1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/binfmt_elf.c 4 * 5 * These are the functions used to load ELF format executables as used 6 * on SVr4 machines. Information on the format may be found in the book 7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 8 * Tools". 9 * 10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 11 */ 12 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/fs.h> 16 #include <linux/log2.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/errno.h> 20 #include <linux/signal.h> 21 #include <linux/binfmts.h> 22 #include <linux/string.h> 23 #include <linux/file.h> 24 #include <linux/slab.h> 25 #include <linux/personality.h> 26 #include <linux/elfcore.h> 27 #include <linux/init.h> 28 #include <linux/highuid.h> 29 #include <linux/compiler.h> 30 #include <linux/highmem.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vmalloc.h> 34 #include <linux/security.h> 35 #include <linux/random.h> 36 #include <linux/elf.h> 37 #include <linux/elf-randomize.h> 38 #include <linux/utsname.h> 39 #include <linux/coredump.h> 40 #include <linux/sched.h> 41 #include <linux/sched/coredump.h> 42 #include <linux/sched/task_stack.h> 43 #include <linux/sched/cputime.h> 44 #include <linux/sizes.h> 45 #include <linux/types.h> 46 #include <linux/cred.h> 47 #include <linux/dax.h> 48 #include <linux/uaccess.h> 49 #include <asm/param.h> 50 #include <asm/page.h> 51 52 #ifndef ELF_COMPAT 53 #define ELF_COMPAT 0 54 #endif 55 56 #ifndef user_long_t 57 #define user_long_t long 58 #endif 59 #ifndef user_siginfo_t 60 #define user_siginfo_t siginfo_t 61 #endif 62 63 /* That's for binfmt_elf_fdpic to deal with */ 64 #ifndef elf_check_fdpic 65 #define elf_check_fdpic(ex) false 66 #endif 67 68 static int load_elf_binary(struct linux_binprm *bprm); 69 70 #ifdef CONFIG_USELIB 71 static int load_elf_library(struct file *); 72 #else 73 #define load_elf_library NULL 74 #endif 75 76 /* 77 * If we don't support core dumping, then supply a NULL so we 78 * don't even try. 79 */ 80 #ifdef CONFIG_ELF_CORE 81 static int elf_core_dump(struct coredump_params *cprm); 82 #else 83 #define elf_core_dump NULL 84 #endif 85 86 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 87 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 88 #else 89 #define ELF_MIN_ALIGN PAGE_SIZE 90 #endif 91 92 #ifndef ELF_CORE_EFLAGS 93 #define ELF_CORE_EFLAGS 0 94 #endif 95 96 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) 97 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 98 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 99 100 static struct linux_binfmt elf_format = { 101 .module = THIS_MODULE, 102 .load_binary = load_elf_binary, 103 .load_shlib = load_elf_library, 104 .core_dump = elf_core_dump, 105 .min_coredump = ELF_EXEC_PAGESIZE, 106 }; 107 108 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE)) 109 110 static int set_brk(unsigned long start, unsigned long end, int prot) 111 { 112 start = ELF_PAGEALIGN(start); 113 end = ELF_PAGEALIGN(end); 114 if (end > start) { 115 /* 116 * Map the last of the bss segment. 117 * If the header is requesting these pages to be 118 * executable, honour that (ppc32 needs this). 119 */ 120 int error = vm_brk_flags(start, end - start, 121 prot & PROT_EXEC ? VM_EXEC : 0); 122 if (error) 123 return error; 124 } 125 current->mm->start_brk = current->mm->brk = end; 126 return 0; 127 } 128 129 /* We need to explicitly zero any fractional pages 130 after the data section (i.e. bss). This would 131 contain the junk from the file that should not 132 be in memory 133 */ 134 static int padzero(unsigned long elf_bss) 135 { 136 unsigned long nbyte; 137 138 nbyte = ELF_PAGEOFFSET(elf_bss); 139 if (nbyte) { 140 nbyte = ELF_MIN_ALIGN - nbyte; 141 if (clear_user((void __user *) elf_bss, nbyte)) 142 return -EFAULT; 143 } 144 return 0; 145 } 146 147 /* Let's use some macros to make this stack manipulation a little clearer */ 148 #ifdef CONFIG_STACK_GROWSUP 149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 150 #define STACK_ROUND(sp, items) \ 151 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 152 #define STACK_ALLOC(sp, len) ({ \ 153 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 154 old_sp; }) 155 #else 156 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 157 #define STACK_ROUND(sp, items) \ 158 (((unsigned long) (sp - items)) &~ 15UL) 159 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) 160 #endif 161 162 #ifndef ELF_BASE_PLATFORM 163 /* 164 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. 165 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value 166 * will be copied to the user stack in the same manner as AT_PLATFORM. 167 */ 168 #define ELF_BASE_PLATFORM NULL 169 #endif 170 171 static int 172 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec, 173 unsigned long load_addr, unsigned long interp_load_addr, 174 unsigned long e_entry) 175 { 176 struct mm_struct *mm = current->mm; 177 unsigned long p = bprm->p; 178 int argc = bprm->argc; 179 int envc = bprm->envc; 180 elf_addr_t __user *sp; 181 elf_addr_t __user *u_platform; 182 elf_addr_t __user *u_base_platform; 183 elf_addr_t __user *u_rand_bytes; 184 const char *k_platform = ELF_PLATFORM; 185 const char *k_base_platform = ELF_BASE_PLATFORM; 186 unsigned char k_rand_bytes[16]; 187 int items; 188 elf_addr_t *elf_info; 189 elf_addr_t flags = 0; 190 int ei_index; 191 const struct cred *cred = current_cred(); 192 struct vm_area_struct *vma; 193 194 /* 195 * In some cases (e.g. Hyper-Threading), we want to avoid L1 196 * evictions by the processes running on the same package. One 197 * thing we can do is to shuffle the initial stack for them. 198 */ 199 200 p = arch_align_stack(p); 201 202 /* 203 * If this architecture has a platform capability string, copy it 204 * to userspace. In some cases (Sparc), this info is impossible 205 * for userspace to get any other way, in others (i386) it is 206 * merely difficult. 207 */ 208 u_platform = NULL; 209 if (k_platform) { 210 size_t len = strlen(k_platform) + 1; 211 212 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 213 if (copy_to_user(u_platform, k_platform, len)) 214 return -EFAULT; 215 } 216 217 /* 218 * If this architecture has a "base" platform capability 219 * string, copy it to userspace. 220 */ 221 u_base_platform = NULL; 222 if (k_base_platform) { 223 size_t len = strlen(k_base_platform) + 1; 224 225 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 226 if (copy_to_user(u_base_platform, k_base_platform, len)) 227 return -EFAULT; 228 } 229 230 /* 231 * Generate 16 random bytes for userspace PRNG seeding. 232 */ 233 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); 234 u_rand_bytes = (elf_addr_t __user *) 235 STACK_ALLOC(p, sizeof(k_rand_bytes)); 236 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) 237 return -EFAULT; 238 239 /* Create the ELF interpreter info */ 240 elf_info = (elf_addr_t *)mm->saved_auxv; 241 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 242 #define NEW_AUX_ENT(id, val) \ 243 do { \ 244 *elf_info++ = id; \ 245 *elf_info++ = val; \ 246 } while (0) 247 248 #ifdef ARCH_DLINFO 249 /* 250 * ARCH_DLINFO must come first so PPC can do its special alignment of 251 * AUXV. 252 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 253 * ARCH_DLINFO changes 254 */ 255 ARCH_DLINFO; 256 #endif 257 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 258 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 259 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 260 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); 261 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 262 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 263 NEW_AUX_ENT(AT_BASE, interp_load_addr); 264 if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0) 265 flags |= AT_FLAGS_PRESERVE_ARGV0; 266 NEW_AUX_ENT(AT_FLAGS, flags); 267 NEW_AUX_ENT(AT_ENTRY, e_entry); 268 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid)); 269 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid)); 270 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid)); 271 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid)); 272 NEW_AUX_ENT(AT_SECURE, bprm->secureexec); 273 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); 274 #ifdef ELF_HWCAP2 275 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2); 276 #endif 277 NEW_AUX_ENT(AT_EXECFN, bprm->exec); 278 if (k_platform) { 279 NEW_AUX_ENT(AT_PLATFORM, 280 (elf_addr_t)(unsigned long)u_platform); 281 } 282 if (k_base_platform) { 283 NEW_AUX_ENT(AT_BASE_PLATFORM, 284 (elf_addr_t)(unsigned long)u_base_platform); 285 } 286 if (bprm->have_execfd) { 287 NEW_AUX_ENT(AT_EXECFD, bprm->execfd); 288 } 289 #undef NEW_AUX_ENT 290 /* AT_NULL is zero; clear the rest too */ 291 memset(elf_info, 0, (char *)mm->saved_auxv + 292 sizeof(mm->saved_auxv) - (char *)elf_info); 293 294 /* And advance past the AT_NULL entry. */ 295 elf_info += 2; 296 297 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv; 298 sp = STACK_ADD(p, ei_index); 299 300 items = (argc + 1) + (envc + 1) + 1; 301 bprm->p = STACK_ROUND(sp, items); 302 303 /* Point sp at the lowest address on the stack */ 304 #ifdef CONFIG_STACK_GROWSUP 305 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 306 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 307 #else 308 sp = (elf_addr_t __user *)bprm->p; 309 #endif 310 311 312 /* 313 * Grow the stack manually; some architectures have a limit on how 314 * far ahead a user-space access may be in order to grow the stack. 