1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/binfmt_elf.c 4 * 5 * These are the functions used to load ELF format executables as used 6 * on SVr4 machines. Information on the format may be found in the book 7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 8 * Tools". 9 * 10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 11 */ 12 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/fs.h> 16 #include <linux/log2.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/errno.h> 20 #include <linux/signal.h> 21 #include <linux/binfmts.h> 22 #include <linux/string.h> 23 #include <linux/file.h> 24 #include <linux/slab.h> 25 #include <linux/personality.h> 26 #include <linux/elfcore.h> 27 #include <linux/init.h> 28 #include <linux/highuid.h> 29 #include <linux/compiler.h> 30 #include <linux/highmem.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vmalloc.h> 34 #include <linux/security.h> 35 #include <linux/random.h> 36 #include <linux/elf.h> 37 #include <linux/elf-randomize.h> 38 #include <linux/utsname.h> 39 #include <linux/coredump.h> 40 #include <linux/sched.h> 41 #include <linux/sched/coredump.h> 42 #include <linux/sched/task_stack.h> 43 #include <linux/sched/cputime.h> 44 #include <linux/sizes.h> 45 #include <linux/types.h> 46 #include <linux/cred.h> 47 #include <linux/dax.h> 48 #include <linux/uaccess.h> 49 #include <asm/param.h> 50 #include <asm/page.h> 51 52 #ifndef ELF_COMPAT 53 #define ELF_COMPAT 0 54 #endif 55 56 #ifndef user_long_t 57 #define user_long_t long 58 #endif 59 #ifndef user_siginfo_t 60 #define user_siginfo_t siginfo_t 61 #endif 62 63 /* That's for binfmt_elf_fdpic to deal with */ 64 #ifndef elf_check_fdpic 65 #define elf_check_fdpic(ex) false 66 #endif 67 68 static int load_elf_binary(struct linux_binprm *bprm); 69 70 #ifdef CONFIG_USELIB 71 static int load_elf_library(struct file *); 72 #else 73 #define load_elf_library NULL 74 #endif 75 76 /* 77 * If we don't support core dumping, then supply a NULL so we 78 * don't even try. 79 */ 80 #ifdef CONFIG_ELF_CORE 81 static int elf_core_dump(struct coredump_params *cprm); 82 #else 83 #define elf_core_dump NULL 84 #endif 85 86 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 87 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 88 #else 89 #define ELF_MIN_ALIGN PAGE_SIZE 90 #endif 91 92 #ifndef ELF_CORE_EFLAGS 93 #define ELF_CORE_EFLAGS 0 94 #endif 95 96 #define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1)) 97 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 98 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 99 100 static struct linux_binfmt elf_format = { 101 .module = THIS_MODULE, 102 .load_binary = load_elf_binary, 103 .load_shlib = load_elf_library, 104 #ifdef CONFIG_COREDUMP 105 .core_dump = elf_core_dump, 106 .min_coredump = ELF_EXEC_PAGESIZE, 107 #endif 108 }; 109 110 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE)) 111 112 static int set_brk(unsigned long start, unsigned long end, int prot) 113 { 114 start = ELF_PAGEALIGN(start); 115 end = ELF_PAGEALIGN(end); 116 if (end > start) { 117 /* 118 * Map the last of the bss segment. 119 * If the header is requesting these pages to be 120 * executable, honour that (ppc32 needs this). 121 */ 122 int error = vm_brk_flags(start, end - start, 123 prot & PROT_EXEC ? VM_EXEC : 0); 124 if (error) 125 return error; 126 } 127 current->mm->start_brk = current->mm->brk = end; 128 return 0; 129 } 130 131 /* We need to explicitly zero any fractional pages 132 after the data section (i.e. bss). This would 133 contain the junk from the file that should not 134 be in memory 135 */ 136 static int padzero(unsigned long elf_bss) 137 { 138 unsigned long nbyte; 139 140 nbyte = ELF_PAGEOFFSET(elf_bss); 141 if (nbyte) { 142 nbyte = ELF_MIN_ALIGN - nbyte; 143 if (clear_user((void __user *) elf_bss, nbyte)) 144 return -EFAULT; 145 } 146 return 0; 147 } 148 149 /* Let's use some macros to make this stack manipulation a little clearer */ 150 #ifdef CONFIG_STACK_GROWSUP 151 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 152 #define STACK_ROUND(sp, items) \ 153 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 154 #define STACK_ALLOC(sp, len) ({ \ 155 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 156 old_sp; }) 157 #else 158 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 159 #define STACK_ROUND(sp, items) \ 160 (((unsigned long) (sp - items)) &~ 15UL) 161 #define STACK_ALLOC(sp, len) (sp -= len) 162 #endif 163 164 #ifndef ELF_BASE_PLATFORM 165 /* 166 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. 167 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value 168 * will be copied to the user stack in the same manner as AT_PLATFORM. 169 */ 170 #define ELF_BASE_PLATFORM NULL 171 #endif 172 173 static int 174 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec, 175 unsigned long interp_load_addr, 176 unsigned long e_entry, unsigned long phdr_addr) 177 { 178 struct mm_struct *mm = current->mm; 179 unsigned long p = bprm->p; 180 int argc = bprm->argc; 181 int envc = bprm->envc; 182 elf_addr_t __user *sp; 183 elf_addr_t __user *u_platform; 184 elf_addr_t __user *u_base_platform; 185 elf_addr_t __user *u_rand_bytes; 186 const char *k_platform = ELF_PLATFORM; 187 const char *k_base_platform = ELF_BASE_PLATFORM; 188 unsigned char k_rand_bytes[16]; 189 int items; 190 elf_addr_t *elf_info; 191 elf_addr_t flags = 0; 192 int ei_index; 193 const struct cred *cred = current_cred(); 194 struct vm_area_struct *vma; 195 196 /* 197 * In some cases (e.g. Hyper-Threading), we want to avoid L1 198 * evictions by the processes running on the same package. One 199 * thing we can do is to shuffle the initial stack for them. 200 */ 201 202 p = arch_align_stack(p); 203 204 /* 205 * If this architecture has a platform capability string, copy it 206 * to userspace. In some cases (Sparc), this info is impossible 207 * for userspace to get any other way, in others (i386) it is 208 * merely difficult. 