xref: /openbmc/linux/fs/binfmt_elf.c (revision 171f1bc7)
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/security.h>
31 #include <linux/random.h>
32 #include <linux/elf.h>
33 #include <linux/utsname.h>
34 #include <linux/coredump.h>
35 #include <asm/uaccess.h>
36 #include <asm/param.h>
37 #include <asm/page.h>
38 
39 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
40 static int load_elf_library(struct file *);
41 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
42 				int, int, unsigned long);
43 
44 /*
45  * If we don't support core dumping, then supply a NULL so we
46  * don't even try.
47  */
48 #ifdef CONFIG_ELF_CORE
49 static int elf_core_dump(struct coredump_params *cprm);
50 #else
51 #define elf_core_dump	NULL
52 #endif
53 
54 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
55 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
56 #else
57 #define ELF_MIN_ALIGN	PAGE_SIZE
58 #endif
59 
60 #ifndef ELF_CORE_EFLAGS
61 #define ELF_CORE_EFLAGS	0
62 #endif
63 
64 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
65 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
66 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
67 
68 static struct linux_binfmt elf_format = {
69 	.module		= THIS_MODULE,
70 	.load_binary	= load_elf_binary,
71 	.load_shlib	= load_elf_library,
72 	.core_dump	= elf_core_dump,
73 	.min_coredump	= ELF_EXEC_PAGESIZE,
74 };
75 
76 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
77 
78 static int set_brk(unsigned long start, unsigned long end)
79 {
80 	start = ELF_PAGEALIGN(start);
81 	end = ELF_PAGEALIGN(end);
82 	if (end > start) {
83 		unsigned long addr;
84 		down_write(&current->mm->mmap_sem);
85 		addr = do_brk(start, end - start);
86 		up_write(&current->mm->mmap_sem);
87 		if (BAD_ADDR(addr))
88 			return addr;
89 	}
90 	current->mm->start_brk = current->mm->brk = end;
91 	return 0;
92 }
93 
94 /* We need to explicitly zero any fractional pages
95    after the data section (i.e. bss).  This would
96    contain the junk from the file that should not
97    be in memory
98  */
99 static int padzero(unsigned long elf_bss)
100 {
101 	unsigned long nbyte;
102 
103 	nbyte = ELF_PAGEOFFSET(elf_bss);
104 	if (nbyte) {
105 		nbyte = ELF_MIN_ALIGN - nbyte;
106 		if (clear_user((void __user *) elf_bss, nbyte))
107 			return -EFAULT;
108 	}
109 	return 0;
110 }
111 
112 /* Let's use some macros to make this stack manipulation a little clearer */
113 #ifdef CONFIG_STACK_GROWSUP
114 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
115 #define STACK_ROUND(sp, items) \
116 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
117 #define STACK_ALLOC(sp, len) ({ \
118 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
119 	old_sp; })
120 #else
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
122 #define STACK_ROUND(sp, items) \
123 	(((unsigned long) (sp - items)) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
125 #endif
126 
127 #ifndef ELF_BASE_PLATFORM
128 /*
129  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
130  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
131  * will be copied to the user stack in the same manner as AT_PLATFORM.
132  */
133 #define ELF_BASE_PLATFORM NULL
134 #endif
135 
136 static int
137 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
138 		unsigned long load_addr, unsigned long interp_load_addr)
139 {
140 	unsigned long p = bprm->p;
141 	int argc = bprm->argc;
142 	int envc = bprm->envc;
143 	elf_addr_t __user *argv;
144 	elf_addr_t __user *envp;
145 	elf_addr_t __user *sp;
146 	elf_addr_t __user *u_platform;
147 	elf_addr_t __user *u_base_platform;
148 	elf_addr_t __user *u_rand_bytes;
149 	const char *k_platform = ELF_PLATFORM;
150 	const char *k_base_platform = ELF_BASE_PLATFORM;
151 	unsigned char k_rand_bytes[16];
152 	int items;
153 	elf_addr_t *elf_info;
154 	int ei_index = 0;
155 	const struct cred *cred = current_cred();
156 	struct vm_area_struct *vma;
157 
158 	/*
159 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
160 	 * evictions by the processes running on the same package. One
161 	 * thing we can do is to shuffle the initial stack for them.
162 	 */
163 
164 	p = arch_align_stack(p);
165 
166 	/*
167 	 * If this architecture has a platform capability string, copy it
168 	 * to userspace.  In some cases (Sparc), this info is impossible
169 	 * for userspace to get any other way, in others (i386) it is
170 	 * merely difficult.
171 	 */
172 	u_platform = NULL;
173 	if (k_platform) {
174 		size_t len = strlen(k_platform) + 1;
175 
176 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
177 		if (__copy_to_user(u_platform, k_platform, len))
178 			return -EFAULT;
179 	}
180 
181 	/*
182 	 * If this architecture has a "base" platform capability
183 	 * string, copy it to userspace.
184 	 */
185 	u_base_platform = NULL;
186 	if (k_base_platform) {
187 		size_t len = strlen(k_base_platform) + 1;
188 
189 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
190 		if (__copy_to_user(u_base_platform, k_base_platform, len))
191 			return -EFAULT;
192 	}
193 
194 	/*
195 	 * Generate 16 random bytes for userspace PRNG seeding.
196 	 */
197 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
198 	u_rand_bytes = (elf_addr_t __user *)
199 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
200 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
201 		return -EFAULT;
202 
203 	/* Create the ELF interpreter info */
204 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
205 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
206 #define NEW_AUX_ENT(id, val) \
207 	do { \
208 		elf_info[ei_index++] = id; \
209 		elf_info[ei_index++] = val; \
210 	} while (0)
211 
212 #ifdef ARCH_DLINFO
213 	/*
214 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
215 	 * AUXV.
216 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
217 	 * ARCH_DLINFO changes
218 	 */
219 	ARCH_DLINFO;
220 #endif
221 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
222 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
223 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
224 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
225 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
226 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
227 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
228 	NEW_AUX_ENT(AT_FLAGS, 0);
229 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
230 	NEW_AUX_ENT(AT_UID, cred->uid);
231 	NEW_AUX_ENT(AT_EUID, cred->euid);
232 	NEW_AUX_ENT(AT_GID, cred->gid);
233 	NEW_AUX_ENT(AT_EGID, cred->egid);
234  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
235 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
236 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
237 	if (k_platform) {
238 		NEW_AUX_ENT(AT_PLATFORM,
239 			    (elf_addr_t)(unsigned long)u_platform);
240 	}
241 	if (k_base_platform) {
242 		NEW_AUX_ENT(AT_BASE_PLATFORM,
243 			    (elf_addr_t)(unsigned long)u_base_platform);
244 	}
245 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
246 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
247 	}
248 #undef NEW_AUX_ENT
249 	/* AT_NULL is zero; clear the rest too */
250 	memset(&elf_info[ei_index], 0,
251 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
252 
253 	/* And advance past the AT_NULL entry.  */
254 	ei_index += 2;
255 
256 	sp = STACK_ADD(p, ei_index);
257 
258 	items = (argc + 1) + (envc + 1) + 1;
259 	bprm->p = STACK_ROUND(sp, items);
260 
261 	/* Point sp at the lowest address on the stack */
262 #ifdef CONFIG_STACK_GROWSUP
263 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
264 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
265 #else
266 	sp = (elf_addr_t __user *)bprm->p;
267 #endif
268 
269 
270 	/*
271 	 * Grow the stack manually; some architectures have a limit on how
272 	 * far ahead a user-space access may be in order to grow the stack.