315 */ 316 if (mmap_read_lock_killable(mm)) 317 return -EINTR; 318 vma = find_extend_vma(mm, bprm->p); 319 mmap_read_unlock(mm); 320 if (!vma) 321 return -EFAULT; 322 323 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 324 if (put_user(argc, sp++)) 325 return -EFAULT; 326 327 /* Populate list of argv pointers back to argv strings. */ 328 p = mm->arg_end = mm->arg_start; 329 while (argc-- > 0) { 330 size_t len; 331 if (put_user((elf_addr_t)p, sp++)) 332 return -EFAULT; 333 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 334 if (!len || len > MAX_ARG_STRLEN) 335 return -EINVAL; 336 p += len; 337 } 338 if (put_user(0, sp++)) 339 return -EFAULT; 340 mm->arg_end = p; 341 342 /* Populate list of envp pointers back to envp strings. */ 343 mm->env_end = mm->env_start = p; 344 while (envc-- > 0) { 345 size_t len; 346 if (put_user((elf_addr_t)p, sp++)) 347 return -EFAULT; 348 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 349 if (!len || len > MAX_ARG_STRLEN) 350 return -EINVAL; 351 p += len; 352 } 353 if (put_user(0, sp++)) 354 return -EFAULT; 355 mm->env_end = p; 356 357 /* Put the elf_info on the stack in the right place. */ 358 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t))) 359 return -EFAULT; 360 return 0; 361 } 362 363 static unsigned long elf_map(struct file *filep, unsigned long addr, 364 const struct elf_phdr *eppnt, int prot, int type, 365 unsigned long total_size) 366 { 367 unsigned long map_addr; 368 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 369 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 370 addr = ELF_PAGESTART(addr); 371 size = ELF_PAGEALIGN(size); 372 373 /* mmap() will return -EINVAL if given a zero size, but a 374 * segment with zero filesize is perfectly valid */ 375 if (!size) 376 return addr; 377 378 /* 379 * total_size is the size of the ELF (interpreter) image. 380 * The _first_ mmap needs to know the full size, otherwise 381 * randomization might put this image into an overlapping 382 * position with the ELF binary image. (since size < total_size) 383 * So we first map the 'big' image - and unmap the remainder at 384 * the end. (which unmap is needed for ELF images with holes.) 385 */ 386 if (total_size) { 387 total_size = ELF_PAGEALIGN(total_size); 388 map_addr = vm_mmap(filep, addr, total_size, prot, type, off); 389 if (!BAD_ADDR(map_addr)) 390 vm_munmap(map_addr+size, total_size-size); 391 } else 392 map_addr = vm_mmap(filep, addr, size, prot, type, off); 393 394 if ((type & MAP_FIXED_NOREPLACE) && 395 PTR_ERR((void *)map_addr) == -EEXIST) 396 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n", 397 task_pid_nr(current), current->comm, (void *)addr); 398 399 return(map_addr); 400 } 401 402 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr) 403 { 404 int i, first_idx = -1, last_idx = -1; 405 406 for (i = 0; i < nr; i++) { 407 if (cmds[i].p_type == PT_LOAD) { 408 last_idx = i; 409 if (first_idx == -1) 410 first_idx = i; 411 } 412 } 413 if (first_idx == -1) 414 return 0; 415 416 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - 417 ELF_PAGESTART(cmds[first_idx].p_vaddr); 418 } 419 420 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos) 421 { 422 ssize_t rv; 423 424 rv = kernel_read(file, buf, len, &pos); 425 if (unlikely(rv != len)) { 426 return (rv < 0) ? rv : -EIO; 427 } 428 return 0; 429 } 430 431 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr) 432 { 433 unsigned long alignment = 0; 434 int i; 435 436 for (i = 0; i < nr; i++) { 437 if (cmds[i].p_type == PT_LOAD) { 438 unsigned long p_align = cmds[i].p_align; 439 440 /* skip non-power of two alignments as invalid */ 441 if (!is_power_of_2(p_align)) 442 continue; 443 alignment = max(alignment, p_align); 444 } 445 } 446 447 /* ensure we align to at least one page */ 448 return ELF_PAGEALIGN(alignment); 449 } 450 451 /** 452 * load_elf_phdrs() - load ELF program headers 453 * @elf_ex: ELF header of the binary whose program headers should be loaded 454 * @elf_file: the opened ELF binary file 455 * 456 * Loads ELF program headers from the binary file elf_file, which has the ELF 457 * header pointed to by elf_ex, into a newly allocated array. The caller is 458 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure. 459 */ 460 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex, 461 struct file *elf_file) 462 { 463 struct elf_phdr *elf_phdata = NULL; 464 int retval, err = -1; 465 unsigned int size; 466 467 /* 468 * If the size of this structure has changed, then punt, since 469 * we will be doing the wrong thing. 470 */ 471 if (elf_ex->e_phentsize != sizeof(struct elf_phdr)) 472 goto out; 473 474 /* Sanity check the number of program headers... */ 475 /* ...and their total size. */ 476 size = sizeof(struct elf_phdr) * elf_ex->e_phnum; 477 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN) 478 goto out; 479 480 elf_phdata = kmalloc(size, GFP_KERNEL); 481 if (!elf_phdata) 482 goto out; 483 484 /* Read in the program headers */ 485 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff); 486 if (retval < 0) { 487 err = retval; 488 goto out; 489 } 490 491 /* Success! */ 492 err = 0; 493 out: 494 if (err) { 495 kfree(elf_phdata); 496 elf_phdata = NULL; 497 } 498 return elf_phdata; 499 } 500 501 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE 502 503 /** 504 * struct arch_elf_state - arch-specific ELF loading state 505 * 506 * This structure is used to preserve architecture specific data during 507 * the loading of an ELF file, throughout the checking of architecture 508 * specific ELF headers & through to the point where the ELF load is 509 * known to be proceeding (ie. SET_PERSONALITY). 510 * 511 * This implementation is a dummy for architectures which require no 512 * specific state. 513 */ 514 struct arch_elf_state { 515 }; 516 517 #define INIT_ARCH_ELF_STATE {} 518 519 /** 520 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header 521 * @ehdr: The main ELF header 522 * @phdr: The program header to check 523 * @elf: The open ELF file 524 * @is_interp: True if the phdr is from the interpreter of the ELF being 525 * loaded, else false. 526 * @state: Architecture-specific state preserved throughout the process 527 * of loading the ELF. 528 * 529 * Inspects the program header phdr to validate its correctness and/or 530 * suitability for the system. Called once per ELF program header in the 531 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its 532 * interpreter. 533 * 534 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 535 * with that return code. 536 */ 537 static inline int arch_elf_pt_proc(struct elfhdr *ehdr, 538 struct elf_phdr *phdr, 539 struct file *elf, bool is_interp, 540 struct arch_elf_state *state) 541 { 542 /* Dummy implementation, always proceed */ 543 return 0; 544 } 545 546 /** 547 * arch_check_elf() - check an ELF executable 548 * @ehdr: The main ELF header 549 * @has_interp: True if the ELF has an interpreter, else false. 