209 */ 210 u_platform = NULL; 211 if (k_platform) { 212 size_t len = strlen(k_platform) + 1; 213 214 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 215 if (copy_to_user(u_platform, k_platform, len)) 216 return -EFAULT; 217 } 218 219 /* 220 * If this architecture has a "base" platform capability 221 * string, copy it to userspace. 222 */ 223 u_base_platform = NULL; 224 if (k_base_platform) { 225 size_t len = strlen(k_base_platform) + 1; 226 227 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 228 if (copy_to_user(u_base_platform, k_base_platform, len)) 229 return -EFAULT; 230 } 231 232 /* 233 * Generate 16 random bytes for userspace PRNG seeding. 234 */ 235 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); 236 u_rand_bytes = (elf_addr_t __user *) 237 STACK_ALLOC(p, sizeof(k_rand_bytes)); 238 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) 239 return -EFAULT; 240 241 /* Create the ELF interpreter info */ 242 elf_info = (elf_addr_t *)mm->saved_auxv; 243 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 244 #define NEW_AUX_ENT(id, val) \ 245 do { \ 246 *elf_info++ = id; \ 247 *elf_info++ = val; \ 248 } while (0) 249 250 #ifdef ARCH_DLINFO 251 /* 252 * ARCH_DLINFO must come first so PPC can do its special alignment of 253 * AUXV. 254 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 255 * ARCH_DLINFO changes 256 */ 257 ARCH_DLINFO; 258 #endif 259 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 260 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 261 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 262 NEW_AUX_ENT(AT_PHDR, phdr_addr); 263 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 264 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 265 NEW_AUX_ENT(AT_BASE, interp_load_addr); 266 if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0) 267 flags |= AT_FLAGS_PRESERVE_ARGV0; 268 NEW_AUX_ENT(AT_FLAGS, flags); 269 NEW_AUX_ENT(AT_ENTRY, e_entry); 270 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid)); 271 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid)); 272 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid)); 273 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid)); 274 NEW_AUX_ENT(AT_SECURE, bprm->secureexec); 275 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); 276 #ifdef ELF_HWCAP2 277 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2); 278 #endif 279 NEW_AUX_ENT(AT_EXECFN, bprm->exec); 280 if (k_platform) { 281 NEW_AUX_ENT(AT_PLATFORM, 282 (elf_addr_t)(unsigned long)u_platform); 283 } 284 if (k_base_platform) { 285 NEW_AUX_ENT(AT_BASE_PLATFORM, 286 (elf_addr_t)(unsigned long)u_base_platform); 287 } 288 if (bprm->have_execfd) { 289 NEW_AUX_ENT(AT_EXECFD, bprm->execfd); 290 } 291 #undef NEW_AUX_ENT 292 /* AT_NULL is zero; clear the rest too */ 293 memset(elf_info, 0, (char *)mm->saved_auxv + 294 sizeof(mm->saved_auxv) - (char *)elf_info); 295 296 /* And advance past the AT_NULL entry. */ 297 elf_info += 2; 298 299 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv; 300 sp = STACK_ADD(p, ei_index); 301 302 items = (argc + 1) + (envc + 1) + 1; 303 bprm->p = STACK_ROUND(sp, items); 304 305 /* Point sp at the lowest address on the stack */ 306 #ifdef CONFIG_STACK_GROWSUP 307 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 308 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 309 #else 310 sp = (elf_addr_t __user *)bprm->p; 311 #endif 312 313 314 /* 315 * Grow the stack manually; some architectures have a limit on how 316 * far ahead a user-space access may be in order to grow the stack. 317 */ 318 if (mmap_read_lock_killable(mm)) 319 return -EINTR; 320 vma = find_extend_vma(mm, bprm->p); 321 mmap_read_unlock(mm); 322 if (!vma) 323 return -EFAULT; 324 325 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 326 if (put_user(argc, sp++)) 327 return -EFAULT; 328 329 /* Populate list of argv pointers back to argv strings. */ 330 p = mm->arg_end = mm->arg_start; 331 while (argc-- > 0) { 332 size_t len; 333 if (put_user((elf_addr_t)p, sp++)) 334 return -EFAULT; 335 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 336 if (!len || len > MAX_ARG_STRLEN) 337 return -EINVAL; 338 p += len; 339 } 340 if (put_user(0, sp++)) 341 return -EFAULT; 342 mm->arg_end = p; 343 344 /* Populate list of envp pointers back to envp strings. */ 345 mm->env_end = mm->env_start = p; 346 while (envc-- > 0) { 347 size_t len; 348 if (put_user((elf_addr_t)p, sp++)) 349 return -EFAULT; 350 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 351 if (!len || len > MAX_ARG_STRLEN) 352 return -EINVAL; 353 p += len; 354 } 355 if (put_user(0, sp++)) 356 return -EFAULT; 357 mm->env_end = p; 358 359 /* Put the elf_info on the stack in the right place. */ 360 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t))) 361 return -EFAULT; 362 return 0; 363 } 364 365 static unsigned long elf_map(struct file *filep, unsigned long addr, 366 const struct elf_phdr *eppnt, int prot, int type, 367 unsigned long total_size) 368 { 369 unsigned long map_addr; 370 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 371 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 372 addr = ELF_PAGESTART(addr); 373 size = ELF_PAGEALIGN(size); 374 375 /* mmap() will return -EINVAL if given a zero size, but a 376 * segment with zero filesize is perfectly valid */ 377 if (!size) 378 return addr; 379 380 /* 381 * total_size is the size of the ELF (interpreter) image. 