xref: /openbmc/linux/fs/binfmt_elf.c (revision 12a5b00a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/binfmt_elf.c
4  *
5  * These are the functions used to load ELF format executables as used
6  * on SVr4 machines.  Information on the format may be found in the book
7  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8  * Tools".
9  *
10  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/errno.h>
19 #include <linux/signal.h>
20 #include <linux/binfmts.h>
21 #include <linux/string.h>
22 #include <linux/file.h>
23 #include <linux/slab.h>
24 #include <linux/personality.h>
25 #include <linux/elfcore.h>
26 #include <linux/init.h>
27 #include <linux/highuid.h>
28 #include <linux/compiler.h>
29 #include <linux/highmem.h>
30 #include <linux/hugetlb.h>
31 #include <linux/pagemap.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/random.h>
35 #include <linux/elf.h>
36 #include <linux/elf-randomize.h>
37 #include <linux/utsname.h>
38 #include <linux/coredump.h>
39 #include <linux/sched.h>
40 #include <linux/sched/coredump.h>
41 #include <linux/sched/task_stack.h>
42 #include <linux/sched/cputime.h>
43 #include <linux/cred.h>
44 #include <linux/dax.h>
45 #include <linux/uaccess.h>
46 #include <asm/param.h>
47 #include <asm/page.h>
48 
49 #ifndef user_long_t
50 #define user_long_t long
51 #endif
52 #ifndef user_siginfo_t
53 #define user_siginfo_t siginfo_t
54 #endif
55 
56 /* That's for binfmt_elf_fdpic to deal with */
57 #ifndef elf_check_fdpic
58 #define elf_check_fdpic(ex) false
59 #endif
60 
61 static int load_elf_binary(struct linux_binprm *bprm);
62 
63 #ifdef CONFIG_USELIB
64 static int load_elf_library(struct file *);
65 #else
66 #define load_elf_library NULL
67 #endif
68 
69 /*
70  * If we don't support core dumping, then supply a NULL so we
71  * don't even try.
72  */
73 #ifdef CONFIG_ELF_CORE
74 static int elf_core_dump(struct coredump_params *cprm);
75 #else
76 #define elf_core_dump	NULL
77 #endif
78 
79 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
80 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
81 #else
82 #define ELF_MIN_ALIGN	PAGE_SIZE
83 #endif
84 
85 #ifndef ELF_CORE_EFLAGS
86 #define ELF_CORE_EFLAGS	0
87 #endif
88 
89 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
90 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
91 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
92 
93 static struct linux_binfmt elf_format = {
94 	.module		= THIS_MODULE,
95 	.load_binary	= load_elf_binary,
96 	.load_shlib	= load_elf_library,
97 	.core_dump	= elf_core_dump,
98 	.min_coredump	= ELF_EXEC_PAGESIZE,
99 };
100 
101 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
102 
103 static int set_brk(unsigned long start, unsigned long end, int prot)
104 {
105 	start = ELF_PAGEALIGN(start);
106 	end = ELF_PAGEALIGN(end);
107 	if (end > start) {
108 		/*
109 		 * Map the last of the bss segment.
110 		 * If the header is requesting these pages to be
111 		 * executable, honour that (ppc32 needs this).
112 		 */
113 		int error = vm_brk_flags(start, end - start,
114 				prot & PROT_EXEC ? VM_EXEC : 0);
115 		if (error)
116 			return error;
117 	}
118 	current->mm->start_brk = current->mm->brk = end;
119 	return 0;
120 }
121 
122 /* We need to explicitly zero any fractional pages
123    after the data section (i.e. bss).  This would
124    contain the junk from the file that should not
125    be in memory
126  */
127 static int padzero(unsigned long elf_bss)
128 {
129 	unsigned long nbyte;
130 
131 	nbyte = ELF_PAGEOFFSET(elf_bss);
132 	if (nbyte) {
133 		nbyte = ELF_MIN_ALIGN - nbyte;
134 		if (clear_user((void __user *) elf_bss, nbyte))
135 			return -EFAULT;
136 	}
137 	return 0;
138 }
139 
140 /* Let's use some macros to make this stack manipulation a little clearer */
141 #ifdef CONFIG_STACK_GROWSUP
142 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
143 #define STACK_ROUND(sp, items) \
144 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
145 #define STACK_ALLOC(sp, len) ({ \
146 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
147 	old_sp; })
148 #else
149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
150 #define STACK_ROUND(sp, items) \
151 	(((unsigned long) (sp - items)) &~ 15UL)
152 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
153 #endif
154 
155 #ifndef ELF_BASE_PLATFORM
156 /*
157  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
158  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
159  * will be copied to the user stack in the same manner as AT_PLATFORM.
160  */
161 #define ELF_BASE_PLATFORM NULL
162 #endif
163 
164 static int
165 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
166 		unsigned long load_addr, unsigned long interp_load_addr,
167 		unsigned long e_entry)
168 {
169 	struct mm_struct *mm = current->mm;
170 	unsigned long p = bprm->p;
171 	int argc = bprm->argc;
172 	int envc = bprm->envc;
173 	elf_addr_t __user *sp;
174 	elf_addr_t __user *u_platform;
175 	elf_addr_t __user *u_base_platform;
176 	elf_addr_t __user *u_rand_bytes;
177 	const char *k_platform = ELF_PLATFORM;
178 	const char *k_base_platform = ELF_BASE_PLATFORM;
179 	unsigned char k_rand_bytes[16];
180 	int items;
181 	elf_addr_t *elf_info;
182 	int ei_index;
183 	const struct cred *cred = current_cred();
184 	struct vm_area_struct *vma;
185 
186 	/*
187 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
188 	 * evictions by the processes running on the same package. One
189 	 * thing we can do is to shuffle the initial stack for them.
190 	 */
191 
192 	p = arch_align_stack(p);
193 
194 	/*
195 	 * If this architecture has a platform capability string, copy it
196 	 * to userspace.  In some cases (Sparc), this info is impossible
197 	 * for userspace to get any other way, in others (i386) it is
198 	 * merely difficult.
199 	 */
200 	u_platform = NULL;
201 	if (k_platform) {
202 		size_t len = strlen(k_platform) + 1;
203 
204 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
205 		if (__copy_to_user(u_platform, k_platform, len))
206 			return -EFAULT;
207 	}
208 
209 	/*
210 	 * If this architecture has a "base" platform capability
211 	 * string, copy it to userspace.
212 	 */
213 	u_base_platform = NULL;
214 	if (k_base_platform) {
215 		size_t len = strlen(k_base_platform) + 1;
216 
217 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
218 		if (__copy_to_user(u_base_platform, k_base_platform, len))
219 			return -EFAULT;
220 	}
221 
222 	/*
223 	 * Generate 16 random bytes for userspace PRNG seeding.
224 	 */
225 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
226 	u_rand_bytes = (elf_addr_t __user *)
227 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
228 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
229 		return -EFAULT;
230 
231 	/* Create the ELF interpreter info */
232 	elf_info = (elf_addr_t *)mm->saved_auxv;
233 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
234 #define NEW_AUX_ENT(id, val) \
235 	do { \
236 		*elf_info++ = id; \
237 		*elf_info++ = val; \
238 	} while (0)
239 
240 #ifdef ARCH_DLINFO
241 	/*
242 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
243 	 * AUXV.
244 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
245 	 * ARCH_DLINFO changes
246 	 */
247 	ARCH_DLINFO;
248 #endif
249 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
250 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
251 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
252 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
253 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
254 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
255 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
256 	NEW_AUX_ENT(AT_FLAGS, 0);
257 	NEW_AUX_ENT(AT_ENTRY, e_entry);
258 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
259 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
260 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
261 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
262 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
263 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
264 #ifdef ELF_HWCAP2
265 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
266 #endif
267 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
268 	if (k_platform) {
269 		NEW_AUX_ENT(AT_PLATFORM,
270 			    (elf_addr_t)(unsigned long)u_platform);
271 	}
272 	if (k_base_platform) {
273 		NEW_AUX_ENT(AT_BASE_PLATFORM,
274 			    (elf_addr_t)(unsigned long)u_base_platform);
275 	}
276 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
277 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
278 	}
279 #undef NEW_AUX_ENT
280 	/* AT_NULL is zero; clear the rest too */
281 	memset(elf_info, 0, (char *)mm->saved_auxv +
282 			sizeof(mm->saved_auxv) - (char *)elf_info);
283 
284 	/* And advance past the AT_NULL entry.  */
285 	elf_info += 2;
286 
287 	ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
288 	sp = STACK_ADD(p, ei_index);
289 
290 	items = (argc + 1) + (envc + 1) + 1;
291 	bprm->p = STACK_ROUND(sp, items);
292 
293 	/* Point sp at the lowest address on the stack */
294 #ifdef CONFIG_STACK_GROWSUP
295 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
296 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
297 #else
298 	sp = (elf_addr_t __user *)bprm->p;
299 #endif
300 
301 
302 	/*
303 	 * Grow the stack manually; some architectures have a limit on how
304 	 * far ahead a user-space access may be in order to grow the stack.
