 struct memelfnote files; 1743 user_siginfo_t csigdata; 1744 size_t size; 1745 int thread_notes; 1746 }; 1747 1748 /* 1749 * When a regset has a writeback hook, we call it on each thread before 1750 * dumping user memory. On register window machines, this makes sure the 1751 * user memory backing the register data is up to date before we read it. 1752 */ 1753 static void do_thread_regset_writeback(struct task_struct *task, 1754 const struct user_regset *regset) 1755 { 1756 if (regset->writeback) 1757 regset->writeback(task, regset, 1); 1758 } 1759 1760 #ifndef PRSTATUS_SIZE 1761 #define PRSTATUS_SIZE sizeof(struct elf_prstatus) 1762 #endif 1763 1764 #ifndef SET_PR_FPVALID 1765 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1) 1766 #endif 1767 1768 static int fill_thread_core_info(struct elf_thread_core_info *t, 1769 const struct user_regset_view *view, 1770 long signr, struct elf_note_info *info) 1771 { 1772 unsigned int note_iter, view_iter; 1773 1774 /* 1775 * NT_PRSTATUS is the one special case, because the regset data 1776 * goes into the pr_reg field inside the note contents, rather 1777 * than being the whole note contents. We fill the reset in here. 1778 * We assume that regset 0 is NT_PRSTATUS. 1779 */ 1780 fill_prstatus(&t->prstatus.common, t->task, signr); 1781 regset_get(t->task, &view->regsets[0], 1782 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg); 1783 1784 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1785 PRSTATUS_SIZE, &t->prstatus); 1786 info->size += notesize(&t->notes[0]); 1787 1788 do_thread_regset_writeback(t->task, &view->regsets[0]); 1789 1790 /* 1791 * Each other regset might generate a note too. For each regset 1792 * that has no core_note_type or is inactive, skip it. 1793 */ 1794 note_iter = 1; 1795 for (view_iter = 1; view_iter < view->n; ++view_iter) { 1796 const struct user_regset *regset = &view->regsets[view_iter]; 1797 int note_type = regset->core_note_type; 1798 bool is_fpreg = note_type == NT_PRFPREG; 1799 void *data; 1800 int ret; 1801 1802 do_thread_regset_writeback(t->task, regset); 1803 if (!note_type) // not for coredumps 1804 continue; 1805 if (regset->active && regset->active(t->task, regset) <= 0) 1806 continue; 1807 1808 ret = regset_get_alloc(t->task, regset, ~0U, &data); 1809 if (ret < 0) 1810 continue; 1811 1812 if (WARN_ON_ONCE(note_iter >= info->thread_notes)) 1813 break; 1814 1815 if (is_fpreg) 1816 SET_PR_FPVALID(&t->prstatus); 1817 1818 fill_note(&t->notes[note_iter], is_fpreg ? "CORE" : "LINUX", 1819 note_type, ret, data); 1820 1821 info->size += notesize(&t->notes[note_iter]); 1822 note_iter++; 1823 } 1824 1825 return 1; 1826 } 1827 1828 static int fill_note_info(struct elfhdr *elf, int phdrs, 1829 struct elf_note_info *info, 1830 struct coredump_params *cprm) 1831 { 1832 struct task_struct *dump_task = current; 1833 const struct user_regset_view *view = task_user_regset_view(dump_task); 1834 struct elf_thread_core_info *t; 1835 struct elf_prpsinfo *psinfo; 1836 struct core_thread *ct; 1837 unsigned int i; 1838 1839 info->size = 0; 1840 info->thread = NULL; 1841 1842 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1843 if (psinfo == NULL) { 1844 info->psinfo.data = NULL; /* So we don't free this wrongly */ 1845 return 0; 1846 } 1847 1848 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1849 1850 /* 1851 * Figure out how many notes we're going to need for each thread. 