273 	 */
274 	vma = find_extend_vma(current->mm, bprm->p);
275 	if (!vma)
276 		return -EFAULT;
277 
278 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
279 	if (__put_user(argc, sp++))
280 		return -EFAULT;
281 	argv = sp;
282 	envp = argv + argc + 1;
283 
284 	/* Populate argv and envp */
285 	p = current->mm->arg_end = current->mm->arg_start;
286 	while (argc-- > 0) {
287 		size_t len;
288 		if (__put_user((elf_addr_t)p, argv++))
289 			return -EFAULT;
290 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
291 		if (!len || len > MAX_ARG_STRLEN)
292 			return -EINVAL;
293 		p += len;
294 	}
295 	if (__put_user(0, argv))
296 		return -EFAULT;
297 	current->mm->arg_end = current->mm->env_start = p;
298 	while (envc-- > 0) {
299 		size_t len;
300 		if (__put_user((elf_addr_t)p, envp++))
301 			return -EFAULT;
302 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
303 		if (!len || len > MAX_ARG_STRLEN)
304 			return -EINVAL;
305 		p += len;
306 	}
307 	if (__put_user(0, envp))
308 		return -EFAULT;
309 	current->mm->env_end = p;
310 
311 	/* Put the elf_info on the stack in the right place.  */
312 	sp = (elf_addr_t __user *)envp + 1;
313 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
314 		return -EFAULT;
315 	return 0;
316 }
317 
318 static unsigned long elf_map(struct file *filep, unsigned long addr,
319 		struct elf_phdr *eppnt, int prot, int type,
320 		unsigned long total_size)
321 {
322 	unsigned long map_addr;
323 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
324 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
325 	addr = ELF_PAGESTART(addr);
326 	size = ELF_PAGEALIGN(size);
327 
328 	/* mmap() will return -EINVAL if given a zero size, but a
329 	 * segment with zero filesize is perfectly valid */
330 	if (!size)
331 		return addr;
332 
333 	down_write(&current->mm->mmap_sem);
334 	/*
335 	* total_size is the size of the ELF (interpreter) image.
336 	* The _first_ mmap needs to know the full size, otherwise
337 	* randomization might put this image into an overlapping
338 	* position with the ELF binary image. (since size < total_size)
339 	* So we first map the 'big' image - and unmap the remainder at
340 	* the end. (which unmap is needed for ELF images with holes.)
341 	*/
342 	if (total_size) {
343 		total_size = ELF_PAGEALIGN(total_size);
344 		map_addr = do_mmap(filep, addr, total_size, prot, type, off);
345 		if (!BAD_ADDR(map_addr))
346 			do_munmap(current->mm, map_addr+size, total_size-size);
347 	} else
348 		map_addr = do_mmap(filep, addr, size, prot, type, off);
349 
350 	up_write(&current->mm->mmap_sem);
351 	return(map_addr);
352 }
353 
354 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
355 {
356 	int i, first_idx = -1, last_idx = -1;
357 
358 	for (i = 0; i < nr; i++) {
359 		if (cmds[i].p_type == PT_LOAD) {
360 			last_idx = i;
361 			if (first_idx == -1)
362 				first_idx = i;
363 		}
364 	}
365 	if (first_idx == -1)
366 		return 0;
367 
368 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
369 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
370 }
371 
372 
373 /* This is much more generalized than the library routine read function,
374    so we keep this separate.  Technically the library read function
375    is only provided so that we can read a.out libraries that have
376    an ELF header */
377 
378 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
379 		struct file *interpreter, unsigned long *interp_map_addr,
380 		unsigned long no_base)
381 {
382 	struct elf_phdr *elf_phdata;
383 	struct elf_phdr *eppnt;
384 	unsigned long load_addr = 0;
385 	int load_addr_set = 0;
386 	unsigned long last_bss = 0, elf_bss = 0;
387 	unsigned long error = ~0UL;
388 	unsigned long total_size;
389 	int retval, i, size;
390 
391 	/* First of all, some simple consistency checks */
392 	if (interp_elf_ex->e_type != ET_EXEC &&
393 	    interp_elf_ex->e_type != ET_DYN)
394 		goto out;
395 	if (!elf_check_arch(interp_elf_ex))
396 		goto out;
397 	if (!interpreter->f_op || !interpreter->f_op->mmap)
398 		goto out;
399 
400 	/*
401 	 * If the size of this structure has changed, then punt, since
402 	 * we will be doing the wrong thing.
403 	 */
404 	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
405 		goto out;
406 	if (interp_elf_ex->e_phnum < 1 ||
407 		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
408 		goto out;
409 
410 	/* Now read in all of the header information */
411 	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
412 	if (size > ELF_MIN_ALIGN)
413 		goto out;
414 	elf_phdata = kmalloc(size, GFP_KERNEL);
415 	if (!elf_phdata)
416 		goto out;
417 
418 	retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
419 			     (char *)elf_phdata, size);
420 	error = -EIO;
421 	if (retval != size) {
422 		if (retval < 0)
423 			error = retval;
424 		goto out_close;
425 	}
426 
427 	total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
428 	if (!total_size) {
429 		error = -EINVAL;
430 		goto out_close;
431 	}
432 
433 	eppnt = elf_phdata;
434 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
435 		if (eppnt->p_type == PT_LOAD) {
436 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
437 			int elf_prot = 0;
438 			unsigned long vaddr = 0;
439 			unsigned long k, map_addr;
440 
441 			if (eppnt->p_flags & PF_R)
442 		    		elf_prot = PROT_READ;
443 			if (eppnt->p_flags & PF_W)
444 				elf_prot |= PROT_WRITE;
445 			if (eppnt->p_flags & PF_X)
446 				elf_prot |= PROT_EXEC;
447 			vaddr = eppnt->p_vaddr;
448 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
449 				elf_type |= MAP_FIXED;
450 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
451 				load_addr = -vaddr;
452 
453 			map_addr = elf_map(interpreter, load_addr + vaddr,
454 					eppnt, elf_prot, elf_type, total_size);
455 			total_size = 0;
456 			if (!*interp_map_addr)
457 				*interp_map_addr = map_addr;
458 			error = map_addr;
459 			if (BAD_ADDR(map_addr))
460 				goto out_close;
461 
462 			if (!load_addr_set &&
463 			    interp_elf_ex->e_type == ET_DYN) {
464 				load_addr = map_addr - ELF_PAGESTART(vaddr);
465 				load_addr_set = 1;
466 			}
467 
468 			/*
469 			 * Check to see if the section's size will overflow the
470 			 * allowed task size. Note that p_filesz must always be
471 			 * <= p_memsize so it's only necessary to check p_memsz.
472 			 */
473 			k = load_addr + eppnt->p_vaddr;
474 			if (BAD_ADDR(k) ||
475 			    eppnt->p_filesz > eppnt->p_memsz ||
476 			    eppnt->p_memsz > TASK_SIZE ||
477 			    TASK_SIZE - eppnt->p_memsz < k) {
478 				error = -ENOMEM;
479 				goto out_close;
480 			}
481 
482 			/*
483 			 * Find the end of the file mapping for this phdr, and
484 			 * keep track of the largest address we see for this.
485 			 */
486 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
487 			if (k > elf_bss)
488 				elf_bss = k;
489 
490 			/*
491 			 * Do the same thing for the memory mapping - between
492 			 * elf_bss and last_bss is the bss section.
493 			 */
494 			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
495 			if (k > last_bss)
496 				last_bss = k;
497 		}
498 	}
499 
500 	if (last_bss > elf_bss) {
501 		/*
502 		 * Now fill out the bss section.  First pad the last page up
503 		 * to the page boundary, and then perform a mmap to make sure
504 		 * that there are zero-mapped pages up to and including the
505 		 * last bss page.
506 		 */
507 		if (padzero(elf_bss)) {
508 			error = -EFAULT;
509 			goto out_close;
510 		}
511 
512 		/* What we have mapped so far */
513 		elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
514 
515 		/* Map the last of the bss segment */
516 		down_write(&current->mm->mmap_sem);
517 		error = do_brk(elf_bss, last_bss - elf_bss);
518 		up_write(&current->mm->mmap_sem);
519 		if (BAD_ADDR(error))
520 			goto out_close;
521 	}
522 
523 	error = load_addr;
524 
525 out_close:
526 	kfree(elf_phdata);
527 out:
528 	return error;
529 }
530 
531 /*
532  * These are the functions used to load ELF style executables and shared
533  * libraries.  There is no binary dependent code anywhere else.
