1 /* 2 * linux/fs/binfmt_elf.c 3 * 4 * These are the functions used to load ELF format executables as used 5 * on SVr4 machines. Information on the format may be found in the book 6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 7 * Tools". 8 * 9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 10 */ 11 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/fs.h> 15 #include <linux/stat.h> 16 #include <linux/time.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/a.out.h> 20 #include <linux/errno.h> 21 #include <linux/signal.h> 22 #include <linux/binfmts.h> 23 #include <linux/string.h> 24 #include <linux/file.h> 25 #include <linux/fcntl.h> 26 #include <linux/ptrace.h> 27 #include <linux/slab.h> 28 #include <linux/shm.h> 29 #include <linux/personality.h> 30 #include <linux/elfcore.h> 31 #include <linux/init.h> 32 #include <linux/highuid.h> 33 #include <linux/smp.h> 34 #include <linux/compiler.h> 35 #include <linux/highmem.h> 36 #include <linux/pagemap.h> 37 #include <linux/security.h> 38 #include <linux/syscalls.h> 39 #include <linux/random.h> 40 #include <linux/elf.h> 41 #include <linux/utsname.h> 42 #include <asm/uaccess.h> 43 #include <asm/param.h> 44 #include <asm/page.h> 45 46 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs); 47 static int load_elf_library(struct file *); 48 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *, 49 int, int, unsigned long); 50 51 /* 52 * If we don't support core dumping, then supply a NULL so we 53 * don't even try. 54 */ 55 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) 56 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit); 57 #else 58 #define elf_core_dump NULL 59 #endif 60 61 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 62 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 63 #else 64 #define ELF_MIN_ALIGN PAGE_SIZE 65 #endif 66 67 #ifndef ELF_CORE_EFLAGS 68 #define ELF_CORE_EFLAGS 0 69 #endif 70 71 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) 72 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 73 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 74 75 static struct linux_binfmt elf_format = { 76 .module = THIS_MODULE, 77 .load_binary = load_elf_binary, 78 .load_shlib = load_elf_library, 79 .core_dump = elf_core_dump, 80 .min_coredump = ELF_EXEC_PAGESIZE, 81 .hasvdso = 1 82 }; 83 84 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE) 85 86 static int set_brk(unsigned long start, unsigned long end) 87 { 88 start = ELF_PAGEALIGN(start); 89 end = ELF_PAGEALIGN(end); 90 if (end > start) { 91 unsigned long addr; 92 down_write(¤t->mm->mmap_sem); 93 addr = do_brk(start, end - start); 94 up_write(¤t->mm->mmap_sem); 95 if (BAD_ADDR(addr)) 96 return addr; 97 } 98 current->mm->start_brk = current->mm->brk = end; 99 return 0; 100 } 101 102 /* We need to explicitly zero any fractional pages 103 after the data section (i.e. bss). This would 104 contain the junk from the file that should not 105 be in memory 106 */ 107 static int padzero(unsigned long elf_bss) 108 { 109 unsigned long nbyte; 110 111 nbyte = ELF_PAGEOFFSET(elf_bss); 112 if (nbyte) { 113 nbyte = ELF_MIN_ALIGN - nbyte; 114 if (clear_user((void __user *) elf_bss, nbyte)) 115 return -EFAULT; 116 } 117 return 0; 118 } 119 120 /* Let's use some macros to make this stack manipulation a little clearer */ 121 #ifdef CONFIG_STACK_GROWSUP 122 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 123 #define STACK_ROUND(sp, items) \ 124 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 125 #define STACK_ALLOC(sp, len) ({ \ 126 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 127 old_sp; }) 128 #else 129 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 130 #define STACK_ROUND(sp, items) \ 131 (((unsigned long) (sp - items)) &~ 15UL) 132 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) 133 #endif 134 135 static int 136 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec, 137 unsigned long load_addr, unsigned long interp_load_addr) 138 { 139 unsigned long p = bprm->p; 140 int argc = bprm->argc; 141 int envc = bprm->envc; 142 elf_addr_t __user *argv; 143 elf_addr_t __user *envp; 144 elf_addr_t __user *sp; 145 elf_addr_t __user *u_platform; 146 const char *k_platform = ELF_PLATFORM; 147 int items; 148 elf_addr_t *elf_info; 149 int ei_index = 0; 150 struct task_struct *tsk = current; 151 struct vm_area_struct *vma; 152 153 /* 154 * In some cases (e.g. Hyper-Threading), we want to avoid L1 155 * evictions by the processes running on the same package. One 156 * thing we can do is to shuffle the initial stack for them. 157 */ 158 159 p = arch_align_stack(p); 160 161 /* 162 * If this architecture has a platform capability string, copy it 163 * to userspace. In some cases (Sparc), this info is impossible 164 * for userspace to get any other way, in others (i386) it is 165 * merely difficult. 166 */ 167 u_platform = NULL; 168 if (k_platform) { 169 size_t len = strlen(k_platform) + 1; 170 171 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 172 if (__copy_to_user(u_platform, k_platform, len)) 173 return -EFAULT; 174 } 175 176 /* Create the ELF interpreter info */ 177 elf_info = (elf_addr_t *)current->mm->saved_auxv; 178 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 179 #define NEW_AUX_ENT(id, val) \ 180 do { \ 181 elf_info[ei_index++] = id; \ 182 elf_info[ei_index++] = val; \ 183 } while (0) 184 185 #ifdef ARCH_DLINFO 186 /* 187 * ARCH_DLINFO must come first so PPC can do its special alignment of 188 * AUXV. 189 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 190 * ARCH_DLINFO changes 191 */ 192 ARCH_DLINFO; 193 #endif 194 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 195 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 196 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 197 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); 198 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 199 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 200 NEW_AUX_ENT(AT_BASE, interp_load_addr); 201 NEW_AUX_ENT(AT_FLAGS, 0); 202 NEW_AUX_ENT(AT_ENTRY, exec->e_entry); 203 NEW_AUX_ENT(AT_UID, tsk->uid); 204 NEW_AUX_ENT(AT_EUID, tsk->euid); 205 NEW_AUX_ENT(AT_GID, tsk->gid); 206 NEW_AUX_ENT(AT_EGID, tsk->egid); 207 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm)); 208 if (k_platform) { 209 NEW_AUX_ENT(AT_PLATFORM, 210 (elf_addr_t)(unsigned long)u_platform); 211 } 212 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) { 213 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data); 214 } 215 #undef NEW_AUX_ENT 216 /* AT_NULL is zero; clear the rest too */ 217 memset(&elf_info[ei_index], 0, 218 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]); 219 220 /* And advance past the AT_NULL entry. */ 221 ei_index += 2; 222 223 sp = STACK_ADD(p, ei_index); 224 225 items = (argc + 1) + (envc + 1) + 1; 226 bprm->p = STACK_ROUND(sp, items); 227 228 /* Point sp at the lowest address on the stack */ 229 #ifdef CONFIG_STACK_GROWSUP 230 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 231 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 232 #else 233 sp = (elf_addr_t __user *)bprm->p; 234 #endif 235 236 237 /* 238 * Grow the stack manually; some architectures have a limit on how 239 * far ahead a user-space access may be in order to grow the stack. 