1852 */ 1853 info->thread_notes = 0; 1854 for (i = 0; i < view->n; ++i) 1855 if (view->regsets[i].core_note_type != 0) 1856 ++info->thread_notes; 1857 1858 /* 1859 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1860 * since it is our one special case. 1861 */ 1862 if (unlikely(info->thread_notes == 0) || 1863 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1864 WARN_ON(1); 1865 return 0; 1866 } 1867 1868 /* 1869 * Initialize the ELF file header. 1870 */ 1871 fill_elf_header(elf, phdrs, 1872 view->e_machine, view->e_flags); 1873 1874 /* 1875 * Allocate a structure for each thread. 1876 */ 1877 for (ct = &dump_task->signal->core_state->dumper; ct; ct = ct->next) { 1878 t = kzalloc(offsetof(struct elf_thread_core_info, 1879 notes[info->thread_notes]), 1880 GFP_KERNEL); 1881 if (unlikely(!t)) 1882 return 0; 1883 1884 t->task = ct->task; 1885 if (ct->task == dump_task || !info->thread) { 1886 t->next = info->thread; 1887 info->thread = t; 1888 } else { 1889 /* 1890 * Make sure to keep the original task at 1891 * the head of the list. 1892 */ 1893 t->next = info->thread->next; 1894 info->thread->next = t; 1895 } 1896 } 1897 1898 /* 1899 * Now fill in each thread's information. 1900 */ 1901 for (t = info->thread; t != NULL; t = t->next) 1902 if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info)) 1903 return 0; 1904 1905 /* 1906 * Fill in the two process-wide notes. 1907 */ 1908 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1909 info->size += notesize(&info->psinfo); 1910 1911 fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo); 1912 info->size += notesize(&info->signote); 1913 1914 fill_auxv_note(&info->auxv, current->mm); 1915 info->size += notesize(&info->auxv); 1916 1917 if (fill_files_note(&info->files, cprm) == 0) 1918 info->size += notesize(&info->files); 1919 1920 return 1; 1921 } 1922 1923 static size_t get_note_info_size(struct elf_note_info *info) 1924 { 1925 return info->size; 1926 } 1927 1928 /* 1929 * Write all the notes for each thread. When writing the first thread, the 1930 * process-wide notes are interleaved after the first thread-specific note. 1931 */ 1932 static int write_note_info(struct elf_note_info *info, 1933 struct coredump_params *cprm) 1934 { 1935 bool first = true; 1936 struct elf_thread_core_info *t = info->thread; 1937 1938 do { 1939 int i; 1940 1941 if (!writenote(&t->notes[0], cprm)) 1942 return 0; 1943 1944 if (first && !writenote(&info->psinfo, cprm)) 1945 return 0; 1946 if (first && !writenote(&info->signote, cprm)) 1947 return 0; 1948 if (first && !writenote(&info->auxv, cprm)) 1949 return 0; 1950 if (first && info->files.data && 1951 !writenote(&info->files, cprm)) 1952 return 0; 1953 1954 for (i = 1; i < info->thread_notes; ++i) 1955 if (t->notes[i].data && 1956 !writenote(&t->notes[i], cprm)) 1957 return 0; 1958 1959 first = false; 1960 t = t->next; 1961 } while (t); 1962 1963 return 1; 1964 } 1965 1966 static void free_note_info(struct elf_note_info *info) 1967 { 1968 struct elf_thread_core_info *threads = info->thread; 1969 while (threads) { 1970 unsigned int i; 1971 struct elf_thread_core_info *t = threads; 1972 threads = t->next; 1973 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1974 for (i = 1; i < info->thread_notes; ++i) 1975 kfree(t->notes[i].data); 1976 kfree(t); 1977 } 1978 kfree(info->psinfo.data); 1979 kvfree(info->files.data); 1980 } 1981 1982 #else 1983 1984 /* Here is the structure in which status of each thread is captured. */ 1985 struct elf_thread_status 1986 { 