1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/binfmt_elf.c 4 * 5 * These are the functions used to load ELF format executables as used 6 * on SVr4 machines. Information on the format may be found in the book 7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 8 * Tools". 9 * 10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 11 */ 12 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/fs.h> 16 #include <linux/log2.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/errno.h> 20 #include <linux/signal.h> 21 #include <linux/binfmts.h> 22 #include <linux/string.h> 23 #include <linux/file.h> 24 #include <linux/slab.h> 25 #include <linux/personality.h> 26 #include <linux/elfcore.h> 27 #include <linux/init.h> 28 #include <linux/highuid.h> 29 #include <linux/compiler.h> 30 #include <linux/highmem.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vmalloc.h> 34 #include <linux/security.h> 35 #include <linux/random.h> 36 #include <linux/elf.h> 37 #include <linux/elf-randomize.h> 38 #include <linux/utsname.h> 39 #include <linux/coredump.h> 40 #include <linux/sched.h> 41 #include <linux/sched/coredump.h> 42 #include <linux/sched/task_stack.h> 43 #include <linux/sched/cputime.h> 44 #include <linux/sizes.h> 45 #include <linux/types.h> 46 #include <linux/cred.h> 47 #include <linux/dax.h> 48 #include <linux/uaccess.h> 49 #include <asm/param.h> 50 #include <asm/page.h> 51 52 #ifndef ELF_COMPAT 53 #define ELF_COMPAT 0 54 #endif 55 56 #ifndef user_long_t 57 #define user_long_t long 58 #endif 59 #ifndef user_siginfo_t 60 #define user_siginfo_t siginfo_t 61 #endif 62 63 /* That's for binfmt_elf_fdpic to deal with */ 64 #ifndef elf_check_fdpic 65 #define elf_check_fdpic(ex) false 66 #endif 67 68 static int load_elf_binary(struct linux_binprm *bprm); 69 70 #ifdef CONFIG_USELIB 71 static int load_elf_library(struct file *); 72 #else 73 #define load_elf_library NULL 74 #endif 75 76 /* 77 * If we don't support core dumping, then supply a NULL so we 78 * don't even try. 79 */ 80 #ifdef CONFIG_ELF_CORE 81 static int elf_core_dump(struct coredump_params *cprm); 82 #else 83 #define elf_core_dump NULL 84 #endif 85 86 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 87 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 88 #else 89 #define ELF_MIN_ALIGN PAGE_SIZE 90 #endif 91 92 #ifndef ELF_CORE_EFLAGS 93 #define ELF_CORE_EFLAGS 0 94 #endif 95 96 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) 97 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 98 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 99 100 static struct linux_binfmt elf_format = { 101 .module = THIS_MODULE, 102 .load_binary = load_elf_binary, 103 .load_shlib = load_elf_library, 104 .core_dump = elf_core_dump, 105 .min_coredump = ELF_EXEC_PAGESIZE, 106 }; 107 108 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE)) 109 110 static int set_brk(unsigned long start, unsigned long end, int prot) 111 { 112 start = ELF_PAGEALIGN(start); 113 end = ELF_PAGEALIGN(end); 114 if (end > start) { 115 /* 116 * Map the last of the bss segment. 117 * If the header is requesting these pages to be 118 * executable, honour that (ppc32 needs this). 119 */ 120 int error = vm_brk_flags(start, end - start, 121 prot & PROT_EXEC ? VM_EXEC : 0); 122 if (error) 123 return error; 124 } 125 current->mm->start_brk = current->mm->brk = end; 126 return 0; 127 } 128 129 /* We need to explicitly zero any fractional pages 130 after the data section (i.e. bss). This would 131 contain the junk from the file that should not 132 be in memory 133 */ 134 static int padzero(unsigned long elf_bss) 135 { 136 unsigned long nbyte; 137 138 nbyte = ELF_PAGEOFFSET(elf_bss); 139 if (nbyte) { 140 nbyte = ELF_MIN_ALIGN - nbyte; 141 if (clear_user((void __user *) elf_bss, nbyte)) 142 return -EFAULT; 143 } 144 return 0; 145 } 146 147 /* Let's use some macros to make this stack manipulation a little clearer */ 148 #ifdef CONFIG_STACK_GROWSUP 149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 150 #define STACK_ROUND(sp, items) \ 151 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 152 #define STACK_ALLOC(sp, len) ({ \ 153 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 154 old_sp; }) 155 #else 156 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 157 #define STACK_ROUND(sp, items) \ 158 (((unsigned long) (sp - items)) &~ 15UL) 159 #define STACK_ALLOC(sp, len) (sp -= len) 160 #endif 161 162 #ifndef ELF_BASE_PLATFORM 163 /* 164 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. 165 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value 166 * will be copied to the user stack in the same manner as AT_PLATFORM. 167 */ 168 #define ELF_BASE_PLATFORM NULL 169 #endif 170 171 static int 172 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec, 173 unsigned long load_addr, unsigned long interp_load_addr, 174 unsigned long e_entry) 175 { 176 struct mm_struct *mm = current->mm; 177 unsigned long p = bprm->p; 178 int argc = bprm->argc; 179 int envc = bprm->envc; 180 elf_addr_t __user *sp; 181 elf_addr_t __user *u_platform; 182 elf_addr_t __user *u_base_platform; 183 elf_addr_t __user *u_rand_bytes; 184 const char *k_platform = ELF_PLATFORM; 185 const char *k_base_platform = ELF_BASE_PLATFORM; 186 unsigned char k_rand_bytes[16]; 187 int items; 188 elf_addr_t *elf_info; 189 elf_addr_t flags = 0; 190 int ei_index; 191 const struct cred *cred = current_cred(); 192 struct vm_area_struct *vma; 193 194 /* 195 * In some cases (e.g. Hyper-Threading), we want to avoid L1 196 * evictions by the processes running on the same package. One 197 * thing we can do is to shuffle the initial stack for them. 198 */ 199 200 p = arch_align_stack(p); 201 202 /* 203 * If this architecture has a platform capability string, copy it 204 * to userspace. In some cases (Sparc), this info is impossible 205 * for userspace to get any other way, in others (i386) it is 206 * merely difficult. 207 */ 208 u_platform = NULL; 209 if (k_platform) { 210 size_t len = strlen(k_platform) + 1; 211 212 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 213 if (copy_to_user(u_platform, k_platform, len)) 214 return -EFAULT; 215 } 216 217 /* 218 * If this architecture has a "base" platform capability 219 * string, copy it to userspace. 220 */ 221 u_base_platform = NULL; 222 if (k_base_platform) { 223 size_t len = strlen(k_base_platform) + 1; 224 225 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 226 if (copy_to_user(u_base_platform, k_base_platform, len)) 227 return -EFAULT; 228 } 229 230 /* 231 * Generate 16 random bytes for userspace PRNG seeding. 232 */ 233 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); 234 u_rand_bytes = (elf_addr_t __user *) 235 STACK_ALLOC(p, sizeof(k_rand_bytes)); 236 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) 237 return -EFAULT; 238 239 /* Create the ELF interpreter info */ 240 elf_info = (elf_addr_t *)mm->saved_auxv; 241 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 242 #define NEW_AUX_ENT(id, val) \ 243 do { \ 244 *elf_info++ = id; \ 245 *elf_info++ = val; \ 246 } while (0) 247 248 #ifdef ARCH_DLINFO 249 /* 250 * ARCH_DLINFO must come first so PPC can do its special alignment of 251 * AUXV. 252 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 253 * ARCH_DLINFO changes 254 */ 255 ARCH_DLINFO; 256 #endif 257 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 258 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 259 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 260 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); 261 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 262 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 263 NEW_AUX_ENT(AT_BASE, interp_load_addr); 264 if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0) 265 flags |= AT_FLAGS_PRESERVE_ARGV0; 266 NEW_AUX_ENT(AT_FLAGS, flags); 267 NEW_AUX_ENT(AT_ENTRY, e_entry); 268 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid)); 269 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid)); 270 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid)); 271 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid)); 272 NEW_AUX_ENT(AT_SECURE, bprm->secureexec); 273 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); 274 #ifdef ELF_HWCAP2 275 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2); 276 #endif 277 NEW_AUX_ENT(AT_EXECFN, bprm->exec); 278 if (k_platform) { 279 NEW_AUX_ENT(AT_PLATFORM, 280 (elf_addr_t)(unsigned long)u_platform); 281 } 282 if (k_base_platform) { 283 NEW_AUX_ENT(AT_BASE_PLATFORM, 284 (elf_addr_t)(unsigned long)u_base_platform); 285 } 286 if (bprm->have_execfd) { 287 NEW_AUX_ENT(AT_EXECFD, bprm->execfd); 288 } 289 #undef NEW_AUX_ENT 290 /* AT_NULL is zero; clear the rest too */ 291 memset(elf_info, 0, (char *)mm->saved_auxv + 292 sizeof(mm->saved_auxv) - (char *)elf_info); 293 294 /* And advance past the AT_NULL entry. */ 295 elf_info += 2; 296 297 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv; 298 sp = STACK_ADD(p, ei_index); 299 300 items = (argc + 1) + (envc + 1) + 1; 301 bprm->p = STACK_ROUND(sp, items); 302 303 /* Point sp at the lowest address on the stack */ 304 #ifdef CONFIG_STACK_GROWSUP 305 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 306 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 307 #else 308 sp = (elf_addr_t __user *)bprm->p; 309 #endif 310 311 312 /* 313 * Grow the stack manually; some architectures have a limit on how 314 * far ahead a user-space access may be in order to grow the stack. 