550 * @interp_ehdr: The interpreter's ELF header 551 * @state: Architecture-specific state preserved throughout the process 552 * of loading the ELF. 553 * 554 * Provides a final opportunity for architecture code to reject the loading 555 * of the ELF & cause an exec syscall to return an error. This is called after 556 * all program headers to be checked by arch_elf_pt_proc have been. 557 * 558 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 559 * with that return code. 560 */ 561 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp, 562 struct elfhdr *interp_ehdr, 563 struct arch_elf_state *state) 564 { 565 /* Dummy implementation, always proceed */ 566 return 0; 567 } 568 569 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */ 570 571 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state, 572 bool has_interp, bool is_interp) 573 { 574 int prot = 0; 575 576 if (p_flags & PF_R) 577 prot |= PROT_READ; 578 if (p_flags & PF_W) 579 prot |= PROT_WRITE; 580 if (p_flags & PF_X) 581 prot |= PROT_EXEC; 582 583 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp); 584 } 585 586 /* This is much more generalized than the library routine read function, 587 so we keep this separate. Technically the library read function 588 is only provided so that we can read a.out libraries that have 589 an ELF header */ 590 591 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 592 struct file *interpreter, 593 unsigned long no_base, struct elf_phdr *interp_elf_phdata, 594 struct arch_elf_state *arch_state) 595 { 596 struct elf_phdr *eppnt; 597 unsigned long load_addr = 0; 598 int load_addr_set = 0; 599 unsigned long last_bss = 0, elf_bss = 0; 600 int bss_prot = 0; 601 unsigned long error = ~0UL; 602 unsigned long total_size; 603 int i; 604 605 /* First of all, some simple consistency checks */ 606 if (interp_elf_ex->e_type != ET_EXEC && 607 interp_elf_ex->e_type != ET_DYN) 608 goto out; 609 if (!elf_check_arch(interp_elf_ex) || 610 elf_check_fdpic(interp_elf_ex)) 611 goto out; 612 if (!interpreter->f_op->mmap) 613 goto out; 614 615 total_size = total_mapping_size(interp_elf_phdata, 616 interp_elf_ex->e_phnum); 617 if (!total_size) { 618 error = -EINVAL; 619 goto out; 620 } 621 622 eppnt = interp_elf_phdata; 623 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 624 if (eppnt->p_type == PT_LOAD) { 625 int elf_type = MAP_PRIVATE; 626 int elf_prot = make_prot(eppnt->p_flags, arch_state, 627 true, true); 628 unsigned long vaddr = 0; 629 unsigned long k, map_addr; 630 631 vaddr = eppnt->p_vaddr; 632 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 633 elf_type |= MAP_FIXED; 634 else if (no_base && interp_elf_ex->e_type == ET_DYN) 635 load_addr = -vaddr; 636 637 map_addr = elf_map(interpreter, load_addr + vaddr, 638 eppnt, elf_prot, elf_type, total_size); 639 total_size = 0; 640 error = map_addr; 641 if (BAD_ADDR(map_addr)) 642 goto out; 643 644 if (!load_addr_set && 645 interp_elf_ex->e_type == ET_DYN) { 646 load_addr = map_addr - ELF_PAGESTART(vaddr); 647 load_addr_set = 1; 648 } 649 650 /* 651 * Check to see if the section's size will overflow the 652 * allowed task size. Note that p_filesz must always be 653 * <= p_memsize so it's only necessary to check p_memsz. 654 */ 655 k = load_addr + eppnt->p_vaddr; 656 if (BAD_ADDR(k) || 657 eppnt->p_filesz > eppnt->p_memsz || 658 eppnt->p_memsz > TASK_SIZE || 659 TASK_SIZE - eppnt->p_memsz < k) { 660 error = -ENOMEM; 661 goto out; 662 } 663 664 /* 665 * Find the end of the file mapping for this phdr, and 666 * keep track of the largest address we see for this. 667 */ 668 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; 669 if (k > elf_bss) 670 elf_bss = k; 671 672 /* 673 * Do the same thing for the memory mapping - between 674 * elf_bss and last_bss is the bss section. 675 */ 676 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz; 677 if (k > last_bss) { 678 last_bss = k; 679 bss_prot = elf_prot; 680 } 681 } 682 } 683 684 /* 685 * Now fill out the bss section: first pad the last page from 686 * the file up to the page boundary, and zero it from elf_bss 687 * up to the end of the page. 688 */ 689 if (padzero(elf_bss)) { 690 error = -EFAULT; 691 goto out; 692 } 693 /* 694 * Next, align both the file and mem bss up to the page size, 695 * since this is where elf_bss was just zeroed up to, and where 696 * last_bss will end after the vm_brk_flags() below. 697 */ 698 elf_bss = ELF_PAGEALIGN(elf_bss); 699 last_bss = ELF_PAGEALIGN(last_bss); 700 /* Finally, if there is still more bss to allocate, do it. */ 701 if (last_bss > elf_bss) { 702 error = vm_brk_flags(elf_bss, last_bss - elf_bss, 703 bss_prot & PROT_EXEC ? VM_EXEC : 0); 704 if (error) 705 goto out; 706 } 707 708 error = load_addr; 709 out: 710 return error; 711 } 712 713 /* 714 * These are the functions used to load ELF style executables and shared 715 * libraries. There is no binary dependent code anywhere else. 716 */ 717 718 static int parse_elf_property(const char *data, size_t *off, size_t datasz, 719 struct arch_elf_state *arch, 720 bool have_prev_type, u32 *prev_type) 721 { 722 size_t o, step; 723 const struct gnu_property *pr; 724 int ret; 725 726 if (*off == datasz) 727 return -ENOENT; 728 729 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN)) 730 return -EIO; 731 o = *off; 732 datasz -= *off; 733 734 if (datasz < sizeof(*pr)) 735 return -ENOEXEC; 736 pr = (const struct gnu_property *)(data + o); 737 o += sizeof(*pr); 738 datasz -= sizeof(*pr); 739 740 if (pr->pr_datasz > datasz) 741 return -ENOEXEC; 742 743 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN); 744 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN); 745 if (step > datasz) 746 return -ENOEXEC; 747 748 /* Properties are supposed to be unique and sorted on pr_type: */ 749 if (have_prev_type && pr->pr_type <= *prev_type) 750 return -ENOEXEC; 751 *prev_type = pr->pr_type; 752 753 ret = arch_parse_elf_property(pr->pr_type, data + o, 754 pr->pr_datasz, ELF_COMPAT, arch); 755 if (ret) 756 return ret; 757 758 *off = o + step; 759 return 0; 760 } 761 762 #define NOTE_DATA_SZ SZ_1K 763 #define GNU_PROPERTY_TYPE_0_NAME "GNU" 764 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME)) 765 766 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr, 767 struct arch_elf_state *arch) 768 { 769 union { 770 struct elf_note nhdr; 771 char data[NOTE_DATA_SZ]; 772 } note; 773 loff_t pos; 774 ssize_t n; 775 size_t off, datasz; 776 int ret; 777 bool have_prev_type; 778 u32 prev_type; 779 780 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr) 781 return 0; 782 783 /* load_elf_binary() shouldn't call us unless this is true... */ 784 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY)) 785 return -ENOEXEC; 786 787 /* If the properties are crazy large, that's too bad (for now): */ 788 if (phdr->p_filesz > sizeof(note)) 789 return -ENOEXEC; 790 791 pos = phdr->p_offset; 792 n = kernel_read(f, ¬e, phdr->p_filesz, &pos); 793 794 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ); 795 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ) 796 return -EIO; 797 798 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 799 note.nhdr.n_namesz != NOTE_NAME_SZ || 800 strncmp(note.data + sizeof(note.nhdr), 801 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr))) 802 return -ENOEXEC; 803 804 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ, 805 ELF_GNU_PROPERTY_ALIGN); 806 if (off > n) 807 return -ENOEXEC; 808 809 if (note.nhdr.n_descsz > n - off) 810 return -ENOEXEC; 811 datasz = off + note.nhdr.n_descsz; 812 813 have_prev_type = false; 814 do { 815 ret = parse_elf_property(note.data, &off, datasz, arch, 816 have_prev_type, &prev_type); 817 have_prev_type = true; 818 } while (!ret); 819 820 return ret == -ENOENT ? 0 : ret; 821 } 822 823 static int load_elf_binary(struct linux_binprm *bprm) 824 { 825 struct file *interpreter = NULL; /* to shut gcc up */ 826 unsigned long load_addr = 0, load_bias = 0; 827 int load_addr_set = 0; 828 unsigned long error; 829 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL; 830 struct elf_phdr *elf_property_phdata = NULL; 831 unsigned long elf_bss, elf_brk; 832 int bss_prot = 0; 833 int retval, i; 834 unsigned long elf_entry; 835 unsigned long e_entry; 836 unsigned long interp_load_addr = 0; 837 unsigned long start_code, end_code, start_data, end_data; 838 unsigned long reloc_func_desc __maybe_unused = 0; 839 int executable_stack = EXSTACK_DEFAULT; 840 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf; 841 struct elfhdr *interp_elf_ex = NULL; 842 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE; 843 struct mm_struct *mm; 844 struct pt_regs *regs; 845 846 retval = -ENOEXEC; 847 /* First of all, some simple consistency checks */ 848 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 849 goto out; 850 851 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN) 852 goto out; 853 if (!elf_check_arch(elf_ex)) 854 goto out; 855 if (elf_check_fdpic(elf_ex)) 856 goto out; 857 if (!bprm->file->f_op->mmap) 858 goto out; 859 860 elf_phdata = load_elf_phdrs(elf_ex, bprm->file); 861 if (!elf_phdata) 862 goto out; 863 864 elf_ppnt = elf_phdata; 865 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) { 866 char *elf_interpreter; 867 868 if (elf_ppnt->p_type == PT_GNU_PROPERTY) { 869 elf_property_phdata = elf_ppnt; 870 continue; 871 } 872 873 if (elf_ppnt->p_type != PT_INTERP) 874 continue; 875 876 /* 877 * This is the program interpreter used for shared libraries - 878 * for now assume that this is an a.out format binary. 