xref: /openbmc/linux/fs/binfmt_elf.c (revision 26ba4e57)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/binfmt_elf.c
4  *
5  * These are the functions used to load ELF format executables as used
6  * on SVr4 machines.  Information on the format may be found in the book
7  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8  * Tools".
9  *
10  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/errno.h>
19 #include <linux/signal.h>
20 #include <linux/binfmts.h>
21 #include <linux/string.h>
22 #include <linux/file.h>
23 #include <linux/slab.h>
24 #include <linux/personality.h>
25 #include <linux/elfcore.h>
26 #include <linux/init.h>
27 #include <linux/highuid.h>
28 #include <linux/compiler.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/random.h>
34 #include <linux/elf.h>
35 #include <linux/elf-randomize.h>
36 #include <linux/utsname.h>
37 #include <linux/coredump.h>
38 #include <linux/sched.h>
39 #include <linux/sched/coredump.h>
40 #include <linux/sched/task_stack.h>
41 #include <linux/sched/cputime.h>
42 #include <linux/cred.h>
43 #include <linux/dax.h>
44 #include <linux/uaccess.h>
45 #include <asm/param.h>
46 #include <asm/page.h>
47 
48 #ifndef user_long_t
49 #define user_long_t long
50 #endif
51 #ifndef user_siginfo_t
52 #define user_siginfo_t siginfo_t
53 #endif
54 
55 /* That's for binfmt_elf_fdpic to deal with */
56 #ifndef elf_check_fdpic
57 #define elf_check_fdpic(ex) false
58 #endif
59 
60 static int load_elf_binary(struct linux_binprm *bprm);
61 
62 #ifdef CONFIG_USELIB
63 static int load_elf_library(struct file *);
64 #else
65 #define load_elf_library NULL
66 #endif
67 
68 /*
69  * If we don't support core dumping, then supply a NULL so we
70  * don't even try.
71  */
72 #ifdef CONFIG_ELF_CORE
73 static int elf_core_dump(struct coredump_params *cprm);
74 #else
75 #define elf_core_dump	NULL
76 #endif
77 
78 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
79 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
80 #else
81 #define ELF_MIN_ALIGN	PAGE_SIZE
82 #endif
83 
84 #ifndef ELF_CORE_EFLAGS
85 #define ELF_CORE_EFLAGS	0
86 #endif
87 
88 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
89 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
90 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
91 
92 static struct linux_binfmt elf_format = {
93 	.module		= THIS_MODULE,
94 	.load_binary	= load_elf_binary,
95 	.load_shlib	= load_elf_library,
96 	.core_dump	= elf_core_dump,
97 	.min_coredump	= ELF_EXEC_PAGESIZE,
98 };
99 
100 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
101 
102 static int set_brk(unsigned long start, unsigned long end, int prot)
103 {
104 	start = ELF_PAGEALIGN(start);
105 	end = ELF_PAGEALIGN(end);
106 	if (end > start) {
107 		/*
108 		 * Map the last of the bss segment.
109 		 * If the header is requesting these pages to be
110 		 * executable, honour that (ppc32 needs this).
111 		 */
112 		int error = vm_brk_flags(start, end - start,
113 				prot & PROT_EXEC ? VM_EXEC : 0);
114 		if (error)
115 			return error;
116 	}
117 	current->mm->start_brk = current->mm->brk = end;
118 	return 0;
119 }
120 
121 /* We need to explicitly zero any fractional pages
122    after the data section (i.e. bss).  This would
123    contain the junk from the file that should not
124    be in memory
125  */
126 static int padzero(unsigned long elf_bss)
127 {
128 	unsigned long nbyte;
129 
130 	nbyte = ELF_PAGEOFFSET(elf_bss);
131 	if (nbyte) {
132 		nbyte = ELF_MIN_ALIGN - nbyte;
133 		if (clear_user((void __user *) elf_bss, nbyte))
134 			return -EFAULT;
135 	}
136 	return 0;
137 }
138 
139 /* Let's use some macros to make this stack manipulation a little clearer */
140 #ifdef CONFIG_STACK_GROWSUP
141 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
142 #define STACK_ROUND(sp, items) \
143 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
144 #define STACK_ALLOC(sp, len) ({ \
145 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
146 	old_sp; })
147 #else
148 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
149 #define STACK_ROUND(sp, items) \
150 	(((unsigned long) (sp - items)) &~ 15UL)
151 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
152 #endif
153 
154 #ifndef ELF_BASE_PLATFORM
155 /*
156  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
157  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
158  * will be copied to the user stack in the same manner as AT_PLATFORM.
159  */
160 #define ELF_BASE_PLATFORM NULL
161 #endif
162 
163 static int
164 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
165 		unsigned long load_addr, unsigned long interp_load_addr)
166 {
167 	unsigned long p = bprm->p;
168 	int argc = bprm->argc;
169 	int envc = bprm->envc;
170 	elf_addr_t __user *sp;
171 	elf_addr_t __user *u_platform;
172 	elf_addr_t __user *u_base_platform;
173 	elf_addr_t __user *u_rand_bytes;
174 	const char *k_platform = ELF_PLATFORM;
175 	const char *k_base_platform = ELF_BASE_PLATFORM;
176 	unsigned char k_rand_bytes[16];
177 	int items;
178 	elf_addr_t *elf_info;
179 	int ei_index = 0;
180 	const struct cred *cred = current_cred();
181 	struct vm_area_struct *vma;
182 
183 	/*
184 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
185 	 * evictions by the processes running on the same package. One
186 	 * thing we can do is to shuffle the initial stack for them.
187 	 */
188 
189 	p = arch_align_stack(p);
190 
191 	/*
192 	 * If this architecture has a platform capability string, copy it
193 	 * to userspace.  In some cases (Sparc), this info is impossible
194 	 * for userspace to get any other way, in others (i386) it is
195 	 * merely difficult.
196 	 */
197 	u_platform = NULL;
198 	if (k_platform) {
199 		size_t len = strlen(k_platform) + 1;
200 
201 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
202 		if (__copy_to_user(u_platform, k_platform, len))
203 			return -EFAULT;
204 	}
205 
206 	/*
207 	 * If this architecture has a "base" platform capability
208 	 * string, copy it to userspace.
209 	 */
210 	u_base_platform = NULL;
211 	if (k_base_platform) {
212 		size_t len = strlen(k_base_platform) + 1;
213 
214 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
215 		if (__copy_to_user(u_base_platform, k_base_platform, len))
216 			return -EFAULT;
217 	}
218 
219 	/*
220 	 * Generate 16 random bytes for userspace PRNG seeding.
221 	 */
222 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
223 	u_rand_bytes = (elf_addr_t __user *)
224 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
225 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
226 		return -EFAULT;
227 
228 	/* Create the ELF interpreter info */
229 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
230 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
231 #define NEW_AUX_ENT(id, val) \
232 	do { \
233 		elf_info[ei_index++] = id; \
234 		elf_info[ei_index++] = val; \
235 	} while (0)
236 
237 #ifdef ARCH_DLINFO
238 	/*
239 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
240 	 * AUXV.
241 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
242 	 * ARCH_DLINFO changes
243 	 */
244 	ARCH_DLINFO;
245 #endif
246 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
247 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
248 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
249 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
250 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
251 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
252 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
253 	NEW_AUX_ENT(AT_FLAGS, 0);
254 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
255 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
256 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
257 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
258 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
259 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
260 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
261 #ifdef ELF_HWCAP2
262 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
263 #endif
264 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
265 	if (k_platform) {
266 		NEW_AUX_ENT(AT_PLATFORM,
267 			    (elf_addr_t)(unsigned long)u_platform);
268 	}
269 	if (k_base_platform) {
270 		NEW_AUX_ENT(AT_BASE_PLATFORM,
271 			    (elf_addr_t)(unsigned long)u_base_platform);
272 	}
273 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
274 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
275 	}
276 #undef NEW_AUX_ENT
277 	/* AT_NULL is zero; clear the rest too */
278 	memset(&elf_info[ei_index], 0,
279 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
280 
281 	/* And advance past the AT_NULL entry.  */
282 	ei_index += 2;
283 
284 	sp = STACK_ADD(p, ei_index);
285 
286 	items = (argc + 1) + (envc + 1) + 1;
287 	bprm->p = STACK_ROUND(sp, items);
288 
289 	/* Point sp at the lowest address on the stack */
290 #ifdef CONFIG_STACK_GROWSUP
291 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
292 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
293 #else
294 	sp = (elf_addr_t __user *)bprm->p;
295 #endif
296 
297 
298 	/*
299 	 * Grow the stack manually; some architectures have a limit on how
300 	 * far ahead a user-space access may be in order to grow the stack.
