xref: /openbmc/linux/fs/binfmt_elf.c (revision 22246614)
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/stat.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/a.out.h>
20 #include <linux/errno.h>
21 #include <linux/signal.h>
22 #include <linux/binfmts.h>
23 #include <linux/string.h>
24 #include <linux/file.h>
25 #include <linux/fcntl.h>
26 #include <linux/ptrace.h>
27 #include <linux/slab.h>
28 #include <linux/shm.h>
29 #include <linux/personality.h>
30 #include <linux/elfcore.h>
31 #include <linux/init.h>
32 #include <linux/highuid.h>
33 #include <linux/smp.h>
34 #include <linux/compiler.h>
35 #include <linux/highmem.h>
36 #include <linux/pagemap.h>
37 #include <linux/security.h>
38 #include <linux/syscalls.h>
39 #include <linux/random.h>
40 #include <linux/elf.h>
41 #include <linux/utsname.h>
42 #include <asm/uaccess.h>
43 #include <asm/param.h>
44 #include <asm/page.h>
45 
46 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
47 static int load_elf_library(struct file *);
48 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
49 				int, int, unsigned long);
50 
51 /*
52  * If we don't support core dumping, then supply a NULL so we
53  * don't even try.
54  */
55 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
56 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit);
57 #else
58 #define elf_core_dump	NULL
59 #endif
60 
61 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
62 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
63 #else
64 #define ELF_MIN_ALIGN	PAGE_SIZE
65 #endif
66 
67 #ifndef ELF_CORE_EFLAGS
68 #define ELF_CORE_EFLAGS	0
69 #endif
70 
71 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
72 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
73 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
74 
75 static struct linux_binfmt elf_format = {
76 		.module		= THIS_MODULE,
77 		.load_binary	= load_elf_binary,
78 		.load_shlib	= load_elf_library,
79 		.core_dump	= elf_core_dump,
80 		.min_coredump	= ELF_EXEC_PAGESIZE,
81 		.hasvdso	= 1
82 };
83 
84 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
85 
86 static int set_brk(unsigned long start, unsigned long end)
87 {
88 	start = ELF_PAGEALIGN(start);
89 	end = ELF_PAGEALIGN(end);
90 	if (end > start) {
91 		unsigned long addr;
92 		down_write(&current->mm->mmap_sem);
93 		addr = do_brk(start, end - start);
94 		up_write(&current->mm->mmap_sem);
95 		if (BAD_ADDR(addr))
96 			return addr;
97 	}
98 	current->mm->start_brk = current->mm->brk = end;
99 	return 0;
100 }
101 
102 /* We need to explicitly zero any fractional pages
103    after the data section (i.e. bss).  This would
104    contain the junk from the file that should not
105    be in memory
106  */
107 static int padzero(unsigned long elf_bss)
108 {
109 	unsigned long nbyte;
110 
111 	nbyte = ELF_PAGEOFFSET(elf_bss);
112 	if (nbyte) {
113 		nbyte = ELF_MIN_ALIGN - nbyte;
114 		if (clear_user((void __user *) elf_bss, nbyte))
115 			return -EFAULT;
116 	}
117 	return 0;
118 }
119 
120 /* Let's use some macros to make this stack manipulation a little clearer */
121 #ifdef CONFIG_STACK_GROWSUP
122 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
123 #define STACK_ROUND(sp, items) \
124 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
125 #define STACK_ALLOC(sp, len) ({ \
126 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
127 	old_sp; })
128 #else
129 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
130 #define STACK_ROUND(sp, items) \
131 	(((unsigned long) (sp - items)) &~ 15UL)
132 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
133 #endif
134 
135 static int
136 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
137 		unsigned long load_addr, unsigned long interp_load_addr)
138 {
139 	unsigned long p = bprm->p;
140 	int argc = bprm->argc;
141 	int envc = bprm->envc;
142 	elf_addr_t __user *argv;
143 	elf_addr_t __user *envp;
144 	elf_addr_t __user *sp;
145 	elf_addr_t __user *u_platform;
146 	const char *k_platform = ELF_PLATFORM;
147 	int items;
148 	elf_addr_t *elf_info;
149 	int ei_index = 0;
150 	struct task_struct *tsk = current;
151 	struct vm_area_struct *vma;
152 
153 	/*
154 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
155 	 * evictions by the processes running on the same package. One
156 	 * thing we can do is to shuffle the initial stack for them.
157 	 */
158 
159 	p = arch_align_stack(p);
160 
161 	/*
162 	 * If this architecture has a platform capability string, copy it
163 	 * to userspace.  In some cases (Sparc), this info is impossible
164 	 * for userspace to get any other way, in others (i386) it is
165 	 * merely difficult.
166 	 */
167 	u_platform = NULL;
168 	if (k_platform) {
169 		size_t len = strlen(k_platform) + 1;
170 
171 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
172 		if (__copy_to_user(u_platform, k_platform, len))
173 			return -EFAULT;
174 	}
175 
176 	/* Create the ELF interpreter info */
177 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
178 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
179 #define NEW_AUX_ENT(id, val) \
180 	do { \
181 		elf_info[ei_index++] = id; \
182 		elf_info[ei_index++] = val; \
183 	} while (0)
184 
185 #ifdef ARCH_DLINFO
186 	/*
187 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
188 	 * AUXV.
189 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
190 	 * ARCH_DLINFO changes
191 	 */
192 	ARCH_DLINFO;
193 #endif
194 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
195 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
196 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
197 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
198 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
199 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
200 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
201 	NEW_AUX_ENT(AT_FLAGS, 0);
202 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
203 	NEW_AUX_ENT(AT_UID, tsk->uid);
204 	NEW_AUX_ENT(AT_EUID, tsk->euid);
205 	NEW_AUX_ENT(AT_GID, tsk->gid);
206 	NEW_AUX_ENT(AT_EGID, tsk->egid);
207  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
208 	if (k_platform) {
209 		NEW_AUX_ENT(AT_PLATFORM,
210 			    (elf_addr_t)(unsigned long)u_platform);
211 	}
212 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
213 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
214 	}
215 #undef NEW_AUX_ENT
216 	/* AT_NULL is zero; clear the rest too */
217 	memset(&elf_info[ei_index], 0,
218 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
219 
220 	/* And advance past the AT_NULL entry.  */
221 	ei_index += 2;
222 
223 	sp = STACK_ADD(p, ei_index);
224 
225 	items = (argc + 1) + (envc + 1) + 1;
226 	bprm->p = STACK_ROUND(sp, items);
227 
228 	/* Point sp at the lowest address on the stack */
229 #ifdef CONFIG_STACK_GROWSUP
230 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
231 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
232 #else
233 	sp = (elf_addr_t __user *)bprm->p;
234 #endif
235 
236 
237 	/*
238 	 * Grow the stack manually; some architectures have a limit on how
239 	 * far ahead a user-space access may be in order to grow the stack.
240 	 */
241 	vma = find_extend_vma(current->mm, bprm->p);
242 	if (!vma)
243 		return -EFAULT;
244 
245 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
246 	if (__put_user(argc, sp++))
247 		return -EFAULT;
248 	argv = sp;
249 	envp = argv + argc + 1;
250 
251 	/* Populate argv and envp */
252 	p = current->mm->arg_end = current->mm->arg_start;
253 	while (argc-- > 0) {
254 		size_t len;
255 		if (__put_user((elf_addr_t)p, argv++))
256 			return -EFAULT;
257 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
258 		if (!len || len > MAX_ARG_STRLEN)
259 			return 0;
260 		p += len;
261 	}
262 	if (__put_user(0, argv))
263 		return -EFAULT;
264 	current->mm->arg_end = current->mm->env_start = p;
265 	while (envc-- > 0) {
266 		size_t len;
267 		if (__put_user((elf_addr_t)p, envp++))
268 			return -EFAULT;
269 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
270 		if (!len || len > MAX_ARG_STRLEN)
271 			return 0;
272 		p += len;
273 	}
274 	if (__put_user(0, envp))
275 		return -EFAULT;
276 	current->mm->env_end = p;
277 
278 	/* Put the elf_info on the stack in the right place.  */
279 	sp = (elf_addr_t __user *)envp + 1;
280 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
281 		return -EFAULT;
282 	return 0;
283 }
284 
285 #ifndef elf_map
286 
287 static unsigned long elf_map(struct file *filep, unsigned long addr,
288 		struct elf_phdr *eppnt, int prot, int type,
289 		unsigned long total_size)
290 {
291 	unsigned long map_addr;
292 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
293 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
294 	addr = ELF_PAGESTART(addr);
295 	size = ELF_PAGEALIGN(size);
296 
297 	/* mmap() will return -EINVAL if given a zero size, but a
298 	 * segment with zero filesize is perfectly valid */
299 	if (!size)
300 		return addr;
301 
302 	down_write(&current->mm->mmap_sem);
303 	/*
304 	* total_size is the size of the ELF (interpreter) image.
