1 /* 2 * linux/fs/binfmt_elf.c 3 * 4 * These are the functions used to load ELF format executables as used 5 * on SVr4 machines. Information on the format may be found in the book 6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 7 * Tools". 8 * 9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 10 */ 11 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/fs.h> 15 #include <linux/mm.h> 16 #include <linux/mman.h> 17 #include <linux/errno.h> 18 #include <linux/signal.h> 19 #include <linux/binfmts.h> 20 #include <linux/string.h> 21 #include <linux/file.h> 22 #include <linux/slab.h> 23 #include <linux/personality.h> 24 #include <linux/elfcore.h> 25 #include <linux/init.h> 26 #include <linux/highuid.h> 27 #include <linux/compiler.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/vmalloc.h> 31 #include <linux/security.h> 32 #include <linux/random.h> 33 #include <linux/elf.h> 34 #include <linux/elf-randomize.h> 35 #include <linux/utsname.h> 36 #include <linux/coredump.h> 37 #include <linux/sched.h> 38 #include <linux/sched/coredump.h> 39 #include <linux/sched/task_stack.h> 40 #include <linux/sched/cputime.h> 41 #include <linux/cred.h> 42 #include <linux/dax.h> 43 #include <linux/uaccess.h> 44 #include <asm/param.h> 45 #include <asm/page.h> 46 47 #ifndef user_long_t 48 #define user_long_t long 49 #endif 50 #ifndef user_siginfo_t 51 #define user_siginfo_t siginfo_t 52 #endif 53 54 /* That's for binfmt_elf_fdpic to deal with */ 55 #ifndef elf_check_fdpic 56 #define elf_check_fdpic(ex) false 57 #endif 58 59 static int load_elf_binary(struct linux_binprm *bprm); 60 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *, 61 int, int, unsigned long); 62 63 #ifdef CONFIG_USELIB 64 static int load_elf_library(struct file *); 65 #else 66 #define load_elf_library NULL 67 #endif 68 69 /* 70 * If we don't support core dumping, then supply a NULL so we 71 * don't even try. 72 */ 73 #ifdef CONFIG_ELF_CORE 74 static int elf_core_dump(struct coredump_params *cprm); 75 #else 76 #define elf_core_dump NULL 77 #endif 78 79 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 80 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 81 #else 82 #define ELF_MIN_ALIGN PAGE_SIZE 83 #endif 84 85 #ifndef ELF_CORE_EFLAGS 86 #define ELF_CORE_EFLAGS 0 87 #endif 88 89 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) 90 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 91 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 92 93 static struct linux_binfmt elf_format = { 94 .module = THIS_MODULE, 95 .load_binary = load_elf_binary, 96 .load_shlib = load_elf_library, 97 .core_dump = elf_core_dump, 98 .min_coredump = ELF_EXEC_PAGESIZE, 99 }; 100 101 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE) 102 103 static int set_brk(unsigned long start, unsigned long end, int prot) 104 { 105 start = ELF_PAGEALIGN(start); 106 end = ELF_PAGEALIGN(end); 107 if (end > start) { 108 /* 109 * Map the last of the bss segment. 110 * If the header is requesting these pages to be 111 * executable, honour that (ppc32 needs this). 112 */ 113 int error = vm_brk_flags(start, end - start, 114 prot & PROT_EXEC ? VM_EXEC : 0); 115 if (error) 116 return error; 117 } 118 current->mm->start_brk = current->mm->brk = end; 119 return 0; 120 } 121 122 /* We need to explicitly zero any fractional pages 123 after the data section (i.e. bss). This would 124 contain the junk from the file that should not 125 be in memory 126 */ 127 static int padzero(unsigned long elf_bss) 128 { 129 unsigned long nbyte; 130 131 nbyte = ELF_PAGEOFFSET(elf_bss); 132 if (nbyte) { 133 nbyte = ELF_MIN_ALIGN - nbyte; 134 if (clear_user((void __user *) elf_bss, nbyte)) 135 return -EFAULT; 136 } 137 return 0; 138 } 139 140 /* Let's use some macros to make this stack manipulation a little clearer */ 141 #ifdef CONFIG_STACK_GROWSUP 142 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 143 #define STACK_ROUND(sp, items) \ 144 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 145 #define STACK_ALLOC(sp, len) ({ \ 146 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 147 old_sp; }) 148 #else 149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 150 #define STACK_ROUND(sp, items) \ 151 (((unsigned long) (sp - items)) &~ 15UL) 152 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) 153 #endif 154 155 #ifndef ELF_BASE_PLATFORM 156 /* 157 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. 158 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value 159 * will be copied to the user stack in the same manner as AT_PLATFORM. 160 */ 161 #define ELF_BASE_PLATFORM NULL 162 #endif 163 164 static int 165 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec, 166 unsigned long load_addr, unsigned long interp_load_addr) 167 { 168 unsigned long p = bprm->p; 169 int argc = bprm->argc; 170 int envc = bprm->envc; 171 elf_addr_t __user *sp; 172 elf_addr_t __user *u_platform; 173 elf_addr_t __user *u_base_platform; 174 elf_addr_t __user *u_rand_bytes; 175 const char *k_platform = ELF_PLATFORM; 176 const char *k_base_platform = ELF_BASE_PLATFORM; 177 unsigned char k_rand_bytes[16]; 178 int items; 179 elf_addr_t *elf_info; 180 int ei_index = 0; 181 const struct cred *cred = current_cred(); 182 struct vm_area_struct *vma; 183 184 /* 185 * In some cases (e.g. Hyper-Threading), we want to avoid L1 186 * evictions by the processes running on the same package. One 187 * thing we can do is to shuffle the initial stack for them. 188 */ 189 190 p = arch_align_stack(p); 191 192 /* 193 * If this architecture has a platform capability string, copy it 194 * to userspace. In some cases (Sparc), this info is impossible 195 * for userspace to get any other way, in others (i386) it is 196 * merely difficult. 197 */ 198 u_platform = NULL; 199 if (k_platform) { 200 size_t len = strlen(k_platform) + 1; 201 202 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 203 if (__copy_to_user(u_platform, k_platform, len)) 204 return -EFAULT; 205 } 206 207 /* 208 * If this architecture has a "base" platform capability 209 * string, copy it to userspace. 210 */ 211 u_base_platform = NULL; 212 if (k_base_platform) { 213 size_t len = strlen(k_base_platform) + 1; 214 215 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 216 if (__copy_to_user(u_base_platform, k_base_platform, len)) 217 return -EFAULT; 218 } 219 220 /* 221 * Generate 16 random bytes for userspace PRNG seeding. 222 */ 223 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); 224 u_rand_bytes = (elf_addr_t __user *) 225 STACK_ALLOC(p, sizeof(k_rand_bytes)); 226 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) 227 return -EFAULT; 228 229 /* Create the ELF interpreter info */ 230 elf_info = (elf_addr_t *)current->mm->saved_auxv; 231 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 232 #define NEW_AUX_ENT(id, val) \ 233 do { \ 234 elf_info[ei_index++] = id; \ 235 elf_info[ei_index++] = val; \ 236 } while (0) 237 238 #ifdef ARCH_DLINFO 239 /* 240 * ARCH_DLINFO must come first so PPC can do its special alignment of 241 * AUXV. 242 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 243 * ARCH_DLINFO changes 244 */ 245 ARCH_DLINFO; 246 #endif 247 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 248 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 249 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 250 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); 251 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 252 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 253 NEW_AUX_ENT(AT_BASE, interp_load_addr); 254 NEW_AUX_ENT(AT_FLAGS, 0); 255 NEW_AUX_ENT(AT_ENTRY, exec->e_entry); 256 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid)); 257 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid)); 258 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid)); 259 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid)); 260 NEW_AUX_ENT(AT_SECURE, bprm->secureexec); 261 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); 262 #ifdef ELF_HWCAP2 263 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2); 264 #endif 265 NEW_AUX_ENT(AT_EXECFN, bprm->exec); 266 if (k_platform) { 267 NEW_AUX_ENT(AT_PLATFORM, 268 (elf_addr_t)(unsigned long)u_platform); 269 } 270 if (k_base_platform) { 271 NEW_AUX_ENT(AT_BASE_PLATFORM, 272 (elf_addr_t)(unsigned long)u_base_platform); 273 } 274 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) { 275 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data); 276 } 277 #undef NEW_AUX_ENT 278 /* AT_NULL is zero; clear the rest too */ 279 memset(&elf_info[ei_index], 0, 280 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]); 281 282 /* And advance past the AT_NULL entry. */ 283 ei_index += 2; 284 285 sp = STACK_ADD(p, ei_index); 286 287 items = (argc + 1) + (envc + 1) + 1; 288 bprm->p = STACK_ROUND(sp, items); 289 290 /* Point sp at the lowest address on the stack */ 291 #ifdef CONFIG_STACK_GROWSUP 292 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 293 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 294 #else 295 sp = (elf_addr_t __user *)bprm->p; 296 #endif 297 298 299 /* 300 * Grow the stack manually; some architectures have a limit on how 301 * far ahead a user-space access may be in order to grow the stack. 