301 	 */
302 	vma = find_extend_vma(current->mm, bprm->p);
303 	if (!vma)
304 		return -EFAULT;
305 
306 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
307 	if (__put_user(argc, sp++))
308 		return -EFAULT;
309 
310 	/* Populate list of argv pointers back to argv strings. */
311 	p = current->mm->arg_end = current->mm->arg_start;
312 	while (argc-- > 0) {
313 		size_t len;
314 		if (__put_user((elf_addr_t)p, sp++))
315 			return -EFAULT;
316 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
317 		if (!len || len > MAX_ARG_STRLEN)
318 			return -EINVAL;
319 		p += len;
320 	}
321 	if (__put_user(0, sp++))
322 		return -EFAULT;
323 	current->mm->arg_end = p;
324 
325 	/* Populate list of envp pointers back to envp strings. */
326 	current->mm->env_end = current->mm->env_start = p;
327 	while (envc-- > 0) {
328 		size_t len;
329 		if (__put_user((elf_addr_t)p, sp++))
330 			return -EFAULT;
331 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
332 		if (!len || len > MAX_ARG_STRLEN)
333 			return -EINVAL;
334 		p += len;
335 	}
336 	if (__put_user(0, sp++))
337 		return -EFAULT;
338 	current->mm->env_end = p;
339 
340 	/* Put the elf_info on the stack in the right place.  */
341 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
342 		return -EFAULT;
343 	return 0;
344 }
345 
346 #ifndef elf_map
347 
348 static unsigned long elf_map(struct file *filep, unsigned long addr,
349 		const struct elf_phdr *eppnt, int prot, int type,
350 		unsigned long total_size)
351 {
352 	unsigned long map_addr;
353 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
354 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
355 	addr = ELF_PAGESTART(addr);
356 	size = ELF_PAGEALIGN(size);
357 
358 	/* mmap() will return -EINVAL if given a zero size, but a
359 	 * segment with zero filesize is perfectly valid */
360 	if (!size)
361 		return addr;
362 
363 	/*
364 	* total_size is the size of the ELF (interpreter) image.
365 	* The _first_ mmap needs to know the full size, otherwise
366 	* randomization might put this image into an overlapping
367 	* position with the ELF binary image. (since size < total_size)
368 	* So we first map the 'big' image - and unmap the remainder at
369 	* the end. (which unmap is needed for ELF images with holes.)
370 	*/
371 	if (total_size) {
372 		total_size = ELF_PAGEALIGN(total_size);
373 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
374 		if (!BAD_ADDR(map_addr))
375 			vm_munmap(map_addr+size, total_size-size);
376 	} else
377 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
378 
379 	if ((type & MAP_FIXED_NOREPLACE) &&
380 	    PTR_ERR((void *)map_addr) == -EEXIST)
381 		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
382 			task_pid_nr(current), current->comm, (void *)addr);
383 
384 	return(map_addr);
385 }
386 
387 #endif /* !elf_map */
388 
389 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
390 {
391 	int i, first_idx = -1, last_idx = -1;
392 
393 	for (i = 0; i < nr; i++) {
394 		if (cmds[i].p_type == PT_LOAD) {
395 			last_idx = i;
396 			if (first_idx == -1)
397 				first_idx = i;
398 		}
399 	}
400 	if (first_idx == -1)
401 		return 0;
402 
403 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
404 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
405 }
406 
407 /**
408  * load_elf_phdrs() - load ELF program headers
409  * @elf_ex:   ELF header of the binary whose program headers should be loaded
410  * @elf_file: the opened ELF binary file
411  *
412  * Loads ELF program headers from the binary file elf_file, which has the ELF
413  * header pointed to by elf_ex, into a newly allocated array. The caller is
414  * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
415  */
416 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
417 				       struct file *elf_file)
418 {
419 	struct elf_phdr *elf_phdata = NULL;
420 	int retval, err = -1;
421 	loff_t pos = elf_ex->e_phoff;
422 	unsigned int size;
423 
424 	/*
425 	 * If the size of this structure has changed, then punt, since
426 	 * we will be doing the wrong thing.
427 	 */
428 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
429 		goto out;
430 
431 	/* Sanity check the number of program headers... */
432 	/* ...and their total size. */
433 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
434 	if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
435 		goto out;
436 
437 	elf_phdata = kmalloc(size, GFP_KERNEL);
438 	if (!elf_phdata)
439 		goto out;
440 
441 	/* Read in the program headers */
442 	retval = kernel_read(elf_file, elf_phdata, size, &pos);
443 	if (retval != size) {
444 		err = (retval < 0) ? retval : -EIO;
445 		goto out;
446 	}
447 
448 	/* Success! */
449 	err = 0;
450 out:
451 	if (err) {
452 		kfree(elf_phdata);
453 		elf_phdata = NULL;
454 	}
455 	return elf_phdata;
456 }
457 
458 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
459 
460 /**
461  * struct arch_elf_state - arch-specific ELF loading state
462  *
463  * This structure is used to preserve architecture specific data during
464  * the loading of an ELF file, throughout the checking of architecture
465  * specific ELF headers & through to the point where the ELF load is
466  * known to be proceeding (ie. SET_PERSONALITY).
467  *
468  * This implementation is a dummy for architectures which require no
469  * specific state.
470  */
471 struct arch_elf_state {
472 };
473 
474 #define INIT_ARCH_ELF_STATE {}
475 
476 /**
477  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
478  * @ehdr:	The main ELF header
479  * @phdr:	The program header to check
480  * @elf:	The open ELF file
481  * @is_interp:	True if the phdr is from the interpreter of the ELF being
482  *		loaded, else false.
483  * @state:	Architecture-specific state preserved throughout the process
484  *		of loading the ELF.
485  *
486  * Inspects the program header phdr to validate its correctness and/or
487  * suitability for the system. Called once per ELF program header in the
488  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
489  * interpreter.
490  *
491  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
492  *         with that return code.
493  */
494 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
495 				   struct elf_phdr *phdr,
496 				   struct file *elf, bool is_interp,
497 				   struct arch_elf_state *state)
498 {
499 	/* Dummy implementation, always proceed */
500 	return 0;
501 }
502 
503 /**
504  * arch_check_elf() - check an ELF executable
505  * @ehdr:	The main ELF header
506  * @has_interp:	True if the ELF has an interpreter, else false.
507  * @interp_ehdr: The interpreter's ELF header
508  * @state:	Architecture-specific state preserved throughout the process
509  *		of loading the ELF.
510  *
511  * Provides a final opportunity for architecture code to reject the loading
512  * of the ELF & cause an exec syscall to return an error. This is called after
513  * all program headers to be checked by arch_elf_pt_proc have been.
514  *
515  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
516  *         with that return code.
517  */
518 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
519 				 struct elfhdr *interp_ehdr,
520 				 struct arch_elf_state *state)
521 {
522 	/* Dummy implementation, always proceed */
523 	return 0;
524 }
525 
526 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
527 
528 static inline int make_prot(u32 p_flags)
529 {
530 	int prot = 0;
531 
532 	if (p_flags & PF_R)
533 		prot |= PROT_READ;
534 	if (p_flags & PF_W)
535 		prot |= PROT_WRITE;
536 	if (p_flags & PF_X)
537 		prot |= PROT_EXEC;
538 	return prot;
539 }
540 
541 /* This is much more generalized than the library routine read function,
542    so we keep this separate.  Technically the library read function
543    is only provided so that we can read a.out libraries that have
544    an ELF header */
545 
546 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
547 		struct file *interpreter, unsigned long *interp_map_addr,
548 		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
549 {
550 	struct elf_phdr *eppnt;
551 	unsigned long load_addr = 0;
552 	int load_addr_set = 0;
553 	unsigned long last_bss = 0, elf_bss = 0;
554 	int bss_prot = 0;
555 	unsigned long error = ~0UL;
556 	unsigned long total_size;
557 	int i;
558 
559 	/* First of all, some simple consistency checks */
560 	if (interp_elf_ex->e_type != ET_EXEC &&
561 	    interp_elf_ex->e_type != ET_DYN)
562 		goto out;
563 	if (!elf_check_arch(interp_elf_ex) ||
564 	    elf_check_fdpic(interp_elf_ex))
565 		goto out;
566 	if (!interpreter->f_op->mmap)
567 		goto out;
568 
569 	total_size = total_mapping_size(interp_elf_phdata,
570 					interp_elf_ex->e_phnum);
571 	if (!total_size) {
572 		error = -EINVAL;
573 		goto out;
574 	}
575 
576 	eppnt = interp_elf_phdata;
577 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
578 		if (eppnt->p_type == PT_LOAD) {
579 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
580 			int elf_prot = make_prot(eppnt->p_flags);
581 			unsigned long vaddr = 0;
582 			unsigned long k, map_addr;
583 
584 			vaddr = eppnt->p_vaddr;
585 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
586 				elf_type |= MAP_FIXED_NOREPLACE;
587 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
588 				load_addr = -vaddr;
589 
590 			map_addr = elf_map(interpreter, load_addr + vaddr,
591 					eppnt, elf_prot, elf_type, total_size);
592 			total_size = 0;
593 			if (!*interp_map_addr)
594 				*interp_map_addr = map_addr;
595 			error = map_addr;
596 			if (BAD_ADDR(map_addr))
597 				goto out;
598 
599 			if (!load_addr_set &&
600 			    interp_elf_ex->e_type == ET_DYN) {
601 				load_addr = map_addr - ELF_PAGESTART(vaddr);
602 				load_addr_set = 1;
603 			}
604 
605 			/*
606 			 * Check to see if the section's size will overflow the
607 			 * allowed task size. Note that p_filesz must always be
608 			 * <= p_memsize so it's only necessary to check p_memsz.
609 			 */
610 			k = load_addr + eppnt->p_vaddr;
611 			if (BAD_ADDR(k) ||
612 			    eppnt->p_filesz > eppnt->p_memsz ||
613 			    eppnt->p_memsz > TASK_SIZE ||
614 			    TASK_SIZE - eppnt->p_memsz < k) {
615 				error = -ENOMEM;
616 				goto out;
617 			}
618 
619 			/*
620 			 * Find the end of the file mapping for this phdr, and
621 			 * keep track of the largest address we see for this.
622 			 */
623 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
624 			if (k > elf_bss)
625 				elf_bss = k;
626 
627 			/*
628 			 * Do the same thing for the memory mapping - between
629 			 * elf_bss and last_bss is the bss section.