315 */ 316 if (mmap_read_lock_killable(mm)) 317 return -EINTR; 318 vma = find_extend_vma(mm, bprm->p); 319 mmap_read_unlock(mm); 320 if (!vma) 321 return -EFAULT; 322 323 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 324 if (put_user(argc, sp++)) 325 return -EFAULT; 326 327 /* Populate list of argv pointers back to argv strings. */ 328 p = mm->arg_end = mm->arg_start; 329 while (argc-- > 0) { 330 size_t len; 331 if (put_user((elf_addr_t)p, sp++)) 332 return -EFAULT; 333 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 334 if (!len || len > MAX_ARG_STRLEN) 335 return -EINVAL; 336 p += len; 337 } 338 if (put_user(0, sp++)) 339 return -EFAULT; 340 mm->arg_end = p; 341 342 /* Populate list of envp pointers back to envp strings. */ 343 mm->env_end = mm->env_start = p; 344 while (envc-- > 0) { 345 size_t len; 346 if (put_user((elf_addr_t)p, sp++)) 347 return -EFAULT; 348 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 349 if (!len || len > MAX_ARG_STRLEN) 350 return -EINVAL; 351 p += len; 352 } 353 if (put_user(0, sp++)) 354 return -EFAULT; 355 mm->env_end = p; 356 357 /* Put the elf_info on the stack in the right place. */ 358 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t))) 359 return -EFAULT; 360 return 0; 361 } 362 363 static unsigned long elf_map(struct file *filep, unsigned long addr, 364 const struct elf_phdr *eppnt, int prot, int type, 365 unsigned long total_size) 366 { 367 unsigned long map_addr; 368 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 369 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 370 addr = ELF_PAGESTART(addr); 371 size = ELF_PAGEALIGN(size); 372 373 /* mmap() will return -EINVAL if given a zero size, but a 374 * segment with zero filesize is perfectly valid */ 375 if (!size) 376 return addr; 377 378 /* 379 * total_size is the size of the ELF (interpreter) image. 380 * The _first_ mmap needs to know the full size, otherwise 381 * randomization might put this image into an overlapping 382 * position with the ELF binary image. (since size < total_size) 383 * So we first map the 'big' image - and unmap the remainder at 384 * the end. (which unmap is needed for ELF images with holes.) 385 */ 386 if (total_size) { 387 total_size = ELF_PAGEALIGN(total_size); 388 map_addr = vm_mmap(filep, addr, total_size, prot, type, off); 389 if (!BAD_ADDR(map_addr)) 390 vm_munmap(map_addr+size, total_size-size); 391 } else 392 map_addr = vm_mmap(filep, addr, size, prot, type, off); 393 394 if ((type & MAP_FIXED_NOREPLACE) && 395 PTR_ERR((void *)map_addr) == -EEXIST) 396 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n", 397 task_pid_nr(current), current->comm, (void *)addr); 398 399 return(map_addr); 400 } 401 402 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr) 403 { 404 int i, first_idx = -1, last_idx = -1; 405 406 for (i = 0; i < nr; i++) { 407 if (cmds[i].p_type == PT_LOAD) { 408 last_idx = i; 409 if (first_idx == -1) 410 first_idx = i; 411 } 412 } 413 if (first_idx == -1) 414 return 0; 415 416 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - 417 ELF_PAGESTART(cmds[first_idx].p_vaddr); 418 } 419 420 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos) 421 { 422 ssize_t rv; 423 424 rv = kernel_read(file, buf, len, &pos); 425 if (unlikely(rv != len)) { 426 return (rv < 0) ? rv : -EIO; 427 } 428 return 0; 429 } 430 431 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr) 432 { 433 unsigned long alignment = 0; 434 int i; 435 436 for (i = 0; i < nr; i++) { 437 if (cmds[i].p_type == PT_LOAD) { 438 unsigned long p_align = cmds[i].p_align; 439 440 /* skip non-power of two alignments as invalid */ 441 if (!is_power_of_2(p_align)) 442 continue; 443 alignment = max(alignment, p_align); 444 } 445 } 446 447 /* ensure we align to at least one page */ 448 return ELF_PAGEALIGN(alignment); 449 } 450 451 /** 452 * load_elf_phdrs() - load ELF program headers 453 * @elf_ex: ELF header of the binary whose program headers should be loaded 454 * @elf_file: the opened ELF binary file 455 * 456 * Loads ELF program headers from the binary file elf_file, which has the ELF 457 * header pointed to by elf_ex, into a newly allocated array. The caller is 458 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure. 459 */ 460 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex, 461 struct file *elf_file) 462 { 463 struct elf_phdr *elf_phdata = NULL; 464 int retval, err = -1; 465 unsigned int size; 466 467 /* 468 * If the size of this structure has changed, then punt, since 469 * we will be doing the wrong thing. 470 */ 471 if (elf_ex->e_phentsize != sizeof(struct elf_phdr)) 472 goto out; 473 474 /* Sanity check the number of program headers... */ 475 /* ...and their total size. */ 476 size = sizeof(struct elf_phdr) * elf_ex->e_phnum; 477 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN) 478 goto out; 479 480 elf_phdata = kmalloc(size, GFP_KERNEL); 481 if (!elf_phdata) 482 goto out; 483 484 /* Read in the program headers */ 485 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff); 486 if (retval < 0) { 487 err = retval; 488 goto out; 489 } 490 491 /* Success! */ 492 err = 0; 493 out: 494 if (err) { 495 kfree(elf_phdata); 496 elf_phdata = NULL; 497 } 498 return elf_phdata; 499 } 500 501 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE 502 503 /** 504 * struct arch_elf_state - arch-specific ELF loading state 505 * 506 * This structure is used to preserve architecture specific data during 507 * the loading of an ELF file, throughout the checking of architecture 508 * specific ELF headers & through to the point where the ELF load is 509 * known to be proceeding (ie. SET_PERSONALITY). 510 * 511 * This implementation is a dummy for architectures which require no 512 * specific state. 513 */ 514 struct arch_elf_state { 515 }; 516 517 #define INIT_ARCH_ELF_STATE {} 518 519 /** 520 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header 521 * @ehdr: The main ELF header 522 * @phdr: The program header to check 523 * @elf: The open ELF file 524 * @is_interp: True if the phdr is from the interpreter of the ELF being 525 * loaded, else false. 526 * @state: Architecture-specific state preserved throughout the process 527 * of loading the ELF. 528 * 529 * Inspects the program header phdr to validate its correctness and/or 530 * suitability for the system. Called once per ELF program header in the 531 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its 532 * interpreter. 533 * 534 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 535 * with that return code. 536 */ 537 static inline int arch_elf_pt_proc(struct elfhdr *ehdr, 538 struct elf_phdr *phdr, 539 struct file *elf, bool is_interp, 540 struct arch_elf_state *state) 541 { 542 /* Dummy implementation, always proceed */ 543 return 0; 544 } 545 546 /** 547 * arch_check_elf() - check an ELF executable 548 * @ehdr: The main ELF header 549 * @has_interp: True if the ELF has an interpreter, else false. 