305 	* The _first_ mmap needs to know the full size, otherwise
306 	* randomization might put this image into an overlapping
307 	* position with the ELF binary image. (since size < total_size)
308 	* So we first map the 'big' image - and unmap the remainder at
309 	* the end. (which unmap is needed for ELF images with holes.)
310 	*/
311 	if (total_size) {
312 		total_size = ELF_PAGEALIGN(total_size);
313 		map_addr = do_mmap(filep, addr, total_size, prot, type, off);
314 		if (!BAD_ADDR(map_addr))
315 			do_munmap(current->mm, map_addr+size, total_size-size);
316 	} else
317 		map_addr = do_mmap(filep, addr, size, prot, type, off);
318 
319 	up_write(&current->mm->mmap_sem);
320 	return(map_addr);
321 }
322 
323 #endif /* !elf_map */
324 
325 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
326 {
327 	int i, first_idx = -1, last_idx = -1;
328 
329 	for (i = 0; i < nr; i++) {
330 		if (cmds[i].p_type == PT_LOAD) {
331 			last_idx = i;
332 			if (first_idx == -1)
333 				first_idx = i;
334 		}
335 	}
336 	if (first_idx == -1)
337 		return 0;
338 
339 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
340 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
341 }
342 
343 
344 /* This is much more generalized than the library routine read function,
345    so we keep this separate.  Technically the library read function
346    is only provided so that we can read a.out libraries that have
347    an ELF header */
348 
349 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
350 		struct file *interpreter, unsigned long *interp_map_addr,
351 		unsigned long no_base)
352 {
353 	struct elf_phdr *elf_phdata;
354 	struct elf_phdr *eppnt;
355 	unsigned long load_addr = 0;
356 	int load_addr_set = 0;
357 	unsigned long last_bss = 0, elf_bss = 0;
358 	unsigned long error = ~0UL;
359 	unsigned long total_size;
360 	int retval, i, size;
361 
362 	/* First of all, some simple consistency checks */
363 	if (interp_elf_ex->e_type != ET_EXEC &&
364 	    interp_elf_ex->e_type != ET_DYN)
365 		goto out;
366 	if (!elf_check_arch(interp_elf_ex))
367 		goto out;
368 	if (!interpreter->f_op || !interpreter->f_op->mmap)
369 		goto out;
370 
371 	/*
372 	 * If the size of this structure has changed, then punt, since
373 	 * we will be doing the wrong thing.
374 	 */
375 	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
376 		goto out;
377 	if (interp_elf_ex->e_phnum < 1 ||
378 		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
379 		goto out;
380 
381 	/* Now read in all of the header information */
382 	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
383 	if (size > ELF_MIN_ALIGN)
384 		goto out;
385 	elf_phdata = kmalloc(size, GFP_KERNEL);
386 	if (!elf_phdata)
387 		goto out;
388 
389 	retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
390 			     (char *)elf_phdata,size);
391 	error = -EIO;
392 	if (retval != size) {
393 		if (retval < 0)
394 			error = retval;
395 		goto out_close;
396 	}
397 
398 	total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
399 	if (!total_size) {
400 		error = -EINVAL;
401 		goto out_close;
402 	}
403 
404 	eppnt = elf_phdata;
405 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
406 		if (eppnt->p_type == PT_LOAD) {
407 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
408 			int elf_prot = 0;
409 			unsigned long vaddr = 0;
410 			unsigned long k, map_addr;
411 
412 			if (eppnt->p_flags & PF_R)
413 		    		elf_prot = PROT_READ;
414 			if (eppnt->p_flags & PF_W)
415 				elf_prot |= PROT_WRITE;
416 			if (eppnt->p_flags & PF_X)
417 				elf_prot |= PROT_EXEC;
418 			vaddr = eppnt->p_vaddr;
419 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
420 				elf_type |= MAP_FIXED;
421 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
422 				load_addr = -vaddr;
423 
424 			map_addr = elf_map(interpreter, load_addr + vaddr,
425 					eppnt, elf_prot, elf_type, total_size);
426 			total_size = 0;
427 			if (!*interp_map_addr)
428 				*interp_map_addr = map_addr;
429 			error = map_addr;
430 			if (BAD_ADDR(map_addr))
431 				goto out_close;
432 
433 			if (!load_addr_set &&
434 			    interp_elf_ex->e_type == ET_DYN) {
435 				load_addr = map_addr - ELF_PAGESTART(vaddr);
436 				load_addr_set = 1;
437 			}
438 
439 			/*
440 			 * Check to see if the section's size will overflow the
441 			 * allowed task size. Note that p_filesz must always be
442 			 * <= p_memsize so it's only necessary to check p_memsz.
443 			 */
444 			k = load_addr + eppnt->p_vaddr;
445 			if (BAD_ADDR(k) ||
446 			    eppnt->p_filesz > eppnt->p_memsz ||
447 			    eppnt->p_memsz > TASK_SIZE ||
448 			    TASK_SIZE - eppnt->p_memsz < k) {
449 				error = -ENOMEM;
450 				goto out_close;
451 			}
452 
453 			/*
454 			 * Find the end of the file mapping for this phdr, and
455 			 * keep track of the largest address we see for this.
456 			 */
457 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
458 			if (k > elf_bss)
459 				elf_bss = k;
460 
461 			/*
462 			 * Do the same thing for the memory mapping - between
463 			 * elf_bss and last_bss is the bss section.
464 			 */
465 			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
466 			if (k > last_bss)
467 				last_bss = k;
468 		}
469 	}
470 
471 	/*
472 	 * Now fill out the bss section.  First pad the last page up
473 	 * to the page boundary, and then perform a mmap to make sure
474 	 * that there are zero-mapped pages up to and including the
475 	 * last bss page.
476 	 */
477 	if (padzero(elf_bss)) {
478 		error = -EFAULT;
479 		goto out_close;
480 	}
481 
482 	/* What we have mapped so far */
483 	elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
484 
485 	/* Map the last of the bss segment */
486 	if (last_bss > elf_bss) {
487 		down_write(&current->mm->mmap_sem);
488 		error = do_brk(elf_bss, last_bss - elf_bss);
489 		up_write(&current->mm->mmap_sem);
490 		if (BAD_ADDR(error))
491 			goto out_close;
492 	}
493 
494 	error = load_addr;
495 
496 out_close:
497 	kfree(elf_phdata);
498 out:
499 	return error;
500 }
501 
502 /*
503  * These are the functions used to load ELF style executables and shared
504  * libraries.  There is no binary dependent code anywhere else.