382 * The _first_ mmap needs to know the full size, otherwise 383 * randomization might put this image into an overlapping 384 * position with the ELF binary image. (since size < total_size) 385 * So we first map the 'big' image - and unmap the remainder at 386 * the end. (which unmap is needed for ELF images with holes.) 387 */ 388 if (total_size) { 389 total_size = ELF_PAGEALIGN(total_size); 390 map_addr = vm_mmap(filep, addr, total_size, prot, type, off); 391 if (!BAD_ADDR(map_addr)) 392 vm_munmap(map_addr+size, total_size-size); 393 } else 394 map_addr = vm_mmap(filep, addr, size, prot, type, off); 395 396 if ((type & MAP_FIXED_NOREPLACE) && 397 PTR_ERR((void *)map_addr) == -EEXIST) 398 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n", 399 task_pid_nr(current), current->comm, (void *)addr); 400 401 return(map_addr); 402 } 403 404 static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr) 405 { 406 elf_addr_t min_addr = -1; 407 elf_addr_t max_addr = 0; 408 bool pt_load = false; 409 int i; 410 411 for (i = 0; i < nr; i++) { 412 if (phdr[i].p_type == PT_LOAD) { 413 min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr)); 414 max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz); 415 pt_load = true; 416 } 417 } 418 return pt_load ? (max_addr - min_addr) : 0; 419 } 420 421 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos) 422 { 423 ssize_t rv; 424 425 rv = kernel_read(file, buf, len, &pos); 426 if (unlikely(rv != len)) { 427 return (rv < 0) ? rv : -EIO; 428 } 429 return 0; 430 } 431 432 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr) 433 { 434 unsigned long alignment = 0; 435 int i; 436 437 for (i = 0; i < nr; i++) { 438 if (cmds[i].p_type == PT_LOAD) { 439 unsigned long p_align = cmds[i].p_align; 440 441 /* skip non-power of two alignments as invalid */ 442 if (!is_power_of_2(p_align)) 443 continue; 444 alignment = max(alignment, p_align); 445 } 446 } 447 448 /* ensure we align to at least one page */ 449 return ELF_PAGEALIGN(alignment); 450 } 451 452 /** 453 * load_elf_phdrs() - load ELF program headers 454 * @elf_ex: ELF header of the binary whose program headers should be loaded 455 * @elf_file: the opened ELF binary file 456 * 457 * Loads ELF program headers from the binary file elf_file, which has the ELF 458 * header pointed to by elf_ex, into a newly allocated array. The caller is 459 * responsible for freeing the allocated data. Returns NULL upon failure. 460 */ 461 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex, 462 struct file *elf_file) 463 { 464 struct elf_phdr *elf_phdata = NULL; 465 int retval = -1; 466 unsigned int size; 467 468 /* 469 * If the size of this structure has changed, then punt, since 470 * we will be doing the wrong thing. 471 */ 472 if (elf_ex->e_phentsize != sizeof(struct elf_phdr)) 473 goto out; 474 475 /* Sanity check the number of program headers... */ 476 /* ...and their total size. */ 477 size = sizeof(struct elf_phdr) * elf_ex->e_phnum; 478 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN) 479 goto out; 480 481 elf_phdata = kmalloc(size, GFP_KERNEL); 482 if (!elf_phdata) 483 goto out; 484 485 /* Read in the program headers */ 486 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff); 487 488 out: 489 if (retval) { 490 kfree(elf_phdata); 491 elf_phdata = NULL; 492 } 493 return elf_phdata; 494 } 495 496 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE 497 498 /** 499 * struct arch_elf_state - arch-specific ELF loading state 500 * 501 * This structure is used to preserve architecture specific data during 502 * the loading of an ELF file, throughout the checking of architecture 503 * specific ELF headers & through to the point where the ELF load is 504 * known to be proceeding (ie. SET_PERSONALITY). 505 * 506 * This implementation is a dummy for architectures which require no 507 * specific state. 508 */ 509 struct arch_elf_state { 510 }; 511 512 #define INIT_ARCH_ELF_STATE {} 513 514 /** 515 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header 516 * @ehdr: The main ELF header 517 * @phdr: The program header to check 518 * @elf: The open ELF file 519 * @is_interp: True if the phdr is from the interpreter of the ELF being 520 * loaded, else false. 521 * @state: Architecture-specific state preserved throughout the process 522 * of loading the ELF. 523 * 524 * Inspects the program header phdr to validate its correctness and/or 525 * suitability for the system. Called once per ELF program header in the 526 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its 527 * interpreter. 528 * 529 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 530 * with that return code. 531 */ 532 static inline int arch_elf_pt_proc(struct elfhdr *ehdr, 533 struct elf_phdr *phdr, 534 struct file *elf, bool is_interp, 535 struct arch_elf_state *state) 536 { 537 /* Dummy implementation, always proceed */ 538 return 0; 539 } 540 541 /** 542 * arch_check_elf() - check an ELF executable 543 * @ehdr: The main ELF header 544 * @has_interp: True if the ELF has an interpreter, else false. 