550 * @interp_ehdr: The interpreter's ELF header 551 * @state: Architecture-specific state preserved throughout the process 552 * of loading the ELF. 553 * 554 * Provides a final opportunity for architecture code to reject the loading 555 * of the ELF & cause an exec syscall to return an error. This is called after 556 * all program headers to be checked by arch_elf_pt_proc have been. 557 * 558 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 559 * with that return code. 560 */ 561 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp, 562 struct elfhdr *interp_ehdr, 563 struct arch_elf_state *state) 564 { 565 /* Dummy implementation, always proceed */ 566 return 0; 567 } 568 569 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */ 570 571 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state, 572 bool has_interp, bool is_interp) 573 { 574 int prot = 0; 575 576 if (p_flags & PF_R) 577 prot |= PROT_READ; 578 if (p_flags & PF_W) 579 prot |= PROT_WRITE; 580 if (p_flags & PF_X) 581 prot |= PROT_EXEC; 582 583 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp); 584 } 585 586 /* This is much more generalized than the library routine read function, 587 so we keep this separate. Technically the library read function 588 is only provided so that we can read a.out libraries that have 589 an ELF header */ 590 591 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 592 struct file *interpreter, 593 unsigned long no_base, struct elf_phdr *interp_elf_phdata, 594 struct arch_elf_state *arch_state) 595 { 596 struct elf_phdr *eppnt; 597 unsigned long load_addr = 0; 598 int load_addr_set = 0; 599 unsigned long last_bss = 0, elf_bss = 0; 600 int bss_prot = 0; 601 unsigned long error = ~0UL; 602 unsigned long total_size; 603 int i; 604 605 /* First of all, some simple consistency checks */ 606 if (interp_elf_ex->e_type != ET_EXEC && 607 interp_elf_ex->e_type != ET_DYN) 608 goto out; 609 if (!elf_check_arch(interp_elf_ex) || 610 elf_check_fdpic(interp_elf_ex)) 611 goto out; 612 if (!interpreter->f_op->mmap) 613 goto out; 614 615 total_size = total_mapping_size(interp_elf_phdata, 616 interp_elf_ex->e_phnum); 617 if (!total_size) { 618 error = -EINVAL; 619 goto out; 620 } 621 622 eppnt = interp_elf_phdata; 623 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 624 if (eppnt->p_type == PT_LOAD) { 625 int elf_type = MAP_PRIVATE; 626 int elf_prot = make_prot(eppnt->p_flags, arch_state, 627 true, true); 628 unsigned long vaddr = 0; 629 unsigned long k, map_addr; 630 631 vaddr = eppnt->p_vaddr; 632 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 633 elf_type |= MAP_FIXED; 634 else if (no_base && interp_elf_ex->e_type == ET_DYN) 635 load_addr = -vaddr; 636 637 map_addr = elf_map(interpreter, load_addr + vaddr, 638 eppnt, elf_prot, elf_type, total_size); 639 total_size = 0; 640 error = map_addr; 641 if (BAD_ADDR(map_addr)) 642 goto out; 643 644 if (!load_addr_set && 645 interp_elf_ex->e_type == ET_DYN) { 646 load_addr = map_addr - ELF_PAGESTART(vaddr); 647 load_addr_set = 1; 648 } 649 650 /* 651 * Check to see if the section's size will overflow the 652 * allowed task size. Note that p_filesz must always be 653 * <= p_memsize so it's only necessary to check p_memsz. 654 */ 655 k = load_addr + eppnt->p_vaddr; 656 if (BAD_ADDR(k) || 657 eppnt->p_filesz > eppnt->p_memsz || 658 eppnt->p_memsz > TASK_SIZE || 659 TASK_SIZE - eppnt->p_memsz < k) { 660 error = -ENOMEM; 661 goto out; 662 } 663 664 /* 665 * Find the end of the file mapping for this phdr, and 666 * keep track of the largest address we see for this. 667 */ 668 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; 669 if (k > elf_bss) 670 elf_bss = k; 671 672 /* 673 * Do the same thing for the memory mapping - between 674 * elf_bss and last_bss is the bss section. 675 */ 676 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz; 677 if (k > last_bss) { 678 last_bss = k; 679 bss_prot = elf_prot; 680 } 681 } 682 } 683 684 /* 685 * Now fill out the bss section: first pad the last page from 686 * the file up to the page boundary, and zero it from elf_bss 687 * up to the end of the page. 688 */ 689 if (padzero(elf_bss)) { 690 error = -EFAULT; 691 goto out; 692 } 693 /* 694 * Next, align both the file and mem bss up to the page size, 695 * since this is where elf_bss was just zeroed up to, and where 696 * last_bss will end after the vm_brk_flags() below. 697 */ 698 elf_bss = ELF_PAGEALIGN(elf_bss); 699 last_bss = ELF_PAGEALIGN(last_bss); 700 /* Finally, if there is still more bss to allocate, do it. */ 701 if (last_bss > elf_bss) { 702 error = vm_brk_flags(elf_bss, last_bss - elf_bss, 703 bss_prot & PROT_EXEC ? VM_EXEC : 0); 704 if (error) 705 goto out; 706 } 707 708 error = load_addr; 709 out: 710 return error; 711 } 712 713 /* 714 * These are the functions used to load ELF style executables and shared 715 * libraries. There is no binary dependent code anywhere else. 716 */ 717 718 static int parse_elf_property(const char *data, size_t *off, size_t datasz, 719 struct arch_elf_state *arch, 720 bool have_prev_type, u32 *prev_type) 721 { 722 size_t o, step; 723 const struct gnu_property *pr; 724 int ret; 725 726 if (*off == datasz) 727 return -ENOENT; 728 729 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN)) 730 return -EIO; 731 o = *off; 732 datasz -= *off; 733 734 if (datasz < sizeof(*pr)) 735 return -ENOEXEC; 736 pr = (const struct gnu_property *)(data + o); 737 o += sizeof(*pr); 738 datasz -= sizeof(*pr); 739 740 if (pr->pr_datasz > datasz) 741 return -ENOEXEC; 742 743 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN); 744 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN); 745 if (step > datasz) 746 return -ENOEXEC; 747 748 /* Properties are supposed to be unique and sorted on pr_type: */ 749 if (have_prev_type && pr->pr_type <= *prev_type) 750 return -ENOEXEC; 751 *prev_type = pr->pr_type; 752 753 ret = arch_parse_elf_property(pr->pr_type, data + o, 754 pr->pr_datasz, ELF_COMPAT, arch); 755 if (ret) 756 return ret; 757 758 *off = o + step; 759 return 0; 760 } 761 762 #define NOTE_DATA_SZ SZ_1K 763 #define GNU_PROPERTY_TYPE_0_NAME "GNU" 764 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME)) 765 766 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr, 767 struct arch_elf_state *arch) 768 { 769 union { 770 struct elf_note nhdr; 771 char data[NOTE_DATA_SZ]; 772 } note; 773 loff_t pos; 774 ssize_t n; 775 size_t off, datasz; 776 int ret; 777 bool have_prev_type; 778 u32 prev_type; 779 780 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr) 781 return 0; 782 783 /* load_elf_binary() shouldn't call us unless this is true... */ 784 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY)) 785 return -ENOEXEC; 786 787 /* If the properties are crazy large, that's too bad (for now): */ 788 if (phdr->p_filesz > sizeof(note)) 789 return -ENOEXEC; 790 791 pos = phdr->p_offset; 792 n = kernel_read(f, ¬e, phdr->p_filesz, &pos); 793 794 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ); 795 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ) 796 return -EIO; 797 798 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 799 note.nhdr.n_namesz != NOTE_NAME_SZ || 800 strncmp(note.data + sizeof(note.nhdr), 801 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr))) 802 return -ENOEXEC; 803 804 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ, 805 ELF_GNU_PROPERTY_ALIGN); 806 if (off > n) 807 return -ENOEXEC; 808 809 if (note.nhdr.n_descsz > n - off) 810 return -ENOEXEC; 811 datasz = off + note.nhdr.n_descsz; 812 813 have_prev_type = false; 814 do { 815 ret = parse_elf_property(note.data, &off, datasz, arch, 816 have_prev_type, &prev_type); 817 have_prev_type = true; 818 } while (!ret); 819 820 return ret == -ENOENT ? 0 : ret; 821 } 822 823 static int load_elf_binary(struct linux_binprm *bprm) 824 { 825 struct file *interpreter = NULL; /* to shut gcc up */ 826 unsigned long load_addr = 0, load_bias = 0; 827 int load_addr_set = 0; 828 unsigned long error; 829 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL; 830 struct elf_phdr *elf_property_phdata = NULL; 831 unsigned long elf_bss, elf_brk; 832 int bss_prot = 0; 833 int retval, i; 834 unsigned long elf_entry; 835 unsigned long e_entry; 836 unsigned long interp_load_addr = 0; 837 unsigned long start_code, end_code, start_data, end_data; 838 unsigned long reloc_func_desc __maybe_unused = 0; 839 int executable_stack = EXSTACK_DEFAULT; 840 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf; 841 struct elfhdr *interp_elf_ex = NULL; 842 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE; 843 struct mm_struct *mm; 844 struct pt_regs *regs; 845 846 retval = -ENOEXEC; 847 /* First of all, some simple consistency checks */ 848 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 849 goto out; 850 851 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN) 852 goto out; 853 if (!elf_check_arch(elf_ex)) 854 goto out; 855 if (elf_check_fdpic(elf_ex)) 856 goto out; 857 if (!bprm->file->f_op->mmap) 858 goto out; 859 860 elf_phdata = load_elf_phdrs(elf_ex, bprm->file); 861 if (!elf_phdata) 862 goto out; 863 864 elf_ppnt = elf_phdata; 865 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) { 866 char *elf_interpreter; 867 868 if (elf_ppnt->p_type == PT_GNU_PROPERTY) { 869 elf_property_phdata = elf_ppnt; 870 continue; 871 } 872 873 if (elf_ppnt->p_type != PT_INTERP) 874 continue; 875 876 /* 877 * This is the program interpreter used for shared libraries - 878 * for now assume that this is an a.out format binary. 