305 	 */
306 	vma = find_extend_vma(mm, bprm->p);
307 	if (!vma)
308 		return -EFAULT;
309 
310 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
311 	if (__put_user(argc, sp++))
312 		return -EFAULT;
313 
314 	/* Populate list of argv pointers back to argv strings. */
315 	p = mm->arg_end = mm->arg_start;
316 	while (argc-- > 0) {
317 		size_t len;
318 		if (__put_user((elf_addr_t)p, sp++))
319 			return -EFAULT;
320 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
321 		if (!len || len > MAX_ARG_STRLEN)
322 			return -EINVAL;
323 		p += len;
324 	}
325 	if (__put_user(0, sp++))
326 		return -EFAULT;
327 	mm->arg_end = p;
328 
329 	/* Populate list of envp pointers back to envp strings. */
330 	mm->env_end = mm->env_start = p;
331 	while (envc-- > 0) {
332 		size_t len;
333 		if (__put_user((elf_addr_t)p, sp++))
334 			return -EFAULT;
335 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
336 		if (!len || len > MAX_ARG_STRLEN)
337 			return -EINVAL;
338 		p += len;
339 	}
340 	if (__put_user(0, sp++))
341 		return -EFAULT;
342 	mm->env_end = p;
343 
344 	/* Put the elf_info on the stack in the right place.  */
345 	if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
346 		return -EFAULT;
347 	return 0;
348 }
349 
350 #ifndef elf_map
351 
352 static unsigned long elf_map(struct file *filep, unsigned long addr,
353 		const struct elf_phdr *eppnt, int prot, int type,
354 		unsigned long total_size)
355 {
356 	unsigned long map_addr;
357 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
358 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
359 	addr = ELF_PAGESTART(addr);
360 	size = ELF_PAGEALIGN(size);
361 
362 	/* mmap() will return -EINVAL if given a zero size, but a
363 	 * segment with zero filesize is perfectly valid */
364 	if (!size)
365 		return addr;
366 
367 	/*
368 	* total_size is the size of the ELF (interpreter) image.
369 	* The _first_ mmap needs to know the full size, otherwise
370 	* randomization might put this image into an overlapping
371 	* position with the ELF binary image. (since size < total_size)
372 	* So we first map the 'big' image - and unmap the remainder at
373 	* the end. (which unmap is needed for ELF images with holes.)
374 	*/
375 	if (total_size) {
376 		total_size = ELF_PAGEALIGN(total_size);
377 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
378 		if (!BAD_ADDR(map_addr))
379 			vm_munmap(map_addr+size, total_size-size);
380 	} else
381 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
382 
383 	if ((type & MAP_FIXED_NOREPLACE) &&
384 	    PTR_ERR((void *)map_addr) == -EEXIST)
385 		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
386 			task_pid_nr(current), current->comm, (void *)addr);
387 
388 	return(map_addr);
389 }
390 
391 #endif /* !elf_map */
392 
393 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
394 {
395 	int i, first_idx = -1, last_idx = -1;
396 
397 	for (i = 0; i < nr; i++) {
398 		if (cmds[i].p_type == PT_LOAD) {
399 			last_idx = i;
400 			if (first_idx == -1)
401 				first_idx = i;
402 		}
403 	}
404 	if (first_idx == -1)
405 		return 0;
406 
407 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
408 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
409 }
410 
411 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
412 {
413 	ssize_t rv;
414 
415 	rv = kernel_read(file, buf, len, &pos);
416 	if (unlikely(rv != len)) {
417 		return (rv < 0) ? rv : -EIO;
418 	}
419 	return 0;
420 }
421 
422 /**
423  * load_elf_phdrs() - load ELF program headers
424  * @elf_ex:   ELF header of the binary whose program headers should be loaded
425  * @elf_file: the opened ELF binary file
426  *
427  * Loads ELF program headers from the binary file elf_file, which has the ELF
428  * header pointed to by elf_ex, into a newly allocated array. The caller is
429  * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
430  */
431 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
432 				       struct file *elf_file)
433 {
434 	struct elf_phdr *elf_phdata = NULL;
435 	int retval, err = -1;
436 	unsigned int size;
437 
438 	/*
439 	 * If the size of this structure has changed, then punt, since
440 	 * we will be doing the wrong thing.
441 	 */
442 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
443 		goto out;
444 
445 	/* Sanity check the number of program headers... */
446 	/* ...and their total size. */
447 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
448 	if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
449 		goto out;
450 
451 	elf_phdata = kmalloc(size, GFP_KERNEL);
452 	if (!elf_phdata)
453 		goto out;
454 
455 	/* Read in the program headers */
456 	retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
457 	if (retval < 0) {
458 		err = retval;
459 		goto out;
460 	}
461 
462 	/* Success! */
463 	err = 0;
464 out:
465 	if (err) {
466 		kfree(elf_phdata);
467 		elf_phdata = NULL;
468 	}
469 	return elf_phdata;
470 }
471 
472 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
473 
474 /**
475  * struct arch_elf_state - arch-specific ELF loading state
476  *
477  * This structure is used to preserve architecture specific data during
478  * the loading of an ELF file, throughout the checking of architecture
479  * specific ELF headers & through to the point where the ELF load is
480  * known to be proceeding (ie. SET_PERSONALITY).
481  *
482  * This implementation is a dummy for architectures which require no
483  * specific state.
484  */
485 struct arch_elf_state {
486 };
487 
488 #define INIT_ARCH_ELF_STATE {}
489 
490 /**
491  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
492  * @ehdr:	The main ELF header
493  * @phdr:	The program header to check
494  * @elf:	The open ELF file
495  * @is_interp:	True if the phdr is from the interpreter of the ELF being
496  *		loaded, else false.
497  * @state:	Architecture-specific state preserved throughout the process
498  *		of loading the ELF.
499  *
500  * Inspects the program header phdr to validate its correctness and/or
501  * suitability for the system. Called once per ELF program header in the
502  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
503  * interpreter.
504  *
505  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
506  *         with that return code.
507  */
508 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
509 				   struct elf_phdr *phdr,
510 				   struct file *elf, bool is_interp,
511 				   struct arch_elf_state *state)
512 {
513 	/* Dummy implementation, always proceed */
514 	return 0;
515 }
516 
517 /**
518  * arch_check_elf() - check an ELF executable
519  * @ehdr:	The main ELF header
520  * @has_interp:	True if the ELF has an interpreter, else false.
521  * @interp_ehdr: The interpreter's ELF header
522  * @state:	Architecture-specific state preserved throughout the process
523  *		of loading the ELF.
524  *
525  * Provides a final opportunity for architecture code to reject the loading
526  * of the ELF & cause an exec syscall to return an error. This is called after
527  * all program headers to be checked by arch_elf_pt_proc have been.
528  *
529  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
530  *         with that return code.
531  */
532 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
533 				 struct elfhdr *interp_ehdr,
534 				 struct arch_elf_state *state)
535 {
536 	/* Dummy implementation, always proceed */
537 	return 0;
538 }
539 
540 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
541 
542 static inline int make_prot(u32 p_flags)
543 {
544 	int prot = 0;
545 
546 	if (p_flags & PF_R)
547 		prot |= PROT_READ;
548 	if (p_flags & PF_W)
549 		prot |= PROT_WRITE;
550 	if (p_flags & PF_X)
551 		prot |= PROT_EXEC;
552 	return prot;
553 }
554 
555 /* This is much more generalized than the library routine read function,
556    so we keep this separate.  Technically the library read function
557    is only provided so that we can read a.out libraries that have
558    an ELF header */
559 
560 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
561 		struct file *interpreter,
562 		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
563 {
564 	struct elf_phdr *eppnt;
565 	unsigned long load_addr = 0;
566 	int load_addr_set = 0;
567 	unsigned long last_bss = 0, elf_bss = 0;
568 	int bss_prot = 0;
569 	unsigned long error = ~0UL;
570 	unsigned long total_size;
571 	int i;
572 
573 	/* First of all, some simple consistency checks */
574 	if (interp_elf_ex->e_type != ET_EXEC &&
575 	    interp_elf_ex->e_type != ET_DYN)
576 		goto out;
577 	if (!elf_check_arch(interp_elf_ex) ||
578 	    elf_check_fdpic(interp_elf_ex))
579 		goto out;
580 	if (!interpreter->f_op->mmap)
581 		goto out;
582 
583 	total_size = total_mapping_size(interp_elf_phdata,
584 					interp_elf_ex->e_phnum);
585 	if (!total_size) {
586 		error = -EINVAL;
587 		goto out;
588 	}
589 
590 	eppnt = interp_elf_phdata;
591 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
592 		if (eppnt->p_type == PT_LOAD) {
593 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
594 			int elf_prot = make_prot(eppnt->p_flags);
595 			unsigned long vaddr = 0;
596 			unsigned long k, map_addr;
597 
598 			vaddr = eppnt->p_vaddr;
599 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
600 				elf_type |= MAP_FIXED_NOREPLACE;
601 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
602 				load_addr = -vaddr;
603 
604 			map_addr = elf_map(interpreter, load_addr + vaddr,
605 					eppnt, elf_prot, elf_type, total_size);
606 			total_size = 0;
607 			error = map_addr;
608 			if (BAD_ADDR(map_addr))
609 				goto out;
610 
611 			if (!load_addr_set &&
612 			    interp_elf_ex->e_type == ET_DYN) {
613 				load_addr = map_addr - ELF_PAGESTART(vaddr);
614 				load_addr_set = 1;
615 			}
616 
617 			/*
618 			 * Check to see if the section's size will overflow the
619 			 * allowed task size. Note that p_filesz must always be
620 			 * <= p_memsize so it's only necessary to check p_memsz.