302 */ 303 vma = find_extend_vma(current->mm, bprm->p); 304 if (!vma) 305 return -EFAULT; 306 307 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 308 if (__put_user(argc, sp++)) 309 return -EFAULT; 310 311 /* Populate list of argv pointers back to argv strings. */ 312 p = current->mm->arg_end = current->mm->arg_start; 313 while (argc-- > 0) { 314 size_t len; 315 if (__put_user((elf_addr_t)p, sp++)) 316 return -EFAULT; 317 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 318 if (!len || len > MAX_ARG_STRLEN) 319 return -EINVAL; 320 p += len; 321 } 322 if (__put_user(0, sp++)) 323 return -EFAULT; 324 current->mm->arg_end = p; 325 326 /* Populate list of envp pointers back to envp strings. */ 327 current->mm->env_end = current->mm->env_start = p; 328 while (envc-- > 0) { 329 size_t len; 330 if (__put_user((elf_addr_t)p, sp++)) 331 return -EFAULT; 332 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 333 if (!len || len > MAX_ARG_STRLEN) 334 return -EINVAL; 335 p += len; 336 } 337 if (__put_user(0, sp++)) 338 return -EFAULT; 339 current->mm->env_end = p; 340 341 /* Put the elf_info on the stack in the right place. */ 342 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t))) 343 return -EFAULT; 344 return 0; 345 } 346 347 #ifndef elf_map 348 349 static unsigned long elf_map(struct file *filep, unsigned long addr, 350 struct elf_phdr *eppnt, int prot, int type, 351 unsigned long total_size) 352 { 353 unsigned long map_addr; 354 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 355 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 356 addr = ELF_PAGESTART(addr); 357 size = ELF_PAGEALIGN(size); 358 359 /* mmap() will return -EINVAL if given a zero size, but a 360 * segment with zero filesize is perfectly valid */ 361 if (!size) 362 return addr; 363 364 /* 365 * total_size is the size of the ELF (interpreter) image. 366 * The _first_ mmap needs to know the full size, otherwise 367 * randomization might put this image into an overlapping 368 * position with the ELF binary image. (since size < total_size) 369 * So we first map the 'big' image - and unmap the remainder at 370 * the end. (which unmap is needed for ELF images with holes.) 371 */ 372 if (total_size) { 373 total_size = ELF_PAGEALIGN(total_size); 374 map_addr = vm_mmap(filep, addr, total_size, prot, type, off); 375 if (!BAD_ADDR(map_addr)) 376 vm_munmap(map_addr+size, total_size-size); 377 } else 378 map_addr = vm_mmap(filep, addr, size, prot, type, off); 379 380 if ((type & MAP_FIXED_NOREPLACE) && BAD_ADDR(map_addr)) 381 pr_info("%d (%s): Uhuuh, elf segment at %p requested but the memory is mapped already\n", 382 task_pid_nr(current), current->comm, 383 (void *)addr); 384 385 return(map_addr); 386 } 387 388 #endif /* !elf_map */ 389 390 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr) 391 { 392 int i, first_idx = -1, last_idx = -1; 393 394 for (i = 0; i < nr; i++) { 395 if (cmds[i].p_type == PT_LOAD) { 396 last_idx = i; 397 if (first_idx == -1) 398 first_idx = i; 399 } 400 } 401 if (first_idx == -1) 402 return 0; 403 404 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - 405 ELF_PAGESTART(cmds[first_idx].p_vaddr); 406 } 407 408 /** 409 * load_elf_phdrs() - load ELF program headers 410 * @elf_ex: ELF header of the binary whose program headers should be loaded 411 * @elf_file: the opened ELF binary file 412 * 413 * Loads ELF program headers from the binary file elf_file, which has the ELF 414 * header pointed to by elf_ex, into a newly allocated array. The caller is 415 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure. 416 */ 417 static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex, 418 struct file *elf_file) 419 { 420 struct elf_phdr *elf_phdata = NULL; 421 int retval, size, err = -1; 422 loff_t pos = elf_ex->e_phoff; 423 424 /* 425 * If the size of this structure has changed, then punt, since 426 * we will be doing the wrong thing. 427 */ 428 if (elf_ex->e_phentsize != sizeof(struct elf_phdr)) 429 goto out; 430 431 /* Sanity check the number of program headers... */ 432 if (elf_ex->e_phnum < 1 || 433 elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr)) 434 goto out; 435 436 /* ...and their total size. */ 437 size = sizeof(struct elf_phdr) * elf_ex->e_phnum; 438 if (size > ELF_MIN_ALIGN) 439 goto out; 440 441 elf_phdata = kmalloc(size, GFP_KERNEL); 442 if (!elf_phdata) 443 goto out; 444 445 /* Read in the program headers */ 446 retval = kernel_read(elf_file, elf_phdata, size, &pos); 447 if (retval != size) { 448 err = (retval < 0) ? retval : -EIO; 449 goto out; 450 } 451 452 /* Success! */ 453 err = 0; 454 out: 455 if (err) { 456 kfree(elf_phdata); 457 elf_phdata = NULL; 458 } 459 return elf_phdata; 460 } 461 462 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE 463 464 /** 465 * struct arch_elf_state - arch-specific ELF loading state 466 * 467 * This structure is used to preserve architecture specific data during 468 * the loading of an ELF file, throughout the checking of architecture 469 * specific ELF headers & through to the point where the ELF load is 470 * known to be proceeding (ie. SET_PERSONALITY). 471 * 472 * This implementation is a dummy for architectures which require no 473 * specific state. 474 */ 475 struct arch_elf_state { 476 }; 477 478 #define INIT_ARCH_ELF_STATE {} 479 480 /** 481 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header 482 * @ehdr: The main ELF header 483 * @phdr: The program header to check 484 * @elf: The open ELF file 485 * @is_interp: True if the phdr is from the interpreter of the ELF being 486 * loaded, else false. 487 * @state: Architecture-specific state preserved throughout the process 488 * of loading the ELF. 489 * 490 * Inspects the program header phdr to validate its correctness and/or 491 * suitability for the system. Called once per ELF program header in the 492 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its 493 * interpreter. 494 * 495 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 496 * with that return code. 497 */ 498 static inline int arch_elf_pt_proc(struct elfhdr *ehdr, 499 struct elf_phdr *phdr, 500 struct file *elf, bool is_interp, 501 struct arch_elf_state *state) 502 { 503 /* Dummy implementation, always proceed */ 504 return 0; 505 } 506 507 /** 508 * arch_check_elf() - check an ELF executable 509 * @ehdr: The main ELF header 510 * @has_interp: True if the ELF has an interpreter, else false. 511 * @interp_ehdr: The interpreter's ELF header 512 * @state: Architecture-specific state preserved throughout the process 513 * of loading the ELF. 514 * 515 * Provides a final opportunity for architecture code to reject the loading 516 * of the ELF & cause an exec syscall to return an error. This is called after 517 * all program headers to be checked by arch_elf_pt_proc have been. 518 * 519 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 520 * with that return code. 521 */ 522 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp, 523 struct elfhdr *interp_ehdr, 524 struct arch_elf_state *state) 525 { 526 /* Dummy implementation, always proceed */ 527 return 0; 528 } 529 530 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */ 531 532 /* This is much more generalized than the library routine read function, 533 so we keep this separate. Technically the library read function 534 is only provided so that we can read a.out libraries that have 535 an ELF header */ 536 537 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 538 struct file *interpreter, unsigned long *interp_map_addr, 539 unsigned long no_base, struct elf_phdr *interp_elf_phdata) 540 { 541 struct elf_phdr *eppnt; 542 unsigned long load_addr = 0; 543 int load_addr_set = 0; 544 unsigned long last_bss = 0, elf_bss = 0; 545 int bss_prot = 0; 546 unsigned long error = ~0UL; 547 unsigned long total_size; 548 int i; 549 550 /* First of all, some simple consistency checks */ 551 if (interp_elf_ex->e_type != ET_EXEC && 552 interp_elf_ex->e_type != ET_DYN) 553 goto out; 554 if (!elf_check_arch(interp_elf_ex) || 555 elf_check_fdpic(interp_elf_ex)) 556 goto out; 557 if (!interpreter->f_op->mmap) 558 goto out; 559 560 total_size = total_mapping_size(interp_elf_phdata, 561 interp_elf_ex->e_phnum); 562 if (!total_size) { 563 error = -EINVAL; 564 goto out; 565 } 566 567 eppnt = interp_elf_phdata; 568 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 569 if (eppnt->p_type == PT_LOAD) { 570 int elf_type = MAP_PRIVATE | MAP_DENYWRITE; 571 int elf_prot = 0; 572 unsigned long vaddr = 0; 573 unsigned long k, map_addr; 574 575 if (eppnt->p_flags & PF_R) 576 elf_prot = PROT_READ; 577 if (eppnt->p_flags & PF_W) 578 elf_prot |= PROT_WRITE; 579 if (eppnt->p_flags & PF_X) 580 elf_prot |= PROT_EXEC; 581 vaddr = eppnt->p_vaddr; 582 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 583 elf_type |= MAP_FIXED_NOREPLACE; 584 else if (no_base && interp_elf_ex->e_type == ET_DYN) 585 load_addr = -vaddr; 586 587 map_addr = elf_map(interpreter, load_addr + vaddr, 588 eppnt, elf_prot, elf_type, total_size); 589 total_size = 0; 590 if (!