879 */ 880 retval = -ENOEXEC; 881 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2) 882 goto out_free_ph; 883 884 retval = -ENOMEM; 885 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL); 886 if (!elf_interpreter) 887 goto out_free_ph; 888 889 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz, 890 elf_ppnt->p_offset); 891 if (retval < 0) 892 goto out_free_interp; 893 /* make sure path is NULL terminated */ 894 retval = -ENOEXEC; 895 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 896 goto out_free_interp; 897 898 interpreter = open_exec(elf_interpreter); 899 kfree(elf_interpreter); 900 retval = PTR_ERR(interpreter); 901 if (IS_ERR(interpreter)) 902 goto out_free_ph; 903 904 /* 905 * If the binary is not readable then enforce mm->dumpable = 0 906 * regardless of the interpreter's permissions. 907 */ 908 would_dump(bprm, interpreter); 909 910 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL); 911 if (!interp_elf_ex) { 912 retval = -ENOMEM; 913 goto out_free_ph; 914 } 915 916 /* Get the exec headers */ 917 retval = elf_read(interpreter, interp_elf_ex, 918 sizeof(*interp_elf_ex), 0); 919 if (retval < 0) 920 goto out_free_dentry; 921 922 break; 923 924 out_free_interp: 925 kfree(elf_interpreter); 926 goto out_free_ph; 927 } 928 929 elf_ppnt = elf_phdata; 930 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) 931 switch (elf_ppnt->p_type) { 932 case PT_GNU_STACK: 933 if (elf_ppnt->p_flags & PF_X) 934 executable_stack = EXSTACK_ENABLE_X; 935 else 936 executable_stack = EXSTACK_DISABLE_X; 937 break; 938 939 case PT_LOPROC ... PT_HIPROC: 940 retval = arch_elf_pt_proc(elf_ex, elf_ppnt, 941 bprm->file, false, 942 &arch_state); 943 if (retval) 944 goto out_free_dentry; 945 break; 946 } 947 948 /* Some simple consistency checks for the interpreter */ 949 if (interpreter) { 950 retval = -ELIBBAD; 951 /* Not an ELF interpreter */ 952 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 953 goto out_free_dentry; 954 /* Verify the interpreter has a valid arch */ 955 if (!elf_check_arch(interp_elf_ex) || 956 elf_check_fdpic(interp_elf_ex)) 957 goto out_free_dentry; 958 959 /* Load the interpreter program headers */ 960 interp_elf_phdata = load_elf_phdrs(interp_elf_ex, 961 interpreter); 962 if (!interp_elf_phdata) 963 goto out_free_dentry; 964 965 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */ 966 elf_property_phdata = NULL; 967 elf_ppnt = interp_elf_phdata; 968 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++) 969 switch (elf_ppnt->p_type) { 970 case PT_GNU_PROPERTY: 971 elf_property_phdata = elf_ppnt; 972 break; 973 974 case PT_LOPROC ... PT_HIPROC: 975 retval = arch_elf_pt_proc(interp_elf_ex, 976 elf_ppnt, interpreter, 977 true, &arch_state); 978 if (retval) 979 goto out_free_dentry; 980 break; 981 } 982 } 983 984 retval = parse_elf_properties(interpreter ?: bprm->file, 985 elf_property_phdata, &arch_state); 986 if (retval) 987 goto out_free_dentry; 988 989 /* 990 * Allow arch code to reject the ELF at this point, whilst it's 991 * still possible to return an error to the code that invoked 992 * the exec syscall. 993 */ 994 retval = arch_check_elf(elf_ex, 995 !!interpreter, interp_elf_ex, 996 &arch_state); 997 if (retval) 998 goto out_free_dentry; 999 1000 /* Flush all traces of the currently running executable */ 1001 retval = begin_new_exec(bprm); 1002 if (retval) 1003 goto out_free_dentry; 1004 1005 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 1006 may depend on the personality. */ 1007 SET_PERSONALITY2(*elf_ex, &arch_state); 1008 if (elf_read_implies_exec(*elf_ex, executable_stack)) 1009 current->personality |= READ_IMPLIES_EXEC; 1010 1011 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1012 current->flags |= PF_RANDOMIZE; 1013 1014 setup_new_exec(bprm); 1015 1016 /* Do this so that we can load the interpreter, if need be. We will 1017 change some of these later */ 1018 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 1019 executable_stack); 1020 if (retval < 0) 1021 goto out_free_dentry; 1022 1023 elf_bss = 0; 1024 elf_brk = 0; 1025 1026 start_code = ~0UL; 1027 end_code = 0; 1028 start_data = 0; 1029 end_data = 0; 1030 1031 /* Now we do a little grungy work by mmapping the ELF image into 1032 the correct location in memory. */ 1033 for(i = 0, elf_ppnt = elf_phdata; 1034 i < elf_ex->e_phnum; i++, elf_ppnt++) { 1035 int elf_prot, elf_flags; 1036 unsigned long k, vaddr; 1037 unsigned long total_size = 0; 1038 unsigned long alignment; 1039 1040 if (elf_ppnt->p_type != PT_LOAD) 1041 continue; 1042 1043 if (unlikely (elf_brk > elf_bss)) { 1044 unsigned long nbyte; 1045 1046 /* There was a PT_LOAD segment with p_memsz > p_filesz 1047 before this one. Map anonymous pages, if needed, 1048 and clear the area. */ 1049 retval = set_brk(elf_bss + load_bias, 1050 elf_brk + load_bias, 1051 bss_prot); 1052 if (retval) 1053 goto out_free_dentry; 1054 nbyte = ELF_PAGEOFFSET(elf_bss); 1055 if (nbyte) { 1056 nbyte = ELF_MIN_ALIGN - nbyte; 1057 if (nbyte > elf_brk - elf_bss) 1058 nbyte = elf_brk - elf_bss; 1059 if (clear_user((void __user *)elf_bss + 1060 load_bias, nbyte)) { 1061 /* 1062 * This bss-zeroing can fail if the ELF 1063 * file specifies odd protections. So 1064 * we don't check the return value 1065 */ 1066 } 1067 } 1068 } 1069 1070 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state, 1071 !!interpreter, false); 1072 1073 elf_flags = MAP_PRIVATE; 1074 1075 vaddr = elf_ppnt->p_vaddr; 1076 /* 1077 * The first time through the loop, load_addr_set is false: 1078 * layout will be calculated. Once set, use MAP_FIXED since 1079 * we know we've already safely mapped the entire region with 1080 * MAP_FIXED_NOREPLACE in the once-per-binary logic following. 1081 */ 1082 if (load_addr_set) { 1083 elf_flags |= MAP_FIXED; 1084 } else if (elf_ex->e_type == ET_EXEC) { 1085 /* 1086 * This logic is run once for the first LOAD Program 1087 * Header for ET_EXEC binaries. No special handling 1088 * is needed. 1089 */ 1090 elf_flags |= MAP_FIXED_NOREPLACE; 1091 } else if (elf_ex->e_type == ET_DYN) { 1092 /* 1093 * This logic is run once for the first LOAD Program 1094 * Header for ET_DYN binaries to calculate the 1095 * randomization (load_bias) for all the LOAD 1096 * Program Headers. 1097 * 1098 * There are effectively two types of ET_DYN 1099 * binaries: programs (i.e. PIE: ET_DYN with INTERP) 1100 * and loaders (ET_DYN without INTERP, since they 1101 * _are_ the ELF interpreter). The loaders must 1102 * be loaded away from programs since the program 1103 * may otherwise collide with the loader (especially 1104 * for ET_EXEC which does not have a randomized 1105 * position). For example to handle invocations of 1106 * "./ld.so someprog" to test out a new version of 1107 * the loader, the subsequent program that the 1108 * loader loads must avoid the loader itself, so 1109 * they cannot share the same load range. Sufficient 1110 * room for the brk must be allocated with the 1111 * loader as well, since brk must be available with 1112 * the loader. 1113 * 1114 * Therefore, programs are loaded offset from 1115 * ELF_ET_DYN_BASE and loaders are loaded into the 1116 * independently randomized mmap region (0 load_bias 1117 * without MAP_FIXED nor MAP_FIXED_NOREPLACE). 1118 */ 1119 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum); 1120 if (interpreter || alignment > ELF_MIN_ALIGN) { 1121 load_bias = ELF_ET_DYN_BASE; 1122 if (current->flags & PF_RANDOMIZE) 1123 load_bias += arch_mmap_rnd(); 1124 if (alignment) 1125 load_bias &= ~(alignment - 1); 1126 elf_flags |= MAP_FIXED_NOREPLACE; 1127 } else 1128 load_bias = 0; 1129 1130 /* 1131 * Since load_bias is used for all subsequent loading 1132 * calculations, we must lower it by the first vaddr 1133 * so that the remaining calculations based on the 1134 * ELF vaddrs will be correctly offset. The result 1135 * is then page aligned. 1136 */ 1137 load_bias = ELF_PAGESTART(load_bias - vaddr); 1138 } 1139 1140 /* 1141 * Calculate the entire size of the ELF mapping (total_size). 1142 * (Note that load_addr_set is set to true later once the 1143 * initial mapping is performed.) 