505  */
506 
507 #define INTERPRETER_NONE 0
508 #define INTERPRETER_ELF 2
509 
510 #ifndef STACK_RND_MASK
511 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
512 #endif
513 
514 static unsigned long randomize_stack_top(unsigned long stack_top)
515 {
516 	unsigned int random_variable = 0;
517 
518 	if ((current->flags & PF_RANDOMIZE) &&
519 		!(current->personality & ADDR_NO_RANDOMIZE)) {
520 		random_variable = get_random_int() & STACK_RND_MASK;
521 		random_variable <<= PAGE_SHIFT;
522 	}
523 #ifdef CONFIG_STACK_GROWSUP
524 	return PAGE_ALIGN(stack_top) + random_variable;
525 #else
526 	return PAGE_ALIGN(stack_top) - random_variable;
527 #endif
528 }
529 
530 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
531 {
532 	struct file *interpreter = NULL; /* to shut gcc up */
533  	unsigned long load_addr = 0, load_bias = 0;
534 	int load_addr_set = 0;
535 	char * elf_interpreter = NULL;
536 	unsigned long error;
537 	struct elf_phdr *elf_ppnt, *elf_phdata;
538 	unsigned long elf_bss, elf_brk;
539 	int elf_exec_fileno;
540 	int retval, i;
541 	unsigned int size;
542 	unsigned long elf_entry;
543 	unsigned long interp_load_addr = 0;
544 	unsigned long start_code, end_code, start_data, end_data;
545 	unsigned long reloc_func_desc = 0;
546 	int executable_stack = EXSTACK_DEFAULT;
547 	unsigned long def_flags = 0;
548 	struct {
549 		struct elfhdr elf_ex;
550 		struct elfhdr interp_elf_ex;
551   		struct exec interp_ex;
552 	} *loc;
553 
554 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
555 	if (!loc) {
556 		retval = -ENOMEM;
557 		goto out_ret;
558 	}
559 
560 	/* Get the exec-header */
561 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
562 
563 	retval = -ENOEXEC;
564 	/* First of all, some simple consistency checks */
565 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
566 		goto out;
567 
568 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
569 		goto out;
570 	if (!elf_check_arch(&loc->elf_ex))
571 		goto out;
572 	if (!bprm->file->f_op||!bprm->file->f_op->mmap)
573 		goto out;
574 
575 	/* Now read in all of the header information */
576 	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
577 		goto out;
578 	if (loc->elf_ex.e_phnum < 1 ||
579 	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
580 		goto out;
581 	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
582 	retval = -ENOMEM;
583 	elf_phdata = kmalloc(size, GFP_KERNEL);
584 	if (!elf_phdata)
585 		goto out;
586 
587 	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
588 			     (char *)elf_phdata, size);
589 	if (retval != size) {
590 		if (retval >= 0)
591 			retval = -EIO;
592 		goto out_free_ph;
593 	}
594 
595 	retval = get_unused_fd();
596 	if (retval < 0)
597 		goto out_free_ph;
598 	get_file(bprm->file);
599 	fd_install(elf_exec_fileno = retval, bprm->file);
600 
601 	elf_ppnt = elf_phdata;
602 	elf_bss = 0;
603 	elf_brk = 0;
604 
605 	start_code = ~0UL;
606 	end_code = 0;
607 	start_data = 0;
608 	end_data = 0;
609 
610 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
611 		if (elf_ppnt->p_type == PT_INTERP) {
612 			/* This is the program interpreter used for
613 			 * shared libraries - for now assume that this
614 			 * is an a.out format binary
615 			 */
616 			retval = -ENOEXEC;
617 			if (elf_ppnt->p_filesz > PATH_MAX ||
618 			    elf_ppnt->p_filesz < 2)
619 				goto out_free_file;
620 
621 			retval = -ENOMEM;
622 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
623 						  GFP_KERNEL);
624 			if (!elf_interpreter)
625 				goto out_free_file;
626 
627 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
628 					     elf_interpreter,
629 					     elf_ppnt->p_filesz);
630 			if (retval != elf_ppnt->p_filesz) {
631 				if (retval >= 0)
632 					retval = -EIO;
633 				goto out_free_interp;
634 			}
635 			/* make sure path is NULL terminated */
636 			retval = -ENOEXEC;
637 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
638 				goto out_free_interp;
639 
640 			/*
641 			 * The early SET_PERSONALITY here is so that the lookup
642 			 * for the interpreter happens in the namespace of the
643 			 * to-be-execed image.  SET_PERSONALITY can select an
644 			 * alternate root.
645 			 *
646 			 * However, SET_PERSONALITY is NOT allowed to switch
647 			 * this task into the new images's memory mapping
648 			 * policy - that is, TASK_SIZE must still evaluate to
649 			 * that which is appropriate to the execing application.
650 			 * This is because exit_mmap() needs to have TASK_SIZE
651 			 * evaluate to the size of the old image.
652 			 *
653 			 * So if (say) a 64-bit application is execing a 32-bit
654 			 * application it is the architecture's responsibility
655 			 * to defer changing the value of TASK_SIZE until the
656 			 * switch really is going to happen - do this in
657 			 * flush_thread().	- akpm
658 			 */
659 			SET_PERSONALITY(loc->elf_ex, 0);
660 
661 			interpreter = open_exec(elf_interpreter);
662 			retval = PTR_ERR(interpreter);
663 			if (IS_ERR(interpreter))
664 				goto out_free_interp;
665 
666 			/*
667 			 * If the binary is not readable then enforce
668 			 * mm->dumpable = 0 regardless of the interpreter's
669 			 * permissions.
670 			 */
671 			if (file_permission(interpreter, MAY_READ) < 0)
672 				bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
673 
674 			retval = kernel_read(interpreter, 0, bprm->buf,
675 					     BINPRM_BUF_SIZE);
676 			if (retval != BINPRM_BUF_SIZE) {
677 				if (retval >= 0)
678 					retval = -EIO;
679 				goto out_free_dentry;
680 			}
681 
682 			/* Get the exec headers */
683 			loc->interp_ex = *((struct exec *)bprm->buf);
684 			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
685 			break;
686 		}
687 		elf_ppnt++;
688 	}
689 
690 	elf_ppnt = elf_phdata;
691 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
692 		if (elf_ppnt->p_type == PT_GNU_STACK) {
693 			if (elf_ppnt->p_flags & PF_X)
694 				executable_stack = EXSTACK_ENABLE_X;
695 			else
696 				executable_stack = EXSTACK_DISABLE_X;
697 			break;
698 		}
699 
700 	/* Some simple consistency checks for the interpreter */
701 	if (elf_interpreter) {
702 		retval = -ELIBBAD;
703 		/* Not an ELF interpreter */
704 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
705 			goto out_free_dentry;
706 		/* Verify the interpreter has a valid arch */
707 		if (!elf_check_arch(&loc->interp_elf_ex))
708 			goto out_free_dentry;
709 	} else {
710 		/* Executables without an interpreter also need a personality  */
711 		SET_PERSONALITY(loc->elf_ex, 0);
712 	}
713 
714 	/* Flush all traces of the currently running executable */
715 	retval = flush_old_exec(bprm);
716 	if (retval)
717 		goto out_free_dentry;
718 
719 	/* OK, This is the point of no return */
720 	current->flags &= ~PF_FORKNOEXEC;
721 	current->mm->def_flags = def_flags;
722 
723 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
724 	   may depend on the personality.  */
725 	SET_PERSONALITY(loc->elf_ex, 0);
726 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
727 		current->personality |= READ_IMPLIES_EXEC;
728 
729 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
730 		current->flags |= PF_RANDOMIZE;
731 	arch_pick_mmap_layout(current->mm);
732 
733 	/* Do this so that we can load the interpreter, if need be.  We will
734 	   change some of these later */
735 	current->mm->free_area_cache = current->mm->mmap_base;
736 	current->mm->cached_hole_size = 0;
737 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
738 				 executable_stack);
739 	if (retval < 0) {
740 		send_sig(SIGKILL, current, 0);
741 		goto out_free_dentry;
742 	}
743 
744 	current->mm->start_stack = bprm->p;
745 
746 	/* Now we do a little grungy work by mmaping the ELF image into
747 	   the correct location in memory. */
748 	for(i = 0, elf_ppnt = elf_phdata;
749 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
750 		int elf_prot = 0, elf_flags;
751 		unsigned long k, vaddr;
752 
753 		if (elf_ppnt->p_type != PT_LOAD)
754 			continue;
755 
756 		if (unlikely (elf_brk > elf_bss)) {
757 			unsigned long nbyte;
758 
759 			/* There was a PT_LOAD segment with p_memsz > p_filesz
760 			   before this one. Map anonymous pages, if needed,
761 			   and clear the area.  */
762 			retval = set_brk (elf_bss + load_bias,
763 					  elf_brk + load_bias);
764 			if (retval) {
765 				send_sig(SIGKILL, current, 0);
766 				goto out_free_dentry;
767 			}
768 			nbyte = ELF_PAGEOFFSET(elf_bss);
769 			if (nbyte) {
770 				nbyte = ELF_MIN_ALIGN - nbyte;
771 				if (nbyte > elf_brk - elf_bss)
772 					nbyte = elf_brk - elf_bss;
773 				if (clear_user((void __user *)elf_bss +
774 							load_bias, nbyte)) {
775 					/*
776 					 * This bss-zeroing can fail if the ELF
777 					 * file specifies odd protections. So
778 					 * we don't check the return value
779 					 */
780 				}
781 			}
782 		}
783 
784 		if (elf_ppnt->p_flags & PF_R)
785 			elf_prot |= PROT_READ;
786 		if (elf_ppnt->p_flags & PF_W)
787 			elf_prot |= PROT_WRITE;
788 		if (elf_ppnt->p_flags & PF_X)
789 			elf_prot |= PROT_EXEC;
790 
791 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
792 
793 		vaddr = elf_ppnt->p_vaddr;
794 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
795 			elf_flags |= MAP_FIXED;
796 		} else if (loc->elf_ex.e_type == ET_DYN) {
797 			/* Try and get dynamic programs out of the way of the
798 			 * default mmap base, as well as whatever program they
799 			 * might try to exec.  This is because the brk will
800 			 * follow the loader, and is not movable.  */
801 #ifdef CONFIG_X86
802 			load_bias = 0;
803 #else
804 			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
805 #endif
806 		}
807 
808 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
809 				elf_prot, elf_flags, 0);
810 		if (BAD_ADDR(error)) {
811 			send_sig(SIGKILL, current, 0);
812 			retval = IS_ERR((void *)error) ?