534  */
535 
536 #define INTERPRETER_NONE 0
537 #define INTERPRETER_ELF 2
538 
539 #ifndef STACK_RND_MASK
540 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
541 #endif
542 
543 static unsigned long randomize_stack_top(unsigned long stack_top)
544 {
545 	unsigned int random_variable = 0;
546 
547 	if ((current->flags & PF_RANDOMIZE) &&
548 		!(current->personality & ADDR_NO_RANDOMIZE)) {
549 		random_variable = get_random_int() & STACK_RND_MASK;
550 		random_variable <<= PAGE_SHIFT;
551 	}
552 #ifdef CONFIG_STACK_GROWSUP
553 	return PAGE_ALIGN(stack_top) + random_variable;
554 #else
555 	return PAGE_ALIGN(stack_top) - random_variable;
556 #endif
557 }
558 
559 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
560 {
561 	struct file *interpreter = NULL; /* to shut gcc up */
562  	unsigned long load_addr = 0, load_bias = 0;
563 	int load_addr_set = 0;
564 	char * elf_interpreter = NULL;
565 	unsigned long error;
566 	struct elf_phdr *elf_ppnt, *elf_phdata;
567 	unsigned long elf_bss, elf_brk;
568 	int retval, i;
569 	unsigned int size;
570 	unsigned long elf_entry;
571 	unsigned long interp_load_addr = 0;
572 	unsigned long start_code, end_code, start_data, end_data;
573 	unsigned long reloc_func_desc __maybe_unused = 0;
574 	int executable_stack = EXSTACK_DEFAULT;
575 	unsigned long def_flags = 0;
576 	struct {
577 		struct elfhdr elf_ex;
578 		struct elfhdr interp_elf_ex;
579 	} *loc;
580 
581 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
582 	if (!loc) {
583 		retval = -ENOMEM;
584 		goto out_ret;
585 	}
586 
587 	/* Get the exec-header */
588 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
589 
590 	retval = -ENOEXEC;
591 	/* First of all, some simple consistency checks */
592 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
593 		goto out;
594 
595 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
596 		goto out;
597 	if (!elf_check_arch(&loc->elf_ex))
598 		goto out;
599 	if (!bprm->file->f_op || !bprm->file->f_op->mmap)
600 		goto out;
601 
602 	/* Now read in all of the header information */
603 	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
604 		goto out;
605 	if (loc->elf_ex.e_phnum < 1 ||
606 	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
607 		goto out;
608 	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
609 	retval = -ENOMEM;
610 	elf_phdata = kmalloc(size, GFP_KERNEL);
611 	if (!elf_phdata)
612 		goto out;
613 
614 	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
615 			     (char *)elf_phdata, size);
616 	if (retval != size) {
617 		if (retval >= 0)
618 			retval = -EIO;
619 		goto out_free_ph;
620 	}
621 
622 	elf_ppnt = elf_phdata;
623 	elf_bss = 0;
624 	elf_brk = 0;
625 
626 	start_code = ~0UL;
627 	end_code = 0;
628 	start_data = 0;
629 	end_data = 0;
630 
631 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
632 		if (elf_ppnt->p_type == PT_INTERP) {
633 			/* This is the program interpreter used for
634 			 * shared libraries - for now assume that this
635 			 * is an a.out format binary
636 			 */
637 			retval = -ENOEXEC;
638 			if (elf_ppnt->p_filesz > PATH_MAX ||
639 			    elf_ppnt->p_filesz < 2)
640 				goto out_free_ph;
641 
642 			retval = -ENOMEM;
643 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
644 						  GFP_KERNEL);
645 			if (!elf_interpreter)
646 				goto out_free_ph;
647 
648 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
649 					     elf_interpreter,
650 					     elf_ppnt->p_filesz);
651 			if (retval != elf_ppnt->p_filesz) {
652 				if (retval >= 0)
653 					retval = -EIO;
654 				goto out_free_interp;
655 			}
656 			/* make sure path is NULL terminated */
657 			retval = -ENOEXEC;
658 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
659 				goto out_free_interp;
660 
661 			interpreter = open_exec(elf_interpreter);
662 			retval = PTR_ERR(interpreter);
663 			if (IS_ERR(interpreter))
664 				goto out_free_interp;
665 
666 			/*
667 			 * If the binary is not readable then enforce
668 			 * mm->dumpable = 0 regardless of the interpreter's
669 			 * permissions.
670 			 */
671 			would_dump(bprm, interpreter);
672 
673 			retval = kernel_read(interpreter, 0, bprm->buf,
674 					     BINPRM_BUF_SIZE);
675 			if (retval != BINPRM_BUF_SIZE) {
676 				if (retval >= 0)
677 					retval = -EIO;
678 				goto out_free_dentry;
679 			}
680 
681 			/* Get the exec headers */
682 			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
683 			break;
684 		}
685 		elf_ppnt++;
686 	}
687 
688 	elf_ppnt = elf_phdata;
689 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
690 		if (elf_ppnt->p_type == PT_GNU_STACK) {
691 			if (elf_ppnt->p_flags & PF_X)
692 				executable_stack = EXSTACK_ENABLE_X;
693 			else
694 				executable_stack = EXSTACK_DISABLE_X;
695 			break;
696 		}
697 
698 	/* Some simple consistency checks for the interpreter */
699 	if (elf_interpreter) {
700 		retval = -ELIBBAD;
701 		/* Not an ELF interpreter */
702 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
703 			goto out_free_dentry;
704 		/* Verify the interpreter has a valid arch */
705 		if (!elf_check_arch(&loc->interp_elf_ex))
706 			goto out_free_dentry;
707 	}
708 
709 	/* Flush all traces of the currently running executable */
710 	retval = flush_old_exec(bprm);
711 	if (retval)
712 		goto out_free_dentry;
713 
714 	/* OK, This is the point of no return */
715 	current->flags &= ~PF_FORKNOEXEC;
716 	current->mm->def_flags = def_flags;
717 
718 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
719 	   may depend on the personality.  */
720 	SET_PERSONALITY(loc->elf_ex);
721 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
722 		current->personality |= READ_IMPLIES_EXEC;
723 
724 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
725 		current->flags |= PF_RANDOMIZE;
726 
727 	setup_new_exec(bprm);
728 
729 	/* Do this so that we can load the interpreter, if need be.  We will
730 	   change some of these later */
731 	current->mm->free_area_cache = current->mm->mmap_base;
732 	current->mm->cached_hole_size = 0;
733 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
734 				 executable_stack);
735 	if (retval < 0) {
736 		send_sig(SIGKILL, current, 0);
737 		goto out_free_dentry;
738 	}
739 
740 	current->mm->start_stack = bprm->p;
741 
742 	/* Now we do a little grungy work by mmapping the ELF image into
743 	   the correct location in memory. */
744 	for(i = 0, elf_ppnt = elf_phdata;
745 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
746 		int elf_prot = 0, elf_flags;
747 		unsigned long k, vaddr;
748 
749 		if (elf_ppnt->p_type != PT_LOAD)
750 			continue;
751 
752 		if (unlikely (elf_brk > elf_bss)) {
753 			unsigned long nbyte;
754 
755 			/* There was a PT_LOAD segment with p_memsz > p_filesz
756 			   before this one. Map anonymous pages, if needed,
757 			   and clear the area.  */
758 			retval = set_brk(elf_bss + load_bias,
759 					 elf_brk + load_bias);
760 			if (retval) {
761 				send_sig(SIGKILL, current, 0);
762 				goto out_free_dentry;
763 			}
764 			nbyte = ELF_PAGEOFFSET(elf_bss);
765 			if (nbyte) {
766 				nbyte = ELF_MIN_ALIGN - nbyte;
767 				if (nbyte > elf_brk - elf_bss)
768 					nbyte = elf_brk - elf_bss;
769 				if (clear_user((void __user *)elf_bss +
770 							load_bias, nbyte)) {
771 					/*
772 					 * This bss-zeroing can fail if the ELF
773 					 * file specifies odd protections. So
774 					 * we don't check the return value
775 					 */
776 				}
777 			}
778 		}
779 
780 		if (elf_ppnt->p_flags & PF_R)
781 			elf_prot |= PROT_READ;
782 		if (elf_ppnt->p_flags & PF_W)
783 			elf_prot |= PROT_WRITE;
784 		if (elf_ppnt->p_flags & PF_X)
785 			elf_prot |= PROT_EXEC;
786 
787 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
788 
789 		vaddr = elf_ppnt->p_vaddr;
790 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
791 			elf_flags |= MAP_FIXED;
792 		} else if (loc->elf_ex.e_type == ET_DYN) {
793 			/* Try and get dynamic programs out of the way of the
794 			 * default mmap base, as well as whatever program they
795 			 * might try to exec.  This is because the brk will
796 			 * follow the loader, and is not movable.  */
797 #if defined(CONFIG_X86) || defined(CONFIG_ARM)
798 			/* Memory randomization might have been switched off
799 			 * in runtime via sysctl.
800 			 * If that is the case, retain the original non-zero
801 			 * load_bias value in order to establish proper
802 			 * non-randomized mappings.