630 			 */
631 			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
632 			if (k > last_bss) {
633 				last_bss = k;
634 				bss_prot = elf_prot;
635 			}
636 		}
637 	}
638 
639 	/*
640 	 * Now fill out the bss section: first pad the last page from
641 	 * the file up to the page boundary, and zero it from elf_bss
642 	 * up to the end of the page.
643 	 */
644 	if (padzero(elf_bss)) {
645 		error = -EFAULT;
646 		goto out;
647 	}
648 	/*
649 	 * Next, align both the file and mem bss up to the page size,
650 	 * since this is where elf_bss was just zeroed up to, and where
651 	 * last_bss will end after the vm_brk_flags() below.
652 	 */
653 	elf_bss = ELF_PAGEALIGN(elf_bss);
654 	last_bss = ELF_PAGEALIGN(last_bss);
655 	/* Finally, if there is still more bss to allocate, do it. */
656 	if (last_bss > elf_bss) {
657 		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
658 				bss_prot & PROT_EXEC ? VM_EXEC : 0);
659 		if (error)
660 			goto out;
661 	}
662 
663 	error = load_addr;
664 out:
665 	return error;
666 }
667 
668 /*
669  * These are the functions used to load ELF style executables and shared
670  * libraries.  There is no binary dependent code anywhere else.
671  */
672 
673 static int load_elf_binary(struct linux_binprm *bprm)
674 {
675 	struct file *interpreter = NULL; /* to shut gcc up */
676  	unsigned long load_addr = 0, load_bias = 0;
677 	int load_addr_set = 0;
678 	unsigned long error;
679 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
680 	unsigned long elf_bss, elf_brk;
681 	int bss_prot = 0;
682 	int retval, i;
683 	unsigned long elf_entry;
684 	unsigned long interp_load_addr = 0;
685 	unsigned long start_code, end_code, start_data, end_data;
686 	unsigned long reloc_func_desc __maybe_unused = 0;
687 	int executable_stack = EXSTACK_DEFAULT;
688 	struct {
689 		struct elfhdr elf_ex;
690 		struct elfhdr interp_elf_ex;
691 	} *loc;
692 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
693 	struct pt_regs *regs;
694 
695 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
696 	if (!loc) {
697 		retval = -ENOMEM;
698 		goto out_ret;
699 	}
700 
701 	/* Get the exec-header */
702 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
703 
704 	retval = -ENOEXEC;
705 	/* First of all, some simple consistency checks */
706 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
707 		goto out;
708 
709 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
710 		goto out;
711 	if (!elf_check_arch(&loc->elf_ex))
712 		goto out;
713 	if (elf_check_fdpic(&loc->elf_ex))
714 		goto out;
715 	if (!bprm->file->f_op->mmap)
716 		goto out;
717 
718 	elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
719 	if (!elf_phdata)
720 		goto out;
721 
722 	elf_ppnt = elf_phdata;
723 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
724 		char *elf_interpreter;
725 		loff_t pos;
726 
727 		if (elf_ppnt->p_type != PT_INTERP)
728 			continue;
729 
730 		/*
731 		 * This is the program interpreter used for shared libraries -
732 		 * for now assume that this is an a.out format binary.
733 		 */
734 		retval = -ENOEXEC;
735 		if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
736 			goto out_free_ph;
737 
738 		retval = -ENOMEM;
739 		elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
740 		if (!elf_interpreter)
741 			goto out_free_ph;
742 
743 		pos = elf_ppnt->p_offset;
744 		retval = kernel_read(bprm->file, elf_interpreter,
745 				     elf_ppnt->p_filesz, &pos);
746 		if (retval != elf_ppnt->p_filesz) {
747 			if (retval >= 0)
748 				retval = -EIO;
749 			goto out_free_interp;
750 		}
751 		/* make sure path is NULL terminated */
752 		retval = -ENOEXEC;
753 		if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
754 			goto out_free_interp;
755 
756 		interpreter = open_exec(elf_interpreter);
757 		kfree(elf_interpreter);
758 		retval = PTR_ERR(interpreter);
759 		if (IS_ERR(interpreter))
760 			goto out_free_ph;
761 
762 		/*
763 		 * If the binary is not readable then enforce mm->dumpable = 0
764 		 * regardless of the interpreter's permissions.
765 		 */
766 		would_dump(bprm, interpreter);
767 
768 		/* Get the exec headers */
769 		pos = 0;
770 		retval = kernel_read(interpreter, &loc->interp_elf_ex,
771 				     sizeof(loc->interp_elf_ex), &pos);
772 		if (retval != sizeof(loc->interp_elf_ex)) {
773 			if (retval >= 0)
774 				retval = -EIO;
775 			goto out_free_dentry;
776 		}
777 
778 		break;
779 
780 out_free_interp:
781 		kfree(elf_interpreter);
782 		goto out_free_ph;
783 	}
784 
785 	elf_ppnt = elf_phdata;
786 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
787 		switch (elf_ppnt->p_type) {
788 		case PT_GNU_STACK:
789 			if (elf_ppnt->p_flags & PF_X)
790 				executable_stack = EXSTACK_ENABLE_X;
791 			else
792 				executable_stack = EXSTACK_DISABLE_X;
793 			break;
794 
795 		case PT_LOPROC ... PT_HIPROC:
796 			retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
797 						  bprm->file, false,
798 						  &arch_state);
799 			if (retval)
800 				goto out_free_dentry;
801 			break;
802 		}
803 
804 	/* Some simple consistency checks for the interpreter */
805 	if (interpreter) {
806 		retval = -ELIBBAD;
807 		/* Not an ELF interpreter */
808 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
809 			goto out_free_dentry;
810 		/* Verify the interpreter has a valid arch */
811 		if (!elf_check_arch(&loc->interp_elf_ex) ||
812 		    elf_check_fdpic(&loc->interp_elf_ex))
813 			goto out_free_dentry;
814 
815 		/* Load the interpreter program headers */
816 		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
817 						   interpreter);
818 		if (!interp_elf_phdata)
819 			goto out_free_dentry;
820 
821 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
822 		elf_ppnt = interp_elf_phdata;
823 		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
824 			switch (elf_ppnt->p_type) {
825 			case PT_LOPROC ... PT_HIPROC:
826 				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
827 							  elf_ppnt, interpreter,
828 							  true, &arch_state);
829 				if (retval)
830 					goto out_free_dentry;
831 				break;
832 			}
833 	}
834 
835 	/*
836 	 * Allow arch code to reject the ELF at this point, whilst it's
837 	 * still possible to return an error to the code that invoked
838 	 * the exec syscall.
839 	 */
840 	retval = arch_check_elf(&loc->elf_ex,
841 				!!interpreter, &loc->interp_elf_ex,
842 				&arch_state);
843 	if (retval)
844 		goto out_free_dentry;
845 
846 	/* Flush all traces of the currently running executable */
847 	retval = flush_old_exec(bprm);
848 	if (retval)
849 		goto out_free_dentry;
850 
851 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
852 	   may depend on the personality.  */
853 	SET_PERSONALITY2(loc->elf_ex, &arch_state);
854 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
855 		current->personality |= READ_IMPLIES_EXEC;
856 
857 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
858 		current->flags |= PF_RANDOMIZE;
859 
860 	setup_new_exec(bprm);
861 	install_exec_creds(bprm);
862 
863 	/* Do this so that we can load the interpreter, if need be.  We will
864 	   change some of these later */
865 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
866 				 executable_stack);
867 	if (retval < 0)
868 		goto out_free_dentry;
869 
870 	elf_bss = 0;
871 	elf_brk = 0;
872 
873 	start_code = ~0UL;
874 	end_code = 0;
875 	start_data = 0;
876 	end_data = 0;
877 
878 	/* Now we do a little grungy work by mmapping the ELF image into
879 	   the correct location in memory. */
880 	for(i = 0, elf_ppnt = elf_phdata;
881 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
882 		int elf_prot, elf_flags, elf_fixed = MAP_FIXED_NOREPLACE;
883 		unsigned long k, vaddr;
884 		unsigned long total_size = 0;
885 
886 		if (elf_ppnt->p_type != PT_LOAD)
887 			continue;
888 
889 		if (unlikely (elf_brk > elf_bss)) {
890 			unsigned long nbyte;
891 
892 			/* There was a PT_LOAD segment with p_memsz > p_filesz
893 			   before this one. Map anonymous pages, if needed,
894 			   and clear the area.  */
895 			retval = set_brk(elf_bss + load_bias,
896 					 elf_brk + load_bias,
897 					 bss_prot);
898 			if (retval)
899 				goto out_free_dentry;
900 			nbyte = ELF_PAGEOFFSET(elf_bss);
901 			if (nbyte) {
902 				nbyte = ELF_MIN_ALIGN - nbyte;
903 				if (nbyte > elf_brk - elf_bss)
904 					nbyte = elf_brk - elf_bss;
905 				if (clear_user((void __user *)elf_bss +
906 							load_bias, nbyte)) {
907 					/*
908 					 * This bss-zeroing can fail if the ELF
909 					 * file specifies odd protections. So
910 					 * we don't check the return value
911 					 */
912 				}
913 			}
914 
915 			/*
916 			 * Some binaries have overlapping elf segments and then
917 			 * we have to forcefully map over an existing mapping
918 			 * e.g. over this newly established brk mapping.
919 			 */
920 			elf_fixed = MAP_FIXED;
921 		}
922 
923 		elf_prot = make_prot(elf_ppnt->p_flags);
924 
925 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
926 
927 		vaddr = elf_ppnt->p_vaddr;
928 		/*
929 		 * If we are loading ET_EXEC or we have already performed
930 		 * the ET_DYN load_addr calculations, proceed normally.