545 * @interp_ehdr: The interpreter's ELF header 546 * @state: Architecture-specific state preserved throughout the process 547 * of loading the ELF. 548 * 549 * Provides a final opportunity for architecture code to reject the loading 550 * of the ELF & cause an exec syscall to return an error. This is called after 551 * all program headers to be checked by arch_elf_pt_proc have been. 552 * 553 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 554 * with that return code. 555 */ 556 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp, 557 struct elfhdr *interp_ehdr, 558 struct arch_elf_state *state) 559 { 560 /* Dummy implementation, always proceed */ 561 return 0; 562 } 563 564 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */ 565 566 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state, 567 bool has_interp, bool is_interp) 568 { 569 int prot = 0; 570 571 if (p_flags & PF_R) 572 prot |= PROT_READ; 573 if (p_flags & PF_W) 574 prot |= PROT_WRITE; 575 if (p_flags & PF_X) 576 prot |= PROT_EXEC; 577 578 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp); 579 } 580 581 /* This is much more generalized than the library routine read function, 582 so we keep this separate. Technically the library read function 583 is only provided so that we can read a.out libraries that have 584 an ELF header */ 585 586 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 587 struct file *interpreter, 588 unsigned long no_base, struct elf_phdr *interp_elf_phdata, 589 struct arch_elf_state *arch_state) 590 { 591 struct elf_phdr *eppnt; 592 unsigned long load_addr = 0; 593 int load_addr_set = 0; 594 unsigned long last_bss = 0, elf_bss = 0; 595 int bss_prot = 0; 596 unsigned long error = ~0UL; 597 unsigned long total_size; 598 int i; 599 600 /* First of all, some simple consistency checks */ 601 if (interp_elf_ex->e_type != ET_EXEC && 602 interp_elf_ex->e_type != ET_DYN) 603 goto out; 604 if (!elf_check_arch(interp_elf_ex) || 605 elf_check_fdpic(interp_elf_ex)) 606 goto out; 607 if (!interpreter->f_op->mmap) 608 goto out; 609 610 total_size = total_mapping_size(interp_elf_phdata, 611 interp_elf_ex->e_phnum); 612 if (!total_size) { 613 error = -EINVAL; 614 goto out; 615 } 616 617 eppnt = interp_elf_phdata; 618 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 619 if (eppnt->p_type == PT_LOAD) { 620 int elf_type = MAP_PRIVATE; 621 int elf_prot = make_prot(eppnt->p_flags, arch_state, 622 true, true); 623 unsigned long vaddr = 0; 624 unsigned long k, map_addr; 625 626 vaddr = eppnt->p_vaddr; 627 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 628 elf_type |= MAP_FIXED; 629 else if (no_base && interp_elf_ex->e_type == ET_DYN) 630 load_addr = -vaddr; 631 632 map_addr = elf_map(interpreter, load_addr + vaddr, 633 eppnt, elf_prot, elf_type, total_size); 634 total_size = 0; 635 error = map_addr; 636 if (BAD_ADDR(map_addr)) 637 goto out; 638 639 if (!load_addr_set && 640 interp_elf_ex->e_type == ET_DYN) { 641 load_addr = map_addr - ELF_PAGESTART(vaddr); 642 load_addr_set = 1; 643 } 644 645 /* 646 * Check to see if the section's size will overflow the 647 * allowed task size. Note that p_filesz must always be 648 * <= p_memsize so it's only necessary to check p_memsz. 649 */ 650 k = load_addr + eppnt->p_vaddr; 651 if (BAD_ADDR(k) || 652 eppnt->p_filesz > eppnt->p_memsz || 653 eppnt->p_memsz > TASK_SIZE || 654 TASK_SIZE - eppnt->p_memsz < k) { 655 error = -ENOMEM; 656 goto out; 657 } 658 659 /* 660 * Find the end of the file mapping for this phdr, and 661 * keep track of the largest address we see for this. 662 */ 663 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; 664 if (k > elf_bss) 665 elf_bss = k; 666 667 /* 668 * Do the same thing for the memory mapping - between 669 * elf_bss and last_bss is the bss section. 670 */ 671 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz; 672 if (k > last_bss) { 673 last_bss = k; 674 bss_prot = elf_prot; 675 } 676 } 677 } 678 679 /* 680 * Now fill out the bss section: first pad the last page from 681 * the file up to the page boundary, and zero it from elf_bss 682 * up to the end of the page. 683 */ 684 if (padzero(elf_bss)) { 685 error = -EFAULT; 686 goto out; 687 } 688 /* 689 * Next, align both the file and mem bss up to the page size, 690 * since this is where elf_bss was just zeroed up to, and where 691 * last_bss will end after the vm_brk_flags() below. 692 */ 693 elf_bss = ELF_PAGEALIGN(elf_bss); 694 last_bss = ELF_PAGEALIGN(last_bss); 695 /* Finally, if there is still more bss to allocate, do it. */ 696 if (last_bss > elf_bss) { 697 error = vm_brk_flags(elf_bss, last_bss - elf_bss, 698 bss_prot & PROT_EXEC ? VM_EXEC : 0); 699 if (error) 700 goto out; 701 } 702 703 error = load_addr; 704 out: 705 return error; 706 } 707 708 /* 709 * These are the functions used to load ELF style executables and shared 710 * libraries. There is no binary dependent code anywhere else. 711 */ 712 713 static int parse_elf_property(const char *data, size_t *off, size_t datasz, 714 struct arch_elf_state *arch, 715 bool have_prev_type, u32 *prev_type) 716 { 717 size_t o, step; 718 const struct gnu_property *pr; 719 int ret; 720 721 if (*off == datasz) 722 return -ENOENT; 723 724 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN)) 725 return -EIO; 726 o = *off; 727 datasz -= *off; 728 729 if (datasz < sizeof(*pr)) 730 return -ENOEXEC; 731 pr = (const struct gnu_property *)(data + o); 732 o += sizeof(*pr); 733 datasz -= sizeof(*pr); 734 735 if (pr->pr_datasz > datasz) 736 return -ENOEXEC; 737 738 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN); 739 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN); 740 if (step > datasz) 741 return -ENOEXEC; 742 743 /* Properties are supposed to be unique and sorted on pr_type: */ 744 if (have_prev_type && pr->pr_type <= *prev_type) 745 return -ENOEXEC; 746 *prev_type = pr->pr_type; 747 748 ret = arch_parse_elf_property(pr->pr_type, data + o, 749 pr->pr_datasz, ELF_COMPAT, arch); 750 if (ret) 751 return ret; 752 753 *off = o + step; 754 return 0; 755 } 756 757 #define NOTE_DATA_SZ SZ_1K 758 #define GNU_PROPERTY_TYPE_0_NAME "GNU" 759 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME)) 760 761 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr, 762 struct arch_elf_state *arch) 763 { 764 union { 765 struct elf_note nhdr; 766 char data[NOTE_DATA_SZ]; 767 } note; 768 loff_t pos; 769 ssize_t n; 770 size_t off, datasz; 771 int ret; 772 bool have_prev_type; 773 u32 prev_type; 774 775 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr) 776 return 0; 777 778 /* load_elf_binary() shouldn't call us unless this is true... */ 779 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY)) 780 return -ENOEXEC; 781 782 /* If the properties are crazy large, that's too bad (for now): */ 783 if (phdr->p_filesz > sizeof(note)) 784 return -ENOEXEC; 785 786 pos = phdr->p_offset; 787 n = kernel_read(f, ¬e, phdr->p_filesz, &pos); 788 789 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ); 790 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ) 791 return -EIO; 792 793 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 794 note.nhdr.n_namesz != NOTE_NAME_SZ || 795 strncmp(note.data + sizeof(note.nhdr), 796 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr))) 797 return -ENOEXEC; 798 799 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ, 800 ELF_GNU_PROPERTY_ALIGN); 801 if (off > n) 802 return -ENOEXEC; 803 804 if (note.nhdr.n_descsz > n - off) 805 return -ENOEXEC; 806 datasz = off + note.nhdr.n_descsz; 807 808 have_prev_type = false; 809 do { 810 ret = parse_elf_property(note.data, &off, datasz, arch, 811 have_prev_type, &prev_type); 812 have_prev_type = true; 813 } while (!ret); 814 815 return ret == -ENOENT ? 0 : ret; 816 } 817 818 static int load_elf_binary(struct linux_binprm *bprm) 819 { 820 struct file *interpreter = NULL; /* to shut gcc up */ 821 unsigned long load_bias = 0, phdr_addr = 0; 822 int first_pt_load = 1; 823 unsigned long error; 824 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL; 825 struct elf_phdr *elf_property_phdata = NULL; 826 unsigned long elf_bss, elf_brk; 827 int bss_prot = 0; 828 int retval, i; 829 unsigned long elf_entry; 830 unsigned long e_entry; 831 unsigned long interp_load_addr = 0; 832 unsigned long start_code, end_code, start_data, end_data; 833 unsigned long reloc_func_desc __maybe_unused = 0; 834 int executable_stack = EXSTACK_DEFAULT; 835 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf; 836 struct elfhdr *interp_elf_ex = NULL; 837 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE; 838 struct mm_struct *mm; 839 struct pt_regs *regs; 840 841 retval = -ENOEXEC; 842 /* First of all, some simple consistency checks */ 843 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 844 goto out; 845 846 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN) 847 goto out; 848 if (!elf_check_arch(elf_ex)) 849 goto out; 850 if (elf_check_fdpic(elf_ex)) 851 goto out; 852 if (!bprm->file->f_op->mmap) 853 goto out; 854 855 elf_phdata = load_elf_phdrs(elf_ex, bprm->file); 856 if (!elf_phdata) 857 goto out; 858 859 elf_ppnt = elf_phdata; 860 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) { 861 char *elf_interpreter; 862 863 if (elf_ppnt->p_type == PT_GNU_PROPERTY) { 864 elf_property_phdata = elf_ppnt; 865 continue; 866 } 867 868 if (elf_ppnt->p_type != PT_INTERP) 869 continue; 870 871 /* 872 * This is the program interpreter used for shared libraries - 873 * for now assume that this is an a.out format binary. 874 */ 875 retval = -ENOEXEC; 876 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2) 877 goto out_free_ph; 878 879 retval = -ENOMEM; 880 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL); 881 if (!elf_interpreter) 882 goto out_free_ph; 883 884 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz, 885 elf_ppnt->p_offset); 886 if (retval < 0) 887 goto out_free_interp; 888 /* make sure path is NULL terminated */ 889 retval = -ENOEXEC; 890 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 891 goto out_free_interp; 892 893 interpreter = open_exec(elf_interpreter); 894 kfree(elf_interpreter); 895 retval = PTR_ERR(interpreter); 896 if (IS_ERR(interpreter)) 897 goto out_free_ph; 898 899 /* 900 * If the binary is not readable then enforce mm->dumpable = 0 901 * regardless of the interpreter's permissions. 902 */ 903 would_dump(bprm, interpreter); 904 905 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL); 906 if (!interp_elf_ex) { 907 retval = -ENOMEM; 908 goto out_free_file; 909 } 910 911 /* Get the exec headers */ 912 retval = elf_read(interpreter, interp_elf_ex, 913 sizeof(*interp_elf_ex), 0); 914 if (retval < 0) 915 goto out_free_dentry; 916 917 break; 918 919 out_free_interp: 920 kfree(elf_interpreter); 921 goto out_free_ph; 922 } 923 924 elf_ppnt = elf_phdata; 925 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) 926 switch (elf_ppnt->p_type) { 927 case PT_GNU_STACK: 928 if (elf_ppnt->p_flags & PF_X) 929 executable_stack = EXSTACK_ENABLE_X; 930 else 931 executable_stack = EXSTACK_DISABLE_X; 932 break; 933 934 case PT_LOPROC ... PT_HIPROC: 935 retval = arch_elf_pt_proc(elf_ex, elf_ppnt, 936 bprm->file, false, 937 &arch_state); 938 if (retval) 939 goto out_free_dentry; 940 break; 941 } 942 943 /* Some simple consistency checks for the interpreter */ 944 if (interpreter) { 945 retval = -ELIBBAD; 946 /* Not an ELF interpreter */ 947 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 948 goto out_free_dentry; 949 /* Verify the interpreter has a valid arch */ 950 if (!elf_check_arch(interp_elf_ex) || 951 elf_check_fdpic(interp_elf_ex)) 952 goto out_free_dentry; 953 954 /* Load the interpreter program headers */ 955 interp_elf_phdata = load_elf_phdrs(interp_elf_ex, 956 interpreter); 957 if (!interp_elf_phdata) 958 goto out_free_dentry; 959 960 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */ 961 elf_property_phdata = NULL; 962 elf_ppnt = interp_elf_phdata; 963 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++) 964 switch (elf_ppnt->p_type) { 965 case PT_GNU_PROPERTY: 966 elf_property_phdata = elf_ppnt; 967 break; 968 969 case PT_LOPROC ... PT_HIPROC: 970 retval = arch_elf_pt_proc(interp_elf_ex, 971 elf_ppnt, interpreter, 972 true, &arch_state); 973 if (retval) 974 goto out_free_dentry; 975 break; 976 } 977 } 978 979 retval = parse_elf_properties(interpreter ?: bprm->file, 980 elf_property_phdata, &arch_state); 981 if (retval) 982 goto out_free_dentry; 983 984 /* 985 * Allow arch code to reject the ELF at this point, whilst it's 986 * still possible to return an error to the code that invoked 987 * the exec syscall. 988 */ 989 retval = arch_check_elf(elf_ex, 990 !!interpreter, interp_elf_ex, 991 &arch_state); 992 if (retval) 993 goto out_free_dentry; 994 995 /* Flush all traces of the currently running executable */ 996 retval = begin_new_exec(bprm); 997 if (retval) 998 goto out_free_dentry; 999 1000 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 1001 may depend on the personality. */ 1002 SET_PERSONALITY2(*elf_ex, &arch_state); 1003 if (elf_read_implies_exec(*elf_ex, executable_stack)) 1004 current->personality |= READ_IMPLIES_EXEC; 1005 1006 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1007 current->flags |= PF_RANDOMIZE; 1008 1009 setup_new_exec(bprm); 1010 1011 /* Do this so that we can load the interpreter, if need be. We will 1012 change some of these later */ 1013 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 1014 executable_stack); 1015 if (retval < 0) 1016 goto out_free_dentry; 1017 1018 elf_bss = 0; 1019 elf_brk = 0; 1020 1021 start_code = ~0UL; 1022 end_code = 0; 1023 start_data = 0; 1024 end_data = 0; 1025 1026 /* Now we do a little grungy work by mmapping the ELF image into 1027 the correct location in memory. */ 1028 for(i = 0, elf_ppnt = elf_phdata; 1029 i < elf_ex->e_phnum; i++, elf_ppnt++) { 1030 int elf_prot, elf_flags; 1031 unsigned long k, vaddr; 1032 unsigned long total_size = 0; 1033 unsigned long alignment; 1034 1035 if (elf_ppnt->p_type != PT_LOAD) 1036 continue; 1037 1038 if (unlikely (elf_brk > elf_bss)) { 1039 unsigned long nbyte; 1040 1041 /* There was a PT_LOAD segment with p_memsz > p_filesz 1042 before this one. Map anonymous pages, if needed, 1043 and clear the area. */ 1044 retval = set_brk(elf_bss + load_bias, 1045 elf_brk + load_bias, 1046 bss_prot); 1047 if (retval) 1048 goto out_free_dentry; 1049 nbyte = ELF_PAGEOFFSET(elf_bss); 1050 if (nbyte) { 1051 nbyte = ELF_MIN_ALIGN - nbyte; 1052 if (nbyte > elf_brk - elf_bss) 1053 nbyte = elf_brk - elf_bss; 1054 if (clear_user((void __user *)elf_bss + 1055 load_bias, nbyte)) { 1056 /* 1057 * This bss-zeroing can fail if the ELF 1058 * file specifies odd protections. So 1059 * we don't check the return value 1060 */ 1061 } 1062 } 1063 } 1064 1065 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state, 1066 !!interpreter, false); 1067 1068 elf_flags = MAP_PRIVATE; 1069 1070 vaddr = elf_ppnt->p_vaddr; 1071 /* 1072 * The first time through the loop, first_pt_load is true: 1073 * layout will be calculated. Once set, use MAP_FIXED since 1074 * we know we've already safely mapped the entire region with 1075 * MAP_FIXED_NOREPLACE in the once-per-binary logic following. 1076 */ 1077 if (!first_pt_load) { 1078 elf_flags |= MAP_FIXED; 1079 } else if (elf_ex->e_type == ET_EXEC) { 1080 /* 1081 * This logic is run once for the first LOAD Program 1082 * Header for ET_EXEC binaries. No special handling 1083 * is needed. 1084 */ 1085 elf_flags |= MAP_FIXED_NOREPLACE; 1086 } else if (elf_ex->e_type == ET_DYN) { 1087 /* 1088 * This logic is run once for the first LOAD Program 1089 * Header for ET_DYN binaries to calculate the 1090 * randomization (load_bias) for all the LOAD 1091 * Program Headers. 1092 * 1093 * There are effectively two types of ET_DYN 1094 * binaries: programs (i.e. PIE: ET_DYN with INTERP) 1095 * and loaders (ET_DYN without INTERP, since they 1096 * _are_ the ELF interpreter). The loaders must 1097 * be loaded away from programs since the program 1098 * may otherwise collide with the loader (especially 1099 * for ET_EXEC which does not have a randomized 1100 * position). For example to handle invocations of 1101 * "./ld.so someprog" to test out a new version of 1102 * the loader, the subsequent program that the 1103 * loader loads must avoid the loader itself, so 1104 * they cannot share the same load range. Sufficient 1105 * room for the brk must be allocated with the 1106 * loader as well, since brk must be available with 1107 * the loader. 1108 * 1109 * Therefore, programs are loaded offset from 1110 * ELF_ET_DYN_BASE and loaders are loaded into the 1111 * independently randomized mmap region (0 load_bias 1112 * without MAP_FIXED nor MAP_FIXED_NOREPLACE). 