621 			 */
622 			k = load_addr + eppnt->p_vaddr;
623 			if (BAD_ADDR(k) ||
624 			    eppnt->p_filesz > eppnt->p_memsz ||
625 			    eppnt->p_memsz > TASK_SIZE ||
626 			    TASK_SIZE - eppnt->p_memsz < k) {
627 				error = -ENOMEM;
628 				goto out;
629 			}
630 
631 			/*
632 			 * Find the end of the file mapping for this phdr, and
633 			 * keep track of the largest address we see for this.
634 			 */
635 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
636 			if (k > elf_bss)
637 				elf_bss = k;
638 
639 			/*
640 			 * Do the same thing for the memory mapping - between
641 			 * elf_bss and last_bss is the bss section.
642 			 */
643 			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
644 			if (k > last_bss) {
645 				last_bss = k;
646 				bss_prot = elf_prot;
647 			}
648 		}
649 	}
650 
651 	/*
652 	 * Now fill out the bss section: first pad the last page from
653 	 * the file up to the page boundary, and zero it from elf_bss
654 	 * up to the end of the page.
655 	 */
656 	if (padzero(elf_bss)) {
657 		error = -EFAULT;
658 		goto out;
659 	}
660 	/*
661 	 * Next, align both the file and mem bss up to the page size,
662 	 * since this is where elf_bss was just zeroed up to, and where
663 	 * last_bss will end after the vm_brk_flags() below.
664 	 */
665 	elf_bss = ELF_PAGEALIGN(elf_bss);
666 	last_bss = ELF_PAGEALIGN(last_bss);
667 	/* Finally, if there is still more bss to allocate, do it. */
668 	if (last_bss > elf_bss) {
669 		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
670 				bss_prot & PROT_EXEC ? VM_EXEC : 0);
671 		if (error)
672 			goto out;
673 	}
674 
675 	error = load_addr;
676 out:
677 	return error;
678 }
679 
680 /*
681  * These are the functions used to load ELF style executables and shared
682  * libraries.  There is no binary dependent code anywhere else.
683  */
684 
685 static int load_elf_binary(struct linux_binprm *bprm)
686 {
687 	struct file *interpreter = NULL; /* to shut gcc up */
688  	unsigned long load_addr = 0, load_bias = 0;
689 	int load_addr_set = 0;
690 	unsigned long error;
691 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
692 	unsigned long elf_bss, elf_brk;
693 	int bss_prot = 0;
694 	int retval, i;
695 	unsigned long elf_entry;
696 	unsigned long e_entry;
697 	unsigned long interp_load_addr = 0;
698 	unsigned long start_code, end_code, start_data, end_data;
699 	unsigned long reloc_func_desc __maybe_unused = 0;
700 	int executable_stack = EXSTACK_DEFAULT;
701 	struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
702 	struct {
703 		struct elfhdr interp_elf_ex;
704 	} *loc;
705 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
706 	struct mm_struct *mm;
707 	struct pt_regs *regs;
708 
709 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
710 	if (!loc) {
711 		retval = -ENOMEM;
712 		goto out_ret;
713 	}
714 
715 	retval = -ENOEXEC;
716 	/* First of all, some simple consistency checks */
717 	if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
718 		goto out;
719 
720 	if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
721 		goto out;
722 	if (!elf_check_arch(elf_ex))
723 		goto out;
724 	if (elf_check_fdpic(elf_ex))
725 		goto out;
726 	if (!bprm->file->f_op->mmap)
727 		goto out;
728 
729 	elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
730 	if (!elf_phdata)
731 		goto out;
732 
733 	elf_ppnt = elf_phdata;
734 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
735 		char *elf_interpreter;
736 
737 		if (elf_ppnt->p_type != PT_INTERP)
738 			continue;
739 
740 		/*
741 		 * This is the program interpreter used for shared libraries -
742 		 * for now assume that this is an a.out format binary.
743 		 */
744 		retval = -ENOEXEC;
745 		if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
746 			goto out_free_ph;
747 
748 		retval = -ENOMEM;
749 		elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
750 		if (!elf_interpreter)
751 			goto out_free_ph;
752 
753 		retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
754 				  elf_ppnt->p_offset);
755 		if (retval < 0)
756 			goto out_free_interp;
757 		/* make sure path is NULL terminated */
758 		retval = -ENOEXEC;
759 		if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
760 			goto out_free_interp;
761 
762 		interpreter = open_exec(elf_interpreter);
763 		kfree(elf_interpreter);
764 		retval = PTR_ERR(interpreter);
765 		if (IS_ERR(interpreter))
766 			goto out_free_ph;
767 
768 		/*
769 		 * If the binary is not readable then enforce mm->dumpable = 0
770 		 * regardless of the interpreter's permissions.
771 		 */
772 		would_dump(bprm, interpreter);
773 
774 		/* Get the exec headers */
775 		retval = elf_read(interpreter, &loc->interp_elf_ex,
776 				  sizeof(loc->interp_elf_ex), 0);
777 		if (retval < 0)
778 			goto out_free_dentry;
779 
780 		break;
781 
782 out_free_interp:
783 		kfree(elf_interpreter);
784 		goto out_free_ph;
785 	}
786 
787 	elf_ppnt = elf_phdata;
788 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
789 		switch (elf_ppnt->p_type) {
790 		case PT_GNU_STACK:
791 			if (elf_ppnt->p_flags & PF_X)
792 				executable_stack = EXSTACK_ENABLE_X;
793 			else
794 				executable_stack = EXSTACK_DISABLE_X;
795 			break;
796 
797 		case PT_LOPROC ... PT_HIPROC:
798 			retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
799 						  bprm->file, false,
800 						  &arch_state);
801 			if (retval)
802 				goto out_free_dentry;
803 			break;
804 		}
805 
806 	/* Some simple consistency checks for the interpreter */
807 	if (interpreter) {
808 		retval = -ELIBBAD;
809 		/* Not an ELF interpreter */
810 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
811 			goto out_free_dentry;
812 		/* Verify the interpreter has a valid arch */
813 		if (!elf_check_arch(&loc->interp_elf_ex) ||
814 		    elf_check_fdpic(&loc->interp_elf_ex))
815 			goto out_free_dentry;
816 
817 		/* Load the interpreter program headers */
818 		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
819 						   interpreter);
820 		if (!interp_elf_phdata)
821 			goto out_free_dentry;
822 
823 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
824 		elf_ppnt = interp_elf_phdata;
825 		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
826 			switch (elf_ppnt->p_type) {
827 			case PT_LOPROC ... PT_HIPROC:
828 				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
829 							  elf_ppnt, interpreter,
830 							  true, &arch_state);
831 				if (retval)
832 					goto out_free_dentry;
833 				break;
834 			}
835 	}
836 
837 	/*
838 	 * Allow arch code to reject the ELF at this point, whilst it's
839 	 * still possible to return an error to the code that invoked
840 	 * the exec syscall.
841 	 */
842 	retval = arch_check_elf(elf_ex,
843 				!!interpreter, &loc->interp_elf_ex,
844 				&arch_state);
845 	if (retval)
846 		goto out_free_dentry;
847 
848 	/* Flush all traces of the currently running executable */
849 	retval = flush_old_exec(bprm);
850 	if (retval)
851 		goto out_free_dentry;
852 
853 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
854 	   may depend on the personality.  */
855 	SET_PERSONALITY2(*elf_ex, &arch_state);
856 	if (elf_read_implies_exec(*elf_ex, executable_stack))
857 		current->personality |= READ_IMPLIES_EXEC;
858 
859 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
860 		current->flags |= PF_RANDOMIZE;
861 
862 	setup_new_exec(bprm);
863 	install_exec_creds(bprm);
864 
865 	/* Do this so that we can load the interpreter, if need be.  We will
866 	   change some of these later */
867 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
868 				 executable_stack);
869 	if (retval < 0)
870 		goto out_free_dentry;
871 
872 	elf_bss = 0;
873 	elf_brk = 0;
874 
875 	start_code = ~0UL;
876 	end_code = 0;
877 	start_data = 0;
878 	end_data = 0;
879 
880 	/* Now we do a little grungy work by mmapping the ELF image into
881 	   the correct location in memory. */
882 	for(i = 0, elf_ppnt = elf_phdata;
883 	    i < elf_ex->e_phnum; i++, elf_ppnt++) {
884 		int elf_prot, elf_flags;
885 		unsigned long k, vaddr;
886 		unsigned long total_size = 0;
887 
888 		if (elf_ppnt->p_type != PT_LOAD)
889 			continue;
890 
891 		if (unlikely (elf_brk > elf_bss)) {
892 			unsigned long nbyte;
893 
894 			/* There was a PT_LOAD segment with p_memsz > p_filesz
895 			   before this one. Map anonymous pages, if needed,
896 			   and clear the area.  */
897 			retval = set_brk(elf_bss + load_bias,
898 					 elf_brk + load_bias,
899 					 bss_prot);
900 			if (retval)
901 				goto out_free_dentry;
902 			nbyte = ELF_PAGEOFFSET(elf_bss);
903 			if (nbyte) {
904 				nbyte = ELF_MIN_ALIGN - nbyte;
905 				if (nbyte > elf_brk - elf_bss)
906 					nbyte = elf_brk - elf_bss;
907 				if (clear_user((void __user *)elf_bss +
908 							load_bias, nbyte)) {
909 					/*
910 					 * This bss-zeroing can fail if the ELF
911 					 * file specifies odd protections. So
912 					 * we don't check the return value
913 					 */
914 				}
915 			}
916 		}
917 
918 		elf_prot = make_prot(elf_ppnt->p_flags);
919 
920 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
921 
922 		vaddr = elf_ppnt->p_vaddr;
923 		/*
924 		 * If we are loading ET_EXEC or we have already performed
925 		 * the ET_DYN load_addr calculations, proceed normally.