240 */ 241 vma = find_extend_vma(current->mm, bprm->p); 242 if (!vma) 243 return -EFAULT; 244 245 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 246 if (__put_user(argc, sp++)) 247 return -EFAULT; 248 argv = sp; 249 envp = argv + argc + 1; 250 251 /* Populate argv and envp */ 252 p = current->mm->arg_end = current->mm->arg_start; 253 while (argc-- > 0) { 254 size_t len; 255 if (__put_user((elf_addr_t)p, argv++)) 256 return -EFAULT; 257 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 258 if (!len || len > MAX_ARG_STRLEN) 259 return 0; 260 p += len; 261 } 262 if (__put_user(0, argv)) 263 return -EFAULT; 264 current->mm->arg_end = current->mm->env_start = p; 265 while (envc-- > 0) { 266 size_t len; 267 if (__put_user((elf_addr_t)p, envp++)) 268 return -EFAULT; 269 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 270 if (!len || len > MAX_ARG_STRLEN) 271 return 0; 272 p += len; 273 } 274 if (__put_user(0, envp)) 275 return -EFAULT; 276 current->mm->env_end = p; 277 278 /* Put the elf_info on the stack in the right place. */ 279 sp = (elf_addr_t __user *)envp + 1; 280 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t))) 281 return -EFAULT; 282 return 0; 283 } 284 285 #ifndef elf_map 286 287 static unsigned long elf_map(struct file *filep, unsigned long addr, 288 struct elf_phdr *eppnt, int prot, int type, 289 unsigned long total_size) 290 { 291 unsigned long map_addr; 292 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 293 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 294 addr = ELF_PAGESTART(addr); 295 size = ELF_PAGEALIGN(size); 296 297 /* mmap() will return -EINVAL if given a zero size, but a 298 * segment with zero filesize is perfectly valid */ 299 if (!size) 300 return addr; 301 302 down_write(¤t->mm->mmap_sem); 303 /* 304 * total_size is the size of the ELF (interpreter) image. 305 * The _first_ mmap needs to know the full size, otherwise 306 * randomization might put this image into an overlapping 307 * position with the ELF binary image. (since size < total_size) 308 * So we first map the 'big' image - and unmap the remainder at 309 * the end. (which unmap is needed for ELF images with holes.) 310 */ 311 if (total_size) { 312 total_size = ELF_PAGEALIGN(total_size); 313 map_addr = do_mmap(filep, addr, total_size, prot, type, off); 314 if (!BAD_ADDR(map_addr)) 315 do_munmap(current->mm, map_addr+size, total_size-size); 316 } else 317 map_addr = do_mmap(filep, addr, size, prot, type, off); 318 319 up_write(¤t->mm->mmap_sem); 320 return(map_addr); 321 } 322 323 #endif /* !elf_map */ 324 325 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr) 326 { 327 int i, first_idx = -1, last_idx = -1; 328 329 for (i = 0; i < nr; i++) { 330 if (cmds[i].p_type == PT_LOAD) { 331 last_idx = i; 332 if (first_idx == -1) 333 first_idx = i; 334 } 335 } 336 if (first_idx == -1) 337 return 0; 338 339 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - 340 ELF_PAGESTART(cmds[first_idx].p_vaddr); 341 } 342 343 344 /* This is much more generalized than the library routine read function, 345 so we keep this separate. Technically the library read function 346 is only provided so that we can read a.out libraries that have 347 an ELF header */ 348 349 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 350 struct file *interpreter, unsigned long *interp_map_addr, 351 unsigned long no_base) 352 { 353 struct elf_phdr *elf_phdata; 354 struct elf_phdr *eppnt; 355 unsigned long load_addr = 0; 356 int load_addr_set = 0; 357 unsigned long last_bss = 0, elf_bss = 0; 358 unsigned long error = ~0UL; 359 unsigned long total_size; 360 int retval, i, size; 361 362 /* First of all, some simple consistency checks */ 363 if (interp_elf_ex->e_type != ET_EXEC && 364 interp_elf_ex->e_type != ET_DYN) 365 goto out; 366 if (!elf_check_arch(interp_elf_ex)) 367 goto out; 368 if (!interpreter->f_op || !interpreter->f_op->mmap) 369 goto out; 370 371 /* 372 * If the size of this structure has changed, then punt, since 373 * we will be doing the wrong thing. 374 */ 375 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) 376 goto out; 377 if (interp_elf_ex->e_phnum < 1 || 378 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr)) 379 goto out; 380 381 /* Now read in all of the header information */ 382 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum; 383 if (size > ELF_MIN_ALIGN) 384 goto out; 385 elf_phdata = kmalloc(size, GFP_KERNEL); 386 if (!elf_phdata) 387 goto out; 388 389 retval = kernel_read(interpreter, interp_elf_ex->e_phoff, 390 (char *)elf_phdata,size); 391 error = -EIO; 392 if (retval != size) { 393 if (retval < 0) 394 error = retval; 395 goto out_close; 396 } 397 398 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum); 399 if (!total_size) { 400 error = -EINVAL; 401 goto out_close; 402 } 403 404 eppnt = elf_phdata; 405 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 406 if (eppnt->p_type == PT_LOAD) { 407 int elf_type = MAP_PRIVATE | MAP_DENYWRITE; 408 int elf_prot = 0; 409 unsigned long vaddr = 0; 410 unsigned long k, map_addr; 411 412 if (eppnt->p_flags & PF_R) 413 elf_prot = PROT_READ; 414 if (eppnt->p_flags & PF_W) 415 elf_prot |= PROT_WRITE; 416 if (eppnt->p_flags & PF_X) 417 elf_prot |= PROT_EXEC; 418 vaddr = eppnt->p_vaddr; 419 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 420 elf_type |= MAP_FIXED; 421 else if (no_base && interp_elf_ex->e_type == ET_DYN) 422 load_addr = -vaddr; 423 424 map_addr = elf_map(interpreter, load_addr + vaddr, 425 eppnt, elf_prot, elf_type, total_size); 426 total_size = 0; 427 if (!*interp_map_addr) 428 *interp_map_addr = map_addr; 429 error = map_addr; 430 if (BAD_ADDR(map_addr)) 431 goto out_close; 432 433 if (!load_addr_set && 434 interp_elf_ex->e_type == ET_DYN) { 435 load_addr = map_addr - ELF_PAGESTART(vaddr); 436 load_addr_set = 1; 437 } 438 439 /* 440 * Check to see if the section's size will overflow the 441 * allowed task size. Note that p_filesz must always be 442 * <= p_memsize so it's only necessary to check p_memsz. 443 */ 444 k = load_addr + eppnt->p_vaddr; 445 if (BAD_ADDR(k) || 446 eppnt->p_filesz > eppnt->p_memsz || 447 eppnt->p_memsz > TASK_SIZE || 448 TASK_SIZE - eppnt->p_memsz < k) { 449 error = -ENOMEM; 450 goto out_close; 451 } 452 453 /* 454 * Find the end of the file mapping for this phdr, and 455 * keep track of the largest address we see for this. 456 */ 457 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; 458 if (k > elf_bss) 459 elf_bss = k; 460 461 /* 462 * Do the same thing for the memory mapping - between 463 * elf_bss and last_bss is the bss section. 464 */ 465 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr; 466 if (k > last_bss) 467 last_bss = k; 468 } 469 } 470 471 /* 472 * Now fill out the bss section. First pad the last page up 473 * to the page boundary, and then perform a mmap to make sure 474 * that there are zero-mapped pages up to and including the 475 * last bss page. 476 */ 477 if (padzero(elf_bss)) { 478 error = -EFAULT; 479 goto out_close; 480 } 481 482 /* What we have mapped so far */ 483 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1); 484 485 /* Map the last of the bss segment */ 486 if (last_bss > elf_bss) { 487 down_write(¤t->mm->mmap_sem); 488 error = do_brk(elf_bss, last_bss - elf_bss); 489 up_write(¤t->mm->mmap_sem); 490 if (BAD_ADDR(error)) 491 goto out_close; 492 } 493 494 error = load_addr; 495 496 out_close: 497 kfree(elf_phdata); 498 out: 499 return error; 500 } 501 502 /* 503 * These are the functions used to load ELF style executables and shared 504 * libraries. There is no binary dependent code anywhere else. 505 */ 506 507 #define INTERPRETER_NONE 0 508 #define INTERPRETER_ELF 2 509 510 #ifndef STACK_RND_MASK 511 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 512 #endif 513 514 static unsigned long randomize_stack_top(unsigned long stack_top) 515 { 516 unsigned int random_variable = 0; 517 518 if ((current->flags & PF_RANDOMIZE) && 519 !