1987 struct list_head list; 1988 struct elf_prstatus prstatus; /* NT_PRSTATUS */ 1989 elf_fpregset_t fpu; /* NT_PRFPREG */ 1990 struct task_struct *thread; 1991 struct memelfnote notes[3]; 1992 int num_notes; 1993 }; 1994 1995 /* 1996 * In order to add the specific thread information for the elf file format, 1997 * we need to keep a linked list of every threads pr_status and then create 1998 * a single section for them in the final core file. 1999 */ 2000 static int elf_dump_thread_status(long signr, struct elf_thread_status *t) 2001 { 2002 int sz = 0; 2003 struct task_struct *p = t->thread; 2004 t->num_notes = 0; 2005 2006 fill_prstatus(&t->prstatus.common, p, signr); 2007 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 2008 2009 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 2010 &(t->prstatus)); 2011 t->num_notes++; 2012 sz += notesize(&t->notes[0]); 2013 2014 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, 2015 &t->fpu))) { 2016 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), 2017 &(t->fpu)); 2018 t->num_notes++; 2019 sz += notesize(&t->notes[1]); 2020 } 2021 return sz; 2022 } 2023 2024 struct elf_note_info { 2025 struct memelfnote *notes; 2026 struct memelfnote *notes_files; 2027 struct elf_prstatus *prstatus; /* NT_PRSTATUS */ 2028 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2029 struct list_head thread_list; 2030 elf_fpregset_t *fpu; 2031 user_siginfo_t csigdata; 2032 int thread_status_size; 2033 int numnote; 2034 }; 2035 2036 static int elf_note_info_init(struct elf_note_info *info) 2037 { 2038 memset(info, 0, sizeof(*info)); 2039 INIT_LIST_HEAD(&info->thread_list); 2040 2041 /* Allocate space for ELF notes */ 2042 info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL); 2043 if (!info->notes) 2044 return 0; 2045 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); 2046 if (!info->psinfo) 2047 return 0; 2048 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); 2049 if (!info->prstatus) 2050 return 0; 2051 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); 2052 if (!info->fpu) 2053 return 0; 2054 return 1; 2055 } 2056 2057 static int fill_note_info(struct elfhdr *elf, int phdrs, 2058 struct elf_note_info *info, 2059 struct coredump_params *cprm) 2060 { 2061 struct core_thread *ct; 2062 struct elf_thread_status *ets; 2063 2064 if (!elf_note_info_init(info)) 2065 return 0; 2066 2067 for (ct = current->signal->core_state->dumper.next; 2068 ct; ct = ct->next) { 2069 ets = kzalloc(sizeof(*ets), GFP_KERNEL); 2070 if (!ets) 2071 return 0; 2072 2073 ets->thread = ct->task; 2074 list_add(&ets->list, &info->thread_list); 2075 } 2076 2077 list_for_each_entry(ets, &info->thread_list, list) { 2078 int sz; 2079 2080 sz = elf_dump_thread_status(cprm->siginfo->si_signo, ets); 2081 info->thread_status_size += sz; 2082 } 2083 /* now collect the dump for the current */ 2084 memset(info->prstatus, 0, sizeof(*info->prstatus)); 2085 fill_prstatus(&info->prstatus->common, current, cprm->siginfo->si_signo); 2086 elf_core_copy_regs(&info->prstatus->pr_reg, cprm->regs); 2087 2088 /* Set up header */ 2089 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS); 2090 2091 /* 2092 * Set up the notes in similar form to SVR4 core dumps made 2093 * with info from their /proc. 2094 */ 2095 2096 fill_note(info->notes + 0, "CORE", NT_PRSTATUS, 2097 sizeof(*info->prstatus), info->prstatus); 2098 fill_psinfo(info->psinfo, current->group_leader, current->mm); 2099 fill_note(info->notes + 1, "CORE", NT_PRPSINFO, 2100 sizeof(*info->psinfo), info->psinfo); 2101 2102 fill_siginfo_note(info->notes + 2, &info->csigdata, cprm->siginfo); 2103 fill_auxv_note(info->notes + 3, current->mm); 2104 info->numnote = 4; 2105 2106 if (fill_files_note(info->notes + info->numnote, cprm) == 0) { 2107 info->notes_files = info->notes + info->numnote; 2108 info->numnote++; 2109 } 2110 2111 /* Try to dump the FPU. */ 2112 info->prstatus->pr_fpvalid = 2113 elf_core_copy_task_fpregs(current, cprm->regs, info->fpu); 2114 if (info->prstatus->pr_fpvalid) 2115 fill_note(info->notes + info->numnote++, 2116 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); 2117 return 1; 2118 } 2119 2120 static size_t get_note_info_size(struct elf_note_info *info) 2121 { 2122 int sz = 0; 2123 int i; 2124 2125 for (i = 0; i < info->numnote; i++) 2126 sz += notesize(info->notes + i); 2127 2128 sz += info->thread_status_size; 2129 2130 return sz; 2131 } 2132 2133 static int write_note_info(struct elf_note_info *info, 2134 struct coredump_params *cprm) 2135 { 2136 struct elf_thread_status *ets; 2137 int i; 2138 2139 for (i = 0; i < info->numnote; i++) 2140 if (!writenote(info->notes + i, cprm)) 2141 return 0; 2142 2143 /* write out the thread status notes section */ 2144 list_for_each_entry(ets, &info->thread_list, list) { 2145 for (i = 0; i < ets->num_notes; i++) 2146 if (!writenote(&ets->notes[i], cprm)) 2147 return 0; 2148 } 2149 2150 return 1; 2151 } 2152 2153 static void free_note_info(struct elf_note_info *info) 2154 { 2155 while (!list_empty(&info->thread_list)) { 2156 struct list_head *tmp = info->thread_list.next; 2157 list_del(tmp); 2158 kfree(list_entry(tmp, struct elf_thread_status, list)); 2159 } 2160 2161 /* Free data possibly allocated by fill_files_note(): */ 2162 if (info->notes_files) 2163 kvfree(info->notes_files->data); 2164 2165 kfree(info->prstatus); 2166 kfree(info->psinfo); 2167 kfree(info->notes); 2168 kfree(info->fpu); 2169 } 2170 2171 #endif 2172 2173 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, 2174 elf_addr_t e_shoff, int segs) 2175 { 2176 elf->e_shoff = e_shoff; 2177 elf->e_shentsize = sizeof(*shdr4extnum); 2178 elf->e_shnum = 1; 2179 elf->e_shstrndx = SHN_UNDEF; 2180 2181 memset(shdr4extnum, 0, sizeof(*shdr4extnum)); 2182 2183 shdr4extnum->sh_type = SHT_NULL; 2184 shdr4extnum->sh_size = elf->e_shnum; 2185 shdr4extnum->sh_link = elf->e_shstrndx; 2186 shdr4extnum->sh_info = segs; 2187 } 2188 2189 /* 2190 * Actual dumper 2191 * 2192 * This is a two-pass process; first we find the offsets of the bits, 2193 * and then they are actually written out. If we run out of core limit 2194 * we just truncate. 2195 */ 2196 static int elf_core_dump(struct coredump_params *cprm) 2197 { 2198 int has_dumped = 0; 2199 int segs, i; 2200 struct elfhdr elf; 2201 loff_t offset = 0, dataoff; 2202 struct elf_note_info info = { }; 2203 struct elf_phdr *phdr4note = NULL; 2204 struct elf_shdr *shdr4extnum = NULL; 2205 Elf_Half e_phnum; 2206 elf_addr_t e_shoff; 2207 2208 /* 2209 * The number of segs are recored into ELF header as 16bit value. 2210 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. 2211 */ 2212 segs = cprm->vma_count + elf_core_extra_phdrs(); 2213 2214 /* for notes section */ 2215 segs++; 2216 2217 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid 2218 * this, kernel supports extended numbering. Have a look at 2219 * include/linux/elf.h for further information. */ 2220 e_phnum = segs > PN_XNUM ? PN_XNUM : segs; 2221 2222 /* 2223 * Collect all the non-memory information about the process for the 2224 * notes. This also sets up the file header. 