1144 */ 1145 if (!load_addr_set) { 1146 total_size = total_mapping_size(elf_phdata, 1147 elf_ex->e_phnum); 1148 if (!total_size) { 1149 retval = -EINVAL; 1150 goto out_free_dentry; 1151 } 1152 } 1153 1154 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, 1155 elf_prot, elf_flags, total_size); 1156 if (BAD_ADDR(error)) { 1157 retval = IS_ERR((void *)error) ? 1158 PTR_ERR((void*)error) : -EINVAL; 1159 goto out_free_dentry; 1160 } 1161 1162 if (!load_addr_set) { 1163 load_addr_set = 1; 1164 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); 1165 if (elf_ex->e_type == ET_DYN) { 1166 load_bias += error - 1167 ELF_PAGESTART(load_bias + vaddr); 1168 load_addr += load_bias; 1169 reloc_func_desc = load_bias; 1170 } 1171 } 1172 k = elf_ppnt->p_vaddr; 1173 if ((elf_ppnt->p_flags & PF_X) && k < start_code) 1174 start_code = k; 1175 if (start_data < k) 1176 start_data = k; 1177 1178 /* 1179 * Check to see if the section's size will overflow the 1180 * allowed task size. Note that p_filesz must always be 1181 * <= p_memsz so it is only necessary to check p_memsz. 1182 */ 1183 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 1184 elf_ppnt->p_memsz > TASK_SIZE || 1185 TASK_SIZE - elf_ppnt->p_memsz < k) { 1186 /* set_brk can never work. Avoid overflows. */ 1187 retval = -EINVAL; 1188 goto out_free_dentry; 1189 } 1190 1191 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 1192 1193 if (k > elf_bss) 1194 elf_bss = k; 1195 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 1196 end_code = k; 1197 if (end_data < k) 1198 end_data = k; 1199 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 1200 if (k > elf_brk) { 1201 bss_prot = elf_prot; 1202 elf_brk = k; 1203 } 1204 } 1205 1206 e_entry = elf_ex->e_entry + load_bias; 1207 elf_bss += load_bias; 1208 elf_brk += load_bias; 1209 start_code += load_bias; 1210 end_code += load_bias; 1211 start_data += load_bias; 1212 end_data += load_bias; 1213 1214 /* Calling set_brk effectively mmaps the pages that we need 1215 * for the bss and break sections. We must do this before 1216 * mapping in the interpreter, to make sure it doesn't wind 1217 * up getting placed where the bss needs to go. 1218 */ 1219 retval = set_brk(elf_bss, elf_brk, bss_prot); 1220 if (retval) 1221 goto out_free_dentry; 1222 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { 1223 retval = -EFAULT; /* Nobody gets to see this, but.. */ 1224 goto out_free_dentry; 1225 } 1226 1227 if (interpreter) { 1228 elf_entry = load_elf_interp(interp_elf_ex, 1229 interpreter, 1230 load_bias, interp_elf_phdata, 1231 &arch_state); 1232 if (!IS_ERR((void *)elf_entry)) { 1233 /* 1234 * load_elf_interp() returns relocation 1235 * adjustment 1236 */ 1237 interp_load_addr = elf_entry; 1238 elf_entry += interp_elf_ex->e_entry; 1239 } 1240 if (BAD_ADDR(elf_entry)) { 1241 retval = IS_ERR((void *)elf_entry) ? 1242 (int)elf_entry : -EINVAL; 1243 goto out_free_dentry; 1244 } 1245 reloc_func_desc = interp_load_addr; 1246 1247 allow_write_access(interpreter); 1248 fput(interpreter); 1249 1250 kfree(interp_elf_ex); 1251 kfree(interp_elf_phdata); 1252 } else { 1253 elf_entry = e_entry; 1254 if (BAD_ADDR(elf_entry)) { 1255 retval = -EINVAL; 1256 goto out_free_dentry; 1257 } 1258 } 1259 1260 kfree(elf_phdata); 1261 1262 set_binfmt(&elf_format); 1263 1264 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 1265 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter); 1266 if (retval < 0) 1267 goto out; 1268 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 1269 1270 retval = create_elf_tables(bprm, elf_ex, 1271 load_addr, interp_load_addr, e_entry); 1272 if (retval < 0) 1273 goto out; 1274 1275 mm = current->mm; 1276 mm->end_code = end_code; 1277 mm->start_code = start_code; 1278 mm->start_data = start_data; 1279 mm->end_data = end_data; 1280 mm->start_stack = bprm->p; 1281 1282 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { 1283 /* 1284 * For architectures with ELF randomization, when executing 1285 * a loader directly (i.e. no interpreter listed in ELF 1286 * headers), move the brk area out of the mmap region 1287 * (since it grows up, and may collide early with the stack 1288 * growing down), and into the unused ELF_ET_DYN_BASE region. 1289 */ 1290 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && 1291 elf_ex->e_type == ET_DYN && !interpreter) { 1292 mm->brk = mm->start_brk = ELF_ET_DYN_BASE; 1293 } 1294 1295 mm->brk = mm->start_brk = arch_randomize_brk(mm); 1296 #ifdef compat_brk_randomized 1297 current->brk_randomized = 1; 1298 #endif 1299 } 1300 1301 if (current->personality & MMAP_PAGE_ZERO) { 1302 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 1303 and some applications "depend" upon this behavior. 1304 Since we do not have the power to recompile these, we 1305 emulate the SVr4 behavior. Sigh. */ 1306 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 1307 MAP_FIXED | MAP_PRIVATE, 0); 1308 } 1309 1310 regs = current_pt_regs(); 1311 #ifdef ELF_PLAT_INIT 1312 /* 1313 * The ABI may specify that certain registers be set up in special 1314 * ways (on i386 %edx is the address of a DT_FINI function, for 1315 * example. In addition, it may also specify (eg, PowerPC64 ELF) 1316 * that the e_entry field is the address of the function descriptor 1317 * for the startup routine, rather than the address of the startup 1318 * routine itself. This macro performs whatever initialization to 1319 * the regs structure is required as well as any relocations to the 1320 * function descriptor entries when executing dynamically links apps. 1321 */ 1322 ELF_PLAT_INIT(regs, reloc_func_desc); 1323 #endif 1324 1325 finalize_exec(bprm); 1326 START_THREAD(elf_ex, regs, elf_entry, bprm->p); 1327 retval = 0; 1328 out: 1329 return retval; 1330 1331 /* error cleanup */ 1332 out_free_dentry: 1333 kfree(interp_elf_ex); 1334 kfree(interp_elf_phdata); 1335 allow_write_access(interpreter); 1336 if (interpreter) 1337 fput(interpreter); 1338 out_free_ph: 1339 kfree(elf_phdata); 1340 goto out; 1341 } 1342 1343 #ifdef CONFIG_USELIB 1344 /* This is really simpleminded and specialized - we are loading an 1345 a.out library that is given an ELF header. */ 1346 static int load_elf_library(struct file *file) 1347 { 1348 struct elf_phdr *elf_phdata; 1349 struct elf_phdr *eppnt; 1350 unsigned long elf_bss, bss, len; 1351 int retval, error, i, j; 1352 struct elfhdr elf_ex; 1353 1354 error = -ENOEXEC; 1355 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0); 1356 if (retval < 0) 1357 goto out; 1358 1359 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1360 goto out; 1361 1362 /* First of all, some simple consistency checks */ 1363 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1364 !elf_check_arch(&elf_ex) || !file->f_op->mmap) 1365 goto out; 1366 if (elf_check_fdpic(&elf_ex)) 1367 goto out; 1368 1369 /* Now read in all of the header information */ 1370 1371 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1372 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1373 1374 error = -ENOMEM; 1375 elf_phdata = kmalloc(j, GFP_KERNEL); 1376 if (!elf_phdata) 1377 goto out; 1378 1379 eppnt = elf_phdata; 1380 error = -ENOEXEC; 1381 retval = elf_read(file, eppnt, j, elf_ex.e_phoff); 1382 if (retval < 0) 1383 goto out_free_ph; 1384 1385 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1386 if ((eppnt + i)->p_type == PT_LOAD) 1387 j++; 1388 if (j != 1) 1389 goto out_free_ph; 1390 1391 while (eppnt->p_type != PT_LOAD) 1392 eppnt++; 1393 1394 /* Now use mmap to map the library into memory. */ 1395 error = vm_mmap(file, 1396 ELF_PAGESTART(eppnt->p_vaddr), 1397 (eppnt->p_filesz + 1398 ELF_PAGEOFFSET(eppnt->p_vaddr)), 1399 PROT_READ | PROT_WRITE | PROT_EXEC, 1400 MAP_FIXED_NOREPLACE | MAP_PRIVATE, 1401 (eppnt->p_offset - 1402 ELF_PAGEOFFSET(eppnt->p_vaddr))); 1403 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1404 goto out_free_ph; 1405 1406 elf_bss = eppnt->p_vaddr + eppnt->p_filesz; 1407 if (padzero(elf_bss)) { 1408 error = -EFAULT; 1409 goto out_free_ph; 1410 } 1411 1412 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr); 1413 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr); 1414 if (bss > len) { 1415 error = vm_brk(len, bss - len); 1416 if (error) 1417 goto out_free_ph; 1418 } 1419 error = 0; 1420 1421 out_free_ph: 1422 kfree(elf_phdata); 1423 out: 1424 return error; 1425 } 1426 #endif /* #ifdef CONFIG_USELIB */ 1427 1428 #ifdef CONFIG_ELF_CORE 1429 /* 1430 * ELF core dumper 1431 * 1432 * Modelled on fs/exec.c:aout_core_dump() 1433 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1434 */ 1435 1436 /* An ELF note in memory */ 1437 struct memelfnote 1438 { 1439 