(current->personality & ADDR_NO_RANDOMIZE)) { 520 random_variable = get_random_int() & STACK_RND_MASK; 521 random_variable <<= PAGE_SHIFT; 522 } 523 #ifdef CONFIG_STACK_GROWSUP 524 return PAGE_ALIGN(stack_top) + random_variable; 525 #else 526 return PAGE_ALIGN(stack_top) - random_variable; 527 #endif 528 } 529 530 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs) 531 { 532 struct file *interpreter = NULL; /* to shut gcc up */ 533 unsigned long load_addr = 0, load_bias = 0; 534 int load_addr_set = 0; 535 char * elf_interpreter = NULL; 536 unsigned long error; 537 struct elf_phdr *elf_ppnt, *elf_phdata; 538 unsigned long elf_bss, elf_brk; 539 int elf_exec_fileno; 540 int retval, i; 541 unsigned int size; 542 unsigned long elf_entry; 543 unsigned long interp_load_addr = 0; 544 unsigned long start_code, end_code, start_data, end_data; 545 unsigned long reloc_func_desc = 0; 546 int executable_stack = EXSTACK_DEFAULT; 547 unsigned long def_flags = 0; 548 struct { 549 struct elfhdr elf_ex; 550 struct elfhdr interp_elf_ex; 551 struct exec interp_ex; 552 } *loc; 553 554 loc = kmalloc(sizeof(*loc), GFP_KERNEL); 555 if (!loc) { 556 retval = -ENOMEM; 557 goto out_ret; 558 } 559 560 /* Get the exec-header */ 561 loc->elf_ex = *((struct elfhdr *)bprm->buf); 562 563 retval = -ENOEXEC; 564 /* First of all, some simple consistency checks */ 565 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 566 goto out; 567 568 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN) 569 goto out; 570 if (!elf_check_arch(&loc->elf_ex)) 571 goto out; 572 if (!bprm->file->f_op||!bprm->file->f_op->mmap) 573 goto out; 574 575 /* Now read in all of the header information */ 576 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr)) 577 goto out; 578 if (loc->elf_ex.e_phnum < 1 || 579 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr)) 580 goto out; 581 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr); 582 retval = -ENOMEM; 583 elf_phdata = kmalloc(size, GFP_KERNEL); 584 if (!elf_phdata) 585 goto out; 586 587 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff, 588 (char *)elf_phdata, size); 589 if (retval != size) { 590 if (retval >= 0) 591 retval = -EIO; 592 goto out_free_ph; 593 } 594 595 retval = get_unused_fd(); 596 if (retval < 0) 597 goto out_free_ph; 598 get_file(bprm->file); 599 fd_install(elf_exec_fileno = retval, bprm->file); 600 601 elf_ppnt = elf_phdata; 602 elf_bss = 0; 603 elf_brk = 0; 604 605 start_code = ~0UL; 606 end_code = 0; 607 start_data = 0; 608 end_data = 0; 609 610 for (i = 0; i < loc->elf_ex.e_phnum; i++) { 611 if (elf_ppnt->p_type == PT_INTERP) { 612 /* This is the program interpreter used for 613 * shared libraries - for now assume that this 614 * is an a.out format binary 615 */ 616 retval = -ENOEXEC; 617 if (elf_ppnt->p_filesz > PATH_MAX || 618 elf_ppnt->p_filesz < 2) 619 goto out_free_file; 620 621 retval = -ENOMEM; 622 elf_interpreter = kmalloc(elf_ppnt->p_filesz, 623 GFP_KERNEL); 624 if (!elf_interpreter) 625 goto out_free_file; 626 627 retval = kernel_read(bprm->file, elf_ppnt->p_offset, 628 elf_interpreter, 629 elf_ppnt->p_filesz); 630 if (retval != elf_ppnt->p_filesz) { 631 if (retval >= 0) 632 retval = -EIO; 633 goto out_free_interp; 634 } 635 /* make sure path is NULL terminated */ 636 retval = -ENOEXEC; 637 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 638 goto out_free_interp; 639 640 /* 641 * The early SET_PERSONALITY here is so that the lookup 642 * for the interpreter happens in the namespace of the 643 * to-be-execed image. SET_PERSONALITY can select an 644 * alternate root. 645 * 646 * However, SET_PERSONALITY is NOT allowed to switch 647 * this task into the new images's memory mapping 648 * policy - that is, TASK_SIZE must still evaluate to 649 * that which is appropriate to the execing application. 650 * This is because exit_mmap() needs to have TASK_SIZE 651 * evaluate to the size of the old image. 652 * 653 * So if (say) a 64-bit application is execing a 32-bit 654 * application it is the architecture's responsibility 655 * to defer changing the value of TASK_SIZE until the 656 * switch really is going to happen - do this in 657 * flush_thread(). - akpm 658 */ 659 SET_PERSONALITY(loc->elf_ex, 0); 660 661 interpreter = open_exec(elf_interpreter); 662 retval = PTR_ERR(interpreter); 663 if (IS_ERR(interpreter)) 664 goto out_free_interp; 665 666 /* 667 * If the binary is not readable then enforce 668 * mm->dumpable = 0 regardless of the interpreter's 669 * permissions. 670 */ 671 if (file_permission(interpreter, MAY_READ) < 0) 672 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 673 674 retval = kernel_read(interpreter, 0, bprm->buf, 675 BINPRM_BUF_SIZE); 676 if (retval != BINPRM_BUF_SIZE) { 677 if (retval >= 0) 678 retval = -EIO; 679 goto out_free_dentry; 680 } 681 682 /* Get the exec headers */ 683 loc->interp_ex = *((struct exec *)bprm->buf); 684 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf); 685 break; 686 } 687 elf_ppnt++; 688 } 689 690 elf_ppnt = elf_phdata; 691 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) 692 if (elf_ppnt->p_type == PT_GNU_STACK) { 693 if (elf_ppnt->p_flags & PF_X) 694 executable_stack = EXSTACK_ENABLE_X; 695 else 696 executable_stack = EXSTACK_DISABLE_X; 697 break; 698 } 699 700 /* Some simple consistency checks for the interpreter */ 701 if (elf_interpreter) { 702 retval = -ELIBBAD; 703 /* Not an ELF interpreter */ 704 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 705 goto out_free_dentry; 706 /* Verify the interpreter has a valid arch */ 707 if (!elf_check_arch(&loc->interp_elf_ex)) 708 goto out_free_dentry; 709 } else { 710 /* Executables without an interpreter also need a personality */ 711 SET_PERSONALITY(loc->elf_ex, 0); 712 } 713 714 /* Flush all traces of the currently running executable */ 715 retval = flush_old_exec(bprm); 716 if (retval) 717 goto out_free_dentry; 718 719 /* OK, This is the point of no return */ 720 current->flags &= ~PF_FORKNOEXEC; 721 current->mm->def_flags = def_flags; 722 723 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 724 may depend on the personality. */ 725 SET_PERSONALITY(loc->elf_ex, 0); 726 if (elf_read_implies_exec(loc->elf_ex, executable_stack)) 727 current->personality |= READ_IMPLIES_EXEC; 728 729 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 730 current->flags |= PF_RANDOMIZE; 731 arch_pick_mmap_layout(current->mm); 732 733 /* Do this so that we can load the interpreter, if need be. We will 734 change some of these later */ 735 current->mm->free_area_cache = current->mm->mmap_base; 736 current->mm->cached_hole_size = 0; 737 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 738 executable_stack); 739 if (retval < 0) { 740 send_sig(SIGKILL, current, 0); 741 goto out_free_dentry; 742 } 743 744 current->mm->start_stack = bprm->p; 745 746 /* Now we do a little grungy work by mmaping the ELF image into 747 the correct location in memory. */ 748 for(i = 0, elf_ppnt = elf_phdata; 749 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) { 750 int elf_prot = 0, elf_flags; 751 unsigned long k, vaddr; 752 753 if (elf_ppnt->p_type != PT_LOAD) 754 continue; 755 756 if (unlikely (elf_brk > elf_bss)) { 757 unsigned long nbyte; 758 759 /* There was a PT_LOAD segment with p_memsz > p_filesz 760 before this one. Map anonymous pages, if needed, 761 and clear the area. */ 762 retval = set_brk (elf_bss + load_bias, 763 elf_brk + load_bias); 764 if (retval) { 765 send_sig(SIGKILL, current, 0); 766 goto out_free_dentry; 767 } 768 nbyte = ELF_PAGEOFFSET(elf_bss); 769 if (nbyte) { 770 nbyte = ELF_MIN_ALIGN - nbyte; 771 if (nbyte > elf_brk - elf_bss) 772 nbyte = elf_brk - elf_bss; 773 if (clear_user((void __user *)elf_bss + 774 load_bias, nbyte)) { 775 /* 776 * This bss-zeroing can fail if the ELF 777 * file specifies odd protections. So 778 * we don't check the return value 779 */ 780 } 781 } 782 } 783 784 if (elf_ppnt->p_flags & PF_R) 785 elf_prot |= PROT_READ; 786 if (elf_ppnt->p_flags & PF_W) 787 elf_prot |= PROT_WRITE; 788 if (elf_ppnt->p_flags & PF_X) 789 elf_prot |= PROT_EXEC; 790 791 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE; 792 793 vaddr = elf_ppnt->p_vaddr; 794 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) { 795 elf_flags |= MAP_FIXED; 796 } else if (loc->elf_ex.e_type == ET_DYN) { 797 /* Try and get dynamic programs out of the way of the 798 * default mmap base, as well as whatever program they 799 * might try to exec. This is because the brk will 800 * follow the loader, and is not movable. */ 801 #ifdef CONFIG_X86 802 load_bias = 0; 803 #else 804 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr); 805 #endif 806 } 807 808 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, 809 elf_prot, elf_flags, 0); 810 if (BAD_ADDR(error)) { 811 send_sig(SIGKILL, current, 0); 812 retval = IS_ERR((void *)error) ? 813 PTR_ERR((void*)error) : -EINVAL; 814 goto out_free_dentry; 815 } 816 817 if (!load_addr_set) { 818 load_addr_set = 1; 819 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); 820 if (loc->elf_ex.e_type == ET_DYN) { 821 load_bias += error - 822 ELF_PAGESTART(load_bias + vaddr); 823 load_addr += load_bias; 824 reloc_func_desc = load_bias; 825 } 826 } 827 k = elf_ppnt->p_vaddr; 828 if (k < start_code) 829 start_code = k; 830 if (start_data < k) 831 start_data = k; 832 833 /* 834 * Check to see if the section's size will overflow the 835 * allowed task size. Note that p_filesz must always be 836 * <= p_memsz so it is only necessary to check p_memsz. 837 */ 838 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 839 elf_ppnt->p_memsz > TASK_SIZE || 840 TASK_SIZE - elf_ppnt->p_memsz < k) { 841 /* set_brk can never work. Avoid overflows. */ 842 send_sig(SIGKILL, current, 0); 843 retval = -EINVAL; 844 goto out_free_dentry; 845 } 846 847 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 848 849 if (k > elf_bss) 850 elf_bss = k; 851 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 852 end_code = k; 853 if (end_data < k) 854 end_data = k; 855 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 856 if (k > elf_brk) 857 elf_brk = k; 858 } 859 860 loc->elf_ex.e_entry += load_bias; 861 elf_bss += load_bias; 862 elf_brk += load_bias; 863 start_code += load_bias; 864 end_code += load_bias; 865 start_data += load_bias; 866 end_data += load_bias; 867 868 /* Calling set_brk effectively mmaps the pages that we need 869 * for the bss and break sections. We must do this before 870 * mapping in the interpreter, to make sure it doesn't wind 871 * up getting placed where the bss needs to go. 872 */ 873 retval = set_brk(elf_bss, elf_brk); 874 if (retval) { 875 send_sig(SIGKILL, current, 0); 876 goto out_free_dentry; 877 } 878 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { 879 send_sig(SIGSEGV, current, 0); 880 retval = -EFAULT; /* Nobody gets to see this, but.. */ 881 goto out_free_dentry; 882 } 883 884 if (elf_interpreter) { 885 unsigned long uninitialized_var(interp_map_addr); 886 887 elf_entry = load_elf_interp(&loc->interp_elf_ex, 888 interpreter, 889 &interp_map_addr, 890 load_bias); 891 if (!IS_ERR((void *)elf_entry)) { 892 /* 893 * load_elf_interp() returns relocation 894 * adjustment 895 */ 896 interp_load_addr = elf_entry; 897 elf_entry += loc->interp_elf_ex.e_entry; 898 } 899 if (BAD_ADDR(elf_entry)) { 900 force_sig(SIGSEGV, current); 901 retval = IS_ERR((void *)elf_entry) ? 902 (int)elf_entry : -EINVAL; 903 goto out_free_dentry; 904 } 905 reloc_func_desc = interp_load_addr; 906 907 allow_write_access(interpreter); 908 fput(interpreter); 909 kfree(elf_interpreter); 910 } else { 911 elf_entry = loc->elf_ex.e_entry; 912 if (BAD_ADDR(elf_entry)) { 913 force_sig(SIGSEGV, current); 914 retval = -EINVAL; 915 goto out_free_dentry; 916 } 917 } 918 919 kfree(elf_phdata); 920 921 sys_close(elf_exec_fileno); 922 923 set_binfmt(&elf_format); 924 925 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 926 retval = arch_setup_additional_pages(bprm, executable_stack); 927 if (retval < 0) { 928 send_sig(SIGKILL, current, 0); 929 goto out; 930 } 931 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 932 933 compute_creds(bprm); 934 current->flags &= ~PF_FORKNOEXEC; 935 retval = create_elf_tables(bprm, &loc->elf_ex, 936 load_addr, interp_load_addr); 937 if (retval < 0) { 938 send_sig(SIGKILL, current, 0); 939 goto out; 940 } 941 /* N.B. passed_fileno might not be initialized? */ 942 current->mm->end_code = end_code; 943 current->mm->start_code = start_code; 944 current->mm->start_data = start_data; 945 current->mm->end_data = end_data; 946 current->mm->start_stack = bprm->p; 947 948 #ifdef arch_randomize_brk 949 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) 950 current->mm->brk = current->mm->start_brk = 951 arch_randomize_brk(current->mm); 952 #endif 953 954 if (current->personality & MMAP_PAGE_ZERO) { 955 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 956 and some applications "depend" upon this behavior. 957 Since we do not have the power to recompile these, we 958 emulate the SVr4 behavior. Sigh. */ 959 down_write(¤t->mm->mmap_sem); 960 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 961 MAP_FIXED | MAP_PRIVATE, 0); 962 up_write(¤t->mm->mmap_sem); 963 } 964 965 #ifdef ELF_PLAT_INIT 966 /* 967 * The ABI may specify that certain registers be set up in special 968 * ways (on i386 %edx is the address of a DT_FINI function, for 969 * example. In addition, it may also specify (eg, PowerPC64 ELF) 970 * that the e_entry field is the address of the function descriptor 971 * for the startup routine, rather than the address of the startup 972 * routine itself. This macro performs whatever initialization to 973 * the regs structure is required as well as any relocations to the 974 * function descriptor entries when executing dynamically links apps. 975 */ 976 ELF_PLAT_INIT(regs, reloc_func_desc); 977 #endif 978 979 start_thread(regs, elf_entry, bprm->p); 980 if (unlikely(current->ptrace & PT_PTRACED)) { 981 if (current->ptrace & PT_TRACE_EXEC) 982 ptrace_notify ((PTRACE_EVENT_EXEC << 8) | SIGTRAP); 983 else 984 send_sig(SIGTRAP, current, 0); 985 } 986 retval = 0; 987 out: 988 kfree(loc); 989 out_ret: 990 return retval; 991 992 /* error cleanup */ 993 out_free_dentry: 994 allow_write_access(interpreter); 995 if (interpreter) 996 fput(interpreter); 997 out_free_interp: 998 kfree(elf_interpreter); 999 out_free_file: 1000 sys_close(elf_exec_fileno); 1001 out_free_ph: 1002 kfree(elf_phdata); 1003 goto out; 1004 } 1005 1006 /* This is really simpleminded and specialized - we are loading an 1007 a.out library that is given an ELF header. */ 1008 static int