803 			 */
804 			if (current->flags & PF_RANDOMIZE)
805 				load_bias = 0;
806 			else
807 				load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
808 #else
809 			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
810 #endif
811 		}
812 
813 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
814 				elf_prot, elf_flags, 0);
815 		if (BAD_ADDR(error)) {
816 			send_sig(SIGKILL, current, 0);
817 			retval = IS_ERR((void *)error) ?
818 				PTR_ERR((void*)error) : -EINVAL;
819 			goto out_free_dentry;
820 		}
821 
822 		if (!load_addr_set) {
823 			load_addr_set = 1;
824 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
825 			if (loc->elf_ex.e_type == ET_DYN) {
826 				load_bias += error -
827 				             ELF_PAGESTART(load_bias + vaddr);
828 				load_addr += load_bias;
829 				reloc_func_desc = load_bias;
830 			}
831 		}
832 		k = elf_ppnt->p_vaddr;
833 		if (k < start_code)
834 			start_code = k;
835 		if (start_data < k)
836 			start_data = k;
837 
838 		/*
839 		 * Check to see if the section's size will overflow the
840 		 * allowed task size. Note that p_filesz must always be
841 		 * <= p_memsz so it is only necessary to check p_memsz.
842 		 */
843 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
844 		    elf_ppnt->p_memsz > TASK_SIZE ||
845 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
846 			/* set_brk can never work. Avoid overflows. */
847 			send_sig(SIGKILL, current, 0);
848 			retval = -EINVAL;
849 			goto out_free_dentry;
850 		}
851 
852 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
853 
854 		if (k > elf_bss)
855 			elf_bss = k;
856 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
857 			end_code = k;
858 		if (end_data < k)
859 			end_data = k;
860 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
861 		if (k > elf_brk)
862 			elf_brk = k;
863 	}
864 
865 	loc->elf_ex.e_entry += load_bias;
866 	elf_bss += load_bias;
867 	elf_brk += load_bias;
868 	start_code += load_bias;
869 	end_code += load_bias;
870 	start_data += load_bias;
871 	end_data += load_bias;
872 
873 	/* Calling set_brk effectively mmaps the pages that we need
874 	 * for the bss and break sections.  We must do this before
875 	 * mapping in the interpreter, to make sure it doesn't wind
876 	 * up getting placed where the bss needs to go.
877 	 */
878 	retval = set_brk(elf_bss, elf_brk);
879 	if (retval) {
880 		send_sig(SIGKILL, current, 0);
881 		goto out_free_dentry;
882 	}
883 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
884 		send_sig(SIGSEGV, current, 0);
885 		retval = -EFAULT; /* Nobody gets to see this, but.. */
886 		goto out_free_dentry;
887 	}
888 
889 	if (elf_interpreter) {
890 		unsigned long uninitialized_var(interp_map_addr);
891 
892 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
893 					    interpreter,
894 					    &interp_map_addr,
895 					    load_bias);
896 		if (!IS_ERR((void *)elf_entry)) {
897 			/*
898 			 * load_elf_interp() returns relocation
899 			 * adjustment
900 			 */
901 			interp_load_addr = elf_entry;
902 			elf_entry += loc->interp_elf_ex.e_entry;
903 		}
904 		if (BAD_ADDR(elf_entry)) {
905 			force_sig(SIGSEGV, current);
906 			retval = IS_ERR((void *)elf_entry) ?
907 					(int)elf_entry : -EINVAL;
908 			goto out_free_dentry;
909 		}
910 		reloc_func_desc = interp_load_addr;
911 
912 		allow_write_access(interpreter);
913 		fput(interpreter);
914 		kfree(elf_interpreter);
915 	} else {
916 		elf_entry = loc->elf_ex.e_entry;
917 		if (BAD_ADDR(elf_entry)) {
918 			force_sig(SIGSEGV, current);
919 			retval = -EINVAL;
920 			goto out_free_dentry;
921 		}
922 	}
923 
924 	kfree(elf_phdata);
925 
926 	set_binfmt(&elf_format);
927 
928 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
929 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
930 	if (retval < 0) {
931 		send_sig(SIGKILL, current, 0);
932 		goto out;
933 	}
934 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
935 
936 	install_exec_creds(bprm);
937 	current->flags &= ~PF_FORKNOEXEC;
938 	retval = create_elf_tables(bprm, &loc->elf_ex,
939 			  load_addr, interp_load_addr);
940 	if (retval < 0) {
941 		send_sig(SIGKILL, current, 0);
942 		goto out;
943 	}
944 	/* N.B. passed_fileno might not be initialized? */
945 	current->mm->end_code = end_code;
946 	current->mm->start_code = start_code;
947 	current->mm->start_data = start_data;
948 	current->mm->end_data = end_data;
949 	current->mm->start_stack = bprm->p;
950 
951 #ifdef arch_randomize_brk
952 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
953 		current->mm->brk = current->mm->start_brk =
954 			arch_randomize_brk(current->mm);
955 #ifdef CONFIG_COMPAT_BRK
956 		current->brk_randomized = 1;
957 #endif
958 	}
959 #endif
960 
961 	if (current->personality & MMAP_PAGE_ZERO) {
962 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
963 		   and some applications "depend" upon this behavior.
964 		   Since we do not have the power to recompile these, we
965 		   emulate the SVr4 behavior. Sigh. */
966 		down_write(&current->mm->mmap_sem);
967 		error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
968 				MAP_FIXED | MAP_PRIVATE, 0);
969 		up_write(&current->mm->mmap_sem);
970 	}
971 
972 #ifdef ELF_PLAT_INIT
973 	/*
974 	 * The ABI may specify that certain registers be set up in special
975 	 * ways (on i386 %edx is the address of a DT_FINI function, for
976 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
977 	 * that the e_entry field is the address of the function descriptor
978 	 * for the startup routine, rather than the address of the startup
979 	 * routine itself.  This macro performs whatever initialization to
980 	 * the regs structure is required as well as any relocations to the
981 	 * function descriptor entries when executing dynamically links apps.
982 	 */
983 	ELF_PLAT_INIT(regs, reloc_func_desc);
984 #endif
985 
986 	start_thread(regs, elf_entry, bprm->p);
987 	retval = 0;
988 out:
989 	kfree(loc);
990 out_ret:
991 	return retval;
992 
993 	/* error cleanup */
994 out_free_dentry:
995 	allow_write_access(interpreter);
996 	if (interpreter)
997 		fput(interpreter);
998 out_free_interp:
999 	kfree(elf_interpreter);
1000 out_free_ph:
1001 	kfree(elf_phdata);
1002 	goto out;
1003 }
1004 
1005 /* This is really simpleminded and specialized - we are loading an
1006    a.out library that is given an ELF header. */
1007 static int load_elf_library(struct file *file)
1008 {
1009 	struct elf_phdr *elf_phdata;
1010 	struct elf_phdr *eppnt;
1011 	unsigned long elf_bss, bss, len;
1012 	int retval, error, i, j;
1013 	struct elfhdr elf_ex;
1014 
1015 	error = -ENOEXEC;
1016 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1017 	if (retval != sizeof(elf_ex))
1018 		goto out;
1019 
1020 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1021 		goto out;
1022 
1023 	/* First of all, some simple consistency checks */
1024 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1025 	    !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1026 		goto out;
1027 
1028 	/* Now read in all of the header information */
1029 
1030 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1031 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1032 
1033 	error = -ENOMEM;
1034 	elf_phdata = kmalloc(j, GFP_KERNEL);
1035 	if (!elf_phdata)
1036 		goto out;
1037 
1038 	eppnt = elf_phdata;
1039 	error = -ENOEXEC;
1040 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1041 	if (retval != j)
1042 		goto out_free_ph;
1043 
1044 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1045 		if ((eppnt + i)->p_type == PT_LOAD)
1046 			j++;
1047 	if (j != 1)
1048 		goto out_free_ph;
1049 
1050 	while (eppnt->p_type != PT_LOAD)
1051 		eppnt++;
1052 
1053 	/* Now use mmap to map the library into memory. */
1054 	down_write(&current->mm->mmap_sem);
1055 	error = do_mmap(file,
1056 			ELF_PAGESTART(eppnt->p_vaddr),
1057 			(eppnt->p_filesz +
1058 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1059 			PROT_READ | PROT_WRITE | PROT_EXEC,
1060 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1061 			(eppnt->p_offset -
1062 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1063 	up_write(&current->mm->mmap_sem);
1064 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1065 		goto out_free_ph;
1066 
1067 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1068 	if (padzero(elf_bss)) {
1069 		error = -EFAULT;
1070 		goto out_free_ph;
1071 	}
1072 
1073 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1074 			    ELF_MIN_ALIGN - 1);
1075 	bss = eppnt->p_memsz + eppnt->p_vaddr;
1076 	if (bss > len) {
1077 		down_write(&current->mm->mmap_sem);
1078 		do_brk(len, bss - len);
1079 		up_write(&current->mm->mmap_sem);
1080 	}
1081 	error = 0;
1082 
1083 out_free_ph:
1084 	kfree(elf_phdata);
1085 out:
1086 	return error;
1087 }
1088 
1089 #ifdef CONFIG_ELF_CORE
1090 /*
1091  * ELF core dumper
1092  *
1093  * Modelled on fs/exec.c:aout_core_dump()
1094  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1095  */
1096 
1097 /*
1098  * Decide what to dump of a segment, part, all or none.