*interp_map_addr) 591 *interp_map_addr = map_addr; 592 error = map_addr; 593 if (BAD_ADDR(map_addr)) 594 goto out; 595 596 if (!load_addr_set && 597 interp_elf_ex->e_type == ET_DYN) { 598 load_addr = map_addr - ELF_PAGESTART(vaddr); 599 load_addr_set = 1; 600 } 601 602 /* 603 * Check to see if the section's size will overflow the 604 * allowed task size. Note that p_filesz must always be 605 * <= p_memsize so it's only necessary to check p_memsz. 606 */ 607 k = load_addr + eppnt->p_vaddr; 608 if (BAD_ADDR(k) || 609 eppnt->p_filesz > eppnt->p_memsz || 610 eppnt->p_memsz > TASK_SIZE || 611 TASK_SIZE - eppnt->p_memsz < k) { 612 error = -ENOMEM; 613 goto out; 614 } 615 616 /* 617 * Find the end of the file mapping for this phdr, and 618 * keep track of the largest address we see for this. 619 */ 620 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; 621 if (k > elf_bss) 622 elf_bss = k; 623 624 /* 625 * Do the same thing for the memory mapping - between 626 * elf_bss and last_bss is the bss section. 627 */ 628 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz; 629 if (k > last_bss) { 630 last_bss = k; 631 bss_prot = elf_prot; 632 } 633 } 634 } 635 636 /* 637 * Now fill out the bss section: first pad the last page from 638 * the file up to the page boundary, and zero it from elf_bss 639 * up to the end of the page. 640 */ 641 if (padzero(elf_bss)) { 642 error = -EFAULT; 643 goto out; 644 } 645 /* 646 * Next, align both the file and mem bss up to the page size, 647 * since this is where elf_bss was just zeroed up to, and where 648 * last_bss will end after the vm_brk_flags() below. 649 */ 650 elf_bss = ELF_PAGEALIGN(elf_bss); 651 last_bss = ELF_PAGEALIGN(last_bss); 652 /* Finally, if there is still more bss to allocate, do it. */ 653 if (last_bss > elf_bss) { 654 error = vm_brk_flags(elf_bss, last_bss - elf_bss, 655 bss_prot & PROT_EXEC ? VM_EXEC : 0); 656 if (error) 657 goto out; 658 } 659 660 error = load_addr; 661 out: 662 return error; 663 } 664 665 /* 666 * These are the functions used to load ELF style executables and shared 667 * libraries. There is no binary dependent code anywhere else. 668 */ 669 670 #ifndef STACK_RND_MASK 671 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 672 #endif 673 674 static unsigned long randomize_stack_top(unsigned long stack_top) 675 { 676 unsigned long random_variable = 0; 677 678 if (current->flags & PF_RANDOMIZE) { 679 random_variable = get_random_long(); 680 random_variable &= STACK_RND_MASK; 681 random_variable <<= PAGE_SHIFT; 682 } 683 #ifdef CONFIG_STACK_GROWSUP 684 return PAGE_ALIGN(stack_top) + random_variable; 685 #else 686 return PAGE_ALIGN(stack_top) - random_variable; 687 #endif 688 } 689 690 static int load_elf_binary(struct linux_binprm *bprm) 691 { 692 struct file *interpreter = NULL; /* to shut gcc up */ 693 unsigned long load_addr = 0, load_bias = 0; 694 int load_addr_set = 0; 695 char * elf_interpreter = NULL; 696 unsigned long error; 697 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL; 698 unsigned long elf_bss, elf_brk; 699 int bss_prot = 0; 700 int retval, i; 701 unsigned long elf_entry; 702 unsigned long interp_load_addr = 0; 703 unsigned long start_code, end_code, start_data, end_data; 704 unsigned long reloc_func_desc __maybe_unused = 0; 705 int executable_stack = EXSTACK_DEFAULT; 706 struct pt_regs *regs = current_pt_regs(); 707 struct { 708 struct elfhdr elf_ex; 709 struct elfhdr interp_elf_ex; 710 } *loc; 711 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE; 712 loff_t pos; 713 714 loc = kmalloc(sizeof(*loc), GFP_KERNEL); 715 if (!loc) { 716 retval = -ENOMEM; 717 goto out_ret; 718 } 719 720 /* Get the exec-header */ 721 loc->elf_ex = *((struct elfhdr *)bprm->buf); 722 723 retval = -ENOEXEC; 724 /* First of all, some simple consistency checks */ 725 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 726 goto out; 727 728 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN) 729 goto out; 730 if (!elf_check_arch(&loc->elf_ex)) 731 goto out; 732 if (elf_check_fdpic(&loc->elf_ex)) 733 goto out; 734 if (!bprm->file->f_op->mmap) 735 goto out; 736 737 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file); 738 if (!elf_phdata) 739 goto out; 740 741 elf_ppnt = elf_phdata; 742 elf_bss = 0; 743 elf_brk = 0; 744 745 start_code = ~0UL; 746 end_code = 0; 747 start_data = 0; 748 end_data = 0; 749 750 for (i = 0; i < loc->elf_ex.e_phnum; i++) { 751 if (elf_ppnt->p_type == PT_INTERP) { 752 /* This is the program interpreter used for 753 * shared libraries - for now assume that this 754 * is an a.out format binary 755 */ 756 retval = -ENOEXEC; 757 if (elf_ppnt->p_filesz > PATH_MAX || 758 elf_ppnt->p_filesz < 2) 759 goto out_free_ph; 760 761 retval = -ENOMEM; 762 elf_interpreter = kmalloc(elf_ppnt->p_filesz, 763 GFP_KERNEL); 764 if (!elf_interpreter) 765 goto out_free_ph; 766 767 pos = elf_ppnt->p_offset; 768 retval = kernel_read(bprm->file, elf_interpreter, 769 elf_ppnt->p_filesz, &pos); 770 if (retval != elf_ppnt->p_filesz) { 771 if (retval >= 0) 772 retval = -EIO; 773 goto out_free_interp; 774 } 775 /* make sure path is NULL terminated */ 776 retval = -ENOEXEC; 777 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 778 goto out_free_interp; 779 780 interpreter = open_exec(elf_interpreter); 781 retval = PTR_ERR(interpreter); 782 if (IS_ERR(interpreter)) 783 goto out_free_interp; 784 785 /* 786 * If the binary is not readable then enforce 787 * mm->dumpable = 0 regardless of the interpreter's 788 * permissions. 789 */ 790 would_dump(bprm, interpreter); 791 792 /* Get the exec headers */ 793 pos = 0; 794 retval = kernel_read(interpreter, &loc->interp_elf_ex, 795 sizeof(loc->interp_elf_ex), &pos); 796 if (retval != sizeof(loc->interp_elf_ex)) { 797 if (retval >= 0) 798 retval = -EIO; 799 goto out_free_dentry; 800 } 801 802 break; 803 } 804 elf_ppnt++; 805 } 806 807 elf_ppnt = elf_phdata; 808 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) 809 switch (elf_ppnt->p_type) { 810 case PT_GNU_STACK: 811 if (elf_ppnt->p_flags & PF_X) 812 executable_stack = EXSTACK_ENABLE_X; 813 else 814 executable_stack = EXSTACK_DISABLE_X; 815 break; 816 817 case PT_LOPROC ... PT_HIPROC: 818 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt, 819 bprm->file, false, 820 &arch_state); 821 if (retval) 822 goto out_free_dentry; 823 break; 824 } 825 826 /* Some simple consistency checks for the interpreter */ 827 if (elf_interpreter) { 828 retval = -ELIBBAD; 829 /* Not an ELF interpreter */ 830 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 831 goto out_free_dentry; 832 /* Verify the interpreter has a valid arch */ 833 if (!elf_check_arch(&loc->interp_elf_ex) || 834 elf_check_fdpic(&loc->interp_elf_ex)) 835 goto out_free_dentry; 836 837 /* Load the interpreter program headers */ 838 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex, 839 interpreter); 840 if (!interp_elf_phdata) 841 goto out_free_dentry; 842 843 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */ 844 elf_ppnt = interp_elf_phdata; 845 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++) 846 switch (elf_ppnt->p_type) { 847 case PT_LOPROC ... PT_HIPROC: 848 retval = arch_elf_pt_proc(&loc->interp_elf_ex, 849 elf_ppnt, interpreter, 850 true, &arch_state); 851 if (retval) 852 goto out_free_dentry; 853 break; 854 } 855 } 856 857 /* 858 * Allow arch code to reject the ELF at this point, whilst it's 859 * still possible to return an error to the code that invoked 860 * the exec syscall. 