load_elf_library(struct file *file) 1009 { 1010 struct elf_phdr *elf_phdata; 1011 struct elf_phdr *eppnt; 1012 unsigned long elf_bss, bss, len; 1013 int retval, error, i, j; 1014 struct elfhdr elf_ex; 1015 1016 error = -ENOEXEC; 1017 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex)); 1018 if (retval != sizeof(elf_ex)) 1019 goto out; 1020 1021 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1022 goto out; 1023 1024 /* First of all, some simple consistency checks */ 1025 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1026 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap) 1027 goto out; 1028 1029 /* Now read in all of the header information */ 1030 1031 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1032 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1033 1034 error = -ENOMEM; 1035 elf_phdata = kmalloc(j, GFP_KERNEL); 1036 if (!elf_phdata) 1037 goto out; 1038 1039 eppnt = elf_phdata; 1040 error = -ENOEXEC; 1041 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j); 1042 if (retval != j) 1043 goto out_free_ph; 1044 1045 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1046 if ((eppnt + i)->p_type == PT_LOAD) 1047 j++; 1048 if (j != 1) 1049 goto out_free_ph; 1050 1051 while (eppnt->p_type != PT_LOAD) 1052 eppnt++; 1053 1054 /* Now use mmap to map the library into memory. */ 1055 down_write(¤t->mm->mmap_sem); 1056 error = do_mmap(file, 1057 ELF_PAGESTART(eppnt->p_vaddr), 1058 (eppnt->p_filesz + 1059 ELF_PAGEOFFSET(eppnt->p_vaddr)), 1060 PROT_READ | PROT_WRITE | PROT_EXEC, 1061 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, 1062 (eppnt->p_offset - 1063 ELF_PAGEOFFSET(eppnt->p_vaddr))); 1064 up_write(¤t->mm->mmap_sem); 1065 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1066 goto out_free_ph; 1067 1068 elf_bss = eppnt->p_vaddr + eppnt->p_filesz; 1069 if (padzero(elf_bss)) { 1070 error = -EFAULT; 1071 goto out_free_ph; 1072 } 1073 1074 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr + 1075 ELF_MIN_ALIGN - 1); 1076 bss = eppnt->p_memsz + eppnt->p_vaddr; 1077 if (bss > len) { 1078 down_write(¤t->mm->mmap_sem); 1079 do_brk(len, bss - len); 1080 up_write(¤t->mm->mmap_sem); 1081 } 1082 error = 0; 1083 1084 out_free_ph: 1085 kfree(elf_phdata); 1086 out: 1087 return error; 1088 } 1089 1090 /* 1091 * Note that some platforms still use traditional core dumps and not 1092 * the ELF core dump. Each platform can select it as appropriate. 1093 */ 1094 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) 1095 1096 /* 1097 * ELF core dumper 1098 * 1099 * Modelled on fs/exec.c:aout_core_dump() 1100 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1101 */ 1102 /* 1103 * These are the only things you should do on a core-file: use only these 1104 * functions to write out all the necessary info. 1105 */ 1106 static int dump_write(struct file *file, const void *addr, int nr) 1107 { 1108 return file->f_op->write(file, addr, nr, &file->f_pos) == nr; 1109 } 1110 1111 static int dump_seek(struct file *file, loff_t off) 1112 { 1113 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 1114 if (file->f_op->llseek(file, off, SEEK_CUR) < 0) 1115 return 0; 1116 } else { 1117 char *buf = (char *)get_zeroed_page(GFP_KERNEL); 1118 if (!buf) 1119 return 0; 1120 while (off > 0) { 1121 unsigned long n = off; 1122 if (n > PAGE_SIZE) 1123 n = PAGE_SIZE; 1124 if (!dump_write(file, buf, n)) 1125 return 0; 1126 off -= n; 1127 } 1128 free_page((unsigned long)buf); 1129 } 1130 return 1; 1131 } 1132 1133 /* 1134 * Decide what to dump of a segment, part, all or none. 1135 */ 1136 static unsigned long vma_dump_size(struct vm_area_struct *vma, 1137 unsigned long mm_flags) 1138 { 1139 /* The vma can be set up to tell us the answer directly. */ 1140 if (vma->vm_flags & VM_ALWAYSDUMP) 1141 goto whole; 1142 1143 /* Do not dump I/O mapped devices or special mappings */ 1144 if (vma->vm_flags & (VM_IO | VM_RESERVED)) 1145 return 0; 1146 1147 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) 1148 1149 /* By default, dump shared memory if mapped from an anonymous file. */ 1150 if (vma->vm_flags & VM_SHARED) { 1151 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ? 1152 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) 1153 goto whole; 1154 return 0; 1155 } 1156 1157 /* Dump segments that have been written to. */ 1158 if (vma->anon_vma && FILTER(ANON_PRIVATE)) 1159 goto whole; 1160 if (vma->vm_file == NULL) 1161 return 0; 1162 1163 if (FILTER(MAPPED_PRIVATE)) 1164 goto whole; 1165 1166 /* 1167 * If this looks like the beginning of a DSO or executable mapping, 1168 * check for an ELF header. If we find one, dump the first page to 1169 * aid in determining what was mapped here. 1170 */ 1171 if (FILTER(ELF_HEADERS) && vma->vm_file != NULL && vma->vm_pgoff == 0) { 1172 u32 __user *header = (u32 __user *) vma->vm_start; 1173 u32 word; 1174 /* 1175 * Doing it this way gets the constant folded by GCC. 1176 */ 1177 union { 1178 u32 cmp; 1179 char elfmag[SELFMAG]; 1180 } magic; 1181 BUILD_BUG_ON(SELFMAG != sizeof word); 1182 magic.elfmag[EI_MAG0] = ELFMAG0; 1183 magic.elfmag[EI_MAG1] = ELFMAG1; 1184 magic.elfmag[EI_MAG2] = ELFMAG2; 1185 magic.elfmag[EI_MAG3] = ELFMAG3; 1186 if (get_user(word, header) == 0 && word == magic.cmp) 1187 return PAGE_SIZE; 1188 } 1189 1190 #undef FILTER 1191 1192 return 0; 1193 1194 whole: 1195 return vma->vm_end - vma->vm_start; 1196 } 1197 1198 /* An ELF note in memory */ 1199 struct memelfnote 1200 { 1201 const char *name; 1202 int type; 1203 unsigned int datasz; 1204 void *data; 1205 }; 1206 1207 static int notesize(struct memelfnote *en) 1208 { 1209 int sz; 1210 1211 sz = sizeof(struct elf_note); 1212 sz += roundup(strlen(en->name) + 1, 4); 1213 sz += roundup(en->datasz, 4); 1214 1215 return sz; 1216 } 1217 1218 #define DUMP_WRITE(addr, nr, foffset) \ 1219 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0) 1220 1221 static int alignfile(struct file *file, loff_t *foffset) 1222 { 1223 static const char buf[4] = { 0, }; 1224 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset); 1225 return 1; 1226 } 1227 1228 static int writenote(struct memelfnote *men, struct file *file, 1229 loff_t *foffset) 1230 { 1231 struct elf_note en; 1232 en.n_namesz = strlen(men->name) + 1; 1233 en.n_descsz = men->datasz; 1234 en.n_type = men->type; 1235 1236 DUMP_WRITE(&en, sizeof(en), foffset); 1237 DUMP_WRITE(men->name, en.n_namesz, foffset); 1238 if (!alignfile(file, foffset)) 1239 return 0; 1240 DUMP_WRITE(men->data, men->datasz, foffset); 1241 if (!alignfile(file, foffset)) 1242 return 0; 1243 1244 return 1; 1245 } 1246 #undef DUMP_WRITE 1247 1248 #define DUMP_WRITE(addr, nr) \ 1249 if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \ 1250 goto end_coredump; 1251 #define DUMP_SEEK(off) \ 1252 if (!dump_seek(file, (off))) \ 1253 goto end_coredump; 1254 1255 static void fill_elf_header(struct elfhdr *elf, int segs, 1256 u16 machine, u32 flags, u8 osabi) 1257 { 1258 memset(elf, 0, sizeof(*elf)); 1259 1260 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1261 elf->e_ident[EI_CLASS] = ELF_CLASS; 1262 elf->e_ident[EI_DATA] = ELF_DATA; 1263 elf->e_ident[EI_VERSION] = EV_CURRENT; 1264 elf->e_ident[EI_OSABI] = ELF_OSABI; 1265 1266 elf->e_type = ET_CORE; 1267 elf->e_machine = machine; 1268 elf->e_version = EV_CURRENT; 1269 elf->e_phoff = sizeof(struct elfhdr); 1270 elf->e_flags = flags; 1271 elf->e_ehsize = sizeof(struct elfhdr); 1272 elf->e_phentsize = sizeof(struct elf_phdr); 1273 elf->e_phnum = segs; 1274 1275 return; 1276 } 1277 1278 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1279 { 1280 phdr->p_type = PT_NOTE; 1281 phdr->p_offset = offset; 1282 phdr->p_vaddr = 0; 1283 phdr->p_paddr = 0; 1284 phdr->p_filesz = sz; 1285 phdr->p_memsz = 0; 1286 phdr->p_flags = 0; 1287 phdr->p_align = 0; 1288 return; 1289 } 1290 1291 static void fill_note(struct memelfnote *note, const char *name, int type, 1292 unsigned int sz, void *data) 1293 { 1294 note->name = name; 1295 note->type = type; 1296 note->datasz = sz; 1297 note->data = data; 1298 return; 1299 } 1300 1301 /* 1302 * fill up all the fields in prstatus from the given task struct, except 1303 * registers which need to be filled up separately. 