813 				PTR_ERR((void*)error) : -EINVAL;
814 			goto out_free_dentry;
815 		}
816 
817 		if (!load_addr_set) {
818 			load_addr_set = 1;
819 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
820 			if (loc->elf_ex.e_type == ET_DYN) {
821 				load_bias += error -
822 				             ELF_PAGESTART(load_bias + vaddr);
823 				load_addr += load_bias;
824 				reloc_func_desc = load_bias;
825 			}
826 		}
827 		k = elf_ppnt->p_vaddr;
828 		if (k < start_code)
829 			start_code = k;
830 		if (start_data < k)
831 			start_data = k;
832 
833 		/*
834 		 * Check to see if the section's size will overflow the
835 		 * allowed task size. Note that p_filesz must always be
836 		 * <= p_memsz so it is only necessary to check p_memsz.
837 		 */
838 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
839 		    elf_ppnt->p_memsz > TASK_SIZE ||
840 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
841 			/* set_brk can never work. Avoid overflows. */
842 			send_sig(SIGKILL, current, 0);
843 			retval = -EINVAL;
844 			goto out_free_dentry;
845 		}
846 
847 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
848 
849 		if (k > elf_bss)
850 			elf_bss = k;
851 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
852 			end_code = k;
853 		if (end_data < k)
854 			end_data = k;
855 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
856 		if (k > elf_brk)
857 			elf_brk = k;
858 	}
859 
860 	loc->elf_ex.e_entry += load_bias;
861 	elf_bss += load_bias;
862 	elf_brk += load_bias;
863 	start_code += load_bias;
864 	end_code += load_bias;
865 	start_data += load_bias;
866 	end_data += load_bias;
867 
868 	/* Calling set_brk effectively mmaps the pages that we need
869 	 * for the bss and break sections.  We must do this before
870 	 * mapping in the interpreter, to make sure it doesn't wind
871 	 * up getting placed where the bss needs to go.
872 	 */
873 	retval = set_brk(elf_bss, elf_brk);
874 	if (retval) {
875 		send_sig(SIGKILL, current, 0);
876 		goto out_free_dentry;
877 	}
878 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
879 		send_sig(SIGSEGV, current, 0);
880 		retval = -EFAULT; /* Nobody gets to see this, but.. */
881 		goto out_free_dentry;
882 	}
883 
884 	if (elf_interpreter) {
885 		unsigned long uninitialized_var(interp_map_addr);
886 
887 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
888 					    interpreter,
889 					    &interp_map_addr,
890 					    load_bias);
891 		if (!IS_ERR((void *)elf_entry)) {
892 			/*
893 			 * load_elf_interp() returns relocation
894 			 * adjustment
895 			 */
896 			interp_load_addr = elf_entry;
897 			elf_entry += loc->interp_elf_ex.e_entry;
898 		}
899 		if (BAD_ADDR(elf_entry)) {
900 			force_sig(SIGSEGV, current);
901 			retval = IS_ERR((void *)elf_entry) ?
902 					(int)elf_entry : -EINVAL;
903 			goto out_free_dentry;
904 		}
905 		reloc_func_desc = interp_load_addr;
906 
907 		allow_write_access(interpreter);
908 		fput(interpreter);
909 		kfree(elf_interpreter);
910 	} else {
911 		elf_entry = loc->elf_ex.e_entry;
912 		if (BAD_ADDR(elf_entry)) {
913 			force_sig(SIGSEGV, current);
914 			retval = -EINVAL;
915 			goto out_free_dentry;
916 		}
917 	}
918 
919 	kfree(elf_phdata);
920 
921 	sys_close(elf_exec_fileno);
922 
923 	set_binfmt(&elf_format);
924 
925 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
926 	retval = arch_setup_additional_pages(bprm, executable_stack);
927 	if (retval < 0) {
928 		send_sig(SIGKILL, current, 0);
929 		goto out;
930 	}
931 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
932 
933 	compute_creds(bprm);
934 	current->flags &= ~PF_FORKNOEXEC;
935 	retval = create_elf_tables(bprm, &loc->elf_ex,
936 			  load_addr, interp_load_addr);
937 	if (retval < 0) {
938 		send_sig(SIGKILL, current, 0);
939 		goto out;
940 	}
941 	/* N.B. passed_fileno might not be initialized? */
942 	current->mm->end_code = end_code;
943 	current->mm->start_code = start_code;
944 	current->mm->start_data = start_data;
945 	current->mm->end_data = end_data;
946 	current->mm->start_stack = bprm->p;
947 
948 #ifdef arch_randomize_brk
949 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1))
950 		current->mm->brk = current->mm->start_brk =
951 			arch_randomize_brk(current->mm);
952 #endif
953 
954 	if (current->personality & MMAP_PAGE_ZERO) {
955 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
956 		   and some applications "depend" upon this behavior.
957 		   Since we do not have the power to recompile these, we
958 		   emulate the SVr4 behavior. Sigh. */
959 		down_write(&current->mm->mmap_sem);
960 		error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
961 				MAP_FIXED | MAP_PRIVATE, 0);
962 		up_write(&current->mm->mmap_sem);
963 	}
964 
965 #ifdef ELF_PLAT_INIT
966 	/*
967 	 * The ABI may specify that certain registers be set up in special
968 	 * ways (on i386 %edx is the address of a DT_FINI function, for
969 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
970 	 * that the e_entry field is the address of the function descriptor
971 	 * for the startup routine, rather than the address of the startup
972 	 * routine itself.  This macro performs whatever initialization to
973 	 * the regs structure is required as well as any relocations to the
974 	 * function descriptor entries when executing dynamically links apps.
975 	 */
976 	ELF_PLAT_INIT(regs, reloc_func_desc);
977 #endif
978 
979 	start_thread(regs, elf_entry, bprm->p);
980 	if (unlikely(current->ptrace & PT_PTRACED)) {
981 		if (current->ptrace & PT_TRACE_EXEC)
982 			ptrace_notify ((PTRACE_EVENT_EXEC << 8) | SIGTRAP);
983 		else
984 			send_sig(SIGTRAP, current, 0);
985 	}
986 	retval = 0;
987 out:
988 	kfree(loc);
989 out_ret:
990 	return retval;
991 
992 	/* error cleanup */
993 out_free_dentry:
994 	allow_write_access(interpreter);
995 	if (interpreter)
996 		fput(interpreter);
997 out_free_interp:
998 	kfree(elf_interpreter);
999 out_free_file:
1000 	sys_close(elf_exec_fileno);
1001 out_free_ph:
1002 	kfree(elf_phdata);
1003 	goto out;
1004 }
1005 
1006 /* This is really simpleminded and specialized - we are loading an
1007    a.out library that is given an ELF header. */
1008 static int load_elf_library(struct file *file)
1009 {
1010 	struct elf_phdr *elf_phdata;
1011 	struct elf_phdr *eppnt;
1012 	unsigned long elf_bss, bss, len;
1013 	int retval, error, i, j;
1014 	struct elfhdr elf_ex;
1015 
1016 	error = -ENOEXEC;
1017 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1018 	if (retval != sizeof(elf_ex))
1019 		goto out;
1020 
1021 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1022 		goto out;
1023 
1024 	/* First of all, some simple consistency checks */
1025 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1026 	    !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1027 		goto out;
1028 
1029 	/* Now read in all of the header information */
1030 
1031 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1032 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1033 
1034 	error = -ENOMEM;
1035 	elf_phdata = kmalloc(j, GFP_KERNEL);
1036 	if (!elf_phdata)
1037 		goto out;
1038 
1039 	eppnt = elf_phdata;
1040 	error = -ENOEXEC;
1041 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1042 	if (retval != j)
1043 		goto out_free_ph;
1044 
1045 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1046 		if ((eppnt + i)->p_type == PT_LOAD)
1047 			j++;
1048 	if (j != 1)
1049 		goto out_free_ph;
1050 
1051 	while (eppnt->p_type != PT_LOAD)
1052 		eppnt++;
1053 
1054 	/* Now use mmap to map the library into memory. */
1055 	down_write(&current->mm->mmap_sem);
1056 	error = do_mmap(file,
1057 			ELF_PAGESTART(eppnt->p_vaddr),
1058 			(eppnt->p_filesz +
1059 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1060 			PROT_READ | PROT_WRITE | PROT_EXEC,
1061 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1062 			(eppnt->p_offset -
1063 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1064 	up_write(&current->mm->mmap_sem);
1065 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1066 		goto out_free_ph;
1067 
1068 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1069 	if (padzero(elf_bss)) {
1070 		error = -EFAULT;
1071 		goto out_free_ph;
1072 	}
1073 
1074 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1075 			    ELF_MIN_ALIGN - 1);
1076 	bss = eppnt->p_memsz + eppnt->p_vaddr;
1077 	if (bss > len) {
1078 		down_write(&current->mm->mmap_sem);
1079 		do_brk(len, bss - len);
1080 		up_write(&current->mm->mmap_sem);
1081 	}
1082 	error = 0;
1083 
1084 out_free_ph:
1085 	kfree(elf_phdata);
1086 out:
1087 	return error;
1088 }
1089 
1090 /*
1091  * Note that some platforms still use traditional core dumps and not
1092  * the ELF core dump.  Each platform can select it as appropriate.