861 */ 862 retval = arch_check_elf(&loc->elf_ex, 863 !!interpreter, &loc->interp_elf_ex, 864 &arch_state); 865 if (retval) 866 goto out_free_dentry; 867 868 /* Flush all traces of the currently running executable */ 869 retval = flush_old_exec(bprm); 870 if (retval) 871 goto out_free_dentry; 872 873 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 874 may depend on the personality. */ 875 SET_PERSONALITY2(loc->elf_ex, &arch_state); 876 if (elf_read_implies_exec(loc->elf_ex, executable_stack)) 877 current->personality |= READ_IMPLIES_EXEC; 878 879 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 880 current->flags |= PF_RANDOMIZE; 881 882 setup_new_exec(bprm); 883 install_exec_creds(bprm); 884 885 /* Do this so that we can load the interpreter, if need be. We will 886 change some of these later */ 887 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 888 executable_stack); 889 if (retval < 0) 890 goto out_free_dentry; 891 892 current->mm->start_stack = bprm->p; 893 894 /* Now we do a little grungy work by mmapping the ELF image into 895 the correct location in memory. */ 896 for(i = 0, elf_ppnt = elf_phdata; 897 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) { 898 int elf_prot = 0, elf_flags, elf_fixed = MAP_FIXED_NOREPLACE; 899 unsigned long k, vaddr; 900 unsigned long total_size = 0; 901 902 if (elf_ppnt->p_type != PT_LOAD) 903 continue; 904 905 if (unlikely (elf_brk > elf_bss)) { 906 unsigned long nbyte; 907 908 /* There was a PT_LOAD segment with p_memsz > p_filesz 909 before this one. Map anonymous pages, if needed, 910 and clear the area. */ 911 retval = set_brk(elf_bss + load_bias, 912 elf_brk + load_bias, 913 bss_prot); 914 if (retval) 915 goto out_free_dentry; 916 nbyte = ELF_PAGEOFFSET(elf_bss); 917 if (nbyte) { 918 nbyte = ELF_MIN_ALIGN - nbyte; 919 if (nbyte > elf_brk - elf_bss) 920 nbyte = elf_brk - elf_bss; 921 if (clear_user((void __user *)elf_bss + 922 load_bias, nbyte)) { 923 /* 924 * This bss-zeroing can fail if the ELF 925 * file specifies odd protections. So 926 * we don't check the return value 927 */ 928 } 929 } 930 931 /* 932 * Some binaries have overlapping elf segments and then 933 * we have to forcefully map over an existing mapping 934 * e.g. over this newly established brk mapping. 935 */ 936 elf_fixed = MAP_FIXED; 937 } 938 939 if (elf_ppnt->p_flags & PF_R) 940 elf_prot |= PROT_READ; 941 if (elf_ppnt->p_flags & PF_W) 942 elf_prot |= PROT_WRITE; 943 if (elf_ppnt->p_flags & PF_X) 944 elf_prot |= PROT_EXEC; 945 946 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE; 947 948 vaddr = elf_ppnt->p_vaddr; 949 /* 950 * If we are loading ET_EXEC or we have already performed 951 * the ET_DYN load_addr calculations, proceed normally. 952 */ 953 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) { 954 elf_flags |= elf_fixed; 955 } else if (loc->elf_ex.e_type == ET_DYN) { 956 /* 957 * This logic is run once for the first LOAD Program 958 * Header for ET_DYN binaries to calculate the 959 * randomization (load_bias) for all the LOAD 960 * Program Headers, and to calculate the entire 961 * size of the ELF mapping (total_size). (Note that 962 * load_addr_set is set to true later once the 963 * initial mapping is performed.) 964 * 965 * There are effectively two types of ET_DYN 966 * binaries: programs (i.e. PIE: ET_DYN with INTERP) 967 * and loaders (ET_DYN without INTERP, since they 968 * _are_ the ELF interpreter). The loaders must 969 * be loaded away from programs since the program 970 * may otherwise collide with the loader (especially 971 * for ET_EXEC which does not have a randomized 972 * position). For example to handle invocations of 973 * "./ld.so someprog" to test out a new version of 974 * the loader, the subsequent program that the 975 * loader loads must avoid the loader itself, so 976 * they cannot share the same load range. Sufficient 977 * room for the brk must be allocated with the 978 * loader as well, since brk must be available with 979 * the loader. 980 * 981 * Therefore, programs are loaded offset from 982 * ELF_ET_DYN_BASE and loaders are loaded into the 983 * independently randomized mmap region (0 load_bias 984 * without MAP_FIXED). 985 */ 986 if (elf_interpreter) { 987 load_bias = ELF_ET_DYN_BASE; 988 if (current->flags & PF_RANDOMIZE) 989 load_bias += arch_mmap_rnd(); 990 elf_flags |= elf_fixed; 991 } else 992 load_bias = 0; 993 994 /* 995 * Since load_bias is used for all subsequent loading 996 * calculations, we must lower it by the first vaddr 997 * so that the remaining calculations based on the 998 * ELF vaddrs will be correctly offset. The result 999 * is then page aligned. 1000 */ 1001 load_bias = ELF_PAGESTART(load_bias - vaddr); 1002 1003 total_size = total_mapping_size(elf_phdata, 1004 loc->elf_ex.e_phnum); 1005 if (!total_size) { 1006 retval = -EINVAL; 1007 goto out_free_dentry; 1008 } 1009 } 1010 1011 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, 1012 elf_prot, elf_flags, total_size); 1013 if (BAD_ADDR(error)) { 1014 retval = IS_ERR((void *)error) ? 1015 PTR_ERR((void*)error) : -EINVAL; 1016 goto out_free_dentry; 1017 } 1018 1019 if (!load_addr_set) { 1020 load_addr_set = 1; 1021 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); 1022 if (loc->elf_ex.e_type == ET_DYN) { 1023 load_bias += error - 1024 ELF_PAGESTART(load_bias + vaddr); 1025 load_addr += load_bias; 1026 reloc_func_desc = load_bias; 1027 } 1028 } 1029 k = elf_ppnt->p_vaddr; 1030 if (k < start_code) 1031 start_code = k; 1032 if (start_data < k) 1033 start_data = k; 1034 1035 /* 1036 * Check to see if the section's size will overflow the 1037 * allowed task size. Note that p_filesz must always be 1038 * <= p_memsz so it is only necessary to check p_memsz. 1039 */ 1040 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 1041 elf_ppnt->p_memsz > TASK_SIZE || 1042 TASK_SIZE - elf_ppnt->p_memsz < k) { 1043 /* set_brk can never work. Avoid overflows. */ 1044 retval = -EINVAL; 1045 goto out_free_dentry; 1046 } 1047 1048 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 1049 1050 if (k > elf_bss) 1051 elf_bss = k; 1052 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 1053 end_code = k; 1054 if (end_data < k) 1055 end_data = k; 1056 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 1057 if (k > elf_brk) { 1058 bss_prot = elf_prot; 1059 elf_brk = k; 1060 } 1061 } 1062 1063 loc->elf_ex.e_entry += load_bias; 1064 elf_bss += load_bias; 1065 elf_brk += load_bias; 1066 start_code += load_bias; 1067 end_code += load_bias; 1068 start_data += load_bias; 1069 end_data += load_bias; 1070 1071 /* Calling set_brk effectively mmaps the pages that we need 1072 * for the bss and break sections. We must do this before 1073 * mapping in the interpreter, to make sure it doesn't wind 1074 * up getting placed where the bss needs to go. 1075 */ 1076 retval = set_brk(elf_bss, elf_brk, bss_prot); 1077 if (retval) 1078 goto out_free_dentry; 1079 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { 1080 retval = -EFAULT; /* Nobody gets to see this, but.. */ 1081 goto out_free_dentry; 1082 } 1083 1084 if (elf_interpreter) { 1085 unsigned long interp_map_addr = 0; 1086 1087 elf_entry = load_elf_interp(&loc->interp_elf_ex, 1088 interpreter, 1089 &interp_map_addr, 1090 load_bias, interp_elf_phdata); 1091 if (!IS_ERR((void *)elf_entry)) { 1092 /* 1093 * load_elf_interp() returns relocation 1094 * adjustment 1095 */ 1096 interp_load_addr = elf_entry; 1097 elf_entry += loc->interp_elf_ex.e_entry; 1098 } 1099 if (BAD_ADDR(elf_entry)) { 1100 retval = IS_ERR((void *)elf_entry) ? 1101 (int)elf_entry : -EINVAL; 1102 goto out_free_dentry; 1103 } 1104 reloc_func_desc = interp_load_addr; 1105 1106 allow_write_access(interpreter); 1107 fput(interpreter); 1108 kfree(elf_interpreter); 1109 } else { 1110 elf_entry = loc->elf_ex.e_entry; 1111 if (BAD_ADDR(elf_entry)) { 1112 retval = -EINVAL; 1113 goto out_free_dentry; 1114 } 1115 } 1116 1117 kfree(interp_elf_phdata); 1118 kfree(elf_phdata); 1119 1120 set_binfmt(&elf_format); 1121 1122 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 1123 retval = arch_setup_additional_pages(bprm, !!elf_interpreter); 1124 if (retval < 0) 1125 goto out; 1126 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 1127 1128 retval = create_elf_tables(bprm, &loc->elf_ex, 1129 load_addr, interp_load_addr); 1130 if (retval < 0) 1131 goto out; 1132 /* N.B. passed_fileno might not be initialized? */ 1133 current->mm->end_code = end_code; 1134 current->mm->start_code = start_code; 1135 current->mm->start_data = start_data; 1136 current->mm->end_data = end_data; 1137 current->mm->start_stack = bprm->p; 1138 1139 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { 1140 current->mm->brk = current->mm->start_brk = 1141 arch_randomize_brk(current->mm); 1142 #ifdef compat_brk_randomized 1143 current->brk_randomized = 1; 1144 #endif 1145 } 1146 1147 if (current->personality & MMAP_PAGE_ZERO) { 1148 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 1149 and some applications "depend" upon this behavior. 