1304 */ 1305 static void fill_prstatus(struct elf_prstatus *prstatus, 1306 struct task_struct *p, long signr) 1307 { 1308 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1309 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1310 prstatus->pr_sighold = p->blocked.sig[0]; 1311 prstatus->pr_pid = task_pid_vnr(p); 1312 prstatus->pr_ppid = task_pid_vnr(p->real_parent); 1313 prstatus->pr_pgrp = task_pgrp_vnr(p); 1314 prstatus->pr_sid = task_session_vnr(p); 1315 if (thread_group_leader(p)) { 1316 /* 1317 * This is the record for the group leader. Add in the 1318 * cumulative times of previous dead threads. This total 1319 * won't include the time of each live thread whose state 1320 * is included in the core dump. The final total reported 1321 * to our parent process when it calls wait4 will include 1322 * those sums as well as the little bit more time it takes 1323 * this and each other thread to finish dying after the 1324 * core dump synchronization phase. 1325 */ 1326 cputime_to_timeval(cputime_add(p->utime, p->signal->utime), 1327 &prstatus->pr_utime); 1328 cputime_to_timeval(cputime_add(p->stime, p->signal->stime), 1329 &prstatus->pr_stime); 1330 } else { 1331 cputime_to_timeval(p->utime, &prstatus->pr_utime); 1332 cputime_to_timeval(p->stime, &prstatus->pr_stime); 1333 } 1334 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime); 1335 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime); 1336 } 1337 1338 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1339 struct mm_struct *mm) 1340 { 1341 unsigned int i, len; 1342 1343 /* first copy the parameters from user space */ 1344 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1345 1346 len = mm->arg_end - mm->arg_start; 1347 if (len >= ELF_PRARGSZ) 1348 len = ELF_PRARGSZ-1; 1349 if (copy_from_user(&psinfo->pr_psargs, 1350 (const char __user *)mm->arg_start, len)) 1351 return -EFAULT; 1352 for(i = 0; i < len; i++) 1353 if (psinfo->pr_psargs[i] == 0) 1354 psinfo->pr_psargs[i] = ' '; 1355 psinfo->pr_psargs[len] = 0; 1356 1357 psinfo->pr_pid = task_pid_vnr(p); 1358 psinfo->pr_ppid = task_pid_vnr(p->real_parent); 1359 psinfo->pr_pgrp = task_pgrp_vnr(p); 1360 psinfo->pr_sid = task_session_vnr(p); 1361 1362 i = p->state ? ffz(~p->state) + 1 : 0; 1363 psinfo->pr_state = i; 1364 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1365 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1366 psinfo->pr_nice = task_nice(p); 1367 psinfo->pr_flag = p->flags; 1368 SET_UID(psinfo->pr_uid, p->uid); 1369 SET_GID(psinfo->pr_gid, p->gid); 1370 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); 1371 1372 return 0; 1373 } 1374 1375 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1376 { 1377 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1378 int i = 0; 1379 do 1380 i += 2; 1381 while (auxv[i - 2] != AT_NULL); 1382 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1383 } 1384 1385 #ifdef CORE_DUMP_USE_REGSET 1386 #include <linux/regset.h> 1387 1388 struct elf_thread_core_info { 1389 struct elf_thread_core_info *next; 1390 struct task_struct *task; 1391 struct elf_prstatus prstatus; 1392 struct memelfnote notes[0]; 1393 }; 1394 1395 struct elf_note_info { 1396 struct elf_thread_core_info *thread; 1397 struct memelfnote psinfo; 1398 struct memelfnote auxv; 1399 size_t size; 1400 int thread_notes; 1401 }; 1402 1403 /* 1404 * When a regset has a writeback hook, we call it on each thread before 1405 * dumping user memory. On register window machines, this makes sure the 1406 * user memory backing the register data is up to date before we read it. 1407 */ 1408 static void do_thread_regset_writeback(struct task_struct *task, 1409 const struct user_regset *regset) 1410 { 1411 if (regset->writeback) 1412 regset->writeback(task, regset, 1); 1413 } 1414 1415 static int fill_thread_core_info(struct elf_thread_core_info *t, 1416 const struct user_regset_view *view, 1417 long signr, size_t *total) 1418 { 1419 unsigned int i; 1420 1421 /* 1422 * NT_PRSTATUS is the one special case, because the regset data 1423 * goes into the pr_reg field inside the note contents, rather 1424 * than being the whole note contents. We fill the reset in here. 1425 * We assume that regset 0 is NT_PRSTATUS. 1426 */ 1427 fill_prstatus(&t->prstatus, t->task, signr); 1428 (void) view->regsets[0].get(t->task, &view->regsets[0], 1429 0, sizeof(t->prstatus.pr_reg), 1430 &t->prstatus.pr_reg, NULL); 1431 1432 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1433 sizeof(t->prstatus), &t->prstatus); 1434 *total += notesize(&t->notes[0]); 1435 1436 do_thread_regset_writeback(t->task, &view->regsets[0]); 1437 1438 /* 1439 * Each other regset might generate a note too. For each regset 1440 * that has no core_note_type or is inactive, we leave t->notes[i] 1441 * all zero and we'll know to skip writing it later. 1442 */ 1443 for (i = 1; i < view->n; ++i) { 1444 const struct user_regset *regset = &view->regsets[i]; 1445 do_thread_regset_writeback(t->task, regset); 1446 if (regset->core_note_type && 1447 (!regset->active || regset->active(t->task, regset))) { 1448 int ret; 1449 size_t size = regset->n * regset->size; 1450 void *data = kmalloc(size, GFP_KERNEL); 1451 if (unlikely(!data)) 1452 return 0; 1453 ret = regset->get(t->task, regset, 1454 0, size, data, NULL); 1455 if (unlikely(ret)) 1456 kfree(data); 1457 else { 1458 if (regset->core_note_type != NT_PRFPREG) 1459 fill_note(&t->notes[i], "LINUX", 1460 regset->core_note_type, 1461 size, data); 1462 else { 1463 t->prstatus.pr_fpvalid = 1; 1464 fill_note(&t->notes[i], "CORE", 1465 NT_PRFPREG, size, data); 1466 } 1467 *total += notesize(&t->notes[i]); 1468 } 1469 } 1470 } 1471 1472 return 1; 1473 } 1474 1475 static int fill_note_info(struct elfhdr *elf, int phdrs, 1476 struct elf_note_info *info, 1477 long signr, struct pt_regs *regs) 1478 { 1479 struct task_struct *dump_task = current; 1480 const struct user_regset_view *view = task_user_regset_view(dump_task); 1481 struct elf_thread_core_info *t; 1482 struct elf_prpsinfo *psinfo; 1483 struct task_struct *g, *p; 1484 unsigned int i; 1485 1486 info->size = 0; 1487 info->thread = NULL; 1488 1489 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1490 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1491 1492 if (psinfo == NULL) 1493 return 0; 1494 1495 /* 1496 * Figure out how many notes we're going to need for each thread. 1497 */ 1498 info->thread_notes = 0; 1499 for (i = 0; i < view->n; ++i) 1500 if (view->regsets[i].core_note_type != 0) 1501 ++info->thread_notes; 1502 1503 /* 1504 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1505 * since it is our one special case. 1506 */ 1507 if (unlikely(info->thread_notes == 0) || 1508 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1509 WARN_ON(1); 1510 return 0; 1511 } 1512 1513 /* 1514 * Initialize the ELF file header. 