879 */ 880 retval = -ENOEXEC; 881 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2) 882 goto out_free_ph; 883 884 retval = -ENOMEM; 885 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL); 886 if (!elf_interpreter) 887 goto out_free_ph; 888 889 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz, 890 elf_ppnt->p_offset); 891 if (retval < 0) 892 goto out_free_interp; 893 /* make sure path is NULL terminated */ 894 retval = -ENOEXEC; 895 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 896 goto out_free_interp; 897 898 interpreter = open_exec(elf_interpreter); 899 kfree(elf_interpreter); 900 retval = PTR_ERR(interpreter); 901 if (IS_ERR(interpreter)) 902 goto out_free_ph; 903 904 /* 905 * If the binary is not readable then enforce mm->dumpable = 0 906 * regardless of the interpreter's permissions. 907 */ 908 would_dump(bprm, interpreter); 909 910 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL); 911 if (!interp_elf_ex) { 912 retval = -ENOMEM; 913 goto out_free_ph; 914 } 915 916 /* Get the exec headers */ 917 retval = elf_read(interpreter, interp_elf_ex, 918 sizeof(*interp_elf_ex), 0); 919 if (retval < 0) 920 goto out_free_dentry; 921 922 break; 923 924 out_free_interp: 925 kfree(elf_interpreter); 926 goto out_free_ph; 927 } 928 929 elf_ppnt = elf_phdata; 930 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) 931 switch (elf_ppnt->p_type) { 932 case PT_GNU_STACK: 933 if (elf_ppnt->p_flags & PF_X) 934 executable_stack = EXSTACK_ENABLE_X; 935 else 936 executable_stack = EXSTACK_DISABLE_X; 937 break; 938 939 case PT_LOPROC ... PT_HIPROC: 940 retval = arch_elf_pt_proc(elf_ex, elf_ppnt, 941 bprm->file, false, 942 &arch_state); 943 if (retval) 944 goto out_free_dentry; 945 break; 946 } 947 948 /* Some simple consistency checks for the interpreter */ 949 if (interpreter) { 950 retval = -ELIBBAD; 951 /* Not an ELF interpreter */ 952 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 953 goto out_free_dentry; 954 /* Verify the interpreter has a valid arch */ 955 if (!elf_check_arch(interp_elf_ex) || 956 elf_check_fdpic(interp_elf_ex)) 957 goto out_free_dentry; 958 959 /* Load the interpreter program headers */ 960 interp_elf_phdata = load_elf_phdrs(interp_elf_ex, 961 interpreter); 962 if (!interp_elf_phdata) 963 goto out_free_dentry; 964 965 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */ 966 elf_property_phdata = NULL; 967 elf_ppnt = interp_elf_phdata; 968 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++) 969 switch (elf_ppnt->p_type) { 970 case PT_GNU_PROPERTY: 971 elf_property_phdata = elf_ppnt; 972 break; 973 974 case PT_LOPROC ... PT_HIPROC: 975 retval = arch_elf_pt_proc(interp_elf_ex, 976 elf_ppnt, interpreter, 977 true, &arch_state); 978 if (retval) 979 goto out_free_dentry; 980 break; 981 } 982 } 983 984 retval = parse_elf_properties(interpreter ?: bprm->file, 985 elf_property_phdata, &arch_state); 986 if (retval) 987 goto out_free_dentry; 988 989 /* 990 * Allow arch code to reject the ELF at this point, whilst it's 991 * still possible to return an error to the code that invoked 992 * the exec syscall. 993 */ 994 retval = arch_check_elf(elf_ex, 995 !!interpreter, interp_elf_ex, 996 &arch_state); 997 if (retval) 998 goto out_free_dentry; 999 1000 /* Flush all traces of the currently running executable */ 1001 retval = begin_new_exec(bprm); 1002 if (retval) 1003 goto out_free_dentry; 1004 1005 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 1006 may depend on the personality. */ 1007 SET_PERSONALITY2(*elf_ex, &arch_state); 1008 if (elf_read_implies_exec(*elf_ex, executable_stack)) 1009 current->personality |= READ_IMPLIES_EXEC; 1010 1011 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1012 current->flags |= PF_RANDOMIZE; 1013 1014 setup_new_exec(bprm); 1015 1016 /* Do this so that we can load the interpreter, if need be. We will 1017 change some of these later */ 1018 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 1019 executable_stack); 1020 if (retval < 0) 1021 goto out_free_dentry; 1022 1023 elf_bss = 0; 1024 elf_brk = 0; 1025 1026 start_code = ~0UL; 1027 end_code = 0; 1028 start_data = 0; 1029 end_data = 0; 1030 1031 /* Now we do a little grungy work by mmapping the ELF image into 1032 the correct location in memory. */ 1033 for(i = 0, elf_ppnt = elf_phdata; 1034 i < elf_ex->e_phnum; i++, elf_ppnt++) { 1035 int elf_prot, elf_flags; 1036 unsigned long k, vaddr; 1037 unsigned long total_size = 0; 1038 unsigned long alignment; 1039 1040 if (elf_ppnt->p_type != PT_LOAD) 1041 continue; 1042 1043 if (unlikely (elf_brk > elf_bss)) { 1044 unsigned long nbyte; 1045 1046 /* There was a PT_LOAD segment with p_memsz > p_filesz 1047 before this one. Map anonymous pages, if needed, 1048 and clear the area. */ 1049 retval = set_brk(elf_bss + load_bias, 1050 elf_brk + load_bias, 1051 bss_prot); 1052 if (retval) 1053 goto out_free_dentry; 1054 nbyte = ELF_PAGEOFFSET(elf_bss); 1055 if (nbyte) { 1056 nbyte = ELF_MIN_ALIGN - nbyte; 1057 if (nbyte > elf_brk - elf_bss) 1058 nbyte = elf_brk - elf_bss; 1059 if (clear_user((void __user *)elf_bss + 1060 load_bias, nbyte)) { 1061 /* 1062 * This bss-zeroing can fail if the ELF 1063 * file specifies odd protections. So 1064 * we don't check the return value 1065 */ 1066 } 1067 } 1068 } 1069 1070 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state, 1071 !!interpreter, false); 1072 1073 elf_flags = MAP_PRIVATE; 1074 1075 vaddr = elf_ppnt->p_vaddr; 1076 /* 1077 * If we are loading ET_EXEC or we have already performed 1078 * the ET_DYN load_addr calculations, proceed normally. 1079 */ 1080 if (elf_ex->e_type == ET_EXEC || load_addr_set) { 1081 elf_flags |= MAP_FIXED; 1082 } else if (elf_ex->e_type == ET_DYN) { 1083 /* 1084 * This logic is run once for the first LOAD Program 1085 * Header for ET_DYN binaries to calculate the 1086 * randomization (load_bias) for all the LOAD 1087 * Program Headers, and to calculate the entire 1088 * size of the ELF mapping (total_size). (Note that 1089 * load_addr_set is set to true later once the 1090 * initial mapping is performed.) 1091 * 1092 * There are effectively two types of ET_DYN 1093 * binaries: programs (i.e. PIE: ET_DYN with INTERP) 1094 * and loaders (ET_DYN without INTERP, since they 1095 * _are_ the ELF interpreter). The loaders must 1096 * be loaded away from programs since the program 1097 * may otherwise collide with the loader (especially 1098 * for ET_EXEC which does not have a randomized 1099 * position). For example to handle invocations of 1100 * "./ld.so someprog" to test out a new version of 1101 * the loader, the subsequent program that the 1102 * loader loads must avoid the loader itself, so 1103 * they cannot share the same load range. Sufficient 1104 * room for the brk must be allocated with the 1105 * loader as well, since brk must be available with 1106 * the loader. 1107 * 1108 * Therefore, programs are loaded offset from 1109 * ELF_ET_DYN_BASE and loaders are loaded into the 1110 * independently randomized mmap region (0 load_bias 1111 * without MAP_FIXED). 1112 */ 1113 if (interpreter) { 1114 load_bias = ELF_ET_DYN_BASE; 1115 if (current->flags & PF_RANDOMIZE) 1116 load_bias += arch_mmap_rnd(); 1117 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum); 1118 if (alignment) 1119 load_bias &= ~(alignment - 1); 1120 elf_flags |= MAP_FIXED; 1121 } else 1122 load_bias = 0; 1123 1124 /* 1125 * Since load_bias is used for all subsequent loading 1126 * calculations, we must lower it by the first vaddr 1127 * so that the remaining calculations based on the 1128 * ELF vaddrs will be correctly offset. The result 1129 * is then page aligned. 1130 */ 1131 load_bias = ELF_PAGESTART(load_bias - vaddr); 1132 1133 total_size = total_mapping_size(elf_phdata, 1134 elf_ex->e_phnum); 1135 if (!total_size) { 1136 retval = -EINVAL; 1137 goto out_free_dentry; 1138 } 1139 } 1140 1141 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, 1142 elf_prot, elf_flags, total_size); 1143 if (BAD_ADDR(error)) { 1144 retval = IS_ERR((void *)error) ? 