1093  */
1094 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
1095 
1096 /*
1097  * ELF core dumper
1098  *
1099  * Modelled on fs/exec.c:aout_core_dump()
1100  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1101  */
1102 /*
1103  * These are the only things you should do on a core-file: use only these
1104  * functions to write out all the necessary info.
1105  */
1106 static int dump_write(struct file *file, const void *addr, int nr)
1107 {
1108 	return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
1109 }
1110 
1111 static int dump_seek(struct file *file, loff_t off)
1112 {
1113 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
1114 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
1115 			return 0;
1116 	} else {
1117 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
1118 		if (!buf)
1119 			return 0;
1120 		while (off > 0) {
1121 			unsigned long n = off;
1122 			if (n > PAGE_SIZE)
1123 				n = PAGE_SIZE;
1124 			if (!dump_write(file, buf, n))
1125 				return 0;
1126 			off -= n;
1127 		}
1128 		free_page((unsigned long)buf);
1129 	}
1130 	return 1;
1131 }
1132 
1133 /*
1134  * Decide what to dump of a segment, part, all or none.
1135  */
1136 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1137 				   unsigned long mm_flags)
1138 {
1139 	/* The vma can be set up to tell us the answer directly.  */
1140 	if (vma->vm_flags & VM_ALWAYSDUMP)
1141 		goto whole;
1142 
1143 	/* Do not dump I/O mapped devices or special mappings */
1144 	if (vma->vm_flags & (VM_IO | VM_RESERVED))
1145 		return 0;
1146 
1147 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1148 
1149 	/* By default, dump shared memory if mapped from an anonymous file. */
1150 	if (vma->vm_flags & VM_SHARED) {
1151 		if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1152 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1153 			goto whole;
1154 		return 0;
1155 	}
1156 
1157 	/* Dump segments that have been written to.  */
1158 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1159 		goto whole;
1160 	if (vma->vm_file == NULL)
1161 		return 0;
1162 
1163 	if (FILTER(MAPPED_PRIVATE))
1164 		goto whole;
1165 
1166 	/*
1167 	 * If this looks like the beginning of a DSO or executable mapping,
1168 	 * check for an ELF header.  If we find one, dump the first page to
1169 	 * aid in determining what was mapped here.
1170 	 */
1171 	if (FILTER(ELF_HEADERS) && vma->vm_file != NULL && vma->vm_pgoff == 0) {
1172 		u32 __user *header = (u32 __user *) vma->vm_start;
1173 		u32 word;
1174 		/*
1175 		 * Doing it this way gets the constant folded by GCC.
1176 		 */
1177 		union {
1178 			u32 cmp;
1179 			char elfmag[SELFMAG];
1180 		} magic;
1181 		BUILD_BUG_ON(SELFMAG != sizeof word);
1182 		magic.elfmag[EI_MAG0] = ELFMAG0;
1183 		magic.elfmag[EI_MAG1] = ELFMAG1;
1184 		magic.elfmag[EI_MAG2] = ELFMAG2;
1185 		magic.elfmag[EI_MAG3] = ELFMAG3;
1186 		if (get_user(word, header) == 0 && word == magic.cmp)
1187 			return PAGE_SIZE;
1188 	}
1189 
1190 #undef	FILTER
1191 
1192 	return 0;
1193 
1194 whole:
1195 	return vma->vm_end - vma->vm_start;
1196 }
1197 
1198 /* An ELF note in memory */
1199 struct memelfnote
1200 {
1201 	const char *name;
1202 	int type;
1203 	unsigned int datasz;
1204 	void *data;
1205 };
1206 
1207 static int notesize(struct memelfnote *en)
1208 {
1209 	int sz;
1210 
1211 	sz = sizeof(struct elf_note);
1212 	sz += roundup(strlen(en->name) + 1, 4);
1213 	sz += roundup(en->datasz, 4);
1214 
1215 	return sz;
1216 }
1217 
1218 #define DUMP_WRITE(addr, nr, foffset)	\
1219 	do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1220 
1221 static int alignfile(struct file *file, loff_t *foffset)
1222 {
1223 	static const char buf[4] = { 0, };
1224 	DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1225 	return 1;
1226 }
1227 
1228 static int writenote(struct memelfnote *men, struct file *file,
1229 			loff_t *foffset)
1230 {
1231 	struct elf_note en;
1232 	en.n_namesz = strlen(men->name) + 1;
1233 	en.n_descsz = men->datasz;
1234 	en.n_type = men->type;
1235 
1236 	DUMP_WRITE(&en, sizeof(en), foffset);
1237 	DUMP_WRITE(men->name, en.n_namesz, foffset);
1238 	if (!alignfile(file, foffset))
1239 		return 0;
1240 	DUMP_WRITE(men->data, men->datasz, foffset);
1241 	if (!alignfile(file, foffset))
1242 		return 0;
1243 
1244 	return 1;
1245 }
1246 #undef DUMP_WRITE
1247 
1248 #define DUMP_WRITE(addr, nr)	\
1249 	if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \
1250 		goto end_coredump;
1251 #define DUMP_SEEK(off)	\
1252 	if (!dump_seek(file, (off))) \
1253 		goto end_coredump;
1254 
1255 static void fill_elf_header(struct elfhdr *elf, int segs,
1256 			    u16 machine, u32 flags, u8 osabi)
1257 {
1258 	memset(elf, 0, sizeof(*elf));
1259 
1260 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1261 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1262 	elf->e_ident[EI_DATA] = ELF_DATA;
1263 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1264 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1265 
1266 	elf->e_type = ET_CORE;
1267 	elf->e_machine = machine;
1268 	elf->e_version = EV_CURRENT;
1269 	elf->e_phoff = sizeof(struct elfhdr);
1270 	elf->e_flags = flags;
1271 	elf->e_ehsize = sizeof(struct elfhdr);
1272 	elf->e_phentsize = sizeof(struct elf_phdr);
1273 	elf->e_phnum = segs;
1274 
1275 	return;
1276 }
1277 
1278 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1279 {
1280 	phdr->p_type = PT_NOTE;
1281 	phdr->p_offset = offset;
1282 	phdr->p_vaddr = 0;
1283 	phdr->p_paddr = 0;
1284 	phdr->p_filesz = sz;
1285 	phdr->p_memsz = 0;
1286 	phdr->p_flags = 0;
1287 	phdr->p_align = 0;
1288 	return;
1289 }
1290 
1291 static void fill_note(struct memelfnote *note, const char *name, int type,
1292 		unsigned int sz, void *data)
1293 {
1294 	note->name = name;
1295 	note->type = type;
1296 	note->datasz = sz;
1297 	note->data = data;
1298 	return;
1299 }
1300 
1301 /*
1302  * fill up all the fields in prstatus from the given task struct, except
1303  * registers which need to be filled up separately.