1515 */ 1516 fill_elf_header(elf, phdrs, 1517 view->e_machine, view->e_flags, view->ei_osabi); 1518 1519 /* 1520 * Allocate a structure for each thread. 1521 */ 1522 rcu_read_lock(); 1523 do_each_thread(g, p) 1524 if (p->mm == dump_task->mm) { 1525 t = kzalloc(offsetof(struct elf_thread_core_info, 1526 notes[info->thread_notes]), 1527 GFP_ATOMIC); 1528 if (unlikely(!t)) { 1529 rcu_read_unlock(); 1530 return 0; 1531 } 1532 t->task = p; 1533 if (p == dump_task || !info->thread) { 1534 t->next = info->thread; 1535 info->thread = t; 1536 } else { 1537 /* 1538 * Make sure to keep the original task at 1539 * the head of the list. 1540 */ 1541 t->next = info->thread->next; 1542 info->thread->next = t; 1543 } 1544 } 1545 while_each_thread(g, p); 1546 rcu_read_unlock(); 1547 1548 /* 1549 * Now fill in each thread's information. 1550 */ 1551 for (t = info->thread; t != NULL; t = t->next) 1552 if (!fill_thread_core_info(t, view, signr, &info->size)) 1553 return 0; 1554 1555 /* 1556 * Fill in the two process-wide notes. 1557 */ 1558 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1559 info->size += notesize(&info->psinfo); 1560 1561 fill_auxv_note(&info->auxv, current->mm); 1562 info->size += notesize(&info->auxv); 1563 1564 return 1; 1565 } 1566 1567 static size_t get_note_info_size(struct elf_note_info *info) 1568 { 1569 return info->size; 1570 } 1571 1572 /* 1573 * Write all the notes for each thread. When writing the first thread, the 1574 * process-wide notes are interleaved after the first thread-specific note. 1575 */ 1576 static int write_note_info(struct elf_note_info *info, 1577 struct file *file, loff_t *foffset) 1578 { 1579 bool first = 1; 1580 struct elf_thread_core_info *t = info->thread; 1581 1582 do { 1583 int i; 1584 1585 if (!writenote(&t->notes[0], file, foffset)) 1586 return 0; 1587 1588 if (first && !writenote(&info->psinfo, file, foffset)) 1589 return 0; 1590 if (first && !writenote(&info->auxv, file, foffset)) 1591 return 0; 1592 1593 for (i = 1; i < info->thread_notes; ++i) 1594 if (t->notes[i].data && 1595 !writenote(&t->notes[i], file, foffset)) 1596 return 0; 1597 1598 first = 0; 1599 t = t->next; 1600 } while (t); 1601 1602 return 1; 1603 } 1604 1605 static void free_note_info(struct elf_note_info *info) 1606 { 1607 struct elf_thread_core_info *threads = info->thread; 1608 while (threads) { 1609 unsigned int i; 1610 struct elf_thread_core_info *t = threads; 1611 threads = t->next; 1612 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1613 for (i = 1; i < info->thread_notes; ++i) 1614 kfree(t->notes[i].data); 1615 kfree(t); 1616 } 1617 kfree(info->psinfo.data); 1618 } 1619 1620 #else 1621 1622 /* Here is the structure in which status of each thread is captured. */ 1623 struct elf_thread_status 1624 { 1625 struct list_head list; 1626 struct elf_prstatus prstatus; /* NT_PRSTATUS */ 1627 elf_fpregset_t fpu; /* NT_PRFPREG */ 1628 struct task_struct *thread; 1629 #ifdef ELF_CORE_COPY_XFPREGS 1630 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 1631 #endif 1632 struct memelfnote notes[3]; 1633 int num_notes; 1634 }; 1635 1636 /* 1637 * In order to add the specific thread information for the elf file format, 1638 * we need to keep a linked list of every threads pr_status and then create 1639 * a single section for them in the final core file. 1640 */ 1641 static int elf_dump_thread_status(long signr, struct elf_thread_status *t) 1642 { 1643 int sz = 0; 1644 struct task_struct *p = t->thread; 1645 t->num_notes = 0; 1646 1647 fill_prstatus(&t->prstatus, p, signr); 1648 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 1649 1650 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 1651 &(t->prstatus)); 1652 t->num_notes++; 1653 sz += notesize(&t->notes[0]); 1654 1655 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, 1656 &t->fpu))) { 1657 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), 1658 &(t->fpu)); 1659 t->num_notes++; 1660 sz += notesize(&t->notes[1]); 1661 } 1662 1663 #ifdef ELF_CORE_COPY_XFPREGS 1664 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) { 1665 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE, 1666 sizeof(t->xfpu), &t->xfpu); 1667 t->num_notes++; 1668 sz += notesize(&t->notes[2]); 1669 } 1670 #endif 1671 return sz; 1672 } 1673 1674 struct elf_note_info { 1675 struct memelfnote *notes; 1676 struct elf_prstatus *prstatus; /* NT_PRSTATUS */ 1677 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 1678 struct list_head thread_list; 1679 elf_fpregset_t *fpu; 1680 #ifdef ELF_CORE_COPY_XFPREGS 1681 elf_fpxregset_t *xfpu; 1682 #endif 1683 int thread_status_size; 1684 int numnote; 1685 }; 1686 1687 static int fill_note_info(struct elfhdr *elf, int phdrs, 1688 struct elf_note_info *info, 1689 long signr, struct pt_regs *regs) 1690 { 1691 #define NUM_NOTES 6 1692 struct list_head *t; 1693 struct task_struct *g, *p; 1694 1695 info->notes = NULL; 1696 info->prstatus = NULL; 1697 info->psinfo = NULL; 1698 info->fpu = NULL; 1699 #ifdef ELF_CORE_COPY_XFPREGS 1700 info->xfpu = NULL; 1701 #endif 1702 INIT_LIST_HEAD(&info->thread_list); 1703 1704 info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote), 1705 GFP_KERNEL); 1706 if (!info->notes) 1707 return 0; 1708 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); 1709 if (!info->psinfo) 1710 return 0; 1711 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); 1712 if (!info->prstatus) 1713 return 0; 1714 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); 1715 if (!info->fpu) 1716 return 0; 1717 #ifdef ELF_CORE_COPY_XFPREGS 1718 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL); 1719 if (!info->xfpu) 1720 return 0; 1721 #endif 1722 1723 info->thread_status_size = 0; 1724 if (signr) { 1725 struct elf_thread_status *ets; 1726 rcu_read_lock(); 1727 do_each_thread(g, p) 1728 if (current->mm == p->mm && current != p) { 1729 ets = kzalloc(sizeof(*ets), GFP_ATOMIC); 1730 if (!ets) { 1731 rcu_read_unlock(); 1732 return 0; 1733 } 1734 ets->thread = p; 1735 list_add(&ets->list, &info->thread_list); 1736 } 1737 while_each_thread(g, p); 1738 rcu_read_unlock(); 1739 list_for_each(t, &info->thread_list) { 1740 int sz; 1741 1742 ets = list_entry(t, struct elf_thread_status, list); 1743 sz = elf_dump_thread_status(signr, ets); 1744 info->thread_status_size += sz; 1745 } 1746 } 1747 /* now collect the dump for the current */ 1748 memset(info->prstatus, 0, sizeof(*info->prstatus)); 1749 fill_prstatus(info->prstatus, current, signr); 1750 elf_core_copy_regs(&info->prstatus->pr_reg, regs); 1751 1752 /* Set up header */ 1753 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI); 1754 1755 /* 1756 * Set up the notes in similar form to SVR4 core dumps made 1757 * with info from their /proc. 1758 */ 1759 1760 fill_note(info->notes + 0, "CORE", NT_PRSTATUS, 1761 sizeof(*info->prstatus), info->prstatus); 1762 fill_psinfo(info->psinfo, current->group_leader, current->mm); 1763 fill_note(info->notes + 1, "CORE", NT_PRPSINFO, 1764 sizeof(*info->psinfo), info->psinfo); 1765 1766 info->numnote = 2; 1767 1768 fill_auxv_note(&info->notes[info->numnote++], current->mm); 1769 1770 /* Try to dump the FPU. */ 1771 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs, 1772 info->fpu); 1773 if (info->prstatus->pr_fpvalid) 1774 fill_note(info->notes + info->numnote++, 1775 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); 1776 #ifdef ELF_CORE_COPY_XFPREGS 