926 		 */
927 		if (elf_ex->e_type == ET_EXEC || load_addr_set) {
928 			elf_flags |= MAP_FIXED;
929 		} else if (elf_ex->e_type == ET_DYN) {
930 			/*
931 			 * This logic is run once for the first LOAD Program
932 			 * Header for ET_DYN binaries to calculate the
933 			 * randomization (load_bias) for all the LOAD
934 			 * Program Headers, and to calculate the entire
935 			 * size of the ELF mapping (total_size). (Note that
936 			 * load_addr_set is set to true later once the
937 			 * initial mapping is performed.)
938 			 *
939 			 * There are effectively two types of ET_DYN
940 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
941 			 * and loaders (ET_DYN without INTERP, since they
942 			 * _are_ the ELF interpreter). The loaders must
943 			 * be loaded away from programs since the program
944 			 * may otherwise collide with the loader (especially
945 			 * for ET_EXEC which does not have a randomized
946 			 * position). For example to handle invocations of
947 			 * "./ld.so someprog" to test out a new version of
948 			 * the loader, the subsequent program that the
949 			 * loader loads must avoid the loader itself, so
950 			 * they cannot share the same load range. Sufficient
951 			 * room for the brk must be allocated with the
952 			 * loader as well, since brk must be available with
953 			 * the loader.
954 			 *
955 			 * Therefore, programs are loaded offset from
956 			 * ELF_ET_DYN_BASE and loaders are loaded into the
957 			 * independently randomized mmap region (0 load_bias
958 			 * without MAP_FIXED).
959 			 */
960 			if (interpreter) {
961 				load_bias = ELF_ET_DYN_BASE;
962 				if (current->flags & PF_RANDOMIZE)
963 					load_bias += arch_mmap_rnd();
964 				elf_flags |= MAP_FIXED;
965 			} else
966 				load_bias = 0;
967 
968 			/*
969 			 * Since load_bias is used for all subsequent loading
970 			 * calculations, we must lower it by the first vaddr
971 			 * so that the remaining calculations based on the
972 			 * ELF vaddrs will be correctly offset. The result
973 			 * is then page aligned.
974 			 */
975 			load_bias = ELF_PAGESTART(load_bias - vaddr);
976 
977 			total_size = total_mapping_size(elf_phdata,
978 							elf_ex->e_phnum);
979 			if (!total_size) {
980 				retval = -EINVAL;
981 				goto out_free_dentry;
982 			}
983 		}
984 
985 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
986 				elf_prot, elf_flags, total_size);
987 		if (BAD_ADDR(error)) {
988 			retval = IS_ERR((void *)error) ?
989 				PTR_ERR((void*)error) : -EINVAL;
990 			goto out_free_dentry;
991 		}
992 
993 		if (!load_addr_set) {
994 			load_addr_set = 1;
995 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
996 			if (elf_ex->e_type == ET_DYN) {
997 				load_bias += error -
998 				             ELF_PAGESTART(load_bias + vaddr);
999 				load_addr += load_bias;
1000 				reloc_func_desc = load_bias;
1001 			}
1002 		}
1003 		k = elf_ppnt->p_vaddr;
1004 		if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1005 			start_code = k;
1006 		if (start_data < k)
1007 			start_data = k;
1008 
1009 		/*
1010 		 * Check to see if the section's size will overflow the
1011 		 * allowed task size. Note that p_filesz must always be
1012 		 * <= p_memsz so it is only necessary to check p_memsz.
1013 		 */
1014 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1015 		    elf_ppnt->p_memsz > TASK_SIZE ||
1016 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1017 			/* set_brk can never work. Avoid overflows. */
1018 			retval = -EINVAL;
1019 			goto out_free_dentry;
1020 		}
1021 
1022 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1023 
1024 		if (k > elf_bss)
1025 			elf_bss = k;
1026 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1027 			end_code = k;
1028 		if (end_data < k)
1029 			end_data = k;
1030 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1031 		if (k > elf_brk) {
1032 			bss_prot = elf_prot;
1033 			elf_brk = k;
1034 		}
1035 	}
1036 
1037 	e_entry = elf_ex->e_entry + load_bias;
1038 	elf_bss += load_bias;
1039 	elf_brk += load_bias;
1040 	start_code += load_bias;
1041 	end_code += load_bias;
1042 	start_data += load_bias;
1043 	end_data += load_bias;
1044 
1045 	/* Calling set_brk effectively mmaps the pages that we need
1046 	 * for the bss and break sections.  We must do this before
1047 	 * mapping in the interpreter, to make sure it doesn't wind
1048 	 * up getting placed where the bss needs to go.
1049 	 */
1050 	retval = set_brk(elf_bss, elf_brk, bss_prot);
1051 	if (retval)
1052 		goto out_free_dentry;
1053 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1054 		retval = -EFAULT; /* Nobody gets to see this, but.. */
1055 		goto out_free_dentry;
1056 	}
1057 
1058 	if (interpreter) {
1059 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
1060 					    interpreter,
1061 					    load_bias, interp_elf_phdata);
1062 		if (!IS_ERR((void *)elf_entry)) {
1063 			/*
1064 			 * load_elf_interp() returns relocation
1065 			 * adjustment
1066 			 */
1067 			interp_load_addr = elf_entry;
1068 			elf_entry += loc->interp_elf_ex.e_entry;
1069 		}
1070 		if (BAD_ADDR(elf_entry)) {
1071 			retval = IS_ERR((void *)elf_entry) ?
1072 					(int)elf_entry : -EINVAL;
1073 			goto out_free_dentry;
1074 		}
1075 		reloc_func_desc = interp_load_addr;
1076 
1077 		allow_write_access(interpreter);
1078 		fput(interpreter);
1079 	} else {
1080 		elf_entry = e_entry;
1081 		if (BAD_ADDR(elf_entry)) {
1082 			retval = -EINVAL;
1083 			goto out_free_dentry;
1084 		}
1085 	}
1086 
1087 	kfree(interp_elf_phdata);
1088 	kfree(elf_phdata);
1089 
1090 	set_binfmt(&elf_format);
1091 
1092 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1093 	retval = arch_setup_additional_pages(bprm, !!interpreter);
1094 	if (retval < 0)
1095 		goto out;
1096 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1097 
1098 	retval = create_elf_tables(bprm, elf_ex,
1099 			  load_addr, interp_load_addr, e_entry);
1100 	if (retval < 0)
1101 		goto out;
1102 
1103 	mm = current->mm;
1104 	mm->end_code = end_code;
1105 	mm->start_code = start_code;
1106 	mm->start_data = start_data;
1107 	mm->end_data = end_data;
1108 	mm->start_stack = bprm->p;
1109 
1110 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1111 		/*
1112 		 * For architectures with ELF randomization, when executing
1113 		 * a loader directly (i.e. no interpreter listed in ELF
1114 		 * headers), move the brk area out of the mmap region
1115 		 * (since it grows up, and may collide early with the stack
1116 		 * growing down), and into the unused ELF_ET_DYN_BASE region.
1117 		 */
1118 		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1119 		    elf_ex->e_type == ET_DYN && !interpreter) {
1120 			mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1121 		}
1122 
1123 		mm->brk = mm->start_brk = arch_randomize_brk(mm);
1124 #ifdef compat_brk_randomized
1125 		current->brk_randomized = 1;
1126 #endif
1127 	}
1128 
1129 	if (current->personality & MMAP_PAGE_ZERO) {
1130 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1131 		   and some applications "depend" upon this behavior.
1132 		   Since we do not have the power to recompile these, we
1133 		   emulate the SVr4 behavior. Sigh. */
1134 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1135 				MAP_FIXED | MAP_PRIVATE, 0);
1136 	}
1137 
1138 	regs = current_pt_regs();
1139 #ifdef ELF_PLAT_INIT
1140 	/*
1141 	 * The ABI may specify that certain registers be set up in special
1142 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1143 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1144 	 * that the e_entry field is the address of the function descriptor
1145 	 * for the startup routine, rather than the address of the startup
1146 	 * routine itself.  This macro performs whatever initialization to
1147 	 * the regs structure is required as well as any relocations to the
1148 	 * function descriptor entries when executing dynamically links apps.