const char *name; 1440 int type; 1441 unsigned int datasz; 1442 void *data; 1443 }; 1444 1445 static int notesize(struct memelfnote *en) 1446 { 1447 int sz; 1448 1449 sz = sizeof(struct elf_note); 1450 sz += roundup(strlen(en->name) + 1, 4); 1451 sz += roundup(en->datasz, 4); 1452 1453 return sz; 1454 } 1455 1456 static int writenote(struct memelfnote *men, struct coredump_params *cprm) 1457 { 1458 struct elf_note en; 1459 en.n_namesz = strlen(men->name) + 1; 1460 en.n_descsz = men->datasz; 1461 en.n_type = men->type; 1462 1463 return dump_emit(cprm, &en, sizeof(en)) && 1464 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) && 1465 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4); 1466 } 1467 1468 static void fill_elf_header(struct elfhdr *elf, int segs, 1469 u16 machine, u32 flags) 1470 { 1471 memset(elf, 0, sizeof(*elf)); 1472 1473 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1474 elf->e_ident[EI_CLASS] = ELF_CLASS; 1475 elf->e_ident[EI_DATA] = ELF_DATA; 1476 elf->e_ident[EI_VERSION] = EV_CURRENT; 1477 elf->e_ident[EI_OSABI] = ELF_OSABI; 1478 1479 elf->e_type = ET_CORE; 1480 elf->e_machine = machine; 1481 elf->e_version = EV_CURRENT; 1482 elf->e_phoff = sizeof(struct elfhdr); 1483 elf->e_flags = flags; 1484 elf->e_ehsize = sizeof(struct elfhdr); 1485 elf->e_phentsize = sizeof(struct elf_phdr); 1486 elf->e_phnum = segs; 1487 } 1488 1489 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1490 { 1491 phdr->p_type = PT_NOTE; 1492 phdr->p_offset = offset; 1493 phdr->p_vaddr = 0; 1494 phdr->p_paddr = 0; 1495 phdr->p_filesz = sz; 1496 phdr->p_memsz = 0; 1497 phdr->p_flags = 0; 1498 phdr->p_align = 0; 1499 } 1500 1501 static void fill_note(struct memelfnote *note, const char *name, int type, 1502 unsigned int sz, void *data) 1503 { 1504 note->name = name; 1505 note->type = type; 1506 note->datasz = sz; 1507 note->data = data; 1508 } 1509 1510 /* 1511 * fill up all the fields in prstatus from the given task struct, except 1512 * registers which need to be filled up separately. 1513 */ 1514 static void fill_prstatus(struct elf_prstatus_common *prstatus, 1515 struct task_struct *p, long signr) 1516 { 1517 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1518 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1519 prstatus->pr_sighold = p->blocked.sig[0]; 1520 rcu_read_lock(); 1521 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1522 rcu_read_unlock(); 1523 prstatus->pr_pid = task_pid_vnr(p); 1524 prstatus->pr_pgrp = task_pgrp_vnr(p); 1525 prstatus->pr_sid = task_session_vnr(p); 1526 if (thread_group_leader(p)) { 1527 struct task_cputime cputime; 1528 1529 /* 1530 * This is the record for the group leader. It shows the 1531 * group-wide total, not its individual thread total. 1532 */ 1533 thread_group_cputime(p, &cputime); 1534 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime); 1535 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime); 1536 } else { 1537 u64 utime, stime; 1538 1539 task_cputime(p, &utime, &stime); 1540 prstatus->pr_utime = ns_to_kernel_old_timeval(utime); 1541 prstatus->pr_stime = ns_to_kernel_old_timeval(stime); 1542 } 1543 1544 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime); 1545 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime); 1546 } 1547 1548 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1549 struct mm_struct *mm) 1550 { 1551 const struct cred *cred; 1552 unsigned int i, len; 1553 unsigned int state; 1554 1555 /* first copy the parameters from user space */ 1556 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1557 1558 len = mm->arg_end - mm->arg_start; 1559 if (len >= ELF_PRARGSZ) 1560 len = ELF_PRARGSZ-1; 1561 if (copy_from_user(&psinfo->pr_psargs, 1562 (const char __user *)mm->arg_start, len)) 1563 return -EFAULT; 1564 for(i = 0; i < len; i++) 1565 if (psinfo->pr_psargs[i] == 0) 1566 psinfo->pr_psargs[i] = ' '; 1567 psinfo->pr_psargs[len] = 0; 1568 1569 rcu_read_lock(); 1570 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1571 rcu_read_unlock(); 1572 psinfo->pr_pid = task_pid_vnr(p); 1573 psinfo->pr_pgrp = task_pgrp_vnr(p); 1574 psinfo->pr_sid = task_session_vnr(p); 1575 1576 state = READ_ONCE(p->__state); 1577 i = state ? ffz(~state) + 1 : 0; 1578 psinfo->pr_state = i; 1579 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1580 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1581 psinfo->pr_nice = task_nice(p); 1582 psinfo->pr_flag = p->flags; 1583 rcu_read_lock(); 1584 cred = __task_cred(p); 1585 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid)); 1586 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid)); 1587 rcu_read_unlock(); 1588 get_task_comm(psinfo->pr_fname, p); 1589 1590 return 0; 1591 } 1592 1593 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1594 { 1595 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1596 int i = 0; 1597 do 1598 i += 2; 1599 while (auxv[i - 2] != AT_NULL); 1600 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1601 } 1602 1603 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata, 1604 const kernel_siginfo_t *siginfo) 1605 { 1606 copy_siginfo_to_external(csigdata, siginfo); 1607 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata); 1608 } 1609 1610 #define MAX_FILE_NOTE_SIZE (4*1024*1024) 1611 /* 1612 * Format of NT_FILE note: 1613 * 1614 * long count -- how many files are mapped 1615 * long page_size -- units for file_ofs 1616 * array of [COUNT] elements of 1617 * long start 1618 * long end 1619 * long file_ofs 1620 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... 1621 */ 1622 static int fill_files_note(struct memelfnote *note) 1623 { 1624 struct mm_struct *mm = current->mm; 1625 struct vm_area_struct *vma; 1626 unsigned count, size, names_ofs, remaining, n; 1627 user_long_t *data; 1628 user_long_t *start_end_ofs; 1629 char *name_base, *name_curpos; 1630 1631 /* *Estimated* file count and total data size needed */ 1632 count = mm->map_count; 1633 if (count > UINT_MAX / 64) 1634 return -EINVAL; 1635 size = count * 64; 1636 1637 names_ofs = (2 + 3 * count) * sizeof(data[0]); 1638 alloc: 1639 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */ 1640 return -EINVAL; 1641 size = round_up(size, PAGE_SIZE); 1642 /* 1643 * "size" can be 0 here legitimately. 1644 * Let it ENOMEM and omit NT_FILE section which will be empty anyway. 1645 */ 1646 data = kvmalloc(size, GFP_KERNEL); 1647 if (ZERO_OR_NULL_PTR(data)) 1648 return -ENOMEM; 1649 1650 start_end_ofs = data + 2; 1651 name_base = name_curpos = ((char *)data) + names_ofs; 1652 remaining = size - names_ofs; 1653 count = 0; 1654 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) { 1655 struct file *file; 1656 const char *filename; 1657 1658 file = vma->vm_file; 1659 if (!file) 1660 continue; 1661 filename = file_path(file, name_curpos, remaining); 1662 if (IS_ERR(filename)) { 1663 if (PTR_ERR(filename) == -ENAMETOOLONG) { 1664 kvfree(data); 1665 size = size * 5 / 4; 1666 goto alloc; 1667 } 1668 continue; 1669 } 1670 1671 /* file_path() fills at the end, move name down */ 1672 /* n = strlen(filename) + 1: */ 1673 n = (name_curpos + remaining) - filename; 1674 remaining = filename - name_curpos; 1675 memmove(name_curpos, filename, n); 1676 name_curpos += n; 1677 1678 *start_end_ofs++ = vma->vm_start; 1679 *start_end_ofs++ = vma->vm_end; 1680 *start_end_ofs++ = vma->vm_pgoff; 1681 count++; 1682 } 1683 1684 /* Now we know exact count of files, can store it */ 1685 data[0] = count; 1686 data[1] = PAGE_SIZE; 1687 /* 1688 * Count usually is less than mm->map_count, 1689 * we need to move filenames down. 1690 */ 1691 n = mm->map_count - count; 1692 if (n != 0) { 1693 unsigned shift_bytes = n * 3 * sizeof(data[0]); 1694 memmove(name_base - shift_bytes, name_base, 1695 name_curpos - name_base); 1696 name_curpos -= shift_bytes; 1697 } 1698 1699 size = name_curpos - (char *)data; 1700 fill_note(note, "CORE", NT_FILE, size, data); 1701 return 0; 1702 } 1703 1704 #ifdef CORE_DUMP_USE_REGSET 1705 #include <linux/regset.h> 1706 1707 struct elf_thread_core_info { 1708 struct elf_thread_core_info *next; 1709 struct task_struct *task; 1710 struct elf_prstatus prstatus; 1711 struct memelfnote notes[]; 1712 }; 1713 1714 struct elf_note_info { 1715 struct elf_thread_core_info *thread; 1716 struct memelfnote psinfo; 1717 struct memelfnote signote; 1718 struct memelfnote auxv; 1719 struct memelfnote files; 1720 user_siginfo_t csigdata; 1721 size_t size; 1722 int thread_notes; 1723 }; 1724 1725 /* 1726 * When a regset has a writeback hook, we call it on each thread before 1727 * dumping user memory. On register window machines, this makes sure the 1728 * user memory backing the register data is up to date before we read it. 1729 */ 1730 static void do_thread_regset_writeback(struct task_struct *task, 1731 const struct user_regset *regset) 1732 { 1733 if (regset->writeback) 1734 regset->writeback(task, regset, 1); 1735 } 1736 1737 #ifndef PRSTATUS_SIZE 1738 #define PRSTATUS_SIZE sizeof(struct elf_prstatus) 1739 #endif 1740 1741 #ifndef SET_PR_FPVALID 1742 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1) 1743 #endif 1744 1745 static int fill_thread_core_info(struct elf_thread_core_info *t, 1746 const struct user_regset_view *view, 1747 long signr, size_t *total) 1748 { 1749 unsigned int i; 1750 1751 /* 1752 * NT_PRSTATUS is the one special case, because the regset data 1753 * goes into the pr_reg field inside the note contents, rather 1754 * than being the whole note contents. We fill the reset in here. 1755 * We assume that regset 0 is NT_PRSTATUS. 