1150 Since we do not have the power to recompile these, we 1151 emulate the SVr4 behavior. Sigh. */ 1152 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 1153 MAP_FIXED | MAP_PRIVATE, 0); 1154 } 1155 1156 #ifdef ELF_PLAT_INIT 1157 /* 1158 * The ABI may specify that certain registers be set up in special 1159 * ways (on i386 %edx is the address of a DT_FINI function, for 1160 * example. In addition, it may also specify (eg, PowerPC64 ELF) 1161 * that the e_entry field is the address of the function descriptor 1162 * for the startup routine, rather than the address of the startup 1163 * routine itself. This macro performs whatever initialization to 1164 * the regs structure is required as well as any relocations to the 1165 * function descriptor entries when executing dynamically links apps. 1166 */ 1167 ELF_PLAT_INIT(regs, reloc_func_desc); 1168 #endif 1169 1170 finalize_exec(bprm); 1171 start_thread(regs, elf_entry, bprm->p); 1172 retval = 0; 1173 out: 1174 kfree(loc); 1175 out_ret: 1176 return retval; 1177 1178 /* error cleanup */ 1179 out_free_dentry: 1180 kfree(interp_elf_phdata); 1181 allow_write_access(interpreter); 1182 if (interpreter) 1183 fput(interpreter); 1184 out_free_interp: 1185 kfree(elf_interpreter); 1186 out_free_ph: 1187 kfree(elf_phdata); 1188 goto out; 1189 } 1190 1191 #ifdef CONFIG_USELIB 1192 /* This is really simpleminded and specialized - we are loading an 1193 a.out library that is given an ELF header. */ 1194 static int load_elf_library(struct file *file) 1195 { 1196 struct elf_phdr *elf_phdata; 1197 struct elf_phdr *eppnt; 1198 unsigned long elf_bss, bss, len; 1199 int retval, error, i, j; 1200 struct elfhdr elf_ex; 1201 loff_t pos = 0; 1202 1203 error = -ENOEXEC; 1204 retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos); 1205 if (retval != sizeof(elf_ex)) 1206 goto out; 1207 1208 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1209 goto out; 1210 1211 /* First of all, some simple consistency checks */ 1212 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1213 !elf_check_arch(&elf_ex) || !file->f_op->mmap) 1214 goto out; 1215 if (elf_check_fdpic(&elf_ex)) 1216 goto out; 1217 1218 /* Now read in all of the header information */ 1219 1220 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1221 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1222 1223 error = -ENOMEM; 1224 elf_phdata = kmalloc(j, GFP_KERNEL); 1225 if (!elf_phdata) 1226 goto out; 1227 1228 eppnt = elf_phdata; 1229 error = -ENOEXEC; 1230 pos = elf_ex.e_phoff; 1231 retval = kernel_read(file, eppnt, j, &pos); 1232 if (retval != j) 1233 goto out_free_ph; 1234 1235 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1236 if ((eppnt + i)->p_type == PT_LOAD) 1237 j++; 1238 if (j != 1) 1239 goto out_free_ph; 1240 1241 while (eppnt->p_type != PT_LOAD) 1242 eppnt++; 1243 1244 /* Now use mmap to map the library into memory. */ 1245 error = vm_mmap(file, 1246 ELF_PAGESTART(eppnt->p_vaddr), 1247 (eppnt->p_filesz + 1248 ELF_PAGEOFFSET(eppnt->p_vaddr)), 1249 PROT_READ | PROT_WRITE | PROT_EXEC, 1250 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE, 1251 (eppnt->p_offset - 1252 ELF_PAGEOFFSET(eppnt->p_vaddr))); 1253 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1254 goto out_free_ph; 1255 1256 elf_bss = eppnt->p_vaddr + eppnt->p_filesz; 1257 if (padzero(elf_bss)) { 1258 error = -EFAULT; 1259 goto out_free_ph; 1260 } 1261 1262 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr + 1263 ELF_MIN_ALIGN - 1); 1264 bss = eppnt->p_memsz + eppnt->p_vaddr; 1265 if (bss > len) { 1266 error = vm_brk(len, bss - len); 1267 if (error) 1268 goto out_free_ph; 1269 } 1270 error = 0; 1271 1272 out_free_ph: 1273 kfree(elf_phdata); 1274 out: 1275 return error; 1276 } 1277 #endif /* #ifdef CONFIG_USELIB */ 1278 1279 #ifdef CONFIG_ELF_CORE 1280 /* 1281 * ELF core dumper 1282 * 1283 * Modelled on fs/exec.c:aout_core_dump() 1284 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1285 */ 1286 1287 /* 1288 * The purpose of always_dump_vma() is to make sure that special kernel mappings 1289 * that are useful for post-mortem analysis are included in every core dump. 1290 * In that way we ensure that the core dump is fully interpretable later 1291 * without matching up the same kernel and hardware config to see what PC values 1292 * meant. These special mappings include - vDSO, vsyscall, and other 1293 * architecture specific mappings 1294 */ 1295 static bool always_dump_vma(struct vm_area_struct *vma) 1296 { 1297 /* Any vsyscall mappings? */ 1298 if (vma == get_gate_vma(vma->vm_mm)) 1299 return true; 1300 1301 /* 1302 * Assume that all vmas with a .name op should always be dumped. 1303 * If this changes, a new vm_ops field can easily be added. 1304 */ 1305 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma)) 1306 return true; 1307 1308 /* 1309 * arch_vma_name() returns non-NULL for special architecture mappings, 1310 * such as vDSO sections. 1311 */ 1312 if (arch_vma_name(vma)) 1313 return true; 1314 1315 return false; 1316 } 1317 1318 /* 1319 * Decide what to dump of a segment, part, all or none. 1320 */ 1321 static unsigned long vma_dump_size(struct vm_area_struct *vma, 1322 unsigned long mm_flags) 1323 { 1324 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) 1325 1326 /* always dump the vdso and vsyscall sections */ 1327 if (always_dump_vma(vma)) 1328 goto whole; 1329 1330 if (vma->vm_flags & VM_DONTDUMP) 1331 return 0; 1332 1333 /* support for DAX */ 1334 if (vma_is_dax(vma)) { 1335 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED)) 1336 goto whole; 1337 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE)) 1338 goto whole; 1339 return 0; 1340 } 1341 1342 /* Hugetlb memory check */ 1343 if (vma->vm_flags & VM_HUGETLB) { 1344 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) 1345 goto whole; 1346 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) 1347 goto whole; 1348 return 0; 1349 } 1350 1351 /* Do not dump I/O mapped devices or special mappings */ 1352 if (vma->vm_flags & VM_IO) 1353 return 0; 1354 1355 /* By default, dump shared memory if mapped from an anonymous file. */ 1356 if (vma->vm_flags & VM_SHARED) { 1357 if (file_inode(vma->vm_file)->i_nlink == 0 ? 1358 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) 1359 goto whole; 1360 return 0; 1361 } 1362 1363 /* Dump segments that have been written to. */ 1364 if (vma->anon_vma && FILTER(ANON_PRIVATE)) 1365 goto whole; 1366 if (vma->vm_file == NULL) 1367 return 0; 1368 1369 if (FILTER(MAPPED_PRIVATE)) 1370 goto whole; 1371 1372 /* 1373 * If this looks like the beginning of a DSO or executable mapping, 1374 * check for an ELF header. If we find one, dump the first page to 1375 * aid in determining what was mapped here. 1376 */ 1377 if (FILTER(ELF_HEADERS) && 1378 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) { 1379 u32 __user *header = (u32 __user *) vma->vm_start; 1380 u32 word; 1381 mm_segment_t fs = get_fs(); 1382 /* 1383 * Doing it this way gets the constant folded by GCC. 1384 */ 1385 union { 1386 u32 cmp; 1387 char elfmag[SELFMAG]; 1388 } magic; 1389 BUILD_BUG_ON(SELFMAG != sizeof word); 1390 magic.elfmag[EI_MAG0] = ELFMAG0; 1391 magic.elfmag[EI_MAG1] = ELFMAG1; 1392 magic.elfmag[EI_MAG2] = ELFMAG2; 1393 magic.elfmag[EI_MAG3] = ELFMAG3; 1394 /* 1395 * Switch to the user "segment" for get_user(), 1396 * then put back what elf_core_dump() had in place. 1397 */ 1398 set_fs(USER_DS); 1399 if (unlikely(get_user(word, header))) 1400 word = 0; 1401 set_fs(fs); 1402 if (word == magic.cmp) 1403 return PAGE_SIZE; 1404 } 1405 1406 #undef FILTER 1407 1408 return 0; 1409 1410 whole: 1411 return vma->vm_end - vma->vm_start; 1412 } 1413 1414 /* An ELF note in memory */ 1415 struct memelfnote 1416 { 1417 const char *name; 1418 int type; 1419 unsigned int datasz; 1420 void *data; 1421 }; 1422 1423 static int notesize(struct memelfnote *en) 1424 { 1425 int sz; 1426 1427 sz = sizeof(struct elf_note); 1428 sz += roundup(strlen(en->name) + 1, 4); 1429 sz += roundup(en->datasz, 4); 1430 1431 return sz; 1432 } 1433 1434 static int writenote(struct memelfnote *men, struct coredump_params *cprm) 1435 { 1436 struct elf_note en; 1437 en.n_namesz = strlen(men->name) + 1; 1438 en.n_descsz = men->datasz; 1439 en.n_type = men->type; 1440 1441 return dump_emit(cprm, &en, sizeof(en)) && 1442 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) && 1443 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4); 1444 } 1445 1446 static void fill_elf_header(struct elfhdr *elf, int segs, 1447 u16 machine, u32 flags) 1448 { 1449 memset(elf, 0, sizeof(*elf)); 1450 1451 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1452 elf->e_ident[EI_CLASS] = ELF_CLASS; 1453 elf->e_ident[EI_DATA] = ELF_DATA; 1454 elf->e_ident[EI_VERSION] = EV_CURRENT; 1455 elf->e_ident[EI_OSABI] = ELF_OSABI; 1456 1457 elf->e_type = ET_CORE; 1458 elf->e_machine = machine; 1459 elf->e_version = EV_CURRENT; 1460 elf->e_phoff = sizeof(struct elfhdr); 1461 elf->e_flags = flags; 1462 elf->e_ehsize = sizeof(struct elfhdr); 1463 elf->e_phentsize = sizeof(struct elf_phdr); 1464 elf->e_phnum = segs; 1465 1466 return; 1467 } 1468 1469 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1470 { 1471 phdr->p_type = PT_NOTE; 1472 phdr->p_offset = offset; 1473 phdr->p_vaddr = 0; 1474 phdr->p_paddr = 0; 1475 phdr->p_filesz = sz; 1476 phdr->p_memsz = 0; 1477 phdr->p_flags = 0; 1478 phdr->p_align = 0; 1479 return; 1480 } 1481 1482 static void fill_note(struct memelfnote *note, const char *name, int type, 1483 unsigned int sz, void *data) 1484 { 1485 note->name = name; 1486 note->type = type; 1487 note->datasz = sz; 1488 note->data = data; 1489 return; 1490 } 1491 1492 /* 1493 * fill up all the fields in prstatus from the given task struct, except 1494 * registers which need to be filled up separately. 