1099  */
1100 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1101 				   unsigned long mm_flags)
1102 {
1103 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1104 
1105 	/* The vma can be set up to tell us the answer directly.  */
1106 	if (vma->vm_flags & VM_ALWAYSDUMP)
1107 		goto whole;
1108 
1109 	/* Hugetlb memory check */
1110 	if (vma->vm_flags & VM_HUGETLB) {
1111 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1112 			goto whole;
1113 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1114 			goto whole;
1115 	}
1116 
1117 	/* Do not dump I/O mapped devices or special mappings */
1118 	if (vma->vm_flags & (VM_IO | VM_RESERVED))
1119 		return 0;
1120 
1121 	/* By default, dump shared memory if mapped from an anonymous file. */
1122 	if (vma->vm_flags & VM_SHARED) {
1123 		if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1124 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1125 			goto whole;
1126 		return 0;
1127 	}
1128 
1129 	/* Dump segments that have been written to.  */
1130 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1131 		goto whole;
1132 	if (vma->vm_file == NULL)
1133 		return 0;
1134 
1135 	if (FILTER(MAPPED_PRIVATE))
1136 		goto whole;
1137 
1138 	/*
1139 	 * If this looks like the beginning of a DSO or executable mapping,
1140 	 * check for an ELF header.  If we find one, dump the first page to
1141 	 * aid in determining what was mapped here.
1142 	 */
1143 	if (FILTER(ELF_HEADERS) &&
1144 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1145 		u32 __user *header = (u32 __user *) vma->vm_start;
1146 		u32 word;
1147 		mm_segment_t fs = get_fs();
1148 		/*
1149 		 * Doing it this way gets the constant folded by GCC.
1150 		 */
1151 		union {
1152 			u32 cmp;
1153 			char elfmag[SELFMAG];
1154 		} magic;
1155 		BUILD_BUG_ON(SELFMAG != sizeof word);
1156 		magic.elfmag[EI_MAG0] = ELFMAG0;
1157 		magic.elfmag[EI_MAG1] = ELFMAG1;
1158 		magic.elfmag[EI_MAG2] = ELFMAG2;
1159 		magic.elfmag[EI_MAG3] = ELFMAG3;
1160 		/*
1161 		 * Switch to the user "segment" for get_user(),
1162 		 * then put back what elf_core_dump() had in place.
1163 		 */
1164 		set_fs(USER_DS);
1165 		if (unlikely(get_user(word, header)))
1166 			word = 0;
1167 		set_fs(fs);
1168 		if (word == magic.cmp)
1169 			return PAGE_SIZE;
1170 	}
1171 
1172 #undef	FILTER
1173 
1174 	return 0;
1175 
1176 whole:
1177 	return vma->vm_end - vma->vm_start;
1178 }
1179 
1180 /* An ELF note in memory */
1181 struct memelfnote
1182 {
1183 	const char *name;
1184 	int type;
1185 	unsigned int datasz;
1186 	void *data;
1187 };
1188 
1189 static int notesize(struct memelfnote *en)
1190 {
1191 	int sz;
1192 
1193 	sz = sizeof(struct elf_note);
1194 	sz += roundup(strlen(en->name) + 1, 4);
1195 	sz += roundup(en->datasz, 4);
1196 
1197 	return sz;
1198 }
1199 
1200 #define DUMP_WRITE(addr, nr, foffset)	\
1201 	do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1202 
1203 static int alignfile(struct file *file, loff_t *foffset)
1204 {
1205 	static const char buf[4] = { 0, };
1206 	DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1207 	return 1;
1208 }
1209 
1210 static int writenote(struct memelfnote *men, struct file *file,
1211 			loff_t *foffset)
1212 {
1213 	struct elf_note en;
1214 	en.n_namesz = strlen(men->name) + 1;
1215 	en.n_descsz = men->datasz;
1216 	en.n_type = men->type;
1217 
1218 	DUMP_WRITE(&en, sizeof(en), foffset);
1219 	DUMP_WRITE(men->name, en.n_namesz, foffset);
1220 	if (!alignfile(file, foffset))
1221 		return 0;
1222 	DUMP_WRITE(men->data, men->datasz, foffset);
1223 	if (!alignfile(file, foffset))
1224 		return 0;
1225 
1226 	return 1;
1227 }
1228 #undef DUMP_WRITE
1229 
1230 static void fill_elf_header(struct elfhdr *elf, int segs,
1231 			    u16 machine, u32 flags, u8 osabi)
1232 {
1233 	memset(elf, 0, sizeof(*elf));
1234 
1235 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1236 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1237 	elf->e_ident[EI_DATA] = ELF_DATA;
1238 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1239 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1240 
1241 	elf->e_type = ET_CORE;
1242 	elf->e_machine = machine;
1243 	elf->e_version = EV_CURRENT;
1244 	elf->e_phoff = sizeof(struct elfhdr);
1245 	elf->e_flags = flags;
1246 	elf->e_ehsize = sizeof(struct elfhdr);
1247 	elf->e_phentsize = sizeof(struct elf_phdr);
1248 	elf->e_phnum = segs;
1249 
1250 	return;
1251 }
1252 
1253 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1254 {
1255 	phdr->p_type = PT_NOTE;
1256 	phdr->p_offset = offset;
1257 	phdr->p_vaddr = 0;
1258 	phdr->p_paddr = 0;
1259 	phdr->p_filesz = sz;
1260 	phdr->p_memsz = 0;
1261 	phdr->p_flags = 0;
1262 	phdr->p_align = 0;
1263 	return;
1264 }
1265 
1266 static void fill_note(struct memelfnote *note, const char *name, int type,
1267 		unsigned int sz, void *data)
1268 {
1269 	note->name = name;
1270 	note->type = type;
1271 	note->datasz = sz;
1272 	note->data = data;
1273 	return;
1274 }
1275 
1276 /*
1277  * fill up all the fields in prstatus from the given task struct, except
1278  * registers which need to be filled up separately.
1279  */
1280 static void fill_prstatus(struct elf_prstatus *prstatus,
1281 		struct task_struct *p, long signr)
1282 {
1283 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1284 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1285 	prstatus->pr_sighold = p->blocked.sig[0];
1286 	rcu_read_lock();
1287 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1288 	rcu_read_unlock();
1289 	prstatus->pr_pid = task_pid_vnr(p);
1290 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1291 	prstatus->pr_sid = task_session_vnr(p);
1292 	if (thread_group_leader(p)) {
1293 		struct task_cputime cputime;
1294 
1295 		/*
1296 		 * This is the record for the group leader.  It shows the
1297 		 * group-wide total, not its individual thread total.