1756 */ 1757 fill_prstatus(&t->prstatus.common, t->task, signr); 1758 regset_get(t->task, &view->regsets[0], 1759 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg); 1760 1761 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1762 PRSTATUS_SIZE, &t->prstatus); 1763 *total += notesize(&t->notes[0]); 1764 1765 do_thread_regset_writeback(t->task, &view->regsets[0]); 1766 1767 /* 1768 * Each other regset might generate a note too. For each regset 1769 * that has no core_note_type or is inactive, we leave t->notes[i] 1770 * all zero and we'll know to skip writing it later. 1771 */ 1772 for (i = 1; i < view->n; ++i) { 1773 const struct user_regset *regset = &view->regsets[i]; 1774 int note_type = regset->core_note_type; 1775 bool is_fpreg = note_type == NT_PRFPREG; 1776 void *data; 1777 int ret; 1778 1779 do_thread_regset_writeback(t->task, regset); 1780 if (!note_type) // not for coredumps 1781 continue; 1782 if (regset->active && regset->active(t->task, regset) <= 0) 1783 continue; 1784 1785 ret = regset_get_alloc(t->task, regset, ~0U, &data); 1786 if (ret < 0) 1787 continue; 1788 1789 if (is_fpreg) 1790 SET_PR_FPVALID(&t->prstatus); 1791 1792 fill_note(&t->notes[i], is_fpreg ? "CORE" : "LINUX", 1793 note_type, ret, data); 1794 1795 *total += notesize(&t->notes[i]); 1796 } 1797 1798 return 1; 1799 } 1800 1801 static int fill_note_info(struct elfhdr *elf, int phdrs, 1802 struct elf_note_info *info, 1803 const kernel_siginfo_t *siginfo, struct pt_regs *regs) 1804 { 1805 struct task_struct *dump_task = current; 1806 const struct user_regset_view *view = task_user_regset_view(dump_task); 1807 struct elf_thread_core_info *t; 1808 struct elf_prpsinfo *psinfo; 1809 struct core_thread *ct; 1810 unsigned int i; 1811 1812 info->size = 0; 1813 info->thread = NULL; 1814 1815 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1816 if (psinfo == NULL) { 1817 info->psinfo.data = NULL; /* So we don't free this wrongly */ 1818 return 0; 1819 } 1820 1821 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1822 1823 /* 1824 * Figure out how many notes we're going to need for each thread. 1825 */ 1826 info->thread_notes = 0; 1827 for (i = 0; i < view->n; ++i) 1828 if (view->regsets[i].core_note_type != 0) 1829 ++info->thread_notes; 1830 1831 /* 1832 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1833 * since it is our one special case. 1834 */ 1835 if (unlikely(info->thread_notes == 0) || 1836 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1837 WARN_ON(1); 1838 return 0; 1839 } 1840 1841 /* 1842 * Initialize the ELF file header. 1843 */ 1844 fill_elf_header(elf, phdrs, 1845 view->e_machine, view->e_flags); 1846 1847 /* 1848 * Allocate a structure for each thread. 1849 */ 1850 for (ct = &dump_task->signal->core_state->dumper; ct; ct = ct->next) { 1851 t = kzalloc(offsetof(struct elf_thread_core_info, 1852 notes[info->thread_notes]), 1853 GFP_KERNEL); 1854 if (unlikely(!t)) 1855 return 0; 1856 1857 t->task = ct->task; 1858 if (ct->task == dump_task || !info->thread) { 1859 t->next = info->thread; 1860 info->thread = t; 1861 } else { 1862 /* 1863 * Make sure to keep the original task at 1864 * the head of the list. 1865 */ 1866 t->next = info->thread->next; 1867 info->thread->next = t; 1868 } 1869 } 1870 1871 /* 1872 * Now fill in each thread's information. 1873 */ 1874 for (t = info->thread; t != NULL; t = t->next) 1875 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size)) 1876 return 0; 1877 1878 /* 1879 * Fill in the two process-wide notes. 1880 */ 1881 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1882 info->size += notesize(&info->psinfo); 1883 1884 fill_siginfo_note(&info->signote, &info->csigdata, siginfo); 1885 info->size += notesize(&info->signote); 1886 1887 fill_auxv_note(&info->auxv, current->mm); 1888 info->size += notesize(&info->auxv); 1889 1890 if (fill_files_note(&info->files) == 0) 1891 info->size += notesize(&info->files); 1892 1893 return 1; 1894 } 1895 1896 static size_t get_note_info_size(struct elf_note_info *info) 1897 { 1898 return info->size; 1899 } 1900 1901 /* 1902 * Write all the notes for each thread. When writing the first thread, the 1903 * process-wide notes are interleaved after the first thread-specific note. 1904 */ 1905 static int write_note_info(struct elf_note_info *info, 1906 struct coredump_params *cprm) 1907 { 1908 bool first = true; 1909 struct elf_thread_core_info *t = info->thread; 1910 1911 do { 1912 int i; 1913 1914 if (!writenote(&t->notes[0], cprm)) 1915 return 0; 1916 1917 if (first && !writenote(&info->psinfo, cprm)) 1918 return 0; 1919 if (first && !writenote(&info->signote, cprm)) 1920 return 0; 1921 if (first && !writenote(&info->auxv, cprm)) 1922 return 0; 1923 if (first && info->files.data && 1924 !writenote(&info->files, cprm)) 1925 return 0; 1926 1927 for (i = 1; i < info->thread_notes; ++i) 1928 if (t->notes[i].data && 1929 !writenote(&t->notes[i], cprm)) 1930 return 0; 1931 1932 first = false; 1933 t = t->next; 1934 } while (t); 1935 1936 return 1; 1937 } 1938 1939 static void free_note_info(struct elf_note_info *info) 1940 { 1941 struct elf_thread_core_info *threads = info->thread; 1942 while (threads) { 1943 unsigned int i; 1944 struct elf_thread_core_info *t = threads; 1945 threads = t->next; 1946 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1947 for (i = 1; i < info->thread_notes; ++i) 1948 kfree(t->notes[i].data); 1949 kfree(t); 1950 } 1951 kfree(info->psinfo.data); 1952 kvfree(info->files.data); 1953 } 1954 1955 #else 1956 1957 /* Here is the structure in which status of each thread is captured. */ 1958 struct elf_thread_status 1959 { 1960 struct list_head list; 1961 struct elf_prstatus prstatus; /* NT_PRSTATUS */ 1962 elf_fpregset_t fpu; /* NT_PRFPREG */ 1963 struct task_struct *thread; 1964 struct memelfnote notes[3]; 1965 int num_notes; 1966 }; 1967 1968 /* 1969 * In order to add the specific thread information for the elf file format, 1970 * we need to keep a linked list of every threads pr_status and then create 1971 * a single section for them in the final core file. 1972 */ 1973 static int elf_dump_thread_status(long signr, struct elf_thread_status *t) 1974 { 1975 int sz = 0; 1976 struct task_struct *p = t->thread; 1977 t->num_notes = 0; 1978 1979 fill_prstatus(&t->prstatus.common, p, signr); 1980 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 1981 1982 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 1983 &(t->prstatus)); 1984 t->num_notes++; 1985 sz += notesize(&t->notes[0]); 1986 1987 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, 1988 &t->fpu))) { 1989 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), 1990 &(t->fpu)); 1991 t->num_notes++; 1992 sz += notesize(&t->notes[1]); 1993 } 1994 return sz; 1995 } 1996 1997 struct elf_note_info { 1998 struct memelfnote *notes; 1999 struct memelfnote *notes_files; 2000 struct elf_prstatus *prstatus; /* NT_PRSTATUS */ 2001 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2002 struct list_head thread_list; 2003 elf_fpregset_t *fpu; 2004 user_siginfo_t csigdata; 2005 int thread_status_size; 2006 int numnote; 2007 }; 2008 2009 static int elf_note_info_init(struct elf_note_info *info) 2010 { 2011 memset(info, 0, sizeof(*info)); 2012 INIT_LIST_HEAD(&info->thread_list); 2013 2014 /* Allocate space for ELF notes */ 2015 info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL); 2016 if (!info->notes) 2017 return 0; 2018 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); 2019 if (!info->psinfo) 2020 return 0; 2021 