1149 	 */
1150 	ELF_PLAT_INIT(regs, reloc_func_desc);
1151 #endif
1152 
1153 	finalize_exec(bprm);
1154 	start_thread(regs, elf_entry, bprm->p);
1155 	retval = 0;
1156 out:
1157 	kfree(loc);
1158 out_ret:
1159 	return retval;
1160 
1161 	/* error cleanup */
1162 out_free_dentry:
1163 	kfree(interp_elf_phdata);
1164 	allow_write_access(interpreter);
1165 	if (interpreter)
1166 		fput(interpreter);
1167 out_free_ph:
1168 	kfree(elf_phdata);
1169 	goto out;
1170 }
1171 
1172 #ifdef CONFIG_USELIB
1173 /* This is really simpleminded and specialized - we are loading an
1174    a.out library that is given an ELF header. */
1175 static int load_elf_library(struct file *file)
1176 {
1177 	struct elf_phdr *elf_phdata;
1178 	struct elf_phdr *eppnt;
1179 	unsigned long elf_bss, bss, len;
1180 	int retval, error, i, j;
1181 	struct elfhdr elf_ex;
1182 
1183 	error = -ENOEXEC;
1184 	retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1185 	if (retval < 0)
1186 		goto out;
1187 
1188 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1189 		goto out;
1190 
1191 	/* First of all, some simple consistency checks */
1192 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1193 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1194 		goto out;
1195 	if (elf_check_fdpic(&elf_ex))
1196 		goto out;
1197 
1198 	/* Now read in all of the header information */
1199 
1200 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1201 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1202 
1203 	error = -ENOMEM;
1204 	elf_phdata = kmalloc(j, GFP_KERNEL);
1205 	if (!elf_phdata)
1206 		goto out;
1207 
1208 	eppnt = elf_phdata;
1209 	error = -ENOEXEC;
1210 	retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1211 	if (retval < 0)
1212 		goto out_free_ph;
1213 
1214 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1215 		if ((eppnt + i)->p_type == PT_LOAD)
1216 			j++;
1217 	if (j != 1)
1218 		goto out_free_ph;
1219 
1220 	while (eppnt->p_type != PT_LOAD)
1221 		eppnt++;
1222 
1223 	/* Now use mmap to map the library into memory. */
1224 	error = vm_mmap(file,
1225 			ELF_PAGESTART(eppnt->p_vaddr),
1226 			(eppnt->p_filesz +
1227 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1228 			PROT_READ | PROT_WRITE | PROT_EXEC,
1229 			MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1230 			(eppnt->p_offset -
1231 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1232 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1233 		goto out_free_ph;
1234 
1235 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1236 	if (padzero(elf_bss)) {
1237 		error = -EFAULT;
1238 		goto out_free_ph;
1239 	}
1240 
1241 	len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1242 	bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1243 	if (bss > len) {
1244 		error = vm_brk(len, bss - len);
1245 		if (error)
1246 			goto out_free_ph;
1247 	}
1248 	error = 0;
1249 
1250 out_free_ph:
1251 	kfree(elf_phdata);
1252 out:
1253 	return error;
1254 }
1255 #endif /* #ifdef CONFIG_USELIB */
1256 
1257 #ifdef CONFIG_ELF_CORE
1258 /*
1259  * ELF core dumper
1260  *
1261  * Modelled on fs/exec.c:aout_core_dump()
1262  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1263  */
1264 
1265 /*
1266  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1267  * that are useful for post-mortem analysis are included in every core dump.
1268  * In that way we ensure that the core dump is fully interpretable later
1269  * without matching up the same kernel and hardware config to see what PC values
1270  * meant. These special mappings include - vDSO, vsyscall, and other
1271  * architecture specific mappings
1272  */
1273 static bool always_dump_vma(struct vm_area_struct *vma)
1274 {
1275 	/* Any vsyscall mappings? */
1276 	if (vma == get_gate_vma(vma->vm_mm))
1277 		return true;
1278 
1279 	/*
1280 	 * Assume that all vmas with a .name op should always be dumped.
1281 	 * If this changes, a new vm_ops field can easily be added.
1282 	 */
1283 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1284 		return true;
1285 
1286 	/*
1287 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1288 	 * such as vDSO sections.
1289 	 */
1290 	if (arch_vma_name(vma))
1291 		return true;
1292 
1293 	return false;
1294 }
1295 
1296 /*
1297  * Decide what to dump of a segment, part, all or none.
1298  */
1299 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1300 				   unsigned long mm_flags)
1301 {
1302 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1303 
1304 	/* always dump the vdso and vsyscall sections */
1305 	if (always_dump_vma(vma))
1306 		goto whole;
1307 
1308 	if (vma->vm_flags & VM_DONTDUMP)
1309 		return 0;
1310 
1311 	/* support for DAX */
1312 	if (vma_is_dax(vma)) {
1313 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1314 			goto whole;
1315 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1316 			goto whole;
1317 		return 0;
1318 	}
1319 
1320 	/* Hugetlb memory check */
1321 	if (is_vm_hugetlb_page(vma)) {
1322 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1323 			goto whole;
1324 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1325 			goto whole;
1326 		return 0;
1327 	}
1328 
1329 	/* Do not dump I/O mapped devices or special mappings */
1330 	if (vma->vm_flags & VM_IO)
1331 		return 0;
1332 
1333 	/* By default, dump shared memory if mapped from an anonymous file. */
1334 	if (vma->vm_flags & VM_SHARED) {
1335 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1336 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1337 			goto whole;
1338 		return 0;
1339 	}
1340 
1341 	/* Dump segments that have been written to.  */
1342 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1343 		goto whole;
1344 	if (vma->vm_file == NULL)
1345 		return 0;
1346 
1347 	if (FILTER(MAPPED_PRIVATE))
1348 		goto whole;
1349 
1350 	/*
1351 	 * If this looks like the beginning of a DSO or executable mapping,
1352 	 * check for an ELF header.  If we find one, dump the first page to
1353 	 * aid in determining what was mapped here.
1354 	 */
1355 	if (FILTER(ELF_HEADERS) &&
1356 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1357 		u32 __user *header = (u32 __user *) vma->vm_start;
1358 		u32 word;
1359 		mm_segment_t fs = get_fs();
1360 		/*
1361 		 * Doing it this way gets the constant folded by GCC.
1362 		 */
1363 		union {
1364 			u32 cmp;
1365 			char elfmag[SELFMAG];
1366 		} magic;
1367 		BUILD_BUG_ON(SELFMAG != sizeof word);
1368 		magic.elfmag[EI_MAG0] = ELFMAG0;
1369 		magic.elfmag[EI_MAG1] = ELFMAG1;
1370 		magic.elfmag[EI_MAG2] = ELFMAG2;
1371 		magic.elfmag[EI_MAG3] = ELFMAG3;
1372 		/*
1373 		 * Switch to the user "segment" for get_user(),
1374 		 * then put back what elf_core_dump() had in place.
1375 		 */
1376 		set_fs(USER_DS);
1377 		if (unlikely(get_user(word, header)))
1378 			word = 0;
1379 		set_fs(fs);
1380 		if (word == magic.cmp)
1381 			return PAGE_SIZE;
1382 	}
1383 
1384 #undef	FILTER
1385 
1386 	return 0;
1387 
1388 whole:
1389 	return vma->vm_end - vma->vm_start;
1390 }
1391 
1392 /* An ELF note in memory */
1393 struct memelfnote
1394 {
1395 	const char *name;
1396 	int type;
1397 	unsigned int datasz;
1398 	void *data;
1399 };
1400 
1401 static int notesize(struct memelfnote *en)
1402 {
1403 	int sz;
1404 
1405 	sz = sizeof(struct elf_note);
1406 	sz += roundup(strlen(en->name) + 1, 4);
1407 	sz += roundup(en->datasz, 4);
1408 
1409 	return sz;
1410 }
1411 
1412 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1413 {
1414 	struct elf_note en;
1415 	en.n_namesz = strlen(men->name) + 1;
1416 	en.n_descsz = men->datasz;
1417 	en.n_type = men->type;
1418 
1419 	return dump_emit(cprm, &en, sizeof(en)) &&
1420 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1421 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1422 }
1423 
1424 static void fill_elf_header(struct elfhdr *elf, int segs,
1425 			    u16 machine, u32 flags)
1426 {
1427 	memset(elf, 0, sizeof(*elf));
1428 
1429 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1430 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1431 	elf->e_ident[EI_DATA] = ELF_DATA;
1432 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1433 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1434 
1435 	elf->e_type = ET_CORE;
1436 	elf->e_machine = machine;
1437 	elf->e_version = EV_CURRENT;
1438 	elf->e_phoff = sizeof(struct elfhdr);
1439 	elf->e_flags = flags;
1440 	elf->e_ehsize = sizeof(struct elfhdr);
1441 	elf->e_phentsize = sizeof(struct elf_phdr);
1442 	elf->e_phnum = segs;
1443 }
1444 
1445 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1446 {
1447 	phdr->p_type = PT_NOTE;
1448 	phdr->p_offset = offset;
1449 	phdr->p_vaddr = 0;
1450 	phdr->p_paddr = 0;
1451 	phdr->p_filesz = sz;
1452 	phdr->p_memsz = 0;
1453 	phdr->p_flags = 0;
1454 	phdr->p_align = 0;
1455 }
1456 
1457 static void fill_note(struct memelfnote *note, const char *name, int type,
1458 		unsigned int sz, void *data)
1459 {
1460 	note->name = name;
1461 	note->type = type;
1462 	note->datasz = sz;
1463 	note->data = data;
1464 }
1465 
1466 /*
1467  * fill up all the fields in prstatus from the given task struct, except
1468  * registers which need to be filled up separately.
1469  */
1470 static void fill_prstatus(struct elf_prstatus *prstatus,
1471 		struct task_struct *p, long signr)
1472 {
1473 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1474 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1475 	prstatus->pr_sighold = p->blocked.sig[0];
1476 	rcu_read_lock();
1477 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1478 	rcu_read_unlock();
1479 	prstatus->pr_pid = task_pid_vnr(p);
1480 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1481 	prstatus->pr_sid = task_session_vnr(p);
1482 	if (thread_group_leader(p)) {
1483 		struct task_cputime cputime;
1484 
1485 		/*
1486 		 * This is the record for the group leader.  It shows the
1487 		 * group-wide total, not its individual thread total.