931 		 */
932 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
933 			elf_flags |= elf_fixed;
934 		} else if (loc->elf_ex.e_type == ET_DYN) {
935 			/*
936 			 * This logic is run once for the first LOAD Program
937 			 * Header for ET_DYN binaries to calculate the
938 			 * randomization (load_bias) for all the LOAD
939 			 * Program Headers, and to calculate the entire
940 			 * size of the ELF mapping (total_size). (Note that
941 			 * load_addr_set is set to true later once the
942 			 * initial mapping is performed.)
943 			 *
944 			 * There are effectively two types of ET_DYN
945 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
946 			 * and loaders (ET_DYN without INTERP, since they
947 			 * _are_ the ELF interpreter). The loaders must
948 			 * be loaded away from programs since the program
949 			 * may otherwise collide with the loader (especially
950 			 * for ET_EXEC which does not have a randomized
951 			 * position). For example to handle invocations of
952 			 * "./ld.so someprog" to test out a new version of
953 			 * the loader, the subsequent program that the
954 			 * loader loads must avoid the loader itself, so
955 			 * they cannot share the same load range. Sufficient
956 			 * room for the brk must be allocated with the
957 			 * loader as well, since brk must be available with
958 			 * the loader.
959 			 *
960 			 * Therefore, programs are loaded offset from
961 			 * ELF_ET_DYN_BASE and loaders are loaded into the
962 			 * independently randomized mmap region (0 load_bias
963 			 * without MAP_FIXED).
964 			 */
965 			if (interpreter) {
966 				load_bias = ELF_ET_DYN_BASE;
967 				if (current->flags & PF_RANDOMIZE)
968 					load_bias += arch_mmap_rnd();
969 				elf_flags |= elf_fixed;
970 			} else
971 				load_bias = 0;
972 
973 			/*
974 			 * Since load_bias is used for all subsequent loading
975 			 * calculations, we must lower it by the first vaddr
976 			 * so that the remaining calculations based on the
977 			 * ELF vaddrs will be correctly offset. The result
978 			 * is then page aligned.
979 			 */
980 			load_bias = ELF_PAGESTART(load_bias - vaddr);
981 
982 			total_size = total_mapping_size(elf_phdata,
983 							loc->elf_ex.e_phnum);
984 			if (!total_size) {
985 				retval = -EINVAL;
986 				goto out_free_dentry;
987 			}
988 		}
989 
990 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
991 				elf_prot, elf_flags, total_size);
992 		if (BAD_ADDR(error)) {
993 			retval = IS_ERR((void *)error) ?
994 				PTR_ERR((void*)error) : -EINVAL;
995 			goto out_free_dentry;
996 		}
997 
998 		if (!load_addr_set) {
999 			load_addr_set = 1;
1000 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1001 			if (loc->elf_ex.e_type == ET_DYN) {
1002 				load_bias += error -
1003 				             ELF_PAGESTART(load_bias + vaddr);
1004 				load_addr += load_bias;
1005 				reloc_func_desc = load_bias;
1006 			}
1007 		}
1008 		k = elf_ppnt->p_vaddr;
1009 		if (k < start_code)
1010 			start_code = k;
1011 		if (start_data < k)
1012 			start_data = k;
1013 
1014 		/*
1015 		 * Check to see if the section's size will overflow the
1016 		 * allowed task size. Note that p_filesz must always be
1017 		 * <= p_memsz so it is only necessary to check p_memsz.
1018 		 */
1019 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1020 		    elf_ppnt->p_memsz > TASK_SIZE ||
1021 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1022 			/* set_brk can never work. Avoid overflows. */
1023 			retval = -EINVAL;
1024 			goto out_free_dentry;
1025 		}
1026 
1027 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1028 
1029 		if (k > elf_bss)
1030 			elf_bss = k;
1031 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1032 			end_code = k;
1033 		if (end_data < k)
1034 			end_data = k;
1035 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1036 		if (k > elf_brk) {
1037 			bss_prot = elf_prot;
1038 			elf_brk = k;
1039 		}
1040 	}
1041 
1042 	loc->elf_ex.e_entry += load_bias;
1043 	elf_bss += load_bias;
1044 	elf_brk += load_bias;
1045 	start_code += load_bias;
1046 	end_code += load_bias;
1047 	start_data += load_bias;
1048 	end_data += load_bias;
1049 
1050 	/* Calling set_brk effectively mmaps the pages that we need
1051 	 * for the bss and break sections.  We must do this before
1052 	 * mapping in the interpreter, to make sure it doesn't wind
1053 	 * up getting placed where the bss needs to go.
1054 	 */
1055 	retval = set_brk(elf_bss, elf_brk, bss_prot);
1056 	if (retval)
1057 		goto out_free_dentry;
1058 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1059 		retval = -EFAULT; /* Nobody gets to see this, but.. */
1060 		goto out_free_dentry;
1061 	}
1062 
1063 	if (interpreter) {
1064 		unsigned long interp_map_addr = 0;
1065 
1066 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
1067 					    interpreter,
1068 					    &interp_map_addr,
1069 					    load_bias, interp_elf_phdata);
1070 		if (!IS_ERR((void *)elf_entry)) {
1071 			/*
1072 			 * load_elf_interp() returns relocation
1073 			 * adjustment
1074 			 */
1075 			interp_load_addr = elf_entry;
1076 			elf_entry += loc->interp_elf_ex.e_entry;
1077 		}
1078 		if (BAD_ADDR(elf_entry)) {
1079 			retval = IS_ERR((void *)elf_entry) ?
1080 					(int)elf_entry : -EINVAL;
1081 			goto out_free_dentry;
1082 		}
1083 		reloc_func_desc = interp_load_addr;
1084 
1085 		allow_write_access(interpreter);
1086 		fput(interpreter);
1087 	} else {
1088 		elf_entry = loc->elf_ex.e_entry;
1089 		if (BAD_ADDR(elf_entry)) {
1090 			retval = -EINVAL;
1091 			goto out_free_dentry;
1092 		}
1093 	}
1094 
1095 	kfree(interp_elf_phdata);
1096 	kfree(elf_phdata);
1097 
1098 	set_binfmt(&elf_format);
1099 
1100 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1101 	retval = arch_setup_additional_pages(bprm, !!interpreter);
1102 	if (retval < 0)
1103 		goto out;
1104 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1105 
1106 	retval = create_elf_tables(bprm, &loc->elf_ex,
1107 			  load_addr, interp_load_addr);
1108 	if (retval < 0)
1109 		goto out;
1110 	current->mm->end_code = end_code;
1111 	current->mm->start_code = start_code;
1112 	current->mm->start_data = start_data;
1113 	current->mm->end_data = end_data;
1114 	current->mm->start_stack = bprm->p;
1115 
1116 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1117 		/*
1118 		 * For architectures with ELF randomization, when executing
1119 		 * a loader directly (i.e. no interpreter listed in ELF
1120 		 * headers), move the brk area out of the mmap region
1121 		 * (since it grows up, and may collide early with the stack
1122 		 * growing down), and into the unused ELF_ET_DYN_BASE region.
1123 		 */
1124 		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1125 		    loc->elf_ex.e_type == ET_DYN && !interpreter)
1126 			current->mm->brk = current->mm->start_brk =
1127 				ELF_ET_DYN_BASE;
1128 
1129 		current->mm->brk = current->mm->start_brk =
1130 			arch_randomize_brk(current->mm);
1131 #ifdef compat_brk_randomized
1132 		current->brk_randomized = 1;
1133 #endif
1134 	}
1135 
1136 	if (current->personality & MMAP_PAGE_ZERO) {
1137 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1138 		   and some applications "depend" upon this behavior.
1139 		   Since we do not have the power to recompile these, we
1140 		   emulate the SVr4 behavior. Sigh. */
1141 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1142 				MAP_FIXED | MAP_PRIVATE, 0);
1143 	}
1144 
1145 	regs = current_pt_regs();
1146 #ifdef ELF_PLAT_INIT
1147 	/*
1148 	 * The ABI may specify that certain registers be set up in special
1149 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1150 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1151 	 * that the e_entry field is the address of the function descriptor
1152 	 * for the startup routine, rather than the address of the startup
1153 	 * routine itself.  This macro performs whatever initialization to
1154 	 * the regs structure is required as well as any relocations to the
1155 	 * function descriptor entries when executing dynamically links apps.