1145 PTR_ERR((void*)error) : -EINVAL; 1146 goto out_free_dentry; 1147 } 1148 1149 if (!load_addr_set) { 1150 load_addr_set = 1; 1151 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); 1152 if (elf_ex->e_type == ET_DYN) { 1153 load_bias += error - 1154 ELF_PAGESTART(load_bias + vaddr); 1155 load_addr += load_bias; 1156 reloc_func_desc = load_bias; 1157 } 1158 } 1159 k = elf_ppnt->p_vaddr; 1160 if ((elf_ppnt->p_flags & PF_X) && k < start_code) 1161 start_code = k; 1162 if (start_data < k) 1163 start_data = k; 1164 1165 /* 1166 * Check to see if the section's size will overflow the 1167 * allowed task size. Note that p_filesz must always be 1168 * <= p_memsz so it is only necessary to check p_memsz. 1169 */ 1170 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 1171 elf_ppnt->p_memsz > TASK_SIZE || 1172 TASK_SIZE - elf_ppnt->p_memsz < k) { 1173 /* set_brk can never work. Avoid overflows. */ 1174 retval = -EINVAL; 1175 goto out_free_dentry; 1176 } 1177 1178 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 1179 1180 if (k > elf_bss) 1181 elf_bss = k; 1182 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 1183 end_code = k; 1184 if (end_data < k) 1185 end_data = k; 1186 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 1187 if (k > elf_brk) { 1188 bss_prot = elf_prot; 1189 elf_brk = k; 1190 } 1191 } 1192 1193 e_entry = elf_ex->e_entry + load_bias; 1194 elf_bss += load_bias; 1195 elf_brk += load_bias; 1196 start_code += load_bias; 1197 end_code += load_bias; 1198 start_data += load_bias; 1199 end_data += load_bias; 1200 1201 /* Calling set_brk effectively mmaps the pages that we need 1202 * for the bss and break sections. We must do this before 1203 * mapping in the interpreter, to make sure it doesn't wind 1204 * up getting placed where the bss needs to go. 1205 */ 1206 retval = set_brk(elf_bss, elf_brk, bss_prot); 1207 if (retval) 1208 goto out_free_dentry; 1209 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { 1210 retval = -EFAULT; /* Nobody gets to see this, but.. */ 1211 goto out_free_dentry; 1212 } 1213 1214 if (interpreter) { 1215 elf_entry = load_elf_interp(interp_elf_ex, 1216 interpreter, 1217 load_bias, interp_elf_phdata, 1218 &arch_state); 1219 if (!IS_ERR((void *)elf_entry)) { 1220 /* 1221 * load_elf_interp() returns relocation 1222 * adjustment 1223 */ 1224 interp_load_addr = elf_entry; 1225 elf_entry += interp_elf_ex->e_entry; 1226 } 1227 if (BAD_ADDR(elf_entry)) { 1228 retval = IS_ERR((void *)elf_entry) ? 1229 (int)elf_entry : -EINVAL; 1230 goto out_free_dentry; 1231 } 1232 reloc_func_desc = interp_load_addr; 1233 1234 allow_write_access(interpreter); 1235 fput(interpreter); 1236 1237 kfree(interp_elf_ex); 1238 kfree(interp_elf_phdata); 1239 } else { 1240 elf_entry = e_entry; 1241 if (BAD_ADDR(elf_entry)) { 1242 retval = -EINVAL; 1243 goto out_free_dentry; 1244 } 1245 } 1246 1247 kfree(elf_phdata); 1248 1249 set_binfmt(&elf_format); 1250 1251 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 1252 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter); 1253 if (retval < 0) 1254 goto out; 1255 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 1256 1257 retval = create_elf_tables(bprm, elf_ex, 1258 load_addr, interp_load_addr, e_entry); 1259 if (retval < 0) 1260 goto out; 1261 1262 mm = current->mm; 1263 mm->end_code = end_code; 1264 mm->start_code = start_code; 1265 mm->start_data = start_data; 1266 mm->end_data = end_data; 1267 mm->start_stack = bprm->p; 1268 1269 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { 1270 /* 1271 * For architectures with ELF randomization, when executing 1272 * a loader directly (i.e. no interpreter listed in ELF 1273 * headers), move the brk area out of the mmap region 1274 * (since it grows up, and may collide early with the stack 1275 * growing down), and into the unused ELF_ET_DYN_BASE region. 1276 */ 1277 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && 1278 elf_ex->e_type == ET_DYN && !interpreter) { 1279 mm->brk = mm->start_brk = ELF_ET_DYN_BASE; 1280 } 1281 1282 mm->brk = mm->start_brk = arch_randomize_brk(mm); 1283 #ifdef compat_brk_randomized 1284 current->brk_randomized = 1; 1285 #endif 1286 } 1287 1288 if (current->personality & MMAP_PAGE_ZERO) { 1289 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 1290 and some applications "depend" upon this behavior. 1291 Since we do not have the power to recompile these, we 1292 emulate the SVr4 behavior. Sigh. */ 1293 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 1294 MAP_FIXED | MAP_PRIVATE, 0); 1295 } 1296 1297 regs = current_pt_regs(); 1298 #ifdef ELF_PLAT_INIT 1299 /* 1300 * The ABI may specify that certain registers be set up in special 1301 * ways (on i386 %edx is the address of a DT_FINI function, for 1302 * example. In addition, it may also specify (eg, PowerPC64 ELF) 1303 * that the e_entry field is the address of the function descriptor 1304 * for the startup routine, rather than the address of the startup 1305 * routine itself. This macro performs whatever initialization to 1306 * the regs structure is required as well as any relocations to the 1307 * function descriptor entries when executing dynamically links apps. 1308 */ 1309 ELF_PLAT_INIT(regs, reloc_func_desc); 1310 #endif 1311 1312 finalize_exec(bprm); 1313 START_THREAD(elf_ex, regs, elf_entry, bprm->p); 1314 retval = 0; 1315 out: 1316 return retval; 1317 1318 /* error cleanup */ 1319 out_free_dentry: 1320 kfree(interp_elf_ex); 1321 kfree(interp_elf_phdata); 1322 allow_write_access(interpreter); 1323 if (interpreter) 1324 fput(interpreter); 1325 out_free_ph: 1326 kfree(elf_phdata); 1327 goto out; 1328 } 1329 1330 #ifdef CONFIG_USELIB 1331 /* This is really simpleminded and specialized - we are loading an 1332 a.out library that is given an ELF header. */ 1333 static int load_elf_library(struct file *file) 1334 { 1335 struct elf_phdr *elf_phdata; 1336 struct elf_phdr *eppnt; 1337 unsigned long elf_bss, bss, len; 1338 int retval, error, i, j; 1339 struct elfhdr elf_ex; 1340 1341 error = -ENOEXEC; 1342 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0); 1343 if (retval < 0) 1344 goto out; 1345 1346 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1347 goto out; 1348 1349 /* First of all, some simple consistency checks */ 1350 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1351 !elf_check_arch(&elf_ex) || !file->f_op->mmap) 1352 goto out; 1353 if (elf_check_fdpic(&elf_ex)) 1354 goto out; 1355 1356 /* Now read in all of the header information */ 1357 1358 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1359 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1360 1361 error = -ENOMEM; 1362 elf_phdata = kmalloc(j, GFP_KERNEL); 1363 if (!elf_phdata) 1364 goto out; 1365 1366 eppnt = elf_phdata; 1367 error = -ENOEXEC; 1368 retval = elf_read(file, eppnt, j, elf_ex.e_phoff); 1369 if (retval < 0) 1370 goto out_free_ph; 1371 1372 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1373 if ((eppnt + i)->p_type == PT_LOAD) 1374 j++; 1375 if (j != 1) 1376 goto out_free_ph; 1377 1378 while (eppnt->p_type != PT_LOAD) 1379 eppnt++; 1380 1381 /* Now use mmap to map the library into memory. */ 1382 error = vm_mmap(file, 1383 ELF_PAGESTART(eppnt->p_vaddr), 1384 (eppnt->p_filesz + 1385 ELF_PAGEOFFSET(eppnt->p_vaddr)), 1386 PROT_READ | PROT_WRITE | PROT_EXEC, 1387 MAP_FIXED_NOREPLACE | MAP_PRIVATE, 1388 (eppnt->p_offset - 1389 ELF_PAGEOFFSET(eppnt->p_vaddr))); 1390 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1391 goto out_free_ph; 1392 1393 elf_bss = eppnt->p_vaddr + eppnt->p_filesz; 1394 if (padzero(elf_bss)) { 1395 error = -EFAULT; 1396 goto out_free_ph; 1397 } 1398 1399 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr); 1400 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr); 1401 if (bss > len) { 1402 error = vm_brk(len, bss - len); 1403 if (error) 1404 goto out_free_ph; 1405 } 1406 error = 0; 1407 1408 out_free_ph: 1409 kfree(elf_phdata); 1410 out: 1411 return error; 1412 } 1413 #endif /* #ifdef CONFIG_USELIB */ 1414 1415 #ifdef CONFIG_ELF_CORE 1416 /* 1417 * ELF core dumper 1418 * 1419 * Modelled on fs/exec.c:aout_core_dump() 1420 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1421 */ 1422 1423 /* An ELF note in memory */ 1424 struct memelfnote 1425 { 1426 const char *name; 1427 int type; 1428 unsigned int datasz; 1429 void *data; 1430 }; 1431 1432 static int notesize(struct memelfnote *en) 1433 { 1434 int sz; 1435 