1488 		 */
1489 		thread_group_cputime(p, &cputime);
1490 		prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1491 		prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1492 	} else {
1493 		u64 utime, stime;
1494 
1495 		task_cputime(p, &utime, &stime);
1496 		prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1497 		prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1498 	}
1499 
1500 	prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1501 	prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1502 }
1503 
1504 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1505 		       struct mm_struct *mm)
1506 {
1507 	const struct cred *cred;
1508 	unsigned int i, len;
1509 
1510 	/* first copy the parameters from user space */
1511 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1512 
1513 	len = mm->arg_end - mm->arg_start;
1514 	if (len >= ELF_PRARGSZ)
1515 		len = ELF_PRARGSZ-1;
1516 	if (copy_from_user(&psinfo->pr_psargs,
1517 		           (const char __user *)mm->arg_start, len))
1518 		return -EFAULT;
1519 	for(i = 0; i < len; i++)
1520 		if (psinfo->pr_psargs[i] == 0)
1521 			psinfo->pr_psargs[i] = ' ';
1522 	psinfo->pr_psargs[len] = 0;
1523 
1524 	rcu_read_lock();
1525 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1526 	rcu_read_unlock();
1527 	psinfo->pr_pid = task_pid_vnr(p);
1528 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1529 	psinfo->pr_sid = task_session_vnr(p);
1530 
1531 	i = p->state ? ffz(~p->state) + 1 : 0;
1532 	psinfo->pr_state = i;
1533 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1534 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1535 	psinfo->pr_nice = task_nice(p);
1536 	psinfo->pr_flag = p->flags;
1537 	rcu_read_lock();
1538 	cred = __task_cred(p);
1539 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1540 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1541 	rcu_read_unlock();
1542 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1543 
1544 	return 0;
1545 }
1546 
1547 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1548 {
1549 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1550 	int i = 0;
1551 	do
1552 		i += 2;
1553 	while (auxv[i - 2] != AT_NULL);
1554 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1555 }
1556 
1557 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1558 		const kernel_siginfo_t *siginfo)
1559 {
1560 	mm_segment_t old_fs = get_fs();
1561 	set_fs(KERNEL_DS);
1562 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1563 	set_fs(old_fs);
1564 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1565 }
1566 
1567 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1568 /*
1569  * Format of NT_FILE note:
1570  *
1571  * long count     -- how many files are mapped
1572  * long page_size -- units for file_ofs
1573  * array of [COUNT] elements of
1574  *   long start
1575  *   long end
1576  *   long file_ofs
1577  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1578  */
1579 static int fill_files_note(struct memelfnote *note)
1580 {
1581 	struct mm_struct *mm = current->mm;
1582 	struct vm_area_struct *vma;
1583 	unsigned count, size, names_ofs, remaining, n;
1584 	user_long_t *data;
1585 	user_long_t *start_end_ofs;
1586 	char *name_base, *name_curpos;
1587 
1588 	/* *Estimated* file count and total data size needed */
1589 	count = mm->map_count;
1590 	if (count > UINT_MAX / 64)
1591 		return -EINVAL;
1592 	size = count * 64;
1593 
1594 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1595  alloc:
1596 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1597 		return -EINVAL;
1598 	size = round_up(size, PAGE_SIZE);
1599 	/*
1600 	 * "size" can be 0 here legitimately.
1601 	 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1602 	 */
1603 	data = kvmalloc(size, GFP_KERNEL);
1604 	if (ZERO_OR_NULL_PTR(data))
1605 		return -ENOMEM;
1606 
1607 	start_end_ofs = data + 2;
1608 	name_base = name_curpos = ((char *)data) + names_ofs;
1609 	remaining = size - names_ofs;
1610 	count = 0;
1611 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1612 		struct file *file;
1613 		const char *filename;
1614 
1615 		file = vma->vm_file;
1616 		if (!file)
1617 			continue;
1618 		filename = file_path(file, name_curpos, remaining);
1619 		if (IS_ERR(filename)) {
1620 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1621 				kvfree(data);
1622 				size = size * 5 / 4;
1623 				goto alloc;
1624 			}
1625 			continue;
1626 		}
1627 
1628 		/* file_path() fills at the end, move name down */
1629 		/* n = strlen(filename) + 1: */
1630 		n = (name_curpos + remaining) - filename;
1631 		remaining = filename - name_curpos;
1632 		memmove(name_curpos, filename, n);
1633 		name_curpos += n;
1634 
1635 		*start_end_ofs++ = vma->vm_start;
1636 		*start_end_ofs++ = vma->vm_end;
1637 		*start_end_ofs++ = vma->vm_pgoff;
1638 		count++;
1639 	}
1640 
1641 	/* Now we know exact count of files, can store it */
1642 	data[0] = count;
1643 	data[1] = PAGE_SIZE;
1644 	/*
1645 	 * Count usually is less than mm->map_count,
1646 	 * we need to move filenames down.
1647 	 */
1648 	n = mm->map_count - count;
1649 	if (n != 0) {
1650 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1651 		memmove(name_base - shift_bytes, name_base,
1652 			name_curpos - name_base);
1653 		name_curpos -= shift_bytes;
1654 	}
1655 
1656 	size = name_curpos - (char *)data;
1657 	fill_note(note, "CORE", NT_FILE, size, data);
1658 	return 0;
1659 }
1660 
1661 #ifdef CORE_DUMP_USE_REGSET
1662 #include <linux/regset.h>
1663 
1664 struct elf_thread_core_info {
1665 	struct elf_thread_core_info *next;
1666 	struct task_struct *task;
1667 	struct elf_prstatus prstatus;
1668 	struct memelfnote notes[0];
1669 };
1670 
1671 struct elf_note_info {
1672 	struct elf_thread_core_info *thread;
1673 	struct memelfnote psinfo;
1674 	struct memelfnote signote;
1675 	struct memelfnote auxv;
1676 	struct memelfnote files;
1677 	user_siginfo_t csigdata;
1678 	size_t size;
1679 	int thread_notes;
1680 };
1681 
1682 /*
1683  * When a regset has a writeback hook, we call it on each thread before
1684  * dumping user memory.  On register window machines, this makes sure the
1685  * user memory backing the register data is up to date before we read it.
1686  */
1687 static void do_thread_regset_writeback(struct task_struct *task,
1688 				       const struct user_regset *regset)
1689 {
1690 	if (regset->writeback)
1691 		regset->writeback(task, regset, 1);
1692 }
1693 
1694 #ifndef PRSTATUS_SIZE
1695 #define PRSTATUS_SIZE(S, R) sizeof(S)
1696 #endif
1697 
1698 #ifndef SET_PR_FPVALID
1699 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1700 #endif
1701 
1702 static int fill_thread_core_info(struct elf_thread_core_info *t,
1703 				 const struct user_regset_view *view,
1704 				 long signr, size_t *total)
1705 {
1706 	unsigned int i;
1707 	unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1708 
1709 	/*
1710 	 * NT_PRSTATUS is the one special case, because the regset data
1711 	 * goes into the pr_reg field inside the note contents, rather
1712 	 * than being the whole note contents.  We fill the reset in here.
1713 	 * We assume that regset 0 is NT_PRSTATUS.
1714 	 */
1715 	fill_prstatus(&t->prstatus, t->task, signr);
1716 	(void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1717 				    &t->prstatus.pr_reg, NULL);
1718 
1719 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1720 		  PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1721 	*total += notesize(&t->notes[0]);
1722 
1723 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1724 
1725 	/*
1726 	 * Each other regset might generate a note too.  For each regset
1727 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1728 	 * all zero and we'll know to skip writing it later.
1729 	 */
1730 	for (i = 1; i < view->n; ++i) {
1731 		const struct user_regset *regset = &view->regsets[i];
1732 		do_thread_regset_writeback(t->task, regset);
1733 		if (regset->core_note_type && regset->get &&
1734 		    (!regset->active || regset->active(t->task, regset) > 0)) {
1735 			int ret;
1736 			size_t size = regset_size(t->task, regset);
1737 			void *data = kmalloc(size, GFP_KERNEL);
1738 			if (unlikely(!data))
1739 				return 0;
1740 			ret = regset->get(t->task, regset,
1741 					  0, size, data, NULL);
1742 			if (unlikely(ret))
1743 				kfree(data);
1744 			else {
1745 				if (regset->core_note_type != NT_PRFPREG)
1746 					fill_note(&t->notes[i], "LINUX",
1747 						  regset->core_note_type,
1748 						  size, data);
1749 				else {
1750 					SET_PR_FPVALID(&t->prstatus,
1751 							1, regset0_size);
1752 					fill_note(&t->notes[i], "CORE",
1753 						  NT_PRFPREG, size, data);
1754 				}
1755 				*total += notesize(&t->notes[i]);
1756 			}
1757 		}
1758 	}
1759 
1760 	return 1;
1761 }
1762 
1763 static int fill_note_info(struct elfhdr *elf, int phdrs,
1764 			  struct elf_note_info *info,
1765 			  const kernel_siginfo_t *siginfo, struct pt_regs *regs)
1766 {
1767 	struct task_struct *dump_task = current;
1768 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1769 	struct elf_thread_core_info *t;
1770 	struct elf_prpsinfo *psinfo;
1771 	struct core_thread *ct;
1772 	unsigned int i;
1773 
1774 	info->size = 0;
1775 	info->thread = NULL;
1776 
1777 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1778 	if (psinfo == NULL) {
1779 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1780 		return 0;
1781 	}
1782 
1783 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1784 
1785 	/*
1786 	 * Figure out how many notes we're going to need for each thread.
1787 	 */
1788 	info->thread_notes = 0;
1789 	for (i = 0; i < view->n; ++i)
1790 		if (view->regsets[i].core_note_type != 0)
1791 			++info->thread_notes;
1792 
1793 	/*
1794 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1795 	 * since it is our one special case.