1156 	 */
1157 	ELF_PLAT_INIT(regs, reloc_func_desc);
1158 #endif
1159 
1160 	finalize_exec(bprm);
1161 	start_thread(regs, elf_entry, bprm->p);
1162 	retval = 0;
1163 out:
1164 	kfree(loc);
1165 out_ret:
1166 	return retval;
1167 
1168 	/* error cleanup */
1169 out_free_dentry:
1170 	kfree(interp_elf_phdata);
1171 	allow_write_access(interpreter);
1172 	if (interpreter)
1173 		fput(interpreter);
1174 out_free_ph:
1175 	kfree(elf_phdata);
1176 	goto out;
1177 }
1178 
1179 #ifdef CONFIG_USELIB
1180 /* This is really simpleminded and specialized - we are loading an
1181    a.out library that is given an ELF header. */
1182 static int load_elf_library(struct file *file)
1183 {
1184 	struct elf_phdr *elf_phdata;
1185 	struct elf_phdr *eppnt;
1186 	unsigned long elf_bss, bss, len;
1187 	int retval, error, i, j;
1188 	struct elfhdr elf_ex;
1189 	loff_t pos = 0;
1190 
1191 	error = -ENOEXEC;
1192 	retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1193 	if (retval != sizeof(elf_ex))
1194 		goto out;
1195 
1196 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1197 		goto out;
1198 
1199 	/* First of all, some simple consistency checks */
1200 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1201 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1202 		goto out;
1203 	if (elf_check_fdpic(&elf_ex))
1204 		goto out;
1205 
1206 	/* Now read in all of the header information */
1207 
1208 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1209 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1210 
1211 	error = -ENOMEM;
1212 	elf_phdata = kmalloc(j, GFP_KERNEL);
1213 	if (!elf_phdata)
1214 		goto out;
1215 
1216 	eppnt = elf_phdata;
1217 	error = -ENOEXEC;
1218 	pos =  elf_ex.e_phoff;
1219 	retval = kernel_read(file, eppnt, j, &pos);
1220 	if (retval != j)
1221 		goto out_free_ph;
1222 
1223 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1224 		if ((eppnt + i)->p_type == PT_LOAD)
1225 			j++;
1226 	if (j != 1)
1227 		goto out_free_ph;
1228 
1229 	while (eppnt->p_type != PT_LOAD)
1230 		eppnt++;
1231 
1232 	/* Now use mmap to map the library into memory. */
1233 	error = vm_mmap(file,
1234 			ELF_PAGESTART(eppnt->p_vaddr),
1235 			(eppnt->p_filesz +
1236 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1237 			PROT_READ | PROT_WRITE | PROT_EXEC,
1238 			MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1239 			(eppnt->p_offset -
1240 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1241 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1242 		goto out_free_ph;
1243 
1244 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1245 	if (padzero(elf_bss)) {
1246 		error = -EFAULT;
1247 		goto out_free_ph;
1248 	}
1249 
1250 	len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1251 	bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1252 	if (bss > len) {
1253 		error = vm_brk(len, bss - len);
1254 		if (error)
1255 			goto out_free_ph;
1256 	}
1257 	error = 0;
1258 
1259 out_free_ph:
1260 	kfree(elf_phdata);
1261 out:
1262 	return error;
1263 }
1264 #endif /* #ifdef CONFIG_USELIB */
1265 
1266 #ifdef CONFIG_ELF_CORE
1267 /*
1268  * ELF core dumper
1269  *
1270  * Modelled on fs/exec.c:aout_core_dump()
1271  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1272  */
1273 
1274 /*
1275  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1276  * that are useful for post-mortem analysis are included in every core dump.
1277  * In that way we ensure that the core dump is fully interpretable later
1278  * without matching up the same kernel and hardware config to see what PC values
1279  * meant. These special mappings include - vDSO, vsyscall, and other
1280  * architecture specific mappings
1281  */
1282 static bool always_dump_vma(struct vm_area_struct *vma)
1283 {
1284 	/* Any vsyscall mappings? */
1285 	if (vma == get_gate_vma(vma->vm_mm))
1286 		return true;
1287 
1288 	/*
1289 	 * Assume that all vmas with a .name op should always be dumped.
1290 	 * If this changes, a new vm_ops field can easily be added.
1291 	 */
1292 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1293 		return true;
1294 
1295 	/*
1296 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1297 	 * such as vDSO sections.
1298 	 */
1299 	if (arch_vma_name(vma))
1300 		return true;
1301 
1302 	return false;
1303 }
1304 
1305 /*
1306  * Decide what to dump of a segment, part, all or none.
1307  */
1308 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1309 				   unsigned long mm_flags)
1310 {
1311 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1312 
1313 	/* always dump the vdso and vsyscall sections */
1314 	if (always_dump_vma(vma))
1315 		goto whole;
1316 
1317 	if (vma->vm_flags & VM_DONTDUMP)
1318 		return 0;
1319 
1320 	/* support for DAX */
1321 	if (vma_is_dax(vma)) {
1322 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1323 			goto whole;
1324 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1325 			goto whole;
1326 		return 0;
1327 	}
1328 
1329 	/* Hugetlb memory check */
1330 	if (vma->vm_flags & VM_HUGETLB) {
1331 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1332 			goto whole;
1333 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1334 			goto whole;
1335 		return 0;
1336 	}
1337 
1338 	/* Do not dump I/O mapped devices or special mappings */
1339 	if (vma->vm_flags & VM_IO)
1340 		return 0;
1341 
1342 	/* By default, dump shared memory if mapped from an anonymous file. */
1343 	if (vma->vm_flags & VM_SHARED) {
1344 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1345 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1346 			goto whole;
1347 		return 0;
1348 	}
1349 
1350 	/* Dump segments that have been written to.  */
1351 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1352 		goto whole;
1353 	if (vma->vm_file == NULL)
1354 		return 0;
1355 
1356 	if (FILTER(MAPPED_PRIVATE))
1357 		goto whole;
1358 
1359 	/*
1360 	 * If this looks like the beginning of a DSO or executable mapping,
1361 	 * check for an ELF header.  If we find one, dump the first page to
1362 	 * aid in determining what was mapped here.
1363 	 */
1364 	if (FILTER(ELF_HEADERS) &&
1365 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1366 		u32 __user *header = (u32 __user *) vma->vm_start;
1367 		u32 word;
1368 		mm_segment_t fs = get_fs();
1369 		/*
1370 		 * Doing it this way gets the constant folded by GCC.
1371 		 */
1372 		union {
1373 			u32 cmp;
1374 			char elfmag[SELFMAG];
1375 		} magic;
1376 		BUILD_BUG_ON(SELFMAG != sizeof word);
1377 		magic.elfmag[EI_MAG0] = ELFMAG0;
1378 		magic.elfmag[EI_MAG1] = ELFMAG1;
1379 		magic.elfmag[EI_MAG2] = ELFMAG2;
1380 		magic.elfmag[EI_MAG3] = ELFMAG3;
1381 		/*
1382 		 * Switch to the user "segment" for get_user(),
1383 		 * then put back what elf_core_dump() had in place.
1384 		 */
1385 		set_fs(USER_DS);
1386 		if (unlikely(get_user(word, header)))
1387 			word = 0;
1388 		set_fs(fs);
1389 		if (word == magic.cmp)
1390 			return PAGE_SIZE;
1391 	}
1392 
1393 #undef	FILTER
1394 
1395 	return 0;
1396 
1397 whole:
1398 	return vma->vm_end - vma->vm_start;
1399 }
1400 
1401 /* An ELF note in memory */
1402 struct memelfnote
1403 {
1404 	const char *name;
1405 	int type;
1406 	unsigned int datasz;
1407 	void *data;
1408 };
1409 
1410 static int notesize(struct memelfnote *en)
1411 {
1412 	int sz;
1413 
1414 	sz = sizeof(struct elf_note);
1415 	sz += roundup(strlen(en->name) + 1, 4);
1416 	sz += roundup(en->datasz, 4);
1417 
1418 	return sz;
1419 }
1420 
1421 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1422 {
1423 	struct elf_note en;
1424 	en.n_namesz = strlen(men->name) + 1;
1425 	en.n_descsz = men->datasz;
1426 	en.n_type = men->type;
1427 
1428 	return dump_emit(cprm, &en, sizeof(en)) &&
1429 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1430 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1431 }
1432 
1433 static void fill_elf_header(struct elfhdr *elf, int segs,
1434 			    u16 machine, u32 flags)
1435 {
1436 	memset(elf, 0, sizeof(*elf));
1437 
1438 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1439 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1440 	elf->e_ident[EI_DATA] = ELF_DATA;
1441 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1442 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1443 
1444 	elf->e_type = ET_CORE;
1445 	elf->e_machine = machine;
1446 	elf->e_version = EV_CURRENT;
1447 	elf->e_phoff = sizeof(struct elfhdr);
1448 	elf->e_flags = flags;
1449 	elf->e_ehsize = sizeof(struct elfhdr);
1450 	elf->e_phentsize = sizeof(struct elf_phdr);
1451 	elf->e_phnum = segs;
1452 }
1453 
1454 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1455 {
1456 	phdr->p_type = PT_NOTE;
1457 	phdr->p_offset = offset;
1458 	phdr->p_vaddr = 0;
1459 	phdr->p_paddr = 0;
1460 	phdr->p_filesz = sz;
1461 	phdr->p_memsz = 0;
1462 	phdr->p_flags = 0;
1463 	phdr->p_align = 0;
1464 }
1465 
1466 static void fill_note(struct memelfnote *note, const char *name, int type,
1467 		unsigned int sz, void *data)
1468 {
1469 	note->name = name;
1470 	note->type = type;
1471 	note->datasz = sz;
1472 	note->data = data;
1473 }
1474 
1475 /*
1476  * fill up all the fields in prstatus from the given task struct, except
1477  * registers which need to be filled up separately.
1478  */
1479 static void fill_prstatus(struct elf_prstatus *prstatus,
1480 		struct task_struct *p, long signr)
1481 {
1482 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1483 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1484 	prstatus->pr_sighold = p->blocked.sig[0];
1485 	rcu_read_lock();
1486 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1487 	rcu_read_unlock();
1488 	prstatus->pr_pid = task_pid_vnr(p);
1489 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1490 	prstatus->pr_sid = task_session_vnr(p);
1491 	if (thread_group_leader(p)) {
1492 		struct task_cputime cputime;
1493 
1494 		/*
1495 		 * This is the record for the group leader.  It shows the
1496 		 * group-wide total, not its individual thread total.