1304  */
1305 static void fill_prstatus(struct elf_prstatus *prstatus,
1306 		struct task_struct *p, long signr)
1307 {
1308 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1309 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1310 	prstatus->pr_sighold = p->blocked.sig[0];
1311 	prstatus->pr_pid = task_pid_vnr(p);
1312 	prstatus->pr_ppid = task_pid_vnr(p->real_parent);
1313 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1314 	prstatus->pr_sid = task_session_vnr(p);
1315 	if (thread_group_leader(p)) {
1316 		/*
1317 		 * This is the record for the group leader.  Add in the
1318 		 * cumulative times of previous dead threads.  This total
1319 		 * won't include the time of each live thread whose state
1320 		 * is included in the core dump.  The final total reported
1321 		 * to our parent process when it calls wait4 will include
1322 		 * those sums as well as the little bit more time it takes
1323 		 * this and each other thread to finish dying after the
1324 		 * core dump synchronization phase.
1325 		 */
1326 		cputime_to_timeval(cputime_add(p->utime, p->signal->utime),
1327 				   &prstatus->pr_utime);
1328 		cputime_to_timeval(cputime_add(p->stime, p->signal->stime),
1329 				   &prstatus->pr_stime);
1330 	} else {
1331 		cputime_to_timeval(p->utime, &prstatus->pr_utime);
1332 		cputime_to_timeval(p->stime, &prstatus->pr_stime);
1333 	}
1334 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1335 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1336 }
1337 
1338 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1339 		       struct mm_struct *mm)
1340 {
1341 	unsigned int i, len;
1342 
1343 	/* first copy the parameters from user space */
1344 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1345 
1346 	len = mm->arg_end - mm->arg_start;
1347 	if (len >= ELF_PRARGSZ)
1348 		len = ELF_PRARGSZ-1;
1349 	if (copy_from_user(&psinfo->pr_psargs,
1350 		           (const char __user *)mm->arg_start, len))
1351 		return -EFAULT;
1352 	for(i = 0; i < len; i++)
1353 		if (psinfo->pr_psargs[i] == 0)
1354 			psinfo->pr_psargs[i] = ' ';
1355 	psinfo->pr_psargs[len] = 0;
1356 
1357 	psinfo->pr_pid = task_pid_vnr(p);
1358 	psinfo->pr_ppid = task_pid_vnr(p->real_parent);
1359 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1360 	psinfo->pr_sid = task_session_vnr(p);
1361 
1362 	i = p->state ? ffz(~p->state) + 1 : 0;
1363 	psinfo->pr_state = i;
1364 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1365 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1366 	psinfo->pr_nice = task_nice(p);
1367 	psinfo->pr_flag = p->flags;
1368 	SET_UID(psinfo->pr_uid, p->uid);
1369 	SET_GID(psinfo->pr_gid, p->gid);
1370 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1371 
1372 	return 0;
1373 }
1374 
1375 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1376 {
1377 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1378 	int i = 0;
1379 	do
1380 		i += 2;
1381 	while (auxv[i - 2] != AT_NULL);
1382 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1383 }
1384 
1385 #ifdef CORE_DUMP_USE_REGSET
1386 #include <linux/regset.h>
1387 
1388 struct elf_thread_core_info {
1389 	struct elf_thread_core_info *next;
1390 	struct task_struct *task;
1391 	struct elf_prstatus prstatus;
1392 	struct memelfnote notes[0];
1393 };
1394 
1395 struct elf_note_info {
1396 	struct elf_thread_core_info *thread;
1397 	struct memelfnote psinfo;
1398 	struct memelfnote auxv;
1399 	size_t size;
1400 	int thread_notes;
1401 };
1402 
1403 /*
1404  * When a regset has a writeback hook, we call it on each thread before
1405  * dumping user memory.  On register window machines, this makes sure the
1406  * user memory backing the register data is up to date before we read it.
1407  */
1408 static void do_thread_regset_writeback(struct task_struct *task,
1409 				       const struct user_regset *regset)
1410 {
1411 	if (regset->writeback)
1412 		regset->writeback(task, regset, 1);
1413 }
1414 
1415 static int fill_thread_core_info(struct elf_thread_core_info *t,
1416 				 const struct user_regset_view *view,
1417 				 long signr, size_t *total)
1418 {
1419 	unsigned int i;
1420 
1421 	/*
1422 	 * NT_PRSTATUS is the one special case, because the regset data
1423 	 * goes into the pr_reg field inside the note contents, rather
1424 	 * than being the whole note contents.  We fill the reset in here.
1425 	 * We assume that regset 0 is NT_PRSTATUS.
1426 	 */
1427 	fill_prstatus(&t->prstatus, t->task, signr);
1428 	(void) view->regsets[0].get(t->task, &view->regsets[0],
1429 				    0, sizeof(t->prstatus.pr_reg),
1430 				    &t->prstatus.pr_reg, NULL);
1431 
1432 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1433 		  sizeof(t->prstatus), &t->prstatus);
1434 	*total += notesize(&t->notes[0]);
1435 
1436 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1437 
1438 	/*
1439 	 * Each other regset might generate a note too.  For each regset
1440 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1441 	 * all zero and we'll know to skip writing it later.
1442 	 */
1443 	for (i = 1; i < view->n; ++i) {
1444 		const struct user_regset *regset = &view->regsets[i];
1445 		do_thread_regset_writeback(t->task, regset);
1446 		if (regset->core_note_type &&
1447 		    (!regset->active || regset->active(t->task, regset))) {
1448 			int ret;
1449 			size_t size = regset->n * regset->size;
1450 			void *data = kmalloc(size, GFP_KERNEL);
1451 			if (unlikely(!data))
1452 				return 0;
1453 			ret = regset->get(t->task, regset,
1454 					  0, size, data, NULL);
1455 			if (unlikely(ret))
1456 				kfree(data);
1457 			else {
1458 				if (regset->core_note_type != NT_PRFPREG)
1459 					fill_note(&t->notes[i], "LINUX",
1460 						  regset->core_note_type,
1461 						  size, data);
1462 				else {
1463 					t->prstatus.pr_fpvalid = 1;
1464 					fill_note(&t->notes[i], "CORE",
1465 						  NT_PRFPREG, size, data);
1466 				}
1467 				*total += notesize(&t->notes[i]);
1468 			}
1469 		}
1470 	}
1471 
1472 	return 1;
1473 }
1474 
1475 static int fill_note_info(struct elfhdr *elf, int phdrs,
1476 			  struct elf_note_info *info,
1477 			  long signr, struct pt_regs *regs)
1478 {
1479 	struct task_struct *dump_task = current;
1480 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1481 	struct elf_thread_core_info *t;
1482 	struct elf_prpsinfo *psinfo;
1483 	struct task_struct *g, *p;
1484 	unsigned int i;
1485 
1486 	info->size = 0;
1487 	info->thread = NULL;
1488 
1489 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1490 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1491 
1492 	if (psinfo == NULL)
1493 		return 0;
1494 
1495 	/*
1496 	 * Figure out how many notes we're going to need for each thread.
1497 	 */
1498 	info->thread_notes = 0;
1499 	for (i = 0; i < view->n; ++i)
1500 		if (view->regsets[i].core_note_type != 0)
1501 			++info->thread_notes;
1502 
1503 	/*
1504 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1505 	 * since it is our one special case.
1506 	 */
1507 	if (unlikely(info->thread_notes == 0) ||
1508 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1509 		WARN_ON(1);
1510 		return 0;
1511 	}
1512 
1513 	/*
1514 	 * Initialize the ELF file header.
1515 	 */
1516 	fill_elf_header(elf, phdrs,
1517 			view->e_machine, view->e_flags, view->ei_osabi);
1518 
1519 	/*
1520 	 * Allocate a structure for each thread.
1521 	 */
1522 	rcu_read_lock();
1523 	do_each_thread(g, p)
1524 		if (p->mm == dump_task->mm) {
1525 			t = kzalloc(offsetof(struct elf_thread_core_info,
1526 					     notes[info->thread_notes]),
1527 				    GFP_ATOMIC);
1528 			if (unlikely(!t)) {
1529 				rcu_read_unlock();
1530 				return 0;
1531 			}
1532 			t->task = p;
1533 			if (p == dump_task || !info->thread) {
1534 				t->next = info->thread;
1535 				info->thread = t;
1536 			} else {
1537 				/*
1538 				 * Make sure to keep the original task at
1539 				 * the head of the list.