1298 		 */
1299 		thread_group_cputime(p, &cputime);
1300 		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1301 		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1302 	} else {
1303 		cputime_to_timeval(p->utime, &prstatus->pr_utime);
1304 		cputime_to_timeval(p->stime, &prstatus->pr_stime);
1305 	}
1306 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1307 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1308 }
1309 
1310 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1311 		       struct mm_struct *mm)
1312 {
1313 	const struct cred *cred;
1314 	unsigned int i, len;
1315 
1316 	/* first copy the parameters from user space */
1317 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1318 
1319 	len = mm->arg_end - mm->arg_start;
1320 	if (len >= ELF_PRARGSZ)
1321 		len = ELF_PRARGSZ-1;
1322 	if (copy_from_user(&psinfo->pr_psargs,
1323 		           (const char __user *)mm->arg_start, len))
1324 		return -EFAULT;
1325 	for(i = 0; i < len; i++)
1326 		if (psinfo->pr_psargs[i] == 0)
1327 			psinfo->pr_psargs[i] = ' ';
1328 	psinfo->pr_psargs[len] = 0;
1329 
1330 	rcu_read_lock();
1331 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1332 	rcu_read_unlock();
1333 	psinfo->pr_pid = task_pid_vnr(p);
1334 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1335 	psinfo->pr_sid = task_session_vnr(p);
1336 
1337 	i = p->state ? ffz(~p->state) + 1 : 0;
1338 	psinfo->pr_state = i;
1339 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1340 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1341 	psinfo->pr_nice = task_nice(p);
1342 	psinfo->pr_flag = p->flags;
1343 	rcu_read_lock();
1344 	cred = __task_cred(p);
1345 	SET_UID(psinfo->pr_uid, cred->uid);
1346 	SET_GID(psinfo->pr_gid, cred->gid);
1347 	rcu_read_unlock();
1348 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1349 
1350 	return 0;
1351 }
1352 
1353 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1354 {
1355 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1356 	int i = 0;
1357 	do
1358 		i += 2;
1359 	while (auxv[i - 2] != AT_NULL);
1360 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1361 }
1362 
1363 #ifdef CORE_DUMP_USE_REGSET
1364 #include <linux/regset.h>
1365 
1366 struct elf_thread_core_info {
1367 	struct elf_thread_core_info *next;
1368 	struct task_struct *task;
1369 	struct elf_prstatus prstatus;
1370 	struct memelfnote notes[0];
1371 };
1372 
1373 struct elf_note_info {
1374 	struct elf_thread_core_info *thread;
1375 	struct memelfnote psinfo;
1376 	struct memelfnote auxv;
1377 	size_t size;
1378 	int thread_notes;
1379 };
1380 
1381 /*
1382  * When a regset has a writeback hook, we call it on each thread before
1383  * dumping user memory.  On register window machines, this makes sure the
1384  * user memory backing the register data is up to date before we read it.
1385  */
1386 static void do_thread_regset_writeback(struct task_struct *task,
1387 				       const struct user_regset *regset)
1388 {
1389 	if (regset->writeback)
1390 		regset->writeback(task, regset, 1);
1391 }
1392 
1393 static int fill_thread_core_info(struct elf_thread_core_info *t,
1394 				 const struct user_regset_view *view,
1395 				 long signr, size_t *total)
1396 {
1397 	unsigned int i;
1398 
1399 	/*
1400 	 * NT_PRSTATUS is the one special case, because the regset data
1401 	 * goes into the pr_reg field inside the note contents, rather
1402 	 * than being the whole note contents.  We fill the reset in here.
1403 	 * We assume that regset 0 is NT_PRSTATUS.
1404 	 */
1405 	fill_prstatus(&t->prstatus, t->task, signr);
1406 	(void) view->regsets[0].get(t->task, &view->regsets[0],
1407 				    0, sizeof(t->prstatus.pr_reg),
1408 				    &t->prstatus.pr_reg, NULL);
1409 
1410 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1411 		  sizeof(t->prstatus), &t->prstatus);
1412 	*total += notesize(&t->notes[0]);
1413 
1414 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1415 
1416 	/*
1417 	 * Each other regset might generate a note too.  For each regset
1418 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1419 	 * all zero and we'll know to skip writing it later.
1420 	 */
1421 	for (i = 1; i < view->n; ++i) {
1422 		const struct user_regset *regset = &view->regsets[i];
1423 		do_thread_regset_writeback(t->task, regset);
1424 		if (regset->core_note_type &&
1425 		    (!regset->active || regset->active(t->task, regset))) {
1426 			int ret;
1427 			size_t size = regset->n * regset->size;
1428 			void *data = kmalloc(size, GFP_KERNEL);
1429 			if (unlikely(!data))
1430 				return 0;
1431 			ret = regset->get(t->task, regset,
1432 					  0, size, data, NULL);
1433 			if (unlikely(ret))
1434 				kfree(data);
1435 			else {
1436 				if (regset->core_note_type != NT_PRFPREG)
1437 					fill_note(&t->notes[i], "LINUX",
1438 						  regset->core_note_type,
1439 						  size, data);
1440 				else {
1441 					t->prstatus.pr_fpvalid = 1;
1442 					fill_note(&t->notes[i], "CORE",
1443 						  NT_PRFPREG, size, data);
1444 				}
1445 				*total += notesize(&t->notes[i]);
1446 			}
1447 		}
1448 	}
1449 
1450 	return 1;
1451 }
1452 
1453 static int fill_note_info(struct elfhdr *elf, int phdrs,
1454 			  struct elf_note_info *info,
1455 			  long signr, struct pt_regs *regs)
1456 {
1457 	struct task_struct *dump_task = current;
1458 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1459 	struct elf_thread_core_info *t;
1460 	struct elf_prpsinfo *psinfo;
1461 	struct core_thread *ct;
1462 	unsigned int i;
1463 
1464 	info->size = 0;
1465 	info->thread = NULL;
1466 
1467 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1468 	if (psinfo == NULL)
1469 		return 0;
1470 
1471 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1472 
1473 	/*
1474 	 * Figure out how many notes we're going to need for each thread.
1475 	 */
1476 	info->thread_notes = 0;
1477 	for (i = 0; i < view->n; ++i)
1478 		if (view->regsets[i].core_note_type != 0)
1479 			++info->thread_notes;
1480 
1481 	/*
1482 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1483 	 * since it is our one special case.
1484 	 */
1485 	if (unlikely(info->thread_notes == 0) ||
1486 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1487 		WARN_ON(1);
1488 		return 0;
1489 	}
1490 
1491 	/*
1492 	 * Initialize the ELF file header.
1493 	 */
1494 	fill_elf_header(elf, phdrs,
1495 			view->e_machine, view->e_flags, view->ei_osabi);
1496 
1497 	/*
1498 	 * Allocate a structure for each thread.
1499 	 */
1500 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1501 		t = kzalloc(offsetof(struct elf_thread_core_info,
1502 				     notes[info->thread_notes]),
1503 			    GFP_KERNEL);
1504 		if (unlikely(!t))
1505 			return 0;
1506 
1507 		t->task = ct->task;
1508 		if (ct->task == dump_task || !info->thread) {
1509 			t->next = info->thread;
1510 			info->thread = t;
1511 		} else {
1512 			/*
1513 			 * Make sure to keep the original task at
1514 			 * the head of the list.
1515 			 */
1516 			t->next = info->thread->next;
1517 			info->thread->next = t;
1518 		}
1519 	}
1520 
1521 	/*
1522 	 * Now fill in each thread's information.
1523 	 */
1524 	for (t = info->thread; t != NULL; t = t->next)
1525 		if (!fill_thread_core_info(t, view, signr, &info->size))
1526 			return 0;
1527 
1528 	/*
1529 	 * Fill in the two process-wide notes.
1530 	 */
1531 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1532 	info->size += notesize(&info->psinfo);
1533 
1534 	fill_auxv_note(&info->auxv, current->mm);
1535 	info->size += notesize(&info->auxv);
1536 
1537 	return 1;
1538 }
1539 
1540 static size_t get_note_info_size(struct elf_note_info *info)
1541 {
1542 	return info->size;
1543 }
1544 
1545 /*
1546  * Write all the notes for each thread.  When writing the first thread, the
1547  * process-wide notes are interleaved after the first thread-specific note.