1497 		 */
1498 		thread_group_cputime(p, &cputime);
1499 		prstatus->pr_utime = ns_to_timeval(cputime.utime);
1500 		prstatus->pr_stime = ns_to_timeval(cputime.stime);
1501 	} else {
1502 		u64 utime, stime;
1503 
1504 		task_cputime(p, &utime, &stime);
1505 		prstatus->pr_utime = ns_to_timeval(utime);
1506 		prstatus->pr_stime = ns_to_timeval(stime);
1507 	}
1508 
1509 	prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1510 	prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1511 }
1512 
1513 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1514 		       struct mm_struct *mm)
1515 {
1516 	const struct cred *cred;
1517 	unsigned int i, len;
1518 
1519 	/* first copy the parameters from user space */
1520 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1521 
1522 	len = mm->arg_end - mm->arg_start;
1523 	if (len >= ELF_PRARGSZ)
1524 		len = ELF_PRARGSZ-1;
1525 	if (copy_from_user(&psinfo->pr_psargs,
1526 		           (const char __user *)mm->arg_start, len))
1527 		return -EFAULT;
1528 	for(i = 0; i < len; i++)
1529 		if (psinfo->pr_psargs[i] == 0)
1530 			psinfo->pr_psargs[i] = ' ';
1531 	psinfo->pr_psargs[len] = 0;
1532 
1533 	rcu_read_lock();
1534 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1535 	rcu_read_unlock();
1536 	psinfo->pr_pid = task_pid_vnr(p);
1537 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1538 	psinfo->pr_sid = task_session_vnr(p);
1539 
1540 	i = p->state ? ffz(~p->state) + 1 : 0;
1541 	psinfo->pr_state = i;
1542 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1543 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1544 	psinfo->pr_nice = task_nice(p);
1545 	psinfo->pr_flag = p->flags;
1546 	rcu_read_lock();
1547 	cred = __task_cred(p);
1548 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1549 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1550 	rcu_read_unlock();
1551 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1552 
1553 	return 0;
1554 }
1555 
1556 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1557 {
1558 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1559 	int i = 0;
1560 	do
1561 		i += 2;
1562 	while (auxv[i - 2] != AT_NULL);
1563 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1564 }
1565 
1566 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1567 		const kernel_siginfo_t *siginfo)
1568 {
1569 	mm_segment_t old_fs = get_fs();
1570 	set_fs(KERNEL_DS);
1571 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1572 	set_fs(old_fs);
1573 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1574 }
1575 
1576 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1577 /*
1578  * Format of NT_FILE note:
1579  *
1580  * long count     -- how many files are mapped
1581  * long page_size -- units for file_ofs
1582  * array of [COUNT] elements of
1583  *   long start
1584  *   long end
1585  *   long file_ofs
1586  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1587  */
1588 static int fill_files_note(struct memelfnote *note)
1589 {
1590 	struct vm_area_struct *vma;
1591 	unsigned count, size, names_ofs, remaining, n;
1592 	user_long_t *data;
1593 	user_long_t *start_end_ofs;
1594 	char *name_base, *name_curpos;
1595 
1596 	/* *Estimated* file count and total data size needed */
1597 	count = current->mm->map_count;
1598 	if (count > UINT_MAX / 64)
1599 		return -EINVAL;
1600 	size = count * 64;
1601 
1602 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1603  alloc:
1604 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1605 		return -EINVAL;
1606 	size = round_up(size, PAGE_SIZE);
1607 	data = kvmalloc(size, GFP_KERNEL);
1608 	if (ZERO_OR_NULL_PTR(data))
1609 		return -ENOMEM;
1610 
1611 	start_end_ofs = data + 2;
1612 	name_base = name_curpos = ((char *)data) + names_ofs;
1613 	remaining = size - names_ofs;
1614 	count = 0;
1615 	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1616 		struct file *file;
1617 		const char *filename;
1618 
1619 		file = vma->vm_file;
1620 		if (!file)
1621 			continue;
1622 		filename = file_path(file, name_curpos, remaining);
1623 		if (IS_ERR(filename)) {
1624 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1625 				kvfree(data);
1626 				size = size * 5 / 4;
1627 				goto alloc;
1628 			}
1629 			continue;
1630 		}
1631 
1632 		/* file_path() fills at the end, move name down */
1633 		/* n = strlen(filename) + 1: */
1634 		n = (name_curpos + remaining) - filename;
1635 		remaining = filename - name_curpos;
1636 		memmove(name_curpos, filename, n);
1637 		name_curpos += n;
1638 
1639 		*start_end_ofs++ = vma->vm_start;
1640 		*start_end_ofs++ = vma->vm_end;
1641 		*start_end_ofs++ = vma->vm_pgoff;
1642 		count++;
1643 	}
1644 
1645 	/* Now we know exact count of files, can store it */
1646 	data[0] = count;
1647 	data[1] = PAGE_SIZE;
1648 	/*
1649 	 * Count usually is less than current->mm->map_count,
1650 	 * we need to move filenames down.
1651 	 */
1652 	n = current->mm->map_count - count;
1653 	if (n != 0) {
1654 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1655 		memmove(name_base - shift_bytes, name_base,
1656 			name_curpos - name_base);
1657 		name_curpos -= shift_bytes;
1658 	}
1659 
1660 	size = name_curpos - (char *)data;
1661 	fill_note(note, "CORE", NT_FILE, size, data);
1662 	return 0;
1663 }
1664 
1665 #ifdef CORE_DUMP_USE_REGSET
1666 #include <linux/regset.h>
1667 
1668 struct elf_thread_core_info {
1669 	struct elf_thread_core_info *next;
1670 	struct task_struct *task;
1671 	struct elf_prstatus prstatus;
1672 	struct memelfnote notes[0];
1673 };
1674 
1675 struct elf_note_info {
1676 	struct elf_thread_core_info *thread;
1677 	struct memelfnote psinfo;
1678 	struct memelfnote signote;
1679 	struct memelfnote auxv;
1680 	struct memelfnote files;
1681 	user_siginfo_t csigdata;
1682 	size_t size;
1683 	int thread_notes;
1684 };
1685 
1686 /*
1687  * When a regset has a writeback hook, we call it on each thread before
1688  * dumping user memory.  On register window machines, this makes sure the
1689  * user memory backing the register data is up to date before we read it.
1690  */
1691 static void do_thread_regset_writeback(struct task_struct *task,
1692 				       const struct user_regset *regset)
1693 {
1694 	if (regset->writeback)
1695 		regset->writeback(task, regset, 1);
1696 }
1697 
1698 #ifndef PRSTATUS_SIZE
1699 #define PRSTATUS_SIZE(S, R) sizeof(S)
1700 #endif
1701 
1702 #ifndef SET_PR_FPVALID
1703 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1704 #endif
1705 
1706 static int fill_thread_core_info(struct elf_thread_core_info *t,
1707 				 const struct user_regset_view *view,
1708 				 long signr, size_t *total)
1709 {
1710 	unsigned int i;
1711 	unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1712 
1713 	/*
1714 	 * NT_PRSTATUS is the one special case, because the regset data
1715 	 * goes into the pr_reg field inside the note contents, rather
1716 	 * than being the whole note contents.  We fill the reset in here.
1717 	 * We assume that regset 0 is NT_PRSTATUS.
1718 	 */
1719 	fill_prstatus(&t->prstatus, t->task, signr);
1720 	(void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1721 				    &t->prstatus.pr_reg, NULL);
1722 
1723 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1724 		  PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1725 	*total += notesize(&t->notes[0]);
1726 
1727 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1728 
1729 	/*
1730 	 * Each other regset might generate a note too.  For each regset
1731 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1732 	 * all zero and we'll know to skip writing it later.
1733 	 */
1734 	for (i = 1; i < view->n; ++i) {
1735 		const struct user_regset *regset = &view->regsets[i];
1736 		do_thread_regset_writeback(t->task, regset);
1737 		if (regset->core_note_type && regset->get &&
1738 		    (!regset->active || regset->active(t->task, regset) > 0)) {
1739 			int ret;
1740 			size_t size = regset_size(t->task, regset);
1741 			void *data = kmalloc(size, GFP_KERNEL);
1742 			if (unlikely(!data))
1743 				return 0;
1744 			ret = regset->get(t->task, regset,
1745 					  0, size, data, NULL);
1746 			if (unlikely(ret))
1747 				kfree(data);
1748 			else {
1749 				if (regset->core_note_type != NT_PRFPREG)
1750 					fill_note(&t->notes[i], "LINUX",
1751 						  regset->core_note_type,
1752 						  size, data);
1753 				else {
1754 					SET_PR_FPVALID(&t->prstatus,
1755 							1, regset0_size);
1756 					fill_note(&t->notes[i], "CORE",
1757 						  NT_PRFPREG, size, data);
1758 				}
1759 				*total += notesize(&t->notes[i]);
1760 			}
1761 		}
1762 	}
1763 
1764 	return 1;
1765 }
1766 
1767 static int fill_note_info(struct elfhdr *elf, int phdrs,
1768 			  struct elf_note_info *info,
1769 			  const kernel_siginfo_t *siginfo, struct pt_regs *regs)
1770 {
1771 	struct task_struct *dump_task = current;
1772 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1773 	struct elf_thread_core_info *t;
1774 	struct elf_prpsinfo *psinfo;
1775 	struct core_thread *ct;
1776 	unsigned int i;
1777 
1778 	info->size = 0;
1779 	info->thread = NULL;
1780 
1781 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1782 	if (psinfo == NULL) {
1783 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1784 		return 0;
1785 	}
1786 
1787 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1788 
1789 	/*
1790 	 * Figure out how many notes we're going to need for each thread.