1796 	 */
1797 	if (unlikely(info->thread_notes == 0) ||
1798 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1799 		WARN_ON(1);
1800 		return 0;
1801 	}
1802 
1803 	/*
1804 	 * Initialize the ELF file header.
1805 	 */
1806 	fill_elf_header(elf, phdrs,
1807 			view->e_machine, view->e_flags);
1808 
1809 	/*
1810 	 * Allocate a structure for each thread.
1811 	 */
1812 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1813 		t = kzalloc(offsetof(struct elf_thread_core_info,
1814 				     notes[info->thread_notes]),
1815 			    GFP_KERNEL);
1816 		if (unlikely(!t))
1817 			return 0;
1818 
1819 		t->task = ct->task;
1820 		if (ct->task == dump_task || !info->thread) {
1821 			t->next = info->thread;
1822 			info->thread = t;
1823 		} else {
1824 			/*
1825 			 * Make sure to keep the original task at
1826 			 * the head of the list.
1827 			 */
1828 			t->next = info->thread->next;
1829 			info->thread->next = t;
1830 		}
1831 	}
1832 
1833 	/*
1834 	 * Now fill in each thread's information.
1835 	 */
1836 	for (t = info->thread; t != NULL; t = t->next)
1837 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1838 			return 0;
1839 
1840 	/*
1841 	 * Fill in the two process-wide notes.
1842 	 */
1843 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1844 	info->size += notesize(&info->psinfo);
1845 
1846 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1847 	info->size += notesize(&info->signote);
1848 
1849 	fill_auxv_note(&info->auxv, current->mm);
1850 	info->size += notesize(&info->auxv);
1851 
1852 	if (fill_files_note(&info->files) == 0)
1853 		info->size += notesize(&info->files);
1854 
1855 	return 1;
1856 }
1857 
1858 static size_t get_note_info_size(struct elf_note_info *info)
1859 {
1860 	return info->size;
1861 }
1862 
1863 /*
1864  * Write all the notes for each thread.  When writing the first thread, the
1865  * process-wide notes are interleaved after the first thread-specific note.
1866  */
1867 static int write_note_info(struct elf_note_info *info,
1868 			   struct coredump_params *cprm)
1869 {
1870 	bool first = true;
1871 	struct elf_thread_core_info *t = info->thread;
1872 
1873 	do {
1874 		int i;
1875 
1876 		if (!writenote(&t->notes[0], cprm))
1877 			return 0;
1878 
1879 		if (first && !writenote(&info->psinfo, cprm))
1880 			return 0;
1881 		if (first && !writenote(&info->signote, cprm))
1882 			return 0;
1883 		if (first && !writenote(&info->auxv, cprm))
1884 			return 0;
1885 		if (first && info->files.data &&
1886 				!writenote(&info->files, cprm))
1887 			return 0;
1888 
1889 		for (i = 1; i < info->thread_notes; ++i)
1890 			if (t->notes[i].data &&
1891 			    !writenote(&t->notes[i], cprm))
1892 				return 0;
1893 
1894 		first = false;
1895 		t = t->next;
1896 	} while (t);
1897 
1898 	return 1;
1899 }
1900 
1901 static void free_note_info(struct elf_note_info *info)
1902 {
1903 	struct elf_thread_core_info *threads = info->thread;
1904 	while (threads) {
1905 		unsigned int i;
1906 		struct elf_thread_core_info *t = threads;
1907 		threads = t->next;
1908 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1909 		for (i = 1; i < info->thread_notes; ++i)
1910 			kfree(t->notes[i].data);
1911 		kfree(t);
1912 	}
1913 	kfree(info->psinfo.data);
1914 	kvfree(info->files.data);
1915 }
1916 
1917 #else
1918 
1919 /* Here is the structure in which status of each thread is captured. */
1920 struct elf_thread_status
1921 {
1922 	struct list_head list;
1923 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1924 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1925 	struct task_struct *thread;
1926 #ifdef ELF_CORE_COPY_XFPREGS
1927 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1928 #endif
1929 	struct memelfnote notes[3];
1930 	int num_notes;
1931 };
1932 
1933 /*
1934  * In order to add the specific thread information for the elf file format,
1935  * we need to keep a linked list of every threads pr_status and then create
1936  * a single section for them in the final core file.
1937  */
1938 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1939 {
1940 	int sz = 0;
1941 	struct task_struct *p = t->thread;
1942 	t->num_notes = 0;
1943 
1944 	fill_prstatus(&t->prstatus, p, signr);
1945 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1946 
1947 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1948 		  &(t->prstatus));
1949 	t->num_notes++;
1950 	sz += notesize(&t->notes[0]);
1951 
1952 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1953 								&t->fpu))) {
1954 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1955 			  &(t->fpu));
1956 		t->num_notes++;
1957 		sz += notesize(&t->notes[1]);
1958 	}
1959 
1960 #ifdef ELF_CORE_COPY_XFPREGS
1961 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1962 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1963 			  sizeof(t->xfpu), &t->xfpu);
1964 		t->num_notes++;
1965 		sz += notesize(&t->notes[2]);
1966 	}
1967 #endif
1968 	return sz;
1969 }
1970 
1971 struct elf_note_info {
1972 	struct memelfnote *notes;
1973 	struct memelfnote *notes_files;
1974 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1975 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1976 	struct list_head thread_list;
1977 	elf_fpregset_t *fpu;
1978 #ifdef ELF_CORE_COPY_XFPREGS
1979 	elf_fpxregset_t *xfpu;
1980 #endif
1981 	user_siginfo_t csigdata;
1982 	int thread_status_size;
1983 	int numnote;
1984 };
1985 
1986 static int elf_note_info_init(struct elf_note_info *info)
1987 {
1988 	memset(info, 0, sizeof(*info));
1989 	INIT_LIST_HEAD(&info->thread_list);
1990 
1991 	/* Allocate space for ELF notes */
1992 	info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
1993 	if (!info->notes)
1994 		return 0;
1995 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1996 	if (!info->psinfo)
1997 		return 0;
1998 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1999 	if (!info->prstatus)
2000 		return 0;
2001 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2002 	if (!info->fpu)
2003 		return 0;
2004 #ifdef ELF_CORE_COPY_XFPREGS
2005 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2006 	if (!info->xfpu)
2007 		return 0;
2008 #endif
2009 	return 1;
2010 }
2011 
2012 static int fill_note_info(struct elfhdr *elf, int phdrs,
2013 			  struct elf_note_info *info,
2014 			  const kernel_siginfo_t *siginfo, struct pt_regs *regs)
2015 {
2016 	struct core_thread *ct;
2017 	struct elf_thread_status *ets;
2018 
2019 	if (!elf_note_info_init(info))
2020 		return 0;
2021 
2022 	for (ct = current->mm->core_state->dumper.next;
2023 					ct; ct = ct->next) {
2024 		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2025 		if (!ets)
2026 			return 0;
2027 
2028 		ets->thread = ct->task;
2029 		list_add(&ets->list, &info->thread_list);
2030 	}
2031 
2032 	list_for_each_entry(ets, &info->thread_list, list) {
2033 		int sz;
2034 
2035 		sz = elf_dump_thread_status(siginfo->si_signo, ets);
2036 		info->thread_status_size += sz;
2037 	}
2038 	/* now collect the dump for the current */
2039 	memset(info->prstatus, 0, sizeof(*info->prstatus));
2040 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
2041 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2042 
2043 	/* Set up header */
2044 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2045 
2046 	/*
2047 	 * Set up the notes in similar form to SVR4 core dumps made
2048 	 * with info from their /proc.
2049 	 */
2050 
2051 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2052 		  sizeof(*info->prstatus), info->prstatus);
2053 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
2054 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2055 		  sizeof(*info->psinfo), info->psinfo);
2056 
2057 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2058 	fill_auxv_note(info->notes + 3, current->mm);
2059 	info->numnote = 4;
2060 
2061 	if (fill_files_note(info->notes + info->numnote) == 0) {
2062 		info->notes_files = info->notes + info->numnote;
2063 		info->numnote++;
2064 	}
2065 
2066 	/* Try to dump the FPU. */
2067 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2068 							       info->fpu);
2069 	if (info->prstatus->pr_fpvalid)
2070 		fill_note(info->notes + info->numnote++,
2071 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2072 #ifdef ELF_CORE_COPY_XFPREGS
2073 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
2074 		fill_note(info->notes + info->numnote++,
2075 			  "LINUX", ELF_CORE_XFPREG_TYPE,
2076 			  sizeof(*info->xfpu), info->xfpu);
2077 #endif
2078 
2079 	return 1;
2080 }
2081 
2082 static size_t get_note_info_size(struct elf_note_info *info)
2083 {
2084 	int sz = 0;
2085 	int i;
2086 
2087 	for (i = 0; i < info->numnote; i++)
2088 		sz += notesize(info->notes + i);
2089 
2090 	sz += info->thread_status_size;
2091 
2092 	return sz;
2093 }
2094 
2095 static int write_note_info(struct elf_note_info *info,
2096 			   struct coredump_params *cprm)
2097 {
2098 	struct elf_thread_status *ets;
2099 	int i;
2100 
2101 	for (i = 0; i < info->numnote; i++)
2102 		if (!writenote(info->notes + i, cprm))
2103 			return 0;
2104 
2105 	/* write out the thread status notes section */
2106 	list_for_each_entry(ets, &info->thread_list, list) {
2107 		for (i = 0; i < ets->num_notes; i++)
2108 			if (!writenote(&ets->notes[i], cprm))
2109 				return 0;
2110 	}
2111 
2112 	return 1;
2113 }
2114 
2115 static void free_note_info(struct elf_note_info *info)
2116 {
2117 	while (!list_empty(&info->thread_list)) {
2118 		struct list_head *tmp = info->thread_list.next;
2119 		list_del(tmp);
2120 		kfree(list_entry(tmp, struct elf_thread_status, list));
2121 	}
2122 
2123 	/* Free data possibly allocated by fill_files_note(): */
2124 	if (info->notes_files)
2125 		kvfree(info->notes_files->data);
2126 
2127 	kfree(info->prstatus);
2128 	kfree(info->psinfo);
2129 	kfree(info->notes);
2130 	kfree(info->fpu);
2131 #ifdef ELF_CORE_COPY_XFPREGS
2132 	kfree(info->xfpu);
2133 #endif
2134 }
2135 
2136 #endif
2137 
2138 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2139 					struct vm_area_struct *gate_vma)
2140 {
2141 	struct vm_area_struct *ret = tsk->mm->mmap;
2142 
2143 	if (ret)
2144 		return ret;
2145 	return gate_vma;
2146 }
2147 /*
2148  * Helper function for iterating across a vma list.  It ensures that the caller
2149  * will visit `gate_vma' prior to terminating the search.