1548  */
1549 static int write_note_info(struct elf_note_info *info,
1550 			   struct file *file, loff_t *foffset)
1551 {
1552 	bool first = 1;
1553 	struct elf_thread_core_info *t = info->thread;
1554 
1555 	do {
1556 		int i;
1557 
1558 		if (!writenote(&t->notes[0], file, foffset))
1559 			return 0;
1560 
1561 		if (first && !writenote(&info->psinfo, file, foffset))
1562 			return 0;
1563 		if (first && !writenote(&info->auxv, file, foffset))
1564 			return 0;
1565 
1566 		for (i = 1; i < info->thread_notes; ++i)
1567 			if (t->notes[i].data &&
1568 			    !writenote(&t->notes[i], file, foffset))
1569 				return 0;
1570 
1571 		first = 0;
1572 		t = t->next;
1573 	} while (t);
1574 
1575 	return 1;
1576 }
1577 
1578 static void free_note_info(struct elf_note_info *info)
1579 {
1580 	struct elf_thread_core_info *threads = info->thread;
1581 	while (threads) {
1582 		unsigned int i;
1583 		struct elf_thread_core_info *t = threads;
1584 		threads = t->next;
1585 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1586 		for (i = 1; i < info->thread_notes; ++i)
1587 			kfree(t->notes[i].data);
1588 		kfree(t);
1589 	}
1590 	kfree(info->psinfo.data);
1591 }
1592 
1593 #else
1594 
1595 /* Here is the structure in which status of each thread is captured. */
1596 struct elf_thread_status
1597 {
1598 	struct list_head list;
1599 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1600 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1601 	struct task_struct *thread;
1602 #ifdef ELF_CORE_COPY_XFPREGS
1603 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1604 #endif
1605 	struct memelfnote notes[3];
1606 	int num_notes;
1607 };
1608 
1609 /*
1610  * In order to add the specific thread information for the elf file format,
1611  * we need to keep a linked list of every threads pr_status and then create
1612  * a single section for them in the final core file.
1613  */
1614 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1615 {
1616 	int sz = 0;
1617 	struct task_struct *p = t->thread;
1618 	t->num_notes = 0;
1619 
1620 	fill_prstatus(&t->prstatus, p, signr);
1621 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1622 
1623 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1624 		  &(t->prstatus));
1625 	t->num_notes++;
1626 	sz += notesize(&t->notes[0]);
1627 
1628 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1629 								&t->fpu))) {
1630 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1631 			  &(t->fpu));
1632 		t->num_notes++;
1633 		sz += notesize(&t->notes[1]);
1634 	}
1635 
1636 #ifdef ELF_CORE_COPY_XFPREGS
1637 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1638 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1639 			  sizeof(t->xfpu), &t->xfpu);
1640 		t->num_notes++;
1641 		sz += notesize(&t->notes[2]);
1642 	}
1643 #endif
1644 	return sz;
1645 }
1646 
1647 struct elf_note_info {
1648 	struct memelfnote *notes;
1649 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1650 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1651 	struct list_head thread_list;
1652 	elf_fpregset_t *fpu;
1653 #ifdef ELF_CORE_COPY_XFPREGS
1654 	elf_fpxregset_t *xfpu;
1655 #endif
1656 	int thread_status_size;
1657 	int numnote;
1658 };
1659 
1660 static int elf_note_info_init(struct elf_note_info *info)
1661 {
1662 	memset(info, 0, sizeof(*info));
1663 	INIT_LIST_HEAD(&info->thread_list);
1664 
1665 	/* Allocate space for six ELF notes */
1666 	info->notes = kmalloc(6 * sizeof(struct memelfnote), GFP_KERNEL);
1667 	if (!info->notes)
1668 		return 0;
1669 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1670 	if (!info->psinfo)
1671 		goto notes_free;
1672 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1673 	if (!info->prstatus)
1674 		goto psinfo_free;
1675 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1676 	if (!info->fpu)
1677 		goto prstatus_free;
1678 #ifdef ELF_CORE_COPY_XFPREGS
1679 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1680 	if (!info->xfpu)
1681 		goto fpu_free;
1682 #endif
1683 	return 1;
1684 #ifdef ELF_CORE_COPY_XFPREGS
1685  fpu_free:
1686 	kfree(info->fpu);
1687 #endif
1688  prstatus_free:
1689 	kfree(info->prstatus);
1690  psinfo_free:
1691 	kfree(info->psinfo);
1692  notes_free:
1693 	kfree(info->notes);
1694 	return 0;
1695 }
1696 
1697 static int fill_note_info(struct elfhdr *elf, int phdrs,
1698 			  struct elf_note_info *info,
1699 			  long signr, struct pt_regs *regs)
1700 {
1701 	struct list_head *t;
1702 
1703 	if (!elf_note_info_init(info))
1704 		return 0;
1705 
1706 	if (signr) {
1707 		struct core_thread *ct;
1708 		struct elf_thread_status *ets;
1709 
1710 		for (ct = current->mm->core_state->dumper.next;
1711 						ct; ct = ct->next) {
1712 			ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1713 			if (!ets)
1714 				return 0;
1715 
1716 			ets->thread = ct->task;
1717 			list_add(&ets->list, &info->thread_list);
1718 		}
1719 
1720 		list_for_each(t, &info->thread_list) {
1721 			int sz;
1722 
1723 			ets = list_entry(t, struct elf_thread_status, list);
1724 			sz = elf_dump_thread_status(signr, ets);
1725 			info->thread_status_size += sz;
1726 		}
1727 	}
1728 	/* now collect the dump for the current */
1729 	memset(info->prstatus, 0, sizeof(*info->prstatus));
1730 	fill_prstatus(info->prstatus, current, signr);
1731 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1732 
1733 	/* Set up header */
1734 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1735 
1736 	/*
1737 	 * Set up the notes in similar form to SVR4 core dumps made
1738 	 * with info from their /proc.
1739 	 */
1740 
1741 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1742 		  sizeof(*info->prstatus), info->prstatus);
1743 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1744 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1745 		  sizeof(*info->psinfo), info->psinfo);
1746 
1747 	info->numnote = 2;
1748 
1749 	fill_auxv_note(&info->notes[info->numnote++], current->mm);
1750 
1751 	/* Try to dump the FPU. */
1752 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1753 							       info->fpu);
1754 	if (info->prstatus->pr_fpvalid)
1755 		fill_note(info->notes + info->numnote++,
1756 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1757 #ifdef ELF_CORE_COPY_XFPREGS
1758 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
1759 		fill_note(info->notes + info->numnote++,
1760 			  "LINUX", ELF_CORE_XFPREG_TYPE,
1761 			  sizeof(*info->xfpu), info->xfpu);
1762 #endif
1763 
1764 	return 1;
1765 }
1766 
1767 static size_t get_note_info_size(struct elf_note_info *info)
1768 {
1769 	int sz = 0;
1770 	int i;
1771 
1772 	for (i = 0; i < info->numnote; i++)
1773 		sz += notesize(info->notes + i);
1774 
1775 	sz += info->thread_status_size;
1776 
1777 	return sz;
1778 }
1779 
1780 static int write_note_info(struct elf_note_info *info,
1781 			   struct file *file, loff_t *foffset)
1782 {
1783 	int i;
1784 	struct list_head *t;
1785 
1786 	for (i = 0; i < info->numnote; i++)
1787 		if (!writenote(info->notes + i, file, foffset))
1788 			return 0;
1789 
1790 	/* write out the thread status notes section */
1791 	list_for_each(t, &info->thread_list) {
1792 		struct elf_thread_status *tmp =
1793 				list_entry(t, struct elf_thread_status, list);
1794 
1795 		for (i = 0; i < tmp->num_notes; i++)
1796 			if (!writenote(&tmp->notes[i], file, foffset))
1797 				return 0;
1798 	}
1799 
1800 	return 1;
1801 }
1802 
1803 static void free_note_info(struct elf_note_info *info)
1804 {
1805 	while (!list_empty(&info->thread_list)) {
1806 		struct list_head *tmp = info->thread_list.next;
1807 		list_del(tmp);
1808 		kfree(list_entry(tmp, struct elf_thread_status, list));
1809 	}
1810 
1811 	kfree(info->prstatus);
1812 	kfree(info->psinfo);
1813 	kfree(info->notes);
1814 	kfree(info->fpu);
1815 #ifdef ELF_CORE_COPY_XFPREGS
1816 	kfree(info->xfpu);
1817 #endif
1818 }
1819 
1820 #endif
1821 
1822 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1823 					struct vm_area_struct *gate_vma)
1824 {
1825 	struct vm_area_struct *ret = tsk->mm->mmap;
1826 
1827 	if (ret)
1828 		return ret;
1829 	return gate_vma;
1830 }
1831 /*
1832  * Helper function for iterating across a vma list.  It ensures that the caller
1833  * will visit `gate_vma' prior to terminating the search.