1791 	 */
1792 	info->thread_notes = 0;
1793 	for (i = 0; i < view->n; ++i)
1794 		if (view->regsets[i].core_note_type != 0)
1795 			++info->thread_notes;
1796 
1797 	/*
1798 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1799 	 * since it is our one special case.
1800 	 */
1801 	if (unlikely(info->thread_notes == 0) ||
1802 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1803 		WARN_ON(1);
1804 		return 0;
1805 	}
1806 
1807 	/*
1808 	 * Initialize the ELF file header.
1809 	 */
1810 	fill_elf_header(elf, phdrs,
1811 			view->e_machine, view->e_flags);
1812 
1813 	/*
1814 	 * Allocate a structure for each thread.
1815 	 */
1816 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1817 		t = kzalloc(offsetof(struct elf_thread_core_info,
1818 				     notes[info->thread_notes]),
1819 			    GFP_KERNEL);
1820 		if (unlikely(!t))
1821 			return 0;
1822 
1823 		t->task = ct->task;
1824 		if (ct->task == dump_task || !info->thread) {
1825 			t->next = info->thread;
1826 			info->thread = t;
1827 		} else {
1828 			/*
1829 			 * Make sure to keep the original task at
1830 			 * the head of the list.
1831 			 */
1832 			t->next = info->thread->next;
1833 			info->thread->next = t;
1834 		}
1835 	}
1836 
1837 	/*
1838 	 * Now fill in each thread's information.
1839 	 */
1840 	for (t = info->thread; t != NULL; t = t->next)
1841 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1842 			return 0;
1843 
1844 	/*
1845 	 * Fill in the two process-wide notes.
1846 	 */
1847 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1848 	info->size += notesize(&info->psinfo);
1849 
1850 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1851 	info->size += notesize(&info->signote);
1852 
1853 	fill_auxv_note(&info->auxv, current->mm);
1854 	info->size += notesize(&info->auxv);
1855 
1856 	if (fill_files_note(&info->files) == 0)
1857 		info->size += notesize(&info->files);
1858 
1859 	return 1;
1860 }
1861 
1862 static size_t get_note_info_size(struct elf_note_info *info)
1863 {
1864 	return info->size;
1865 }
1866 
1867 /*
1868  * Write all the notes for each thread.  When writing the first thread, the
1869  * process-wide notes are interleaved after the first thread-specific note.
1870  */
1871 static int write_note_info(struct elf_note_info *info,
1872 			   struct coredump_params *cprm)
1873 {
1874 	bool first = true;
1875 	struct elf_thread_core_info *t = info->thread;
1876 
1877 	do {
1878 		int i;
1879 
1880 		if (!writenote(&t->notes[0], cprm))
1881 			return 0;
1882 
1883 		if (first && !writenote(&info->psinfo, cprm))
1884 			return 0;
1885 		if (first && !writenote(&info->signote, cprm))
1886 			return 0;
1887 		if (first && !writenote(&info->auxv, cprm))
1888 			return 0;
1889 		if (first && info->files.data &&
1890 				!writenote(&info->files, cprm))
1891 			return 0;
1892 
1893 		for (i = 1; i < info->thread_notes; ++i)
1894 			if (t->notes[i].data &&
1895 			    !writenote(&t->notes[i], cprm))
1896 				return 0;
1897 
1898 		first = false;
1899 		t = t->next;
1900 	} while (t);
1901 
1902 	return 1;
1903 }
1904 
1905 static void free_note_info(struct elf_note_info *info)
1906 {
1907 	struct elf_thread_core_info *threads = info->thread;
1908 	while (threads) {
1909 		unsigned int i;
1910 		struct elf_thread_core_info *t = threads;
1911 		threads = t->next;
1912 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1913 		for (i = 1; i < info->thread_notes; ++i)
1914 			kfree(t->notes[i].data);
1915 		kfree(t);
1916 	}
1917 	kfree(info->psinfo.data);
1918 	kvfree(info->files.data);
1919 }
1920 
1921 #else
1922 
1923 /* Here is the structure in which status of each thread is captured. */
1924 struct elf_thread_status
1925 {
1926 	struct list_head list;
1927 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1928 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1929 	struct task_struct *thread;
1930 #ifdef ELF_CORE_COPY_XFPREGS
1931 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1932 #endif
1933 	struct memelfnote notes[3];
1934 	int num_notes;
1935 };
1936 
1937 /*
1938  * In order to add the specific thread information for the elf file format,
1939  * we need to keep a linked list of every threads pr_status and then create
1940  * a single section for them in the final core file.
1941  */
1942 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1943 {
1944 	int sz = 0;
1945 	struct task_struct *p = t->thread;
1946 	t->num_notes = 0;
1947 
1948 	fill_prstatus(&t->prstatus, p, signr);
1949 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1950 
1951 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1952 		  &(t->prstatus));
1953 	t->num_notes++;
1954 	sz += notesize(&t->notes[0]);
1955 
1956 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1957 								&t->fpu))) {
1958 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1959 			  &(t->fpu));
1960 		t->num_notes++;
1961 		sz += notesize(&t->notes[1]);
1962 	}
1963 
1964 #ifdef ELF_CORE_COPY_XFPREGS
1965 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1966 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1967 			  sizeof(t->xfpu), &t->xfpu);
1968 		t->num_notes++;
1969 		sz += notesize(&t->notes[2]);
1970 	}
1971 #endif
1972 	return sz;
1973 }
1974 
1975 struct elf_note_info {
1976 	struct memelfnote *notes;
1977 	struct memelfnote *notes_files;
1978 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1979 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1980 	struct list_head thread_list;
1981 	elf_fpregset_t *fpu;
1982 #ifdef ELF_CORE_COPY_XFPREGS
1983 	elf_fpxregset_t *xfpu;
1984 #endif
1985 	user_siginfo_t csigdata;
1986 	int thread_status_size;
1987 	int numnote;
1988 };
1989 
1990 static int elf_note_info_init(struct elf_note_info *info)
1991 {
1992 	memset(info, 0, sizeof(*info));
1993 	INIT_LIST_HEAD(&info->thread_list);
1994 
1995 	/* Allocate space for ELF notes */
1996 	info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
1997 	if (!info->notes)
1998 		return 0;
1999 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2000 	if (!info->psinfo)
2001 		return 0;
2002 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2003 	if (!info->prstatus)
2004 		return 0;
2005 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2006 	if (!info->fpu)
2007 		return 0;
2008 #ifdef ELF_CORE_COPY_XFPREGS
2009 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2010 	if (!info->xfpu)
2011 		return 0;
2012 #endif
2013 	return 1;
2014 }
2015 
2016 static int fill_note_info(struct elfhdr *elf, int phdrs,
2017 			  struct elf_note_info *info,
2018 			  const kernel_siginfo_t *siginfo, struct pt_regs *regs)
2019 {
2020 	struct core_thread *ct;
2021 	struct elf_thread_status *ets;
2022 
2023 	if (!elf_note_info_init(info))
2024 		return 0;
2025 
2026 	for (ct = current->mm->core_state->dumper.next;
2027 					ct; ct = ct->next) {
2028 		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2029 		if (!ets)
2030 			return 0;
2031 
2032 		ets->thread = ct->task;
2033 		list_add(&ets->list, &info->thread_list);
2034 	}
2035 
2036 	list_for_each_entry(ets, &info->thread_list, list) {
2037 		int sz;
2038 
2039 		sz = elf_dump_thread_status(siginfo->si_signo, ets);
2040 		info->thread_status_size += sz;
2041 	}
2042 	/* now collect the dump for the current */
2043 	memset(info->prstatus, 0, sizeof(*info->prstatus));
2044 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
2045 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2046 
2047 	/* Set up header */
2048 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2049 
2050 	/*
2051 	 * Set up the notes in similar form to SVR4 core dumps made
2052 	 * with info from their /proc.
2053 	 */
2054 
2055 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2056 		  sizeof(*info->prstatus), info->prstatus);
2057 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
2058 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2059 		  sizeof(*info->psinfo), info->psinfo);
2060 
2061 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2062 	fill_auxv_note(info->notes + 3, current->mm);
2063 	info->numnote = 4;
2064 
2065 	if (fill_files_note(info->notes + info->numnote) == 0) {
2066 		info->notes_files = info->notes + info->numnote;
2067 		info->numnote++;
2068 	}
2069 
2070 	/* Try to dump the FPU. */
2071 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2072 							       info->fpu);
2073 	if (info->prstatus->pr_fpvalid)
2074 		fill_note(info->notes + info->numnote++,
2075 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2076 #ifdef ELF_CORE_COPY_XFPREGS
2077 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
2078 		fill_note(info->notes + info->numnote++,
2079 			  "LINUX", ELF_CORE_XFPREG_TYPE,
2080 			  sizeof(*info->xfpu), info->xfpu);
2081 #endif
2082 
2083 	return 1;
2084 }
2085 
2086 static size_t get_note_info_size(struct elf_note_info *info)
2087 {
2088 	int sz = 0;
2089 	int i;
2090 
2091 	for (i = 0; i < info->numnote; i++)
2092 		sz += notesize(info->notes + i);
2093 
2094 	sz += info->thread_status_size;
2095 
2096 	return sz;
2097 }
2098 
2099 static int write_note_info(struct elf_note_info *info,
2100 			   struct coredump_params *cprm)
2101 {
2102 	struct elf_thread_status *ets;
2103 	int i;
2104 
2105 	for (i = 0; i < info->numnote; i++)
2106 		if (!writenote(info->notes + i, cprm))
2107 			return 0;
2108 
2109 	/* write out the thread status notes section */
2110 	list_for_each_entry(ets, &info->thread_list, list) {
2111 		for (i = 0; i < ets->num_notes; i++)
2112 			if (!writenote(&ets->notes[i], cprm))
2113 				return 0;
2114 	}
2115 
2116 	return 1;
2117 }
2118 
2119 static void free_note_info(struct elf_note_info *info)
2120 {
2121 	while (!list_empty(&info->thread_list)) {
2122 		struct list_head *tmp = info->thread_list.next;
2123 		list_del(tmp);
2124 		kfree(list_entry(tmp, struct elf_thread_status, list));
2125 	}
2126 
2127 	/* Free data possibly allocated by fill_files_note(): */
2128 	if (info->notes_files)
2129 		kvfree(info->notes_files->data);
2130 
2131 	kfree(info->prstatus);
2132 	kfree(info->psinfo);
2133 	kfree(info->notes);
2134 	kfree(info->fpu);
2135 #ifdef ELF_CORE_COPY_XFPREGS
2136 	kfree(info->xfpu);
2137 #endif
2138 }
2139 
2140 #endif
2141 
2142 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2143 					struct vm_area_struct *gate_vma)
2144 {
2145 	struct vm_area_struct *ret = tsk->mm->mmap;
2146 
2147 	if (ret)
2148 		return ret;
2149 	return gate_vma;
2150 }
2151 /*
2152  * Helper function for iterating across a vma list.  It ensures that the caller
2153  * will visit `gate_vma' prior to terminating the search.