1540 				 */
1541 				t->next = info->thread->next;
1542 				info->thread->next = t;
1543 			}
1544 		}
1545 	while_each_thread(g, p);
1546 	rcu_read_unlock();
1547 
1548 	/*
1549 	 * Now fill in each thread's information.
1550 	 */
1551 	for (t = info->thread; t != NULL; t = t->next)
1552 		if (!fill_thread_core_info(t, view, signr, &info->size))
1553 			return 0;
1554 
1555 	/*
1556 	 * Fill in the two process-wide notes.
1557 	 */
1558 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1559 	info->size += notesize(&info->psinfo);
1560 
1561 	fill_auxv_note(&info->auxv, current->mm);
1562 	info->size += notesize(&info->auxv);
1563 
1564 	return 1;
1565 }
1566 
1567 static size_t get_note_info_size(struct elf_note_info *info)
1568 {
1569 	return info->size;
1570 }
1571 
1572 /*
1573  * Write all the notes for each thread.  When writing the first thread, the
1574  * process-wide notes are interleaved after the first thread-specific note.
1575  */
1576 static int write_note_info(struct elf_note_info *info,
1577 			   struct file *file, loff_t *foffset)
1578 {
1579 	bool first = 1;
1580 	struct elf_thread_core_info *t = info->thread;
1581 
1582 	do {
1583 		int i;
1584 
1585 		if (!writenote(&t->notes[0], file, foffset))
1586 			return 0;
1587 
1588 		if (first && !writenote(&info->psinfo, file, foffset))
1589 			return 0;
1590 		if (first && !writenote(&info->auxv, file, foffset))
1591 			return 0;
1592 
1593 		for (i = 1; i < info->thread_notes; ++i)
1594 			if (t->notes[i].data &&
1595 			    !writenote(&t->notes[i], file, foffset))
1596 				return 0;
1597 
1598 		first = 0;
1599 		t = t->next;
1600 	} while (t);
1601 
1602 	return 1;
1603 }
1604 
1605 static void free_note_info(struct elf_note_info *info)
1606 {
1607 	struct elf_thread_core_info *threads = info->thread;
1608 	while (threads) {
1609 		unsigned int i;
1610 		struct elf_thread_core_info *t = threads;
1611 		threads = t->next;
1612 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1613 		for (i = 1; i < info->thread_notes; ++i)
1614 			kfree(t->notes[i].data);
1615 		kfree(t);
1616 	}
1617 	kfree(info->psinfo.data);
1618 }
1619 
1620 #else
1621 
1622 /* Here is the structure in which status of each thread is captured. */
1623 struct elf_thread_status
1624 {
1625 	struct list_head list;
1626 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1627 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1628 	struct task_struct *thread;
1629 #ifdef ELF_CORE_COPY_XFPREGS
1630 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1631 #endif
1632 	struct memelfnote notes[3];
1633 	int num_notes;
1634 };
1635 
1636 /*
1637  * In order to add the specific thread information for the elf file format,
1638  * we need to keep a linked list of every threads pr_status and then create
1639  * a single section for them in the final core file.
1640  */
1641 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1642 {
1643 	int sz = 0;
1644 	struct task_struct *p = t->thread;
1645 	t->num_notes = 0;
1646 
1647 	fill_prstatus(&t->prstatus, p, signr);
1648 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1649 
1650 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1651 		  &(t->prstatus));
1652 	t->num_notes++;
1653 	sz += notesize(&t->notes[0]);
1654 
1655 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1656 								&t->fpu))) {
1657 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1658 			  &(t->fpu));
1659 		t->num_notes++;
1660 		sz += notesize(&t->notes[1]);
1661 	}
1662 
1663 #ifdef ELF_CORE_COPY_XFPREGS
1664 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1665 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1666 			  sizeof(t->xfpu), &t->xfpu);
1667 		t->num_notes++;
1668 		sz += notesize(&t->notes[2]);
1669 	}
1670 #endif
1671 	return sz;
1672 }
1673 
1674 struct elf_note_info {
1675 	struct memelfnote *notes;
1676 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1677 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1678 	struct list_head thread_list;
1679 	elf_fpregset_t *fpu;
1680 #ifdef ELF_CORE_COPY_XFPREGS
1681 	elf_fpxregset_t *xfpu;
1682 #endif
1683 	int thread_status_size;
1684 	int numnote;
1685 };
1686 
1687 static int fill_note_info(struct elfhdr *elf, int phdrs,
1688 			  struct elf_note_info *info,
1689 			  long signr, struct pt_regs *regs)
1690 {
1691 #define	NUM_NOTES	6
1692 	struct list_head *t;
1693 	struct task_struct *g, *p;
1694 
1695 	info->notes = NULL;
1696 	info->prstatus = NULL;
1697 	info->psinfo = NULL;
1698 	info->fpu = NULL;
1699 #ifdef ELF_CORE_COPY_XFPREGS
1700 	info->xfpu = NULL;
1701 #endif
1702 	INIT_LIST_HEAD(&info->thread_list);
1703 
1704 	info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote),
1705 			      GFP_KERNEL);
1706 	if (!info->notes)
1707 		return 0;
1708 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1709 	if (!info->psinfo)
1710 		return 0;
1711 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1712 	if (!info->prstatus)
1713 		return 0;
1714 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1715 	if (!info->fpu)
1716 		return 0;
1717 #ifdef ELF_CORE_COPY_XFPREGS
1718 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1719 	if (!info->xfpu)
1720 		return 0;
1721 #endif
1722 
1723 	info->thread_status_size = 0;
1724 	if (signr) {
1725 		struct elf_thread_status *ets;
1726 		rcu_read_lock();
1727 		do_each_thread(g, p)
1728 			if (current->mm == p->mm && current != p) {
1729 				ets = kzalloc(sizeof(*ets), GFP_ATOMIC);
1730 				if (!ets) {
1731 					rcu_read_unlock();
1732 					return 0;
1733 				}
1734 				ets->thread = p;
1735 				list_add(&ets->list, &info->thread_list);
1736 			}
1737 		while_each_thread(g, p);
1738 		rcu_read_unlock();
1739 		list_for_each(t, &info->thread_list) {
1740 			int sz;
1741 
1742 			ets = list_entry(t, struct elf_thread_status, list);
1743 			sz = elf_dump_thread_status(signr, ets);
1744 			info->thread_status_size += sz;
1745 		}
1746 	}
1747 	/* now collect the dump for the current */
1748 	memset(info->prstatus, 0, sizeof(*info->prstatus));
1749 	fill_prstatus(info->prstatus, current, signr);
1750 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1751 
1752 	/* Set up header */
1753 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1754 
1755 	/*
1756 	 * Set up the notes in similar form to SVR4 core dumps made
1757 	 * with info from their /proc.
1758 	 */
1759 
1760 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1761 		  sizeof(*info->prstatus), info->prstatus);
1762 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1763 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1764 		  sizeof(*info->psinfo), info->psinfo);
1765 
1766 	info->numnote = 2;
1767 
1768 	fill_auxv_note(&info->notes[info->numnote++], current->mm);
1769 
1770 	/* Try to dump the FPU. */
1771 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1772 							       info->fpu);
1773 	if (info->prstatus->pr_fpvalid)
1774 		fill_note(info->notes + info->numnote++,
1775 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1776 #ifdef ELF_CORE_COPY_XFPREGS
1777 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
1778 		fill_note(info->notes + info->numnote++,
1779 			  "LINUX", ELF_CORE_XFPREG_TYPE,
1780 			  sizeof(*info->xfpu), info->xfpu);
1781 #endif
1782 
1783 	return 1;
1784 
1785 #undef NUM_NOTES
1786 }
1787 
1788 static size_t get_note_info_size(struct elf_note_info *info)
1789 {
1790 	int sz = 0;
1791 	int i;
1792 
1793 	for (i = 0; i < info->numnote; i++)
1794 		sz += notesize(info->notes + i);
1795 
1796 	sz += info->thread_status_size;
1797 
1798 	return sz;
1799 }
1800 
1801 static int write_note_info(struct elf_note_info *info,
1802 			   struct file *file, loff_t *foffset)
1803 {
1804 	int i;
1805 	struct list_head *t;
1806 
1807 	for (i = 0; i < info->numnote; i++)
1808 		if (!writenote(info->notes + i, file, foffset))
1809 			return 0;
1810 
1811 	/* write out the thread status notes section */
1812 	list_for_each(t, &info->thread_list) {
1813 		struct elf_thread_status *tmp =
1814 				list_entry(t, struct elf_thread_status, list);
1815 
1816 		for (i = 0; i < tmp->num_notes; i++)
1817 			if (!writenote(&tmp->notes[i], file, foffset))
1818 				return 0;
1819 	}
1820 
1821 	return 1;
1822 }
1823 
1824 static void free_note_info(struct elf_note_info *info)
1825 {
1826 	while (!list_empty(&info->thread_list)) {
1827 		struct list_head *tmp = info->thread_list.next;
1828 		list_del(tmp);
1829 		kfree(list_entry(tmp, struct elf_thread_status, list));
1830 	}
1831 
1832 	kfree(info->prstatus);
1833 	kfree(info->psinfo);
1834 	kfree(info->notes);
1835 	kfree(info->fpu);
1836 #ifdef ELF_CORE_COPY_XFPREGS
1837 	kfree(info->xfpu);
1838 #endif
1839 }
1840 
1841 #endif
1842 
1843 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1844 					struct vm_area_struct *gate_vma)
1845 {
1846 	struct vm_area_struct *ret = tsk->mm->mmap;
1847 
1848 	if (ret)
1849 		return ret;
1850 	return gate_vma;
1851 }
1852 /*
1853  * Helper function for iterating across a vma list.  It ensures that the caller
1854  * will visit `gate_vma' prior to terminating the search.