1777 if (elf_core_copy_task_xfpregs(current, info->xfpu)) 1778 fill_note(info->notes + info->numnote++, 1779 "LINUX", ELF_CORE_XFPREG_TYPE, 1780 sizeof(*info->xfpu), info->xfpu); 1781 #endif 1782 1783 return 1; 1784 1785 #undef NUM_NOTES 1786 } 1787 1788 static size_t get_note_info_size(struct elf_note_info *info) 1789 { 1790 int sz = 0; 1791 int i; 1792 1793 for (i = 0; i < info->numnote; i++) 1794 sz += notesize(info->notes + i); 1795 1796 sz += info->thread_status_size; 1797 1798 return sz; 1799 } 1800 1801 static int write_note_info(struct elf_note_info *info, 1802 struct file *file, loff_t *foffset) 1803 { 1804 int i; 1805 struct list_head *t; 1806 1807 for (i = 0; i < info->numnote; i++) 1808 if (!writenote(info->notes + i, file, foffset)) 1809 return 0; 1810 1811 /* write out the thread status notes section */ 1812 list_for_each(t, &info->thread_list) { 1813 struct elf_thread_status *tmp = 1814 list_entry(t, struct elf_thread_status, list); 1815 1816 for (i = 0; i < tmp->num_notes; i++) 1817 if (!writenote(&tmp->notes[i], file, foffset)) 1818 return 0; 1819 } 1820 1821 return 1; 1822 } 1823 1824 static void free_note_info(struct elf_note_info *info) 1825 { 1826 while (!list_empty(&info->thread_list)) { 1827 struct list_head *tmp = info->thread_list.next; 1828 list_del(tmp); 1829 kfree(list_entry(tmp, struct elf_thread_status, list)); 1830 } 1831 1832 kfree(info->prstatus); 1833 kfree(info->psinfo); 1834 kfree(info->notes); 1835 kfree(info->fpu); 1836 #ifdef ELF_CORE_COPY_XFPREGS 1837 kfree(info->xfpu); 1838 #endif 1839 } 1840 1841 #endif 1842 1843 static struct vm_area_struct *first_vma(struct task_struct *tsk, 1844 struct vm_area_struct *gate_vma) 1845 { 1846 struct vm_area_struct *ret = tsk->mm->mmap; 1847 1848 if (ret) 1849 return ret; 1850 return gate_vma; 1851 } 1852 /* 1853 * Helper function for iterating across a vma list. It ensures that the caller 1854 * will visit `gate_vma' prior to terminating the search. 1855 */ 1856 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, 1857 struct vm_area_struct *gate_vma) 1858 { 1859 struct vm_area_struct *ret; 1860 1861 ret = this_vma->vm_next; 1862 if (ret) 1863 return ret; 1864 if (this_vma == gate_vma) 1865 return NULL; 1866 return gate_vma; 1867 } 1868 1869 /* 1870 * Actual dumper 1871 * 1872 * This is a two-pass process; first we find the offsets of the bits, 1873 * and then they are actually written out. If we run out of core limit 1874 * we just truncate. 1875 */ 1876 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit) 1877 { 1878 int has_dumped = 0; 1879 mm_segment_t fs; 1880 int segs; 1881 size_t size = 0; 1882 struct vm_area_struct *vma, *gate_vma; 1883 struct elfhdr *elf = NULL; 1884 loff_t offset = 0, dataoff, foffset; 1885 unsigned long mm_flags; 1886 struct elf_note_info info; 1887 1888 /* 1889 * We no longer stop all VM operations. 1890 * 1891 * This is because those proceses that could possibly change map_count 1892 * or the mmap / vma pages are now blocked in do_exit on current 1893 * finishing this core dump. 1894 * 1895 * Only ptrace can touch these memory addresses, but it doesn't change 1896 * the map_count or the pages allocated. So no possibility of crashing 1897 * exists while dumping the mm->vm_next areas to the core file. 1898 */ 1899 1900 /* alloc memory for large data structures: too large to be on stack */ 1901 elf = kmalloc(sizeof(*elf), GFP_KERNEL); 1902 if (!elf) 1903 goto cleanup; 1904 1905 segs = current->mm->map_count; 1906 #ifdef ELF_CORE_EXTRA_PHDRS 1907 segs += ELF_CORE_EXTRA_PHDRS; 1908 #endif 1909 1910 gate_vma = get_gate_vma(current); 1911 if (gate_vma != NULL) 1912 segs++; 1913 1914 /* 1915 * Collect all the non-memory information about the process for the 1916 * notes. This also sets up the file header. 1917 */ 1918 if (!fill_note_info(elf, segs + 1, /* including notes section */ 1919 &info, signr, regs)) 1920 goto cleanup; 1921 1922 has_dumped = 1; 1923 current->flags |= PF_DUMPCORE; 1924 1925 fs = get_fs(); 1926 set_fs(KERNEL_DS); 1927 1928 DUMP_WRITE(elf, sizeof(*elf)); 1929 offset += sizeof(*elf); /* Elf header */ 1930 offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */ 1931 foffset = offset; 1932 1933 /* Write notes phdr entry */ 1934 { 1935 struct elf_phdr phdr; 1936 size_t sz = get_note_info_size(&info); 1937 1938 sz += elf_coredump_extra_notes_size(); 1939 1940 fill_elf_note_phdr(&phdr, sz, offset); 1941 offset += sz; 1942 DUMP_WRITE(&phdr, sizeof(phdr)); 1943 } 1944 1945 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 1946 1947 /* 1948 * We must use the same mm->flags while dumping core to avoid 1949 * inconsistency between the program headers and bodies, otherwise an 1950 * unusable core file can be generated. 1951 */ 1952 mm_flags = current->mm->flags; 1953 1954 /* Write program headers for segments dump */ 1955 for (vma = first_vma(current, gate_vma); vma != NULL; 1956 vma = next_vma(vma, gate_vma)) { 1957 struct elf_phdr phdr; 1958 1959 phdr.p_type = PT_LOAD; 1960 phdr.p_offset = offset; 1961 phdr.p_vaddr = vma->vm_start; 1962 phdr.p_paddr = 0; 1963 phdr.p_filesz = vma_dump_size(vma, mm_flags); 1964 phdr.p_memsz = vma->vm_end - vma->vm_start; 1965 offset += phdr.p_filesz; 1966 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; 1967 if (vma->vm_flags & VM_WRITE) 1968 phdr.p_flags |= PF_W; 1969 if (vma->vm_flags & VM_EXEC) 1970 phdr.p_flags |= PF_X; 1971 phdr.p_align = ELF_EXEC_PAGESIZE; 1972 1973 DUMP_WRITE(&phdr, sizeof(phdr)); 1974 } 1975 1976 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS 1977 ELF_CORE_WRITE_EXTRA_PHDRS; 1978 #endif 1979 1980 /* write out the notes section */ 1981 if (!write_note_info(&info, file, &foffset)) 1982 goto end_coredump; 1983 1984 if (elf_coredump_extra_notes_write(file, &foffset)) 1985 goto end_coredump; 1986 1987 /* Align to page */ 1988 DUMP_SEEK(dataoff - foffset); 1989 1990 for (vma = first_vma(current, gate_vma); vma != NULL; 1991 vma = next_vma(vma, gate_vma)) { 1992 unsigned long addr; 1993 unsigned long end; 1994 1995 end = vma->vm_start + vma_dump_size(vma, mm_flags); 1996 1997 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) { 1998 struct page *page; 1999 struct vm_area_struct *tmp_vma; 2000 2001 if (get_user_pages(current, current->mm, addr, 1, 0, 1, 2002 &page, &tmp_vma) <= 0) { 2003 DUMP_SEEK(PAGE_SIZE); 2004 } else { 2005 if (page == ZERO_PAGE(0)) { 2006 if (!dump_seek(file, PAGE_SIZE)) { 2007 page_cache_release(page); 2008 goto end_coredump; 2009 } 2010 } else { 2011 void *kaddr; 2012 flush_cache_page(tmp_vma, addr, 2013 page_to_pfn(page)); 2014 kaddr = kmap(page); 2015 if ((size += PAGE_SIZE) > limit || 2016 !dump_write(file, kaddr, 2017 PAGE_SIZE)) { 2018 kunmap(page); 2019 page_cache_release(page); 2020 goto end_coredump; 2021 } 2022 kunmap(page); 2023 } 2024 page_cache_release(page); 2025 } 2026 } 2027 } 2028 2029 #ifdef ELF_CORE_WRITE_EXTRA_DATA 2030 ELF_CORE_WRITE_EXTRA_DATA; 2031 #endif 2032 2033 end_coredump: 2034 set_fs(fs); 2035 2036 cleanup: 2037 kfree(elf); 2038 free_note_info(&info); 2039 return has_dumped; 2040 } 2041 2042 #endif /* USE_ELF_CORE_DUMP */ 2043 2044 static int __init init_elf_binfmt(void) 2045 { 2046 return register_binfmt(&elf_format); 2047 } 2048 2049 static void __exit exit_elf_binfmt(void) 2050 { 2051 /* Remove the COFF and ELF loaders. */ 2052 unregister_binfmt(&elf_format); 2053 } 2054 2055 core_initcall(init_elf_binfmt); 2056 module_exit(exit_elf_binfmt); 2057 MODULE_LICENSE("GPL"); 2058