2150  */
2151 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2152 					struct vm_area_struct *gate_vma)
2153 {
2154 	struct vm_area_struct *ret;
2155 
2156 	ret = this_vma->vm_next;
2157 	if (ret)
2158 		return ret;
2159 	if (this_vma == gate_vma)
2160 		return NULL;
2161 	return gate_vma;
2162 }
2163 
2164 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2165 			     elf_addr_t e_shoff, int segs)
2166 {
2167 	elf->e_shoff = e_shoff;
2168 	elf->e_shentsize = sizeof(*shdr4extnum);
2169 	elf->e_shnum = 1;
2170 	elf->e_shstrndx = SHN_UNDEF;
2171 
2172 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2173 
2174 	shdr4extnum->sh_type = SHT_NULL;
2175 	shdr4extnum->sh_size = elf->e_shnum;
2176 	shdr4extnum->sh_link = elf->e_shstrndx;
2177 	shdr4extnum->sh_info = segs;
2178 }
2179 
2180 /*
2181  * Actual dumper
2182  *
2183  * This is a two-pass process; first we find the offsets of the bits,
2184  * and then they are actually written out.  If we run out of core limit
2185  * we just truncate.
2186  */
2187 static int elf_core_dump(struct coredump_params *cprm)
2188 {
2189 	int has_dumped = 0;
2190 	mm_segment_t fs;
2191 	int segs, i;
2192 	size_t vma_data_size = 0;
2193 	struct vm_area_struct *vma, *gate_vma;
2194 	struct elfhdr elf;
2195 	loff_t offset = 0, dataoff;
2196 	struct elf_note_info info = { };
2197 	struct elf_phdr *phdr4note = NULL;
2198 	struct elf_shdr *shdr4extnum = NULL;
2199 	Elf_Half e_phnum;
2200 	elf_addr_t e_shoff;
2201 	elf_addr_t *vma_filesz = NULL;
2202 
2203 	/*
2204 	 * We no longer stop all VM operations.
2205 	 *
2206 	 * This is because those proceses that could possibly change map_count
2207 	 * or the mmap / vma pages are now blocked in do_exit on current
2208 	 * finishing this core dump.
2209 	 *
2210 	 * Only ptrace can touch these memory addresses, but it doesn't change
2211 	 * the map_count or the pages allocated. So no possibility of crashing
2212 	 * exists while dumping the mm->vm_next areas to the core file.
2213 	 */
2214 
2215 	/*
2216 	 * The number of segs are recored into ELF header as 16bit value.
2217 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2218 	 */
2219 	segs = current->mm->map_count;
2220 	segs += elf_core_extra_phdrs();
2221 
2222 	gate_vma = get_gate_vma(current->mm);
2223 	if (gate_vma != NULL)
2224 		segs++;
2225 
2226 	/* for notes section */
2227 	segs++;
2228 
2229 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2230 	 * this, kernel supports extended numbering. Have a look at
2231 	 * include/linux/elf.h for further information. */
2232 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2233 
2234 	/*
2235 	 * Collect all the non-memory information about the process for the
2236 	 * notes.  This also sets up the file header.
2237 	 */
2238 	if (!fill_note_info(&elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2239 		goto cleanup;
2240 
2241 	has_dumped = 1;
2242 
2243 	fs = get_fs();
2244 	set_fs(KERNEL_DS);
2245 
2246 	offset += sizeof(elf);				/* Elf header */
2247 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2248 
2249 	/* Write notes phdr entry */
2250 	{
2251 		size_t sz = get_note_info_size(&info);
2252 
2253 		sz += elf_coredump_extra_notes_size();
2254 
2255 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2256 		if (!phdr4note)
2257 			goto end_coredump;
2258 
2259 		fill_elf_note_phdr(phdr4note, sz, offset);
2260 		offset += sz;
2261 	}
2262 
2263 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2264 
2265 	/*
2266 	 * Zero vma process will get ZERO_SIZE_PTR here.
2267 	 * Let coredump continue for register state at least.
2268 	 */
2269 	vma_filesz = kvmalloc(array_size(sizeof(*vma_filesz), (segs - 1)),
2270 			      GFP_KERNEL);
2271 	if (!vma_filesz)
2272 		goto end_coredump;
2273 
2274 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2275 			vma = next_vma(vma, gate_vma)) {
2276 		unsigned long dump_size;
2277 
2278 		dump_size = vma_dump_size(vma, cprm->mm_flags);
2279 		vma_filesz[i++] = dump_size;
2280 		vma_data_size += dump_size;
2281 	}
2282 
2283 	offset += vma_data_size;
2284 	offset += elf_core_extra_data_size();
2285 	e_shoff = offset;
2286 
2287 	if (e_phnum == PN_XNUM) {
2288 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2289 		if (!shdr4extnum)
2290 			goto end_coredump;
2291 		fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2292 	}
2293 
2294 	offset = dataoff;
2295 
2296 	if (!dump_emit(cprm, &elf, sizeof(elf)))
2297 		goto end_coredump;
2298 
2299 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2300 		goto end_coredump;
2301 
2302 	/* Write program headers for segments dump */
2303 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2304 			vma = next_vma(vma, gate_vma)) {
2305 		struct elf_phdr phdr;
2306 
2307 		phdr.p_type = PT_LOAD;
2308 		phdr.p_offset = offset;
2309 		phdr.p_vaddr = vma->vm_start;
2310 		phdr.p_paddr = 0;
2311 		phdr.p_filesz = vma_filesz[i++];
2312 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2313 		offset += phdr.p_filesz;
2314 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2315 		if (vma->vm_flags & VM_WRITE)
2316 			phdr.p_flags |= PF_W;
2317 		if (vma->vm_flags & VM_EXEC)
2318 			phdr.p_flags |= PF_X;
2319 		phdr.p_align = ELF_EXEC_PAGESIZE;
2320 
2321 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2322 			goto end_coredump;
2323 	}
2324 
2325 	if (!elf_core_write_extra_phdrs(cprm, offset))
2326 		goto end_coredump;
2327 
2328  	/* write out the notes section */
2329 	if (!write_note_info(&info, cprm))
2330 		goto end_coredump;
2331 
2332 	if (elf_coredump_extra_notes_write(cprm))
2333 		goto end_coredump;
2334 
2335 	/* Align to page */
2336 	if (!dump_skip(cprm, dataoff - cprm->pos))
2337 		goto end_coredump;
2338 
2339 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2340 			vma = next_vma(vma, gate_vma)) {
2341 		unsigned long addr;
2342 		unsigned long end;
2343 
2344 		end = vma->vm_start + vma_filesz[i++];
2345 
2346 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2347 			struct page *page;
2348 			int stop;
2349 
2350 			page = get_dump_page(addr);
2351 			if (page) {
2352 				void *kaddr = kmap(page);
2353 				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2354 				kunmap(page);
2355 				put_page(page);
2356 			} else
2357 				stop = !dump_skip(cprm, PAGE_SIZE);
2358 			if (stop)
2359 				goto end_coredump;
2360 		}
2361 	}
2362 	dump_truncate(cprm);
2363 
2364 	if (!elf_core_write_extra_data(cprm))
2365 		goto end_coredump;
2366 
2367 	if (e_phnum == PN_XNUM) {
2368 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2369 			goto end_coredump;
2370 	}
2371 
2372 end_coredump:
2373 	set_fs(fs);
2374 
2375 cleanup:
2376 	free_note_info(&info);
2377 	kfree(shdr4extnum);
2378 	kvfree(vma_filesz);
2379 	kfree(phdr4note);
2380 	return has_dumped;
2381 }
2382 
2383 #endif		/* CONFIG_ELF_CORE */
2384 
2385 static int __init init_elf_binfmt(void)
2386 {
2387 	register_binfmt(&elf_format);
2388 	return 0;
2389 }
2390 
2391 static void __exit exit_elf_binfmt(void)
2392 {
2393 	/* Remove the COFF and ELF loaders. */
2394 	unregister_binfmt(&elf_format);
2395 }
2396 
2397 core_initcall(init_elf_binfmt);
2398 module_exit(exit_elf_binfmt);
2399 MODULE_LICENSE("GPL");
2400