1436 sz = sizeof(struct elf_note); 1437 sz += roundup(strlen(en->name) + 1, 4); 1438 sz += roundup(en->datasz, 4); 1439 1440 return sz; 1441 } 1442 1443 static int writenote(struct memelfnote *men, struct coredump_params *cprm) 1444 { 1445 struct elf_note en; 1446 en.n_namesz = strlen(men->name) + 1; 1447 en.n_descsz = men->datasz; 1448 en.n_type = men->type; 1449 1450 return dump_emit(cprm, &en, sizeof(en)) && 1451 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) && 1452 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4); 1453 } 1454 1455 static void fill_elf_header(struct elfhdr *elf, int segs, 1456 u16 machine, u32 flags) 1457 { 1458 memset(elf, 0, sizeof(*elf)); 1459 1460 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1461 elf->e_ident[EI_CLASS] = ELF_CLASS; 1462 elf->e_ident[EI_DATA] = ELF_DATA; 1463 elf->e_ident[EI_VERSION] = EV_CURRENT; 1464 elf->e_ident[EI_OSABI] = ELF_OSABI; 1465 1466 elf->e_type = ET_CORE; 1467 elf->e_machine = machine; 1468 elf->e_version = EV_CURRENT; 1469 elf->e_phoff = sizeof(struct elfhdr); 1470 elf->e_flags = flags; 1471 elf->e_ehsize = sizeof(struct elfhdr); 1472 elf->e_phentsize = sizeof(struct elf_phdr); 1473 elf->e_phnum = segs; 1474 } 1475 1476 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1477 { 1478 phdr->p_type = PT_NOTE; 1479 phdr->p_offset = offset; 1480 phdr->p_vaddr = 0; 1481 phdr->p_paddr = 0; 1482 phdr->p_filesz = sz; 1483 phdr->p_memsz = 0; 1484 phdr->p_flags = 0; 1485 phdr->p_align = 0; 1486 } 1487 1488 static void fill_note(struct memelfnote *note, const char *name, int type, 1489 unsigned int sz, void *data) 1490 { 1491 note->name = name; 1492 note->type = type; 1493 note->datasz = sz; 1494 note->data = data; 1495 } 1496 1497 /* 1498 * fill up all the fields in prstatus from the given task struct, except 1499 * registers which need to be filled up separately. 1500 */ 1501 static void fill_prstatus(struct elf_prstatus_common *prstatus, 1502 struct task_struct *p, long signr) 1503 { 1504 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1505 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1506 prstatus->pr_sighold = p->blocked.sig[0]; 1507 rcu_read_lock(); 1508 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1509 rcu_read_unlock(); 1510 prstatus->pr_pid = task_pid_vnr(p); 1511 prstatus->pr_pgrp = task_pgrp_vnr(p); 1512 prstatus->pr_sid = task_session_vnr(p); 1513 if (thread_group_leader(p)) { 1514 struct task_cputime cputime; 1515 1516 /* 1517 * This is the record for the group leader. It shows the 1518 * group-wide total, not its individual thread total. 1519 */ 1520 thread_group_cputime(p, &cputime); 1521 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime); 1522 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime); 1523 } else { 1524 u64 utime, stime; 1525 1526 task_cputime(p, &utime, &stime); 1527 prstatus->pr_utime = ns_to_kernel_old_timeval(utime); 1528 prstatus->pr_stime = ns_to_kernel_old_timeval(stime); 1529 } 1530 1531 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime); 1532 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime); 1533 } 1534 1535 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1536 struct mm_struct *mm) 1537 { 1538 const struct cred *cred; 1539 unsigned int i, len; 1540 unsigned int state; 1541 1542 /* first copy the parameters from user space */ 1543 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1544 1545 len = mm->arg_end - mm->arg_start; 1546 if (len >= ELF_PRARGSZ) 1547 len = ELF_PRARGSZ-1; 1548 if (copy_from_user(&psinfo->pr_psargs, 1549 (const char __user *)mm->arg_start, len)) 1550 return -EFAULT; 1551 for(i = 0; i < len; i++) 1552 if (psinfo->pr_psargs[i] == 0) 1553 psinfo->pr_psargs[i] = ' '; 1554 psinfo->pr_psargs[len] = 0; 1555 1556 rcu_read_lock(); 1557 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1558 rcu_read_unlock(); 1559 psinfo->pr_pid = task_pid_vnr(p); 1560 psinfo->pr_pgrp = task_pgrp_vnr(p); 1561 psinfo->pr_sid = task_session_vnr(p); 1562 1563 state = READ_ONCE(p->__state); 1564 i = state ? ffz(~state) + 1 : 0; 1565 psinfo->pr_state = i; 1566 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1567 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1568 psinfo->pr_nice = task_nice(p); 1569 psinfo->pr_flag = p->flags; 1570 rcu_read_lock(); 1571 cred = __task_cred(p); 1572 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid)); 1573 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid)); 1574 rcu_read_unlock(); 1575 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); 1576 1577 return 0; 1578 } 1579 1580 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1581 { 1582 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1583 int i = 0; 1584 do 1585 i += 2; 1586 while (auxv[i - 2] != AT_NULL); 1587 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1588 } 1589 1590 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata, 1591 const kernel_siginfo_t *siginfo) 1592 { 1593 copy_siginfo_to_external(csigdata, siginfo); 1594 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata); 1595 } 1596 1597 #define MAX_FILE_NOTE_SIZE (4*1024*1024) 1598 /* 1599 * Format of NT_FILE note: 1600 * 1601 * long count -- how many files are mapped 1602 * long page_size -- units for file_ofs 1603 * array of [COUNT] elements of 1604 * long start 1605 * long end 1606 * long file_ofs 1607 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... 1608 */ 1609 static int fill_files_note(struct memelfnote *note) 1610 { 1611 struct mm_struct *mm = current->mm; 1612 struct vm_area_struct *vma; 1613 unsigned count, size, names_ofs, remaining, n; 1614 user_long_t *data; 1615 user_long_t *start_end_ofs; 1616 char *name_base, *name_curpos; 1617 1618 /* *Estimated* file count and total data size needed */ 1619 count = mm->map_count; 1620 if (count > UINT_MAX / 64) 1621 return -EINVAL; 1622 size = count * 64; 1623 1624 names_ofs = (2 + 3 * count) * sizeof(data[0]); 1625 alloc: 1626 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */ 1627 return -EINVAL; 1628 size = round_up(size, PAGE_SIZE); 1629 /* 1630 * "size" can be 0 here legitimately. 1631 * Let it ENOMEM and omit NT_FILE section which will be empty anyway. 1632 */ 1633 data = kvmalloc(size, GFP_KERNEL); 1634 if (ZERO_OR_NULL_PTR(data)) 1635 return -ENOMEM; 1636 1637 start_end_ofs = data + 2; 1638 name_base = name_curpos = ((char *)data) + names_ofs; 1639 remaining = size - names_ofs; 1640 count = 0; 1641 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) { 1642 struct file *file; 1643 const char *filename; 1644 1645 file = vma->vm_file; 1646 if (!file) 1647 continue; 1648 filename = file_path(file, name_curpos, remaining); 1649 if (IS_ERR(filename)) { 1650 if (PTR_ERR(filename) == -ENAMETOOLONG) { 1651 kvfree(data); 1652 size = size * 5 / 4; 1653 goto alloc; 1654 } 1655 continue; 1656 } 1657 1658 /* file_path() fills at the end, move name down */ 1659 /* n = strlen(filename) + 1: */ 1660 n = (name_curpos + remaining) - filename; 1661 remaining = filename - name_curpos; 1662 memmove(name_curpos, filename, n); 1663 name_curpos += n; 1664 1665 *start_end_ofs++ = vma->vm_start; 1666 *start_end_ofs++ = vma->vm_end; 1667 *start_end_ofs++ = vma->vm_pgoff; 1668 count++; 1669 } 1670 1671 /* Now we know exact count of files, can store it */ 1672 data[0] = count; 1673 data[1] = PAGE_SIZE; 1674 /* 1675 * Count usually is less than mm->map_count, 1676 * we need to move filenames down. 1677 */ 1678 n = mm->map_count - count; 1679 if (n != 0) { 1680 unsigned shift_bytes = n * 3 * sizeof(data[0]); 1681 memmove(name_base - shift_bytes, name_base, 1682 name_curpos - name_base); 1683 name_curpos -= shift_bytes; 1684 } 1685 1686 size = name_curpos - (char *)data; 1687 fill_note(note, "CORE", NT_FILE, size, data); 1688 return 0; 1689 } 1690 1691 #ifdef CORE_DUMP_USE_REGSET 1692 #include <linux/regset.h> 1693 1694 struct elf_thread_core_info { 1695 struct elf_thread_core_info *next; 1696 struct task_struct *task; 1697 struct elf_prstatus prstatus; 1698 struct memelfnote notes[]; 1699 }; 1700 1701 struct elf_note_info { 1702 struct elf_thread_core_info *thread; 1703 struct memelfnote psinfo; 1704 struct memelfnote signote; 1705 struct memelfnote auxv; 1706 struct memelfnote files; 1707 user_siginfo_t csigdata; 1708 size_t size; 1709 int thread_notes; 1710 }; 1711 1712 /* 1713 * When a regset has a writeback hook, we call it on each thread before 1714 * dumping user memory. On register window machines, this makes sure the 1715 * user memory backing the register data is up to date before we read it. 1716 */ 1717 static void do_thread_regset_writeback(struct task_struct *task, 1718 const struct user_regset *regset) 1719 { 1720 if (regset->writeback) 1721 regset->writeback(task, regset, 1); 1722 } 1723 1724 #ifndef PRSTATUS_SIZE 1725 #define PRSTATUS_SIZE sizeof(struct elf_prstatus) 1726 #endif 1727 1728 #ifndef SET_PR_FPVALID 1729 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1) 1730 #endif 1731 1732 static int fill_thread_core_info(struct elf_thread_core_info *t, 1733 const struct user_regset_view *view, 1734 long signr, size_t *total) 1735 { 1736 unsigned int i; 1737 1738 /* 1739 * NT_PRSTATUS is the one special case, because the regset data 1740 * goes into the pr_reg field inside the note contents, rather 1741 * than being the whole note contents. We fill the reset in here. 1742 * We assume that regset 0 is NT_PRSTATUS. 