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); 2022 if (!info->prstatus) 2023 return 0; 2024 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); 2025 if (!info->fpu) 2026 return 0; 2027 return 1; 2028 } 2029 2030 static int fill_note_info(struct elfhdr *elf, int phdrs, 2031 struct elf_note_info *info, 2032 const kernel_siginfo_t *siginfo, struct pt_regs *regs) 2033 { 2034 struct core_thread *ct; 2035 struct elf_thread_status *ets; 2036 2037 if (!elf_note_info_init(info)) 2038 return 0; 2039 2040 for (ct = current->signal->core_state->dumper.next; 2041 ct; ct = ct->next) { 2042 ets = kzalloc(sizeof(*ets), GFP_KERNEL); 2043 if (!ets) 2044 return 0; 2045 2046 ets->thread = ct->task; 2047 list_add(&ets->list, &info->thread_list); 2048 } 2049 2050 list_for_each_entry(ets, &info->thread_list, list) { 2051 int sz; 2052 2053 sz = elf_dump_thread_status(siginfo->si_signo, ets); 2054 info->thread_status_size += sz; 2055 } 2056 /* now collect the dump for the current */ 2057 memset(info->prstatus, 0, sizeof(*info->prstatus)); 2058 fill_prstatus(&info->prstatus->common, current, siginfo->si_signo); 2059 elf_core_copy_regs(&info->prstatus->pr_reg, regs); 2060 2061 /* Set up header */ 2062 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS); 2063 2064 /* 2065 * Set up the notes in similar form to SVR4 core dumps made 2066 * with info from their /proc. 2067 */ 2068 2069 fill_note(info->notes + 0, "CORE", NT_PRSTATUS, 2070 sizeof(*info->prstatus), info->prstatus); 2071 fill_psinfo(info->psinfo, current->group_leader, current->mm); 2072 fill_note(info->notes + 1, "CORE", NT_PRPSINFO, 2073 sizeof(*info->psinfo), info->psinfo); 2074 2075 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo); 2076 fill_auxv_note(info->notes + 3, current->mm); 2077 info->numnote = 4; 2078 2079 if (fill_files_note(info->notes + info->numnote) == 0) { 2080 info->notes_files = info->notes + info->numnote; 2081 info->numnote++; 2082 } 2083 2084 /* Try to dump the FPU. */ 2085 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs, 2086 info->fpu); 2087 if (info->prstatus->pr_fpvalid) 2088 fill_note(info->notes + info->numnote++, 2089 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); 2090 return 1; 2091 } 2092 2093 static size_t get_note_info_size(struct elf_note_info *info) 2094 { 2095 int sz = 0; 2096 int i; 2097 2098 for (i = 0; i < info->numnote; i++) 2099 sz += notesize(info->notes + i); 2100 2101 sz += info->thread_status_size; 2102 2103 return sz; 2104 } 2105 2106 static int write_note_info(struct elf_note_info *info, 2107 struct coredump_params *cprm) 2108 { 2109 struct elf_thread_status *ets; 2110 int i; 2111 2112 for (i = 0; i < info->numnote; i++) 2113 if (!writenote(info->notes + i, cprm)) 2114 return 0; 2115 2116 /* write out the thread status notes section */ 2117 list_for_each_entry(ets, &info->thread_list, list) { 2118 for (i = 0; i < ets->num_notes; i++) 2119 if (!writenote(&ets->notes[i], cprm)) 2120 return 0; 2121 } 2122 2123 return 1; 2124 } 2125 2126 static void free_note_info(struct elf_note_info *info) 2127 { 2128 while (!list_empty(&info->thread_list)) { 2129 struct list_head *tmp = info->thread_list.next; 2130 list_del(tmp); 2131 kfree(list_entry(tmp, struct elf_thread_status, list)); 2132 } 2133 2134 /* Free data possibly allocated by fill_files_note(): */ 2135 if (info->notes_files) 2136 kvfree(info->notes_files->data); 2137 2138 kfree(info->prstatus); 2139 kfree(info->psinfo); 2140 kfree(info->notes); 2141 kfree(info->fpu); 2142 } 2143 2144 #endif 2145 2146 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, 2147 elf_addr_t e_shoff, int segs) 2148 { 2149 elf->e_shoff = e_shoff; 2150 elf->e_shentsize = sizeof(*shdr4extnum); 2151 elf->e_shnum = 1; 2152 elf->e_shstrndx = SHN_UNDEF; 2153 2154 memset(shdr4extnum, 0, sizeof(*shdr4extnum)); 2155 2156 shdr4extnum->sh_type = SHT_NULL; 2157 shdr4extnum->sh_size = elf->e_shnum; 2158 shdr4extnum->sh_link = elf->e_shstrndx; 2159 shdr4extnum->sh_info = segs; 2160 } 2161 2162 /* 2163 * Actual dumper 2164 * 2165 * This is a two-pass process; first we find the offsets of the bits, 2166 * and then they are actually written out. If we run out of core limit 2167 * we just truncate. 2168 */ 2169 static int elf_core_dump(struct coredump_params *cprm) 2170 { 2171 int has_dumped = 0; 2172 int vma_count, segs, i; 2173 size_t vma_data_size; 2174 struct elfhdr elf; 2175 loff_t offset = 0, dataoff; 2176 struct elf_note_info info = { }; 2177 struct elf_phdr *phdr4note = NULL; 2178 struct elf_shdr *shdr4extnum = NULL; 2179 Elf_Half e_phnum; 2180 elf_addr_t e_shoff; 2181 struct core_vma_metadata *vma_meta; 2182 2183 if (dump_vma_snapshot(cprm, &vma_count, &vma_meta, &vma_data_size)) 2184 return 0; 2185 2186 /* 2187 * The number of segs are recored into ELF header as 16bit value. 2188 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. 2189 */ 2190 segs = vma_count + elf_core_extra_phdrs(); 2191 2192 /* for notes section */ 2193 segs++; 2194 2195 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid 2196 * this, kernel supports extended numbering. Have a look at 2197 * include/linux/elf.h for further information. */ 2198 e_phnum = segs > PN_XNUM ? PN_XNUM : segs; 2199 2200 /* 2201 * Collect all the non-memory information about the process for the 2202 * notes. This also sets up the file header. 2203 */ 2204 if (!fill_note_info(&elf, e_phnum, &info, cprm->siginfo, cprm->regs)) 2205 goto end_coredump; 2206 2207 has_dumped = 1; 2208 2209 offset += sizeof(elf); /* Elf header */ 2210 offset += segs * sizeof(struct elf_phdr); /* Program headers */ 2211 2212 /* Write notes phdr entry */ 2213 { 2214 size_t sz = get_note_info_size(&info); 2215 2216 /* For cell spufs */ 2217 sz += elf_coredump_extra_notes_size(); 2218 2219 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); 2220 if (!phdr4note) 2221 goto end_coredump; 2222 2223 fill_elf_note_phdr(phdr4note, sz, offset); 2224 offset += sz; 2225 } 2226 2227 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 2228 2229 offset += vma_data_size; 2230 offset += elf_core_extra_data_size(); 2231 e_shoff = offset; 2232 2233 if (e_phnum == PN_XNUM) { 2234 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); 2235 if (!shdr4extnum) 2236 goto end_coredump; 2237 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs); 2238 } 2239 2240 offset = dataoff; 2241 2242 if (!dump_emit(cprm, &elf, sizeof(elf))) 2243 goto end_coredump; 2244 2245 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note))) 2246 goto end_coredump; 2247 2248 /* Write program headers for segments dump */ 2249 for (i = 0; i < vma_count; i++) { 2250 struct core_vma_metadata *meta = vma_meta + i; 2251 struct elf_phdr phdr; 2252 2253 phdr.p_type = PT_LOAD; 2254 phdr.p_offset = offset; 2255 phdr.p_vaddr = meta->start; 2256 phdr.p_paddr = 0; 2257 phdr.p_filesz = meta->dump_size; 2258 phdr.p_memsz = meta->end - meta->start; 2259 offset += phdr.p_filesz; 2260 phdr.p_flags = 0; 2261 if (meta->flags & VM_READ) 2262 phdr.p_flags |= PF_R; 2263 if (meta->flags & VM_WRITE) 2264 phdr.p_flags |= PF_W; 2265 if (meta->flags & VM_EXEC) 2266 phdr.p_flags |= PF_X; 2267 phdr.p_align = ELF_EXEC_PAGESIZE; 2268 2269 if (!dump_emit(cprm, &phdr, sizeof(phdr))) 2270 goto end_coredump; 2271 } 2272 2273 if (!elf_core_write_extra_phdrs(cprm, offset)) 2274 goto end_coredump; 2275 2276 /* write out the notes section */ 2277 if (!write_note_info(&info, cprm)) 2278 goto end_coredump; 2279 2280 /* For cell spufs */ 2281 if (elf_coredump_extra_notes_write(cprm)) 2282 goto end_coredump; 2283 2284 /* Align to page */ 2285 dump_skip_to(cprm, dataoff); 2286 2287 for (i = 0; i < vma_count; i++) { 2288 struct core_vma_metadata *meta = vma_meta + i; 2289 2290 if (!dump_user_range(cprm, meta->start, meta->dump_size)) 2291 goto end_coredump; 2292 } 2293 2294 if (!elf_core_write_extra_data(cprm)) 2295 goto end_coredump; 2296 2297 if (e_phnum == PN_XNUM) { 2298 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum))) 2299 goto end_coredump; 2300 } 2301 2302 end_coredump: 2303 free_note_info(&info); 2304 kfree(shdr4extnum); 2305 kvfree(vma_meta); 2306 kfree(phdr4note); 2307 return has_dumped; 2308 } 2309 2310 #endif /* CONFIG_ELF_CORE */ 2311 2312 static int __init init_elf_binfmt(void) 2313 { 2314 register_binfmt(&elf_format); 2315 return 0; 2316 } 2317 2318 static void __exit exit_elf_binfmt(void) 2319 { 2320 /* Remove the COFF and ELF loaders. */ 2321 unregister_binfmt(&elf_format); 2322 } 2323 2324 core_initcall(init_elf_binfmt); 2325 module_exit(exit_elf_binfmt); 2326 MODULE_LICENSE("GPL"); 2327