2225 */ 2226 if (!fill_note_info(&elf, e_phnum, &info, cprm)) 2227 goto end_coredump; 2228 2229 has_dumped = 1; 2230 2231 offset += sizeof(elf); /* Elf header */ 2232 offset += segs * sizeof(struct elf_phdr); /* Program headers */ 2233 2234 /* Write notes phdr entry */ 2235 { 2236 size_t sz = get_note_info_size(&info); 2237 2238 /* For cell spufs */ 2239 sz += elf_coredump_extra_notes_size(); 2240 2241 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); 2242 if (!phdr4note) 2243 goto end_coredump; 2244 2245 fill_elf_note_phdr(phdr4note, sz, offset); 2246 offset += sz; 2247 } 2248 2249 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 2250 2251 offset += cprm->vma_data_size; 2252 offset += elf_core_extra_data_size(); 2253 e_shoff = offset; 2254 2255 if (e_phnum == PN_XNUM) { 2256 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); 2257 if (!shdr4extnum) 2258 goto end_coredump; 2259 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs); 2260 } 2261 2262 offset = dataoff; 2263 2264 if (!dump_emit(cprm, &elf, sizeof(elf))) 2265 goto end_coredump; 2266 2267 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note))) 2268 goto end_coredump; 2269 2270 /* Write program headers for segments dump */ 2271 for (i = 0; i < cprm->vma_count; i++) { 2272 struct core_vma_metadata *meta = cprm->vma_meta + i; 2273 struct elf_phdr phdr; 2274 2275 phdr.p_type = PT_LOAD; 2276 phdr.p_offset = offset; 2277 phdr.p_vaddr = meta->start; 2278 phdr.p_paddr = 0; 2279 phdr.p_filesz = meta->dump_size; 2280 phdr.p_memsz = meta->end - meta->start; 2281 offset += phdr.p_filesz; 2282 phdr.p_flags = 0; 2283 if (meta->flags & VM_READ) 2284 phdr.p_flags |= PF_R; 2285 if (meta->flags & VM_WRITE) 2286 phdr.p_flags |= PF_W; 2287 if (meta->flags & VM_EXEC) 2288 phdr.p_flags |= PF_X; 2289 phdr.p_align = ELF_EXEC_PAGESIZE; 2290 2291 if (!dump_emit(cprm, &phdr, sizeof(phdr))) 2292 goto end_coredump; 2293 } 2294 2295 if (!elf_core_write_extra_phdrs(cprm, offset)) 2296 goto end_coredump; 2297 2298 /* write out the notes section */ 2299 if (!write_note_info(&info, cprm)) 2300 goto end_coredump; 2301 2302 /* For cell spufs */ 2303 if (elf_coredump_extra_notes_write(cprm)) 2304 goto end_coredump; 2305 2306 /* Align to page */ 2307 dump_skip_to(cprm, dataoff); 2308 2309 for (i = 0; i < cprm->vma_count; i++) { 2310 struct core_vma_metadata *meta = cprm->vma_meta + i; 2311 2312 if (!dump_user_range(cprm, meta->start, meta->dump_size)) 2313 goto end_coredump; 2314 } 2315 2316 if (!elf_core_write_extra_data(cprm)) 2317 goto end_coredump; 2318 2319 if (e_phnum == PN_XNUM) { 2320 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum))) 2321 goto end_coredump; 2322 } 2323 2324 end_coredump: 2325 free_note_info(&info); 2326 kfree(shdr4extnum); 2327 kfree(phdr4note); 2328 return has_dumped; 2329 } 2330 2331 #endif /* CONFIG_ELF_CORE */ 2332 2333 static int __init init_elf_binfmt(void) 2334 { 2335 register_binfmt(&elf_format); 2336 return 0; 2337 } 2338 2339 static void __exit exit_elf_binfmt(void) 2340 { 2341 /* Remove the COFF and ELF loaders. */ 2342 unregister_binfmt(&elf_format); 2343 } 2344 2345 core_initcall(init_elf_binfmt); 2346 module_exit(exit_elf_binfmt); 2347 MODULE_LICENSE("GPL"); 2348 2349 #ifdef CONFIG_BINFMT_ELF_KUNIT_TEST 2350 #include "binfmt_elf_test.c" 2351 #endif 2352