1743 */ 1744 fill_prstatus(&t->prstatus.common, t->task, signr); 1745 regset_get(t->task, &view->regsets[0], 1746 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg); 1747 1748 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1749 PRSTATUS_SIZE, &t->prstatus); 1750 *total += notesize(&t->notes[0]); 1751 1752 do_thread_regset_writeback(t->task, &view->regsets[0]); 1753 1754 /* 1755 * Each other regset might generate a note too. For each regset 1756 * that has no core_note_type or is inactive, we leave t->notes[i] 1757 * all zero and we'll know to skip writing it later. 1758 */ 1759 for (i = 1; i < view->n; ++i) { 1760 const struct user_regset *regset = &view->regsets[i]; 1761 int note_type = regset->core_note_type; 1762 bool is_fpreg = note_type == NT_PRFPREG; 1763 void *data; 1764 int ret; 1765 1766 do_thread_regset_writeback(t->task, regset); 1767 if (!note_type) // not for coredumps 1768 continue; 1769 if (regset->active && regset->active(t->task, regset) <= 0) 1770 continue; 1771 1772 ret = regset_get_alloc(t->task, regset, ~0U, &data); 1773 if (ret < 0) 1774 continue; 1775 1776 if (is_fpreg) 1777 SET_PR_FPVALID(&t->prstatus); 1778 1779 fill_note(&t->notes[i], is_fpreg ? "CORE" : "LINUX", 1780 note_type, ret, data); 1781 1782 *total += notesize(&t->notes[i]); 1783 } 1784 1785 return 1; 1786 } 1787 1788 static int fill_note_info(struct elfhdr *elf, int phdrs, 1789 struct elf_note_info *info, 1790 const kernel_siginfo_t *siginfo, struct pt_regs *regs) 1791 { 1792 struct task_struct *dump_task = current; 1793 const struct user_regset_view *view = task_user_regset_view(dump_task); 1794 struct elf_thread_core_info *t; 1795 struct elf_prpsinfo *psinfo; 1796 struct core_thread *ct; 1797 unsigned int i; 1798 1799 info->size = 0; 1800 info->thread = NULL; 1801 1802 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1803 if (psinfo == NULL) { 1804 info->psinfo.data = NULL; /* So we don't free this wrongly */ 1805 return 0; 1806 } 1807 1808 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1809 1810 /* 1811 * Figure out how many notes we're going to need for each thread. 1812 */ 1813 info->thread_notes = 0; 1814 for (i = 0; i < view->n; ++i) 1815 if (view->regsets[i].core_note_type != 0) 1816 ++info->thread_notes; 1817 1818 /* 1819 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1820 * since it is our one special case. 1821 */ 1822 if (unlikely(info->thread_notes == 0) || 1823 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1824 WARN_ON(1); 1825 return 0; 1826 } 1827 1828 /* 1829 * Initialize the ELF file header. 1830 */ 1831 fill_elf_header(elf, phdrs, 1832 view->e_machine, view->e_flags); 1833 1834 /* 1835 * Allocate a structure for each thread. 1836 */ 1837 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) { 1838 t = kzalloc(offsetof(struct elf_thread_core_info, 1839 notes[info->thread_notes]), 1840 GFP_KERNEL); 1841 if (unlikely(!t)) 1842 return 0; 1843 1844 t->task = ct->task; 1845 if (ct->task == dump_task || !info->thread) { 1846 t->next = info->thread; 1847 info->thread = t; 1848 } else { 1849 /* 1850 * Make sure to keep the original task at 1851 * the head of the list. 1852 */ 1853 t->next = info->thread->next; 1854 info->thread->next = t; 1855 } 1856 } 1857 1858 /* 1859 * Now fill in each thread's information. 1860 */ 1861 for (t = info->thread; t != NULL; t = t->next) 1862 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size)) 1863 return 0; 1864 1865 /* 1866 * Fill in the two process-wide notes. 1867 */ 1868 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1869 info->size += notesize(&info->psinfo); 1870 1871 fill_siginfo_note(&info->signote, &info->csigdata, siginfo); 1872 info->size += notesize(&info->signote); 1873 1874 fill_auxv_note(&info->auxv, current->mm); 1875 info->size += notesize(&info->auxv); 1876 1877 if (fill_files_note(&info->files) == 0) 1878 info->size += notesize(&info->files); 1879 1880 return 1; 1881 } 1882 1883 static size_t get_note_info_size(struct elf_note_info *info) 1884 { 1885 return info->size; 1886 } 1887 1888 /* 1889 * Write all the notes for each thread. When writing the first thread, the 1890 * process-wide notes are interleaved after the first thread-specific note. 1891 */ 1892 static int write_note_info(struct elf_note_info *info, 1893 struct coredump_params *cprm) 1894 { 1895 bool first = true; 1896 struct elf_thread_core_info *t = info->thread; 1897 1898 do { 1899 int i; 1900 1901 if (!writenote(&t->notes[0], cprm)) 1902 return 0; 1903 1904 if (first && !writenote(&info->psinfo, cprm)) 1905 return 0; 1906 if (first && !writenote(&info->signote, cprm)) 1907 return 0; 1908 if (first && !writenote(&info->auxv, cprm)) 1909 return 0; 1910 if (first && info->files.data && 1911 !writenote(&info->files, cprm)) 1912 return 0; 1913 1914 for (i = 1; i < info->thread_notes; ++i) 1915 if (t->notes[i].data && 1916 !writenote(&t->notes[i], cprm)) 1917 return 0; 1918 1919 first = false; 1920 t = t->next; 1921 } while (t); 1922 1923 return 1; 1924 } 1925 1926 static void free_note_info(struct elf_note_info *info) 1927 { 1928 struct elf_thread_core_info *threads = info->thread; 1929 while (threads) { 1930 unsigned int i; 1931 struct elf_thread_core_info *t = threads; 1932 threads = t->next; 1933 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1934 for (i = 1; i < info->thread_notes; ++i) 1935 kfree(t->notes[i].data); 1936 kfree(t); 1937 } 1938 kfree(info->psinfo.data); 1939 kvfree(info->files.data); 1940 } 1941 1942 #else 1943 1944 /* Here is the structure in which status of each thread is captured. */ 1945 struct elf_thread_status 1946 { 1947 struct list_head list; 1948 struct elf_prstatus prstatus; /* NT_PRSTATUS */ 1949 elf_fpregset_t fpu; /* NT_PRFPREG */ 1950 struct task_struct *thread; 1951 struct memelfnote notes[3]; 1952 int num_notes; 1953 }; 1954 1955 /* 1956 * In order to add the specific thread information for the elf file format, 1957 * we need to keep a linked list of every threads pr_status and then create 1958 * a single section for them in the final core file. 1959 */ 1960 static int elf_dump_thread_status(long signr, struct elf_thread_status *t) 1961 { 1962 int sz = 0; 1963 struct task_struct *p = t->thread; 1964 t->num_notes = 0; 1965 1966 fill_prstatus(&t->prstatus.common, p, signr); 1967 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 1968 1969 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 1970 &(t->prstatus)); 1971 t->num_notes++; 1972 sz += notesize(&t->notes[0]); 1973 1974 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, 1975 &t->fpu))) { 1976 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), 1977 &(t->fpu)); 1978 t->num_notes++; 1979 sz += notesize(&t->notes[1]); 1980 } 1981 return sz; 1982 } 1983 1984 struct elf_note_info { 1985 struct memelfnote *notes; 1986 struct memelfnote *notes_files; 1987 struct elf_prstatus *prstatus; /* NT_PRSTATUS */ 1988 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 1989 struct list_head thread_list; 1990 elf_fpregset_t *fpu; 1991 user_siginfo_t csigdata; 1992 int thread_status_size; 1993 int numnote; 1994 }; 1995 1996 static int elf_note_info_init(struct elf_note_info *info) 1997 { 1998 memset(info, 0, sizeof(*info)); 1999 INIT_LIST_HEAD(&info->thread_list); 2000 2001 /* Allocate space for ELF notes */ 2002 info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL); 2003 if (!info->notes) 2004 return 0; 2005 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); 2006 if (!info->psinfo) 2007 return 0; 2008 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); 2009 if (!info->prstatus) 2010 return 0; 2011 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); 2012 if (!info->fpu) 2013 return 0; 2014 return 1; 2015 } 2016 2017 static int fill_note_info(struct elfhdr *elf, int phdrs, 2018 struct elf_note_info *info, 2019 const kernel_siginfo_t *siginfo, struct pt_regs *regs) 2020 { 2021 struct core_thread *ct; 2022 struct elf_thread_status *ets; 2023 2024 if (!elf_note_info_init(info)) 2025 return 0; 2026 2027 for (ct = current->mm->core_state->dumper.next; 2028 ct; ct = ct->next) { 2029 ets = kzalloc(sizeof(*ets), GFP_KERNEL); 2030 if (!ets) 2031 return 0; 2032 2033 ets->thread = ct->task; 2034 list_add(&ets->list, &info->thread_list); 2035 } 2036 2037 list_for_each_entry(ets, &info->thread_list, list) { 2038 int sz; 2039 2040 sz = elf_dump_thread_status(siginfo->si_signo, ets); 2041 info->thread_status_size += sz; 2042 } 2043 /* now collect the dump for the current */ 2044 memset(info->prstatus, 0, sizeof(*info->prstatus)); 2045 fill_prstatus(&info->prstatus->common, current, siginfo->si_signo); 2046 elf_core_copy_regs(&info->prstatus->pr_reg, regs); 2047 2048 /* Set up header */ 2049 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS); 2050 2051 /* 2052 * Set up the notes in similar form to SVR4 core dumps made 2053 * with info from their /proc. 2054 */ 2055 2056 fill_note(info->notes + 0, "CORE", NT_PRSTATUS, 2057 sizeof(*info->prstatus), info->prstatus); 2058 fill_psinfo(info->psinfo, current->group_leader, current->mm); 2059 fill_note(info->notes + 1, "CORE", NT_PRPSINFO, 2060 sizeof(*info->psinfo), info->psinfo); 2061 2062 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo); 2063 fill_auxv_note(info->notes + 3, current->mm); 2064 info->numnote = 4; 2065 2066 if (fill_files_note(info->notes + info->numnote) == 0) { 2067 info->notes_files = info->notes + info->numnote; 2068 info->numnote++; 2069 } 2070 2071 /* Try to dump the FPU. */ 2072 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs, 2073 info->fpu); 2074 if (info->prstatus->pr_fpvalid) 2075 fill_note(info->notes + info->numnote++, 2076 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); 2077 return 1; 2078 } 2079 2080 static size_t get_note_info_size(struct elf_note_info *info) 2081 { 2082 int sz = 0; 2083 int i; 2084 2085 for (i = 0; i < info->numnote; i++) 2086 sz += notesize(info->notes + i); 2087 2088 sz += info->thread_status_size; 2089 2090 return sz; 2091 } 2092 2093 static int write_note_info(struct elf_note_info *info, 2094 struct coredump_params *cprm) 2095 { 2096 struct elf_thread_status *ets; 2097 int i; 2098 2099 for (i = 0; i < info->numnote; i++) 2100 if (!writenote(info->notes + i, cprm)) 2101 return 0; 2102 2103 /* write out the thread status notes section */ 2104 list_for_each_entry(ets, &info->thread_list, list) { 2105 for (i = 0; i < ets->num_notes; i++) 2106 if (!writenote(&ets->notes[i], cprm)) 2107 return 0; 2108 } 2109 2110 return 1; 2111 } 2112 2113 static void free_note_info(struct elf_note_info *info) 2114 { 2115 while (!list_empty(&info->thread_list)) { 2116 struct list_head *tmp = info->thread_list.next; 2117 list_del(tmp); 2118 kfree(list_entry(tmp, struct elf_thread_status, list)); 2119 } 2120 2121 /* Free data possibly allocated by fill_files_note(): */ 2122 if (info->notes_files) 2123 kvfree(info->notes_files->data); 2124 2125 kfree(info->prstatus); 2126 kfree(info->psinfo); 2127 kfree(info->notes); 2128 kfree(info->fpu); 2129 } 2130 2131 #endif 2132 2133 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, 2134 elf_addr_t e_shoff, int segs) 2135 { 2136 elf->e_shoff = e_shoff; 2137 elf->e_shentsize = sizeof(*shdr4extnum); 2138 elf->e_shnum = 1; 2139 elf->e_shstrndx = SHN_UNDEF; 2140 2141 memset(shdr4extnum, 0, sizeof(*shdr4extnum)); 2142 2143 shdr4extnum->sh_type = SHT_NULL; 2144 shdr4extnum->sh_size = elf->e_shnum; 2145 shdr4extnum->sh_link = elf->e_shstrndx; 2146 shdr4extnum->sh_info = segs; 2147 } 2148 2149 /* 2150 * Actual dumper 2151 * 2152 * This is a two-pass process; first we find the offsets of the bits, 2153 * and then they are actually written out. If we run out of core limit 2154 * we just truncate. 2155 */ 2156 static int elf_core_dump(struct coredump_params *cprm) 2157 { 2158 int has_dumped = 0; 2159 int vma_count, segs, i; 2160 size_t vma_data_size; 2161 struct elfhdr elf; 2162 loff_t offset = 0, dataoff; 2163 struct elf_note_info info = { }; 2164 struct elf_phdr *phdr4note = NULL; 2165 struct elf_shdr *shdr4extnum = NULL; 2166 Elf_Half e_phnum; 2167 elf_addr_t e_shoff; 2168 struct core_vma_metadata *vma_meta; 2169 2170 if (dump_vma_snapshot(cprm, &vma_count, &vma_meta, &vma_data_size)) 2171 return 0; 2172 2173 /* 2174 * The number of segs are recored into ELF header as 16bit value. 2175 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. 2176 */ 2177 segs = vma_count + elf_core_extra_phdrs(); 2178 2179 /* for notes section */ 2180 segs++; 2181 2182 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid 2183 * this, kernel supports extended numbering. Have a look at 2184 * include/linux/elf.h for further information. */ 2185 e_phnum = segs > PN_XNUM ? PN_XNUM : segs; 2186 2187 /* 2188 * Collect all the non-memory information about the process for the 2189 * notes. This also sets up the file header. 2190 */ 2191 if (!fill_note_info(&elf, e_phnum, &info, cprm->siginfo, cprm->regs)) 2192 goto end_coredump; 2193 2194 has_dumped = 1; 2195 2196 offset += sizeof(elf); /* Elf header */ 2197 offset += segs * sizeof(struct elf_phdr); /* Program headers */ 2198 2199 /* Write notes phdr entry */ 2200 { 2201 size_t sz = get_note_info_size(&info); 2202 2203 /* For cell spufs */ 2204 sz += elf_coredump_extra_notes_size(); 2205 2206 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); 2207 if (!phdr4note) 2208 goto end_coredump; 2209 2210 fill_elf_note_phdr(phdr4note, sz, offset); 2211 offset += sz; 2212 } 2213 2214 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 2215 2216 offset += vma_data_size; 2217 offset += elf_core_extra_data_size(); 2218 e_shoff = offset; 2219 2220 if (e_phnum == PN_XNUM) { 2221 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); 2222 if (!shdr4extnum) 2223 goto end_coredump; 2224 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs); 2225 } 2226 2227 offset = dataoff; 2228 2229 if (!dump_emit(cprm, &elf, sizeof(elf))) 2230 goto end_coredump; 2231 2232 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note))) 2233 goto end_coredump; 2234 2235 /* Write program headers for segments dump */ 2236 for (i = 0; i < vma_count; i++) { 2237 struct core_vma_metadata *meta = vma_meta + i; 2238 struct elf_phdr phdr; 2239 2240 phdr.p_type = PT_LOAD; 2241 phdr.p_offset = offset; 2242 phdr.p_vaddr = meta->start; 2243 phdr.p_paddr = 0; 2244 phdr.p_filesz = meta->dump_size; 2245 phdr.p_memsz = meta->end - meta->start; 2246 offset += phdr.p_filesz; 2247 phdr.p_flags = 0; 2248 if (meta->flags & VM_READ) 2249 phdr.p_flags |= PF_R; 2250 if (meta->flags & VM_WRITE) 2251 phdr.p_flags |= PF_W; 2252 if (meta->flags & VM_EXEC) 2253 phdr.p_flags |= PF_X; 2254 phdr.p_align = ELF_EXEC_PAGESIZE; 2255 2256 if (!dump_emit(cprm, &phdr, sizeof(phdr))) 2257 goto end_coredump; 2258 } 2259 2260 if (!elf_core_write_extra_phdrs(cprm, offset)) 2261 goto end_coredump; 2262 2263 /* write out the notes section */ 2264 if (!write_note_info(&info, cprm)) 2265 goto end_coredump; 2266 2267 /* For cell spufs */ 2268 if (elf_coredump_extra_notes_write(cprm)) 2269 goto end_coredump; 2270 2271 /* Align to page */ 2272 dump_skip_to(cprm, dataoff); 2273 2274 for (i = 0; i < vma_count; i++) { 2275 struct core_vma_metadata *meta = vma_meta + i; 2276 2277 if (!dump_user_range(cprm, meta->start, meta->dump_size)) 2278 goto end_coredump; 2279 } 2280 2281 if (!elf_core_write_extra_data(cprm)) 2282 goto end_coredump; 2283 2284 if (e_phnum == PN_XNUM) { 2285 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum))) 2286 goto end_coredump; 2287 } 2288 2289 end_coredump: 2290 free_note_info(&info); 2291 kfree(shdr4extnum); 2292 kvfree(vma_meta); 2293 kfree(phdr4note); 2294 return has_dumped; 2295 } 2296 2297 #endif /* CONFIG_ELF_CORE */ 2298 2299 static int __init init_elf_binfmt(void) 2300 { 2301 register_binfmt(&elf_format); 2302 return 0; 2303 } 2304 2305 static void __exit exit_elf_binfmt(void) 2306 { 2307 /* Remove the COFF and ELF loaders. */ 2308 unregister_binfmt(&elf_format); 2309 } 2310 2311 core_initcall(init_elf_binfmt); 2312 module_exit(exit_elf_binfmt); 2313 MODULE_LICENSE("GPL"); 2314