1834  */
1835 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1836 					struct vm_area_struct *gate_vma)
1837 {
1838 	struct vm_area_struct *ret;
1839 
1840 	ret = this_vma->vm_next;
1841 	if (ret)
1842 		return ret;
1843 	if (this_vma == gate_vma)
1844 		return NULL;
1845 	return gate_vma;
1846 }
1847 
1848 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1849 			     elf_addr_t e_shoff, int segs)
1850 {
1851 	elf->e_shoff = e_shoff;
1852 	elf->e_shentsize = sizeof(*shdr4extnum);
1853 	elf->e_shnum = 1;
1854 	elf->e_shstrndx = SHN_UNDEF;
1855 
1856 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1857 
1858 	shdr4extnum->sh_type = SHT_NULL;
1859 	shdr4extnum->sh_size = elf->e_shnum;
1860 	shdr4extnum->sh_link = elf->e_shstrndx;
1861 	shdr4extnum->sh_info = segs;
1862 }
1863 
1864 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
1865 				     unsigned long mm_flags)
1866 {
1867 	struct vm_area_struct *vma;
1868 	size_t size = 0;
1869 
1870 	for (vma = first_vma(current, gate_vma); vma != NULL;
1871 	     vma = next_vma(vma, gate_vma))
1872 		size += vma_dump_size(vma, mm_flags);
1873 	return size;
1874 }
1875 
1876 /*
1877  * Actual dumper
1878  *
1879  * This is a two-pass process; first we find the offsets of the bits,
1880  * and then they are actually written out.  If we run out of core limit
1881  * we just truncate.
1882  */
1883 static int elf_core_dump(struct coredump_params *cprm)
1884 {
1885 	int has_dumped = 0;
1886 	mm_segment_t fs;
1887 	int segs;
1888 	size_t size = 0;
1889 	struct vm_area_struct *vma, *gate_vma;
1890 	struct elfhdr *elf = NULL;
1891 	loff_t offset = 0, dataoff, foffset;
1892 	struct elf_note_info info;
1893 	struct elf_phdr *phdr4note = NULL;
1894 	struct elf_shdr *shdr4extnum = NULL;
1895 	Elf_Half e_phnum;
1896 	elf_addr_t e_shoff;
1897 
1898 	/*
1899 	 * We no longer stop all VM operations.
1900 	 *
1901 	 * This is because those proceses that could possibly change map_count
1902 	 * or the mmap / vma pages are now blocked in do_exit on current
1903 	 * finishing this core dump.
1904 	 *
1905 	 * Only ptrace can touch these memory addresses, but it doesn't change
1906 	 * the map_count or the pages allocated. So no possibility of crashing
1907 	 * exists while dumping the mm->vm_next areas to the core file.
1908 	 */
1909 
1910 	/* alloc memory for large data structures: too large to be on stack */
1911 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1912 	if (!elf)
1913 		goto out;
1914 	/*
1915 	 * The number of segs are recored into ELF header as 16bit value.
1916 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1917 	 */
1918 	segs = current->mm->map_count;
1919 	segs += elf_core_extra_phdrs();
1920 
1921 	gate_vma = get_gate_vma(current->mm);
1922 	if (gate_vma != NULL)
1923 		segs++;
1924 
1925 	/* for notes section */
1926 	segs++;
1927 
1928 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
1929 	 * this, kernel supports extended numbering. Have a look at
1930 	 * include/linux/elf.h for further information. */
1931 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
1932 
1933 	/*
1934 	 * Collect all the non-memory information about the process for the
1935 	 * notes.  This also sets up the file header.
1936 	 */
1937 	if (!fill_note_info(elf, e_phnum, &info, cprm->signr, cprm->regs))
1938 		goto cleanup;
1939 
1940 	has_dumped = 1;
1941 	current->flags |= PF_DUMPCORE;
1942 
1943 	fs = get_fs();
1944 	set_fs(KERNEL_DS);
1945 
1946 	offset += sizeof(*elf);				/* Elf header */
1947 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
1948 	foffset = offset;
1949 
1950 	/* Write notes phdr entry */
1951 	{
1952 		size_t sz = get_note_info_size(&info);
1953 
1954 		sz += elf_coredump_extra_notes_size();
1955 
1956 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
1957 		if (!phdr4note)
1958 			goto end_coredump;
1959 
1960 		fill_elf_note_phdr(phdr4note, sz, offset);
1961 		offset += sz;
1962 	}
1963 
1964 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1965 
1966 	offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
1967 	offset += elf_core_extra_data_size();
1968 	e_shoff = offset;
1969 
1970 	if (e_phnum == PN_XNUM) {
1971 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
1972 		if (!shdr4extnum)
1973 			goto end_coredump;
1974 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
1975 	}
1976 
1977 	offset = dataoff;
1978 
1979 	size += sizeof(*elf);
1980 	if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
1981 		goto end_coredump;
1982 
1983 	size += sizeof(*phdr4note);
1984 	if (size > cprm->limit
1985 	    || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
1986 		goto end_coredump;
1987 
1988 	/* Write program headers for segments dump */
1989 	for (vma = first_vma(current, gate_vma); vma != NULL;
1990 			vma = next_vma(vma, gate_vma)) {
1991 		struct elf_phdr phdr;
1992 
1993 		phdr.p_type = PT_LOAD;
1994 		phdr.p_offset = offset;
1995 		phdr.p_vaddr = vma->vm_start;
1996 		phdr.p_paddr = 0;
1997 		phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
1998 		phdr.p_memsz = vma->vm_end - vma->vm_start;
1999 		offset += phdr.p_filesz;
2000 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2001 		if (vma->vm_flags & VM_WRITE)
2002 			phdr.p_flags |= PF_W;
2003 		if (vma->vm_flags & VM_EXEC)
2004 			phdr.p_flags |= PF_X;
2005 		phdr.p_align = ELF_EXEC_PAGESIZE;
2006 
2007 		size += sizeof(phdr);
2008 		if (size > cprm->limit
2009 		    || !dump_write(cprm->file, &phdr, sizeof(phdr)))
2010 			goto end_coredump;
2011 	}
2012 
2013 	if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
2014 		goto end_coredump;
2015 
2016  	/* write out the notes section */
2017 	if (!write_note_info(&info, cprm->file, &foffset))
2018 		goto end_coredump;
2019 
2020 	if (elf_coredump_extra_notes_write(cprm->file, &foffset))
2021 		goto end_coredump;
2022 
2023 	/* Align to page */
2024 	if (!dump_seek(cprm->file, dataoff - foffset))
2025 		goto end_coredump;
2026 
2027 	for (vma = first_vma(current, gate_vma); vma != NULL;
2028 			vma = next_vma(vma, gate_vma)) {
2029 		unsigned long addr;
2030 		unsigned long end;
2031 
2032 		end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2033 
2034 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2035 			struct page *page;
2036 			int stop;
2037 
2038 			page = get_dump_page(addr);
2039 			if (page) {
2040 				void *kaddr = kmap(page);
2041 				stop = ((size += PAGE_SIZE) > cprm->limit) ||
2042 					!dump_write(cprm->file, kaddr,
2043 						    PAGE_SIZE);
2044 				kunmap(page);
2045 				page_cache_release(page);
2046 			} else
2047 				stop = !dump_seek(cprm->file, PAGE_SIZE);
2048 			if (stop)
2049 				goto end_coredump;
2050 		}
2051 	}
2052 
2053 	if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
2054 		goto end_coredump;
2055 
2056 	if (e_phnum == PN_XNUM) {
2057 		size += sizeof(*shdr4extnum);
2058 		if (size > cprm->limit
2059 		    || !dump_write(cprm->file, shdr4extnum,
2060 				   sizeof(*shdr4extnum)))
2061 			goto end_coredump;
2062 	}
2063 
2064 end_coredump:
2065 	set_fs(fs);
2066 
2067 cleanup:
2068 	free_note_info(&info);
2069 	kfree(shdr4extnum);
2070 	kfree(phdr4note);
2071 	kfree(elf);
2072 out:
2073 	return has_dumped;
2074 }
2075 
2076 #endif		/* CONFIG_ELF_CORE */
2077 
2078 static int __init init_elf_binfmt(void)
2079 {
2080 	return register_binfmt(&elf_format);
2081 }
2082 
2083 static void __exit exit_elf_binfmt(void)
2084 {
2085 	/* Remove the COFF and ELF loaders. */
2086 	unregister_binfmt(&elf_format);
2087 }
2088 
2089 core_initcall(init_elf_binfmt);
2090 module_exit(exit_elf_binfmt);
2091 MODULE_LICENSE("GPL");
2092