1113 */ 1114 if (interpreter) { 1115 load_bias = ELF_ET_DYN_BASE; 1116 if (current->flags & PF_RANDOMIZE) 1117 load_bias += arch_mmap_rnd(); 1118 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum); 1119 if (alignment) 1120 load_bias &= ~(alignment - 1); 1121 elf_flags |= MAP_FIXED_NOREPLACE; 1122 } else 1123 load_bias = 0; 1124 1125 /* 1126 * Since load_bias is used for all subsequent loading 1127 * calculations, we must lower it by the first vaddr 1128 * so that the remaining calculations based on the 1129 * ELF vaddrs will be correctly offset. The result 1130 * is then page aligned. 1131 */ 1132 load_bias = ELF_PAGESTART(load_bias - vaddr); 1133 1134 /* 1135 * Calculate the entire size of the ELF mapping 1136 * (total_size), used for the initial mapping, 1137 * due to load_addr_set which is set to true later 1138 * once the initial mapping is performed. 1139 * 1140 * Note that this is only sensible when the LOAD 1141 * segments are contiguous (or overlapping). If 1142 * used for LOADs that are far apart, this would 1143 * cause the holes between LOADs to be mapped, 1144 * running the risk of having the mapping fail, 1145 * as it would be larger than the ELF file itself. 1146 * 1147 * As a result, only ET_DYN does this, since 1148 * some ET_EXEC (e.g. ia64) may have large virtual 1149 * memory holes between LOADs. 1150 * 1151 */ 1152 total_size = total_mapping_size(elf_phdata, 1153 elf_ex->e_phnum); 1154 if (!total_size) { 1155 retval = -EINVAL; 1156 goto out_free_dentry; 1157 } 1158 } 1159 1160 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, 1161 elf_prot, elf_flags, total_size); 1162 if (BAD_ADDR(error)) { 1163 retval = IS_ERR_VALUE(error) ? 1164 PTR_ERR((void*)error) : -EINVAL; 1165 goto out_free_dentry; 1166 } 1167 1168 if (first_pt_load) { 1169 first_pt_load = 0; 1170 if (elf_ex->e_type == ET_DYN) { 1171 load_bias += error - 1172 ELF_PAGESTART(load_bias + vaddr); 1173 reloc_func_desc = load_bias; 1174 } 1175 } 1176 1177 /* 1178 * Figure out which segment in the file contains the Program 1179 * Header table, and map to the associated memory address. 1180 */ 1181 if (elf_ppnt->p_offset <= elf_ex->e_phoff && 1182 elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) { 1183 phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset + 1184 elf_ppnt->p_vaddr; 1185 } 1186 1187 k = elf_ppnt->p_vaddr; 1188 if ((elf_ppnt->p_flags & PF_X) && k < start_code) 1189 start_code = k; 1190 if (start_data < k) 1191 start_data = k; 1192 1193 /* 1194 * Check to see if the section's size will overflow the 1195 * allowed task size. Note that p_filesz must always be 1196 * <= p_memsz so it is only necessary to check p_memsz. 1197 */ 1198 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 1199 elf_ppnt->p_memsz > TASK_SIZE || 1200 TASK_SIZE - elf_ppnt->p_memsz < k) { 1201 /* set_brk can never work. Avoid overflows. */ 1202 retval = -EINVAL; 1203 goto out_free_dentry; 1204 } 1205 1206 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 1207 1208 if (k > elf_bss) 1209 elf_bss = k; 1210 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 1211 end_code = k; 1212 if (end_data < k) 1213 end_data = k; 1214 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 1215 if (k > elf_brk) { 1216 bss_prot = elf_prot; 1217 elf_brk = k; 1218 } 1219 } 1220 1221 e_entry = elf_ex->e_entry + load_bias; 1222 phdr_addr += load_bias; 1223 elf_bss += load_bias; 1224 elf_brk += load_bias; 1225 start_code += load_bias; 1226 end_code += load_bias; 1227 start_data += load_bias; 1228 end_data += load_bias; 1229 1230 /* Calling set_brk effectively mmaps the pages that we need 1231 * for the bss and break sections. We must do this before 1232 * mapping in the interpreter, to make sure it doesn't wind 1233 * up getting placed where the bss needs to go. 1234 */ 1235 retval = set_brk(elf_bss, elf_brk, bss_prot); 1236 if (retval) 1237 goto out_free_dentry; 1238 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { 1239 retval = -EFAULT; /* Nobody gets to see this, but.. */ 1240 goto out_free_dentry; 1241 } 1242 1243 if (interpreter) { 1244 elf_entry = load_elf_interp(interp_elf_ex, 1245 interpreter, 1246 load_bias, interp_elf_phdata, 1247 &arch_state); 1248 if (!IS_ERR_VALUE(elf_entry)) { 1249 /* 1250 * load_elf_interp() returns relocation 1251 * adjustment 1252 */ 1253 interp_load_addr = elf_entry; 1254 elf_entry += interp_elf_ex->e_entry; 1255 } 1256 if (BAD_ADDR(elf_entry)) { 1257 retval = IS_ERR_VALUE(elf_entry) ? 1258 (int)elf_entry : -EINVAL; 1259 goto out_free_dentry; 1260 } 1261 reloc_func_desc = interp_load_addr; 1262 1263 allow_write_access(interpreter); 1264 fput(interpreter); 1265 1266 kfree(interp_elf_ex); 1267 kfree(interp_elf_phdata); 1268 } else { 1269 elf_entry = e_entry; 1270 if (BAD_ADDR(elf_entry)) { 1271 retval = -EINVAL; 1272 goto out_free_dentry; 1273 } 1274 } 1275 1276 kfree(elf_phdata); 1277 1278 set_binfmt(&elf_format); 1279 1280 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 1281 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter); 1282 if (retval < 0) 1283 goto out; 1284 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 1285 1286 retval = create_elf_tables(bprm, elf_ex, interp_load_addr, 1287 e_entry, phdr_addr); 1288 if (retval < 0) 1289 goto out; 1290 1291 mm = current->mm; 1292 mm->end_code = end_code; 1293 mm->start_code = start_code; 1294 mm->start_data = start_data; 1295 mm->end_data = end_data; 1296 mm->start_stack = bprm->p; 1297 1298 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { 1299 /* 1300 * For architectures with ELF randomization, when executing 1301 * a loader directly (i.e. no interpreter listed in ELF 1302 * headers), move the brk area out of the mmap region 1303 * (since it grows up, and may collide early with the stack 1304 * growing down), and into the unused ELF_ET_DYN_BASE region. 