1855  */
1856 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1857 					struct vm_area_struct *gate_vma)
1858 {
1859 	struct vm_area_struct *ret;
1860 
1861 	ret = this_vma->vm_next;
1862 	if (ret)
1863 		return ret;
1864 	if (this_vma == gate_vma)
1865 		return NULL;
1866 	return gate_vma;
1867 }
1868 
1869 /*
1870  * Actual dumper
1871  *
1872  * This is a two-pass process; first we find the offsets of the bits,
1873  * and then they are actually written out.  If we run out of core limit
1874  * we just truncate.
1875  */
1876 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit)
1877 {
1878 	int has_dumped = 0;
1879 	mm_segment_t fs;
1880 	int segs;
1881 	size_t size = 0;
1882 	struct vm_area_struct *vma, *gate_vma;
1883 	struct elfhdr *elf = NULL;
1884 	loff_t offset = 0, dataoff, foffset;
1885 	unsigned long mm_flags;
1886 	struct elf_note_info info;
1887 
1888 	/*
1889 	 * We no longer stop all VM operations.
1890 	 *
1891 	 * This is because those proceses that could possibly change map_count
1892 	 * or the mmap / vma pages are now blocked in do_exit on current
1893 	 * finishing this core dump.
1894 	 *
1895 	 * Only ptrace can touch these memory addresses, but it doesn't change
1896 	 * the map_count or the pages allocated. So no possibility of crashing
1897 	 * exists while dumping the mm->vm_next areas to the core file.
1898 	 */
1899 
1900 	/* alloc memory for large data structures: too large to be on stack */
1901 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1902 	if (!elf)
1903 		goto cleanup;
1904 
1905 	segs = current->mm->map_count;
1906 #ifdef ELF_CORE_EXTRA_PHDRS
1907 	segs += ELF_CORE_EXTRA_PHDRS;
1908 #endif
1909 
1910 	gate_vma = get_gate_vma(current);
1911 	if (gate_vma != NULL)
1912 		segs++;
1913 
1914 	/*
1915 	 * Collect all the non-memory information about the process for the
1916 	 * notes.  This also sets up the file header.
1917 	 */
1918 	if (!fill_note_info(elf, segs + 1, /* including notes section */
1919 			    &info, signr, regs))
1920 		goto cleanup;
1921 
1922 	has_dumped = 1;
1923 	current->flags |= PF_DUMPCORE;
1924 
1925 	fs = get_fs();
1926 	set_fs(KERNEL_DS);
1927 
1928 	DUMP_WRITE(elf, sizeof(*elf));
1929 	offset += sizeof(*elf);				/* Elf header */
1930 	offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */
1931 	foffset = offset;
1932 
1933 	/* Write notes phdr entry */
1934 	{
1935 		struct elf_phdr phdr;
1936 		size_t sz = get_note_info_size(&info);
1937 
1938 		sz += elf_coredump_extra_notes_size();
1939 
1940 		fill_elf_note_phdr(&phdr, sz, offset);
1941 		offset += sz;
1942 		DUMP_WRITE(&phdr, sizeof(phdr));
1943 	}
1944 
1945 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1946 
1947 	/*
1948 	 * We must use the same mm->flags while dumping core to avoid
1949 	 * inconsistency between the program headers and bodies, otherwise an
1950 	 * unusable core file can be generated.
1951 	 */
1952 	mm_flags = current->mm->flags;
1953 
1954 	/* Write program headers for segments dump */
1955 	for (vma = first_vma(current, gate_vma); vma != NULL;
1956 			vma = next_vma(vma, gate_vma)) {
1957 		struct elf_phdr phdr;
1958 
1959 		phdr.p_type = PT_LOAD;
1960 		phdr.p_offset = offset;
1961 		phdr.p_vaddr = vma->vm_start;
1962 		phdr.p_paddr = 0;
1963 		phdr.p_filesz = vma_dump_size(vma, mm_flags);
1964 		phdr.p_memsz = vma->vm_end - vma->vm_start;
1965 		offset += phdr.p_filesz;
1966 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
1967 		if (vma->vm_flags & VM_WRITE)
1968 			phdr.p_flags |= PF_W;
1969 		if (vma->vm_flags & VM_EXEC)
1970 			phdr.p_flags |= PF_X;
1971 		phdr.p_align = ELF_EXEC_PAGESIZE;
1972 
1973 		DUMP_WRITE(&phdr, sizeof(phdr));
1974 	}
1975 
1976 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
1977 	ELF_CORE_WRITE_EXTRA_PHDRS;
1978 #endif
1979 
1980  	/* write out the notes section */
1981 	if (!write_note_info(&info, file, &foffset))
1982 		goto end_coredump;
1983 
1984 	if (elf_coredump_extra_notes_write(file, &foffset))
1985 		goto end_coredump;
1986 
1987 	/* Align to page */
1988 	DUMP_SEEK(dataoff - foffset);
1989 
1990 	for (vma = first_vma(current, gate_vma); vma != NULL;
1991 			vma = next_vma(vma, gate_vma)) {
1992 		unsigned long addr;
1993 		unsigned long end;
1994 
1995 		end = vma->vm_start + vma_dump_size(vma, mm_flags);
1996 
1997 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
1998 			struct page *page;
1999 			struct vm_area_struct *tmp_vma;
2000 
2001 			if (get_user_pages(current, current->mm, addr, 1, 0, 1,
2002 						&page, &tmp_vma) <= 0) {
2003 				DUMP_SEEK(PAGE_SIZE);
2004 			} else {
2005 				if (page == ZERO_PAGE(0)) {
2006 					if (!dump_seek(file, PAGE_SIZE)) {
2007 						page_cache_release(page);
2008 						goto end_coredump;
2009 					}
2010 				} else {
2011 					void *kaddr;
2012 					flush_cache_page(tmp_vma, addr,
2013 							 page_to_pfn(page));
2014 					kaddr = kmap(page);
2015 					if ((size += PAGE_SIZE) > limit ||
2016 					    !dump_write(file, kaddr,
2017 					    PAGE_SIZE)) {
2018 						kunmap(page);
2019 						page_cache_release(page);
2020 						goto end_coredump;
2021 					}
2022 					kunmap(page);
2023 				}
2024 				page_cache_release(page);
2025 			}
2026 		}
2027 	}
2028 
2029 #ifdef ELF_CORE_WRITE_EXTRA_DATA
2030 	ELF_CORE_WRITE_EXTRA_DATA;
2031 #endif
2032 
2033 end_coredump:
2034 	set_fs(fs);
2035 
2036 cleanup:
2037 	kfree(elf);
2038 	free_note_info(&info);
2039 	return has_dumped;
2040 }
2041 
2042 #endif		/* USE_ELF_CORE_DUMP */
2043 
2044 static int __init init_elf_binfmt(void)
2045 {
2046 	return register_binfmt(&elf_format);
2047 }
2048 
2049 static void __exit exit_elf_binfmt(void)
2050 {
2051 	/* Remove the COFF and ELF loaders. */
2052 	unregister_binfmt(&elf_format);
2053 }
2054 
2055 core_initcall(init_elf_binfmt);
2056 module_exit(exit_elf_binfmt);
2057 MODULE_LICENSE("GPL");
2058