2154  */
2155 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2156 					struct vm_area_struct *gate_vma)
2157 {
2158 	struct vm_area_struct *ret;
2159 
2160 	ret = this_vma->vm_next;
2161 	if (ret)
2162 		return ret;
2163 	if (this_vma == gate_vma)
2164 		return NULL;
2165 	return gate_vma;
2166 }
2167 
2168 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2169 			     elf_addr_t e_shoff, int segs)
2170 {
2171 	elf->e_shoff = e_shoff;
2172 	elf->e_shentsize = sizeof(*shdr4extnum);
2173 	elf->e_shnum = 1;
2174 	elf->e_shstrndx = SHN_UNDEF;
2175 
2176 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2177 
2178 	shdr4extnum->sh_type = SHT_NULL;
2179 	shdr4extnum->sh_size = elf->e_shnum;
2180 	shdr4extnum->sh_link = elf->e_shstrndx;
2181 	shdr4extnum->sh_info = segs;
2182 }
2183 
2184 /*
2185  * Actual dumper
2186  *
2187  * This is a two-pass process; first we find the offsets of the bits,
2188  * and then they are actually written out.  If we run out of core limit
2189  * we just truncate.
2190  */
2191 static int elf_core_dump(struct coredump_params *cprm)
2192 {
2193 	int has_dumped = 0;
2194 	mm_segment_t fs;
2195 	int segs, i;
2196 	size_t vma_data_size = 0;
2197 	struct vm_area_struct *vma, *gate_vma;
2198 	struct elfhdr *elf = NULL;
2199 	loff_t offset = 0, dataoff;
2200 	struct elf_note_info info = { };
2201 	struct elf_phdr *phdr4note = NULL;
2202 	struct elf_shdr *shdr4extnum = NULL;
2203 	Elf_Half e_phnum;
2204 	elf_addr_t e_shoff;
2205 	elf_addr_t *vma_filesz = NULL;
2206 
2207 	/*
2208 	 * We no longer stop all VM operations.
2209 	 *
2210 	 * This is because those proceses that could possibly change map_count
2211 	 * or the mmap / vma pages are now blocked in do_exit on current
2212 	 * finishing this core dump.
2213 	 *
2214 	 * Only ptrace can touch these memory addresses, but it doesn't change
2215 	 * the map_count or the pages allocated. So no possibility of crashing
2216 	 * exists while dumping the mm->vm_next areas to the core file.
2217 	 */
2218 
2219 	/* alloc memory for large data structures: too large to be on stack */
2220 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2221 	if (!elf)
2222 		goto out;
2223 	/*
2224 	 * The number of segs are recored into ELF header as 16bit value.
2225 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2226 	 */
2227 	segs = current->mm->map_count;
2228 	segs += elf_core_extra_phdrs();
2229 
2230 	gate_vma = get_gate_vma(current->mm);
2231 	if (gate_vma != NULL)
2232 		segs++;
2233 
2234 	/* for notes section */
2235 	segs++;
2236 
2237 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2238 	 * this, kernel supports extended numbering. Have a look at
2239 	 * include/linux/elf.h for further information. */
2240 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2241 
2242 	/*
2243 	 * Collect all the non-memory information about the process for the
2244 	 * notes.  This also sets up the file header.
2245 	 */
2246 	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2247 		goto cleanup;
2248 
2249 	has_dumped = 1;
2250 
2251 	fs = get_fs();
2252 	set_fs(KERNEL_DS);
2253 
2254 	offset += sizeof(*elf);				/* Elf header */
2255 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2256 
2257 	/* Write notes phdr entry */
2258 	{
2259 		size_t sz = get_note_info_size(&info);
2260 
2261 		sz += elf_coredump_extra_notes_size();
2262 
2263 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2264 		if (!phdr4note)
2265 			goto end_coredump;
2266 
2267 		fill_elf_note_phdr(phdr4note, sz, offset);
2268 		offset += sz;
2269 	}
2270 
2271 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2272 
2273 	if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2274 		goto end_coredump;
2275 	vma_filesz = kvmalloc(array_size(sizeof(*vma_filesz), (segs - 1)),
2276 			      GFP_KERNEL);
2277 	if (ZERO_OR_NULL_PTR(vma_filesz))
2278 		goto end_coredump;
2279 
2280 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2281 			vma = next_vma(vma, gate_vma)) {
2282 		unsigned long dump_size;
2283 
2284 		dump_size = vma_dump_size(vma, cprm->mm_flags);
2285 		vma_filesz[i++] = dump_size;
2286 		vma_data_size += dump_size;
2287 	}
2288 
2289 	offset += vma_data_size;
2290 	offset += elf_core_extra_data_size();
2291 	e_shoff = offset;
2292 
2293 	if (e_phnum == PN_XNUM) {
2294 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2295 		if (!shdr4extnum)
2296 			goto end_coredump;
2297 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2298 	}
2299 
2300 	offset = dataoff;
2301 
2302 	if (!dump_emit(cprm, elf, sizeof(*elf)))
2303 		goto end_coredump;
2304 
2305 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2306 		goto end_coredump;
2307 
2308 	/* Write program headers for segments dump */
2309 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2310 			vma = next_vma(vma, gate_vma)) {
2311 		struct elf_phdr phdr;
2312 
2313 		phdr.p_type = PT_LOAD;
2314 		phdr.p_offset = offset;
2315 		phdr.p_vaddr = vma->vm_start;
2316 		phdr.p_paddr = 0;
2317 		phdr.p_filesz = vma_filesz[i++];
2318 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2319 		offset += phdr.p_filesz;
2320 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2321 		if (vma->vm_flags & VM_WRITE)
2322 			phdr.p_flags |= PF_W;
2323 		if (vma->vm_flags & VM_EXEC)
2324 			phdr.p_flags |= PF_X;
2325 		phdr.p_align = ELF_EXEC_PAGESIZE;
2326 
2327 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2328 			goto end_coredump;
2329 	}
2330 
2331 	if (!elf_core_write_extra_phdrs(cprm, offset))
2332 		goto end_coredump;
2333 
2334  	/* write out the notes section */
2335 	if (!write_note_info(&info, cprm))
2336 		goto end_coredump;
2337 
2338 	if (elf_coredump_extra_notes_write(cprm))
2339 		goto end_coredump;
2340 
2341 	/* Align to page */
2342 	if (!dump_skip(cprm, dataoff - cprm->pos))
2343 		goto end_coredump;
2344 
2345 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2346 			vma = next_vma(vma, gate_vma)) {
2347 		unsigned long addr;
2348 		unsigned long end;
2349 
2350 		end = vma->vm_start + vma_filesz[i++];
2351 
2352 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2353 			struct page *page;
2354 			int stop;
2355 
2356 			page = get_dump_page(addr);
2357 			if (page) {
2358 				void *kaddr = kmap(page);
2359 				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2360 				kunmap(page);
2361 				put_page(page);
2362 			} else
2363 				stop = !dump_skip(cprm, PAGE_SIZE);
2364 			if (stop)
2365 				goto end_coredump;
2366 		}
2367 	}
2368 	dump_truncate(cprm);
2369 
2370 	if (!elf_core_write_extra_data(cprm))
2371 		goto end_coredump;
2372 
2373 	if (e_phnum == PN_XNUM) {
2374 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2375 			goto end_coredump;
2376 	}
2377 
2378 end_coredump:
2379 	set_fs(fs);
2380 
2381 cleanup:
2382 	free_note_info(&info);
2383 	kfree(shdr4extnum);
2384 	kvfree(vma_filesz);
2385 	kfree(phdr4note);
2386 	kfree(elf);
2387 out:
2388 	return has_dumped;
2389 }
2390 
2391 #endif		/* CONFIG_ELF_CORE */
2392 
2393 static int __init init_elf_binfmt(void)
2394 {
2395 	register_binfmt(&elf_format);
2396 	return 0;
2397 }
2398 
2399 static void __exit exit_elf_binfmt(void)
2400 {
2401 	/* Remove the COFF and ELF loaders. */
2402 	unregister_binfmt(&elf_format);
2403 }
2404 
2405 core_initcall(init_elf_binfmt);
2406 module_exit(exit_elf_binfmt);
2407 MODULE_LICENSE("GPL");
2408