1495 */ 1496 static void fill_prstatus(struct elf_prstatus *prstatus, 1497 struct task_struct *p, long signr) 1498 { 1499 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1500 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1501 prstatus->pr_sighold = p->blocked.sig[0]; 1502 rcu_read_lock(); 1503 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1504 rcu_read_unlock(); 1505 prstatus->pr_pid = task_pid_vnr(p); 1506 prstatus->pr_pgrp = task_pgrp_vnr(p); 1507 prstatus->pr_sid = task_session_vnr(p); 1508 if (thread_group_leader(p)) { 1509 struct task_cputime cputime; 1510 1511 /* 1512 * This is the record for the group leader. It shows the 1513 * group-wide total, not its individual thread total. 1514 */ 1515 thread_group_cputime(p, &cputime); 1516 prstatus->pr_utime = ns_to_timeval(cputime.utime); 1517 prstatus->pr_stime = ns_to_timeval(cputime.stime); 1518 } else { 1519 u64 utime, stime; 1520 1521 task_cputime(p, &utime, &stime); 1522 prstatus->pr_utime = ns_to_timeval(utime); 1523 prstatus->pr_stime = ns_to_timeval(stime); 1524 } 1525 1526 prstatus->pr_cutime = ns_to_timeval(p->signal->cutime); 1527 prstatus->pr_cstime = ns_to_timeval(p->signal->cstime); 1528 } 1529 1530 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1531 struct mm_struct *mm) 1532 { 1533 const struct cred *cred; 1534 unsigned int i, len; 1535 1536 /* first copy the parameters from user space */ 1537 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1538 1539 len = mm->arg_end - mm->arg_start; 1540 if (len >= ELF_PRARGSZ) 1541 len = ELF_PRARGSZ-1; 1542 if (copy_from_user(&psinfo->pr_psargs, 1543 (const char __user *)mm->arg_start, len)) 1544 return -EFAULT; 1545 for(i = 0; i < len; i++) 1546 if (psinfo->pr_psargs[i] == 0) 1547 psinfo->pr_psargs[i] = ' '; 1548 psinfo->pr_psargs[len] = 0; 1549 1550 rcu_read_lock(); 1551 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1552 rcu_read_unlock(); 1553 psinfo->pr_pid = task_pid_vnr(p); 1554 psinfo->pr_pgrp = task_pgrp_vnr(p); 1555 psinfo->pr_sid = task_session_vnr(p); 1556 1557 i = p->state ? ffz(~p->state) + 1 : 0; 1558 psinfo->pr_state = i; 1559 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1560 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1561 psinfo->pr_nice = task_nice(p); 1562 psinfo->pr_flag = p->flags; 1563 rcu_read_lock(); 1564 cred = __task_cred(p); 1565 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid)); 1566 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid)); 1567 rcu_read_unlock(); 1568 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); 1569 1570 return 0; 1571 } 1572 1573 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1574 { 1575 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1576 int i = 0; 1577 do 1578 i += 2; 1579 while (auxv[i - 2] != AT_NULL); 1580 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1581 } 1582 1583 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata, 1584 const siginfo_t *siginfo) 1585 { 1586 mm_segment_t old_fs = get_fs(); 1587 set_fs(KERNEL_DS); 1588 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo); 1589 set_fs(old_fs); 1590 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata); 1591 } 1592 1593 #define MAX_FILE_NOTE_SIZE (4*1024*1024) 1594 /* 1595 * Format of NT_FILE note: 1596 * 1597 * long count -- how many files are mapped 1598 * long page_size -- units for file_ofs 1599 * array of [COUNT] elements of 1600 * long start 1601 * long end 1602 * long file_ofs 1603 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... 1604 */ 1605 static int fill_files_note(struct memelfnote *note) 1606 { 1607 struct vm_area_struct *vma; 1608 unsigned count, size, names_ofs, remaining, n; 1609 user_long_t *data; 1610 user_long_t *start_end_ofs; 1611 char *name_base, *name_curpos; 1612 1613 /* *Estimated* file count and total data size needed */ 1614 count = current->mm->map_count; 1615 if (count > UINT_MAX / 64) 1616 return -EINVAL; 1617 size = count * 64; 1618 1619 names_ofs = (2 + 3 * count) * sizeof(data[0]); 1620 alloc: 1621 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */ 1622 return -EINVAL; 1623 size = round_up(size, PAGE_SIZE); 1624 data = vmalloc(size); 1625 if (!data) 1626 return -ENOMEM; 1627 1628 start_end_ofs = data + 2; 1629 name_base = name_curpos = ((char *)data) + names_ofs; 1630 remaining = size - names_ofs; 1631 count = 0; 1632 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) { 1633 struct file *file; 1634 const char *filename; 1635 1636 file = vma->vm_file; 1637 if (!file) 1638 continue; 1639 filename = file_path(file, name_curpos, remaining); 1640 if (IS_ERR(filename)) { 1641 if (PTR_ERR(filename) == -ENAMETOOLONG) { 1642 vfree(data); 1643 size = size * 5 / 4; 1644 goto alloc; 1645 } 1646 continue; 1647 } 1648 1649 /* file_path() fills at the end, move name down */ 1650 /* n = strlen(filename) + 1: */ 1651 n = (name_curpos + remaining) - filename; 1652 remaining = filename - name_curpos; 1653 memmove(name_curpos, filename, n); 1654 name_curpos += n; 1655 1656 *start_end_ofs++ = vma->vm_start; 1657 *start_end_ofs++ = vma->vm_end; 1658 *start_end_ofs++ = vma->vm_pgoff; 1659 count++; 1660 } 1661 1662 /* Now we know exact count of files, can store it */ 1663 data[0] = count; 1664 data[1] = PAGE_SIZE; 1665 /* 1666 * Count usually is less than current->mm->map_count, 1667 * we need to move filenames down. 1668 */ 1669 n = current->mm->map_count - count; 1670 if (n != 0) { 1671 unsigned shift_bytes = n * 3 * sizeof(data[0]); 1672 memmove(name_base - shift_bytes, name_base, 1673 name_curpos - name_base); 1674 name_curpos -= shift_bytes; 1675 } 1676 1677 size = name_curpos - (char *)data; 1678 fill_note(note, "CORE", NT_FILE, size, data); 1679 return 0; 1680 } 1681 1682 #ifdef CORE_DUMP_USE_REGSET 1683 #include <linux/regset.h> 1684 1685 struct elf_thread_core_info { 1686 struct elf_thread_core_info *next; 1687 struct task_struct *task; 1688 struct elf_prstatus prstatus; 1689 struct memelfnote notes[0]; 1690 }; 1691 1692 struct elf_note_info { 1693 struct elf_thread_core_info *thread; 1694 struct memelfnote psinfo; 1695 struct memelfnote signote; 1696 struct memelfnote auxv; 1697 struct memelfnote files; 1698 user_siginfo_t csigdata; 1699 size_t size; 1700 int thread_notes; 1701 }; 1702 1703 /* 1704 * When a regset has a writeback hook, we call it on each thread before 1705 * dumping user memory. On register window machines, this makes sure the 1706 * user memory backing the register data is up to date before we read it. 1707 */ 1708 static void do_thread_regset_writeback(struct task_struct *task, 1709 const struct user_regset *regset) 1710 { 1711 if (regset->writeback) 1712 regset->writeback(task, regset, 1); 1713 } 1714 1715 #ifndef PRSTATUS_SIZE 1716 #define PRSTATUS_SIZE(S, R) sizeof(S) 1717 #endif 1718 1719 #ifndef SET_PR_FPVALID 1720 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V)) 1721 #endif 1722 1723 static int fill_thread_core_info(struct elf_thread_core_info *t, 1724 const struct user_regset_view *view, 1725 long signr, size_t *total) 1726 { 1727 unsigned int i; 1728 unsigned int regset0_size = regset_size(t->task, &view->regsets[0]); 1729 1730 /* 1731 * NT_PRSTATUS is the one special case, because the regset data 1732 * goes into the pr_reg field inside the note contents, rather 1733 * than being the whole note contents. We fill the reset in here. 1734 * We assume that regset 0 is NT_PRSTATUS. 1735 */ 1736 fill_prstatus(&t->prstatus, t->task, signr); 1737 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size, 1738 &t->prstatus.pr_reg, NULL); 1739 1740 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1741 PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus); 1742 *total += notesize(&t->notes[0]); 1743 1744 do_thread_regset_writeback(t->task, &view->regsets[0]); 1745 1746 /* 1747 * Each other regset might generate a note too. For each regset 1748 * that has no core_note_type or is inactive, we leave t->notes[i] 1749 * all zero and we'll know to skip writing it later. 1750 */ 1751 for (i = 1; i < view->n; ++i) { 1752 const struct user_regset *regset = &view->regsets[i]; 1753 do_thread_regset_writeback(t->task, regset); 1754 if (regset->core_note_type && regset->get && 1755 (!regset->active || regset->active(t->task, regset))) { 1756 int ret; 1757 size_t size = regset_size(t->task, regset); 1758 void *data = kmalloc(size, GFP_KERNEL); 1759 if (unlikely(!data)) 1760 return 0; 1761 ret = regset->get(t->task, regset, 1762 0, size, data, NULL); 1763 if (unlikely(ret)) 1764 kfree(data); 1765 else { 1766 if (regset->core_note_type != NT_PRFPREG) 1767 fill_note(&t->notes[i], "LINUX", 1768 regset->core_note_type, 1769 size, data); 1770 else { 1771 SET_PR_FPVALID(&t->prstatus, 1772 1, regset0_size); 1773 fill_note(&t->notes[i], "CORE", 1774 NT_PRFPREG, size, data); 1775 } 1776 *total += notesize(&t->notes[i]); 1777 } 1778 } 1779 } 1780 1781 return 1; 1782 } 1783 1784 static int fill_note_info(struct elfhdr *elf, int phdrs, 1785 struct elf_note_info *info, 1786 const siginfo_t *siginfo, struct pt_regs *regs) 1787 { 1788 struct task_struct *dump_task = current; 1789 const struct user_regset_view *view = task_user_regset_view(dump_task); 1790 struct elf_thread_core_info *t; 1791 struct elf_prpsinfo *psinfo; 1792 struct core_thread *ct; 1793 unsigned int i; 1794 1795 info->size = 0; 1796 info->thread = NULL; 1797 1798 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1799 if (psinfo == NULL) { 1800 info->psinfo.data = NULL; /* So we don't free this wrongly */ 1801 return 0; 1802 } 1803 1804 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1805 1806 /* 1807 * Figure out how many notes we're going to need for each thread. 1808 */ 1809 info->thread_notes = 0; 1810 for (i = 0; i < view->n; ++i) 1811 if (view->regsets[i].core_note_type != 0) 1812 ++info->thread_notes; 1813 1814 /* 1815 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1816 * since it is our one special case. 1817 */ 1818 if (unlikely(info->thread_notes == 0) || 1819 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1820 WARN_ON(1); 1821 return 0; 1822 } 1823 1824 /* 1825 * Initialize the ELF file header. 1826 */ 1827 fill_elf_header(elf, phdrs, 1828 view->e_machine, view->e_flags); 1829 1830 /* 1831 * Allocate a structure for each thread. 1832 */ 1833 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) { 1834 t = kzalloc(offsetof(struct elf_thread_core_info, 1835 notes[info->thread_notes]), 1836 GFP_KERNEL); 1837 if (unlikely(!t)) 1838 return 0; 1839 1840 t->task = ct->task; 1841 if (ct->task == dump_task || !info->thread) { 1842 t->next = info->thread; 1843 info->thread = t; 1844 } else { 1845 /* 1846 * Make sure to keep the original task at 1847 * the head of the list. 1848 */ 1849 t->next = info->thread->next; 1850 info->thread->next = t; 1851 } 1852 } 1853 1854 /* 1855 * Now fill in each thread's information. 1856 */ 1857 for (t = info->thread; t != NULL; t = t->next) 1858 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size)) 1859 return 0; 1860 1861 /* 1862 * Fill in the two process-wide notes. 1863 */ 1864 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1865 info->size += notesize(&info->psinfo); 1866 1867 fill_siginfo_note(&info->signote, &info->csigdata, siginfo); 1868 info->size += notesize(&info->signote); 1869 1870 fill_auxv_note(&info->auxv, current->mm); 1871 info->size += notesize(&info->auxv); 1872 1873 if (fill_files_note(&info->files) == 0) 1874 info->size += notesize(&info->files); 1875 1876 return 1; 1877 } 1878 1879 static size_t get_note_info_size(struct elf_note_info *info) 1880 { 1881 return info->size; 1882 } 1883 1884 /* 1885 * Write all the notes for each thread. When writing the first thread, the 1886 * process-wide notes are interleaved after the first thread-specific note. 1887 */ 1888 static int write_note_info(struct elf_note_info *info, 1889 struct coredump_params *cprm) 1890 { 1891 bool first = true; 1892 struct elf_thread_core_info *t = info->thread; 1893 1894 do { 1895 int i; 1896 1897 if (!writenote(&t->notes[0], cprm)) 1898 return 0; 1899 1900 if (first && !writenote(&info->psinfo, cprm)) 1901 return 0; 1902 if (first && !writenote(&info->signote, cprm)) 1903 return 0; 1904 if (first && !writenote(&info->auxv, cprm)) 1905 return 0; 1906 if (first && info->files.data && 1907 !writenote(&info->files, cprm)) 1908 return 0; 1909 1910 for (i = 1; i < info->thread_notes; ++i) 1911 if (t->notes[i].data && 1912 !writenote(&t->notes[i], cprm)) 1913 return 0; 1914 1915 first = false; 1916 t = t->next; 1917 } while (t); 1918 1919 return 1; 1920 } 1921 1922 static void free_note_info(struct elf_note_info *info) 1923 { 1924 struct elf_thread_core_info *threads = info->thread; 1925 while (threads) { 1926 unsigned int i; 1927 struct elf_thread_core_info *t = threads; 1928 threads = t->next; 1929 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1930 for (i = 1; i < info->thread_notes; ++i) 1931 kfree(t->notes[i].data); 1932 kfree(t); 1933 } 1934 kfree(info->psinfo.data); 1935 vfree(info->files.data); 1936 } 1937 1938 #else 1939 1940 /* Here is the structure in which status of each thread is captured. */ 1941 struct elf_thread_status 1942 { 1943 struct list_head list; 1944 struct elf_prstatus prstatus; /* NT_PRSTATUS */ 1945 elf_fpregset_t fpu; /* NT_PRFPREG */ 1946 struct task_struct *thread; 1947 #ifdef ELF_CORE_COPY_XFPREGS 1948 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 1949 #endif 1950 struct memelfnote notes[3]; 1951 int num_notes; 1952 }; 1953 1954 /* 1955 * In order to add the specific thread information for the elf file format, 1956 * we need to keep a linked list of every threads pr_status and then create 1957 * a single section for them in the final core file. 1958 */ 1959 static int elf_dump_thread_status(long signr, struct elf_thread_status *t) 1960 { 1961 int sz = 0; 1962 struct task_struct *p = t->thread; 1963 t->num_notes = 0; 1964 1965 fill_prstatus(&t->prstatus, p, signr); 1966 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 1967 1968 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 1969 &(t->prstatus)); 1970 t->num_notes++; 1971 sz += notesize(&t->notes[0]); 1972 1973 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, 1974 &t->fpu))) { 1975 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), 1976 &(t->fpu)); 1977 t->num_notes++; 1978 sz += notesize(&t->notes[1]); 1979 } 1980 1981 #ifdef ELF_CORE_COPY_XFPREGS 1982 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) { 1983 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE, 1984 sizeof(t->xfpu), &t->xfpu); 1985 t->num_notes++; 1986 sz += notesize(&t->notes[2]); 1987 } 1988 #endif 1989 return sz; 1990 } 1991 1992 struct elf_note_info { 1993 struct memelfnote *notes; 1994 struct memelfnote *notes_files; 1995 struct elf_prstatus *prstatus; /* NT_PRSTATUS */ 1996 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 1997 struct list_head thread_list; 1998 elf_fpregset_t *fpu; 1999 #ifdef ELF_CORE_COPY_XFPREGS 2000 elf_fpxregset_t *xfpu; 2001 #endif 2002 user_siginfo_t csigdata; 2003 int thread_status_size; 2004 int numnote; 2005 }; 2006 2007 static int elf_note_info_init(struct elf_note_info *info) 2008 { 2009 memset(info, 0, sizeof(*info)); 2010 INIT_LIST_HEAD(&info->thread_list); 2011 2012 /* Allocate space for ELF notes */ 2013 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL); 2014 if (!info->notes) 2015 return 0; 2016 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); 2017 if (!info->psinfo) 2018 return 0; 2019 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); 2020 if (!info->prstatus) 2021 return 0; 2022 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); 2023 if (!info->fpu) 2024 return 0; 2025 #ifdef ELF_CORE_COPY_XFPREGS 2026 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL); 2027 if (!info->xfpu) 2028 return 0; 2029 #endif 2030 return 1; 2031 } 2032 2033 static int fill_note_info(struct elfhdr *elf, int phdrs, 2034 struct elf_note_info *info, 2035 const siginfo_t *siginfo, struct pt_regs *regs) 2036 { 2037 struct list_head *t; 2038 struct core_thread *ct; 2039 struct elf_thread_status *ets; 2040 2041 if (!elf_note_info_init(info)) 2042 return 0; 2043 2044 for (ct = current->mm->core_state->dumper.next; 2045 ct; ct = ct->next) { 2046 ets = kzalloc(sizeof(*ets), GFP_KERNEL); 2047 if (!ets) 2048 return 0; 2049 2050 ets->thread = ct->task; 2051 list_add(&ets->list, &info->thread_list); 2052 } 2053 2054 list_for_each(t, &info->thread_list) { 2055 int sz; 2056 2057 ets = list_entry(t, struct elf_thread_status, list); 2058 sz = elf_dump_thread_status(siginfo->si_signo, ets); 2059 info->thread_status_size += sz; 2060 } 2061 /* now collect the dump for the current */ 2062 memset(info->prstatus, 0, sizeof(*info->prstatus)); 2063 fill_prstatus(info->prstatus, current, siginfo->si_signo); 2064 elf_core_copy_regs(&info->prstatus->pr_reg, regs); 2065 2066 /* Set up header */ 2067 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS); 2068 2069 /* 2070 * Set up the notes in similar form to SVR4 core dumps made 2071 * with info from their /proc. 2072 */ 2073 2074 fill_note(info->notes + 0, "CORE", NT_PRSTATUS, 2075 sizeof(*info->prstatus), info->prstatus); 2076 fill_psinfo(info->psinfo, current->group_leader, current->mm); 2077 fill_note(info->notes + 1, "CORE", NT_PRPSINFO, 2078 sizeof(*info->psinfo), info->psinfo); 2079 2080 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo); 2081 fill_auxv_note(info->notes + 3, current->mm); 2082 info->numnote = 4; 2083 2084 if (fill_files_note(info->notes + info->numnote) == 0) { 2085 info->notes_files = info->notes + info->numnote; 2086 info->numnote++; 2087 } 2088 2089 /* Try to dump the FPU. */ 2090 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs, 2091 info->fpu); 2092 if (info->prstatus->pr_fpvalid) 2093 fill_note(info->notes + info->numnote++, 2094 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); 2095 #ifdef ELF_CORE_COPY_XFPREGS 2096 if (elf_core_copy_task_xfpregs(current, info->xfpu)) 2097 fill_note(info->notes + info->numnote++, 2098 "LINUX", ELF_CORE_XFPREG_TYPE, 2099 sizeof(*info->xfpu), info->xfpu); 2100 #endif 2101 2102 return 1; 2103 } 2104 2105 static size_t get_note_info_size(struct elf_note_info *info) 2106 { 2107 int sz = 0; 2108 int i; 2109 2110 for (i = 0; i < info->numnote; i++) 2111 sz += notesize(info->notes + i); 2112 2113 sz += info->thread_status_size; 2114 2115 return sz; 2116 } 2117 2118 static int write_note_info(struct elf_note_info *info, 2119 struct coredump_params *cprm) 2120 { 2121 int i; 2122 struct list_head *t; 2123 2124 for (i = 0; i < info->numnote; i++) 2125 if (!writenote(info->notes + i, cprm)) 2126 return 0; 2127 2128 /* write out the thread status notes section */ 2129 list_for_each(t, &info->thread_list) { 2130 struct elf_thread_status *tmp = 2131 list_entry(t, struct elf_thread_status, list); 2132 2133 for (i = 0; i < tmp->num_notes; i++) 2134 if (!writenote(&tmp->notes[i], cprm)) 2135 return 0; 2136 } 2137 2138 return 1; 2139 } 2140 2141 static void free_note_info(struct elf_note_info *info) 2142 { 2143 while (!list_empty(&info->thread_list)) { 2144 struct list_head *tmp = info->thread_list.next; 2145 list_del(tmp); 2146 kfree(list_entry(tmp, struct elf_thread_status, list)); 2147 } 2148 2149 /* Free data possibly allocated by fill_files_note(): */ 2150 if (info->notes_files) 2151 vfree(info->notes_files->data); 2152 2153 kfree(info->prstatus); 2154 kfree(info->psinfo); 2155 kfree(info->notes); 2156 kfree(info->fpu); 2157 #ifdef ELF_CORE_COPY_XFPREGS 2158 kfree(info->xfpu); 2159 #endif 2160 } 2161 2162 #endif 2163 2164 static struct vm_area_struct *first_vma(struct task_struct *tsk, 2165 struct vm_area_struct *gate_vma) 2166 { 2167 struct vm_area_struct *ret = tsk->mm->mmap; 2168 2169 if (ret) 2170 return ret; 2171 return gate_vma; 2172 } 2173 /* 2174 * Helper function for iterating across a vma list. It ensures that the caller 2175 * will visit `gate_vma' prior to terminating the search. 2176 */ 2177 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, 2178 struct vm_area_struct *gate_vma) 2179 { 2180 struct vm_area_struct *ret; 2181 2182 ret = this_vma->vm_next; 2183 if (ret) 2184 return ret; 2185 if (this_vma == gate_vma) 2186 return NULL; 2187 return gate_vma; 2188 } 2189 2190 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, 2191 elf_addr_t e_shoff, int segs) 2192 { 2193 elf->e_shoff = e_shoff; 2194 elf->e_shentsize = sizeof(*shdr4extnum); 2195 elf->e_shnum = 1; 2196 elf->e_shstrndx = SHN_UNDEF; 2197 2198 memset(shdr4extnum, 0, sizeof(*shdr4extnum)); 2199 2200 shdr4extnum->sh_type = SHT_NULL; 2201 shdr4extnum->sh_size = elf->e_shnum; 2202 shdr4extnum->sh_link = elf->e_shstrndx; 2203 shdr4extnum->sh_info = segs; 2204 } 2205 2206 /* 2207 * Actual dumper 2208 * 2209 * This is a two-pass process; first we find the offsets of the bits, 2210 * and then they are actually written out. If we run out of core limit 2211 * we just truncate. 2212 */ 2213 static int elf_core_dump(struct coredump_params *cprm) 2214 { 2215 int has_dumped = 0; 2216 mm_segment_t fs; 2217 int segs, i; 2218 size_t vma_data_size = 0; 2219 struct vm_area_struct *vma, *gate_vma; 2220 struct elfhdr *elf = NULL; 2221 loff_t offset = 0, dataoff; 2222 struct elf_note_info info = { }; 2223 struct elf_phdr *phdr4note = NULL; 2224 struct elf_shdr *shdr4extnum = NULL; 2225 Elf_Half e_phnum; 2226 elf_addr_t e_shoff; 2227 elf_addr_t *vma_filesz = NULL; 2228 2229 /* 2230 * We no longer stop all VM operations. 2231 * 2232 * This is because those proceses that could possibly change map_count 2233 * or the mmap / vma pages are now blocked in do_exit on current 2234 * finishing this core dump. 2235 * 2236 * Only ptrace can touch these memory addresses, but it doesn't change 2237 * the map_count or the pages allocated. So no possibility of crashing 2238 * exists while dumping the mm->vm_next areas to the core file. 2239 */ 2240 2241 /* alloc memory for large data structures: too large to be on stack */ 2242 elf = kmalloc(sizeof(*elf), GFP_KERNEL); 2243 if (!elf) 2244 goto out; 2245 /* 2246 * The number of segs are recored into ELF header as 16bit value. 2247 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. 2248 */ 2249 segs = current->mm->map_count; 2250 segs += elf_core_extra_phdrs(); 2251 2252 gate_vma = get_gate_vma(current->mm); 2253 if (gate_vma != NULL) 2254 segs++; 2255 2256 /* for notes section */ 2257 segs++; 2258 2259 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid 2260 * this, kernel supports extended numbering. Have a look at 2261 * include/linux/elf.h for further information. */ 2262 e_phnum = segs > PN_XNUM ? PN_XNUM : segs; 2263 2264 /* 2265 * Collect all the non-memory information about the process for the 2266 * notes. This also sets up the file header. 2267 */ 2268 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs)) 2269 goto cleanup; 2270 2271 has_dumped = 1; 2272 2273 fs = get_fs(); 2274 set_fs(KERNEL_DS); 2275 2276 offset += sizeof(*elf); /* Elf header */ 2277 offset += segs * sizeof(struct elf_phdr); /* Program headers */ 2278 2279 /* Write notes phdr entry */ 2280 { 2281 size_t sz = get_note_info_size(&info); 2282 2283 sz += elf_coredump_extra_notes_size(); 2284 2285 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); 2286 if (!phdr4note) 2287 goto end_coredump; 2288 2289 fill_elf_note_phdr(phdr4note, sz, offset); 2290 offset += sz; 2291 } 2292 2293 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 2294 2295 if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz)) 2296 goto end_coredump; 2297 vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz)); 2298 if (!vma_filesz) 2299 goto end_coredump; 2300 2301 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL; 2302 vma = next_vma(vma, gate_vma)) { 2303 unsigned long dump_size; 2304 2305 dump_size = vma_dump_size(vma, cprm->mm_flags); 2306 vma_filesz[i++] = dump_size; 2307 vma_data_size += dump_size; 2308 } 2309 2310 offset += vma_data_size; 2311 offset += elf_core_extra_data_size(); 2312 e_shoff = offset; 2313 2314 if (e_phnum == PN_XNUM) { 2315 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); 2316 if (!shdr4extnum) 2317 goto end_coredump; 2318 fill_extnum_info(elf, shdr4extnum, e_shoff, segs); 2319 } 2320 2321 offset = dataoff; 2322 2323 if (!dump_emit(cprm, elf, sizeof(*elf))) 2324 goto end_coredump; 2325 2326 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note))) 2327 goto end_coredump; 2328 2329 /* Write program headers for segments dump */ 2330 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL; 2331 vma = next_vma(vma, gate_vma)) { 2332 struct elf_phdr phdr; 2333 2334 phdr.p_type = PT_LOAD; 2335 phdr.p_offset = offset; 2336 phdr.p_vaddr = vma->vm_start; 2337 phdr.p_paddr = 0; 2338 phdr.p_filesz = vma_filesz[i++]; 2339 phdr.p_memsz = vma->vm_end - vma->vm_start; 2340 offset += phdr.p_filesz; 2341 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; 2342 if (vma->vm_flags & VM_WRITE) 2343 phdr.p_flags |= PF_W; 2344 if (vma->vm_flags & VM_EXEC) 2345 phdr.p_flags |= PF_X; 2346 phdr.p_align = ELF_EXEC_PAGESIZE; 2347 2348 if (!dump_emit(cprm, &phdr, sizeof(phdr))) 2349 goto end_coredump; 2350 } 2351 2352 if (!elf_core_write_extra_phdrs(cprm, offset)) 2353 goto end_coredump; 2354 2355 /* write out the notes section */ 2356 if (!write_note_info(&info, cprm)) 2357 goto end_coredump; 2358 2359 if (elf_coredump_extra_notes_write(cprm)) 2360 goto end_coredump; 2361 2362 /* Align to page */ 2363 if (!dump_skip(cprm, dataoff - cprm->pos)) 2364 goto end_coredump; 2365 2366 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL; 2367 vma = next_vma(vma, gate_vma)) { 2368 unsigned long addr; 2369 unsigned long end; 2370 2371 end = vma->vm_start + vma_filesz[i++]; 2372 2373 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) { 2374 struct page *page; 2375 int stop; 2376 2377 page = get_dump_page(addr); 2378 if (page) { 2379 void *kaddr = kmap(page); 2380 stop = !dump_emit(cprm, kaddr, PAGE_SIZE); 2381 kunmap(page); 2382 put_page(page); 2383 } else 2384 stop = !dump_skip(cprm, PAGE_SIZE); 2385 if (stop) 2386 goto end_coredump; 2387 } 2388 } 2389 dump_truncate(cprm); 2390 2391 if (!elf_core_write_extra_data(cprm)) 2392 goto end_coredump; 2393 2394 if (e_phnum == PN_XNUM) { 2395 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum))) 2396 goto end_coredump; 2397 } 2398 2399 end_coredump: 2400 set_fs(fs); 2401 2402 cleanup: 2403 free_note_info(&info); 2404 kfree(shdr4extnum); 2405 vfree(vma_filesz); 2406 kfree(phdr4note); 2407 kfree(elf); 2408 out: 2409 return has_dumped; 2410 } 2411 2412 #endif /* CONFIG_ELF_CORE */ 2413 2414 static int __init init_elf_binfmt(void) 2415 { 2416 register_binfmt(&elf_format); 2417 return 0; 2418 } 2419 2420 static void __exit exit_elf_binfmt(void) 2421 { 2422 /* Remove the COFF and ELF loaders. */ 2423 unregister_binfmt(&elf_format); 2424 } 2425 2426 core_initcall(init_elf_binfmt); 2427 module_exit(exit_elf_binfmt); 2428 MODULE_LICENSE("GPL"); 2429