1305 */ 1306 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && 1307 elf_ex->e_type == ET_DYN && !interpreter) { 1308 mm->brk = mm->start_brk = ELF_ET_DYN_BASE; 1309 } 1310 1311 mm->brk = mm->start_brk = arch_randomize_brk(mm); 1312 #ifdef compat_brk_randomized 1313 current->brk_randomized = 1; 1314 #endif 1315 } 1316 1317 if (current->personality & MMAP_PAGE_ZERO) { 1318 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 1319 and some applications "depend" upon this behavior. 1320 Since we do not have the power to recompile these, we 1321 emulate the SVr4 behavior. Sigh. */ 1322 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 1323 MAP_FIXED | MAP_PRIVATE, 0); 1324 } 1325 1326 regs = current_pt_regs(); 1327 #ifdef ELF_PLAT_INIT 1328 /* 1329 * The ABI may specify that certain registers be set up in special 1330 * ways (on i386 %edx is the address of a DT_FINI function, for 1331 * example. In addition, it may also specify (eg, PowerPC64 ELF) 1332 * that the e_entry field is the address of the function descriptor 1333 * for the startup routine, rather than the address of the startup 1334 * routine itself. This macro performs whatever initialization to 1335 * the regs structure is required as well as any relocations to the 1336 * function descriptor entries when executing dynamically links apps. 1337 */ 1338 ELF_PLAT_INIT(regs, reloc_func_desc); 1339 #endif 1340 1341 finalize_exec(bprm); 1342 START_THREAD(elf_ex, regs, elf_entry, bprm->p); 1343 retval = 0; 1344 out: 1345 return retval; 1346 1347 /* error cleanup */ 1348 out_free_dentry: 1349 kfree(interp_elf_ex); 1350 kfree(interp_elf_phdata); 1351 out_free_file: 1352 allow_write_access(interpreter); 1353 if (interpreter) 1354 fput(interpreter); 1355 out_free_ph: 1356 kfree(elf_phdata); 1357 goto out; 1358 } 1359 1360 #ifdef CONFIG_USELIB 1361 /* This is really simpleminded and specialized - we are loading an 1362 a.out library that is given an ELF header. */ 1363 static int load_elf_library(struct file *file) 1364 { 1365 struct elf_phdr *elf_phdata; 1366 struct elf_phdr *eppnt; 1367 unsigned long elf_bss, bss, len; 1368 int retval, error, i, j; 1369 struct elfhdr elf_ex; 1370 1371 error = -ENOEXEC; 1372 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0); 1373 if (retval < 0) 1374 goto out; 1375 1376 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1377 goto out; 1378 1379 /* First of all, some simple consistency checks */ 1380 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1381 !elf_check_arch(&elf_ex) || !file->f_op->mmap) 1382 goto out; 1383 if (elf_check_fdpic(&elf_ex)) 1384 goto out; 1385 1386 /* Now read in all of the header information */ 1387 1388 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1389 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1390 1391 error = -ENOMEM; 1392 elf_phdata = kmalloc(j, GFP_KERNEL); 1393 if (!elf_phdata) 1394 goto out; 1395 1396 eppnt = elf_phdata; 1397 error = -ENOEXEC; 1398 retval = elf_read(file, eppnt, j, elf_ex.e_phoff); 1399 if (retval < 0) 1400 goto out_free_ph; 1401 1402 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1403 if ((eppnt + i)->p_type == PT_LOAD) 1404 j++; 1405 if (j != 1) 1406 goto out_free_ph; 1407 1408 while (eppnt->p_type != PT_LOAD) 1409 eppnt++; 1410 1411 /* Now use mmap to map the library into memory. */ 1412 error = vm_mmap(file, 1413 ELF_PAGESTART(eppnt->p_vaddr), 1414 (eppnt->p_filesz + 1415 ELF_PAGEOFFSET(eppnt->p_vaddr)), 1416 PROT_READ | PROT_WRITE | PROT_EXEC, 1417 MAP_FIXED_NOREPLACE | MAP_PRIVATE, 1418 (eppnt->p_offset - 1419 ELF_PAGEOFFSET(eppnt->p_vaddr))); 1420 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1421 goto out_free_ph; 1422 1423 elf_bss = eppnt->p_vaddr + eppnt->p_filesz; 1424 if (padzero(elf_bss)) { 1425 error = -EFAULT; 1426 goto out_free_ph; 1427 } 1428 1429 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr); 1430 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr); 1431 if (bss > len) { 1432 error = vm_brk(len, bss - len); 1433 if (error) 1434 goto out_free_ph; 1435 } 1436 error = 0; 1437 1438 out_free_ph: 1439 kfree(elf_phdata); 1440 out: 1441 return error; 1442 } 1443 #endif /* #ifdef CONFIG_USELIB */ 1444 1445 #ifdef CONFIG_ELF_CORE 1446 /* 1447 * ELF core dumper 1448 * 1449 * Modelled on fs/exec.c:aout_core_dump() 1450 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1451 */ 1452 1453 /* An ELF note in memory */ 1454 struct memelfnote 1455 { 1456 const char *name; 1457 int type; 1458 unsigned int datasz; 1459 void *data; 1460 }; 1461 1462 static int notesize(struct memelfnote *en) 1463 { 1464 int sz; 1465 1466 sz = sizeof(struct elf_note); 1467 sz += roundup(strlen(en->name) + 1, 4); 1468 sz += roundup(en->datasz, 4); 1469 1470 return sz; 1471 } 1472 1473 static int writenote(struct memelfnote *men, struct coredump_params *cprm) 1474 { 1475 struct elf_note en; 1476 en.n_namesz = strlen(men->name) + 1; 1477 en.n_descsz = men->datasz; 1478 en.n_type = men->type; 1479 1480 return dump_emit(cprm, &en, sizeof(en)) && 1481 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) && 1482 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4); 1483 } 1484 1485 static void fill_elf_header(struct elfhdr *elf, int segs, 1486 u16 machine, u32 flags) 1487 { 1488 memset(elf, 0, sizeof(*elf)); 1489 1490 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1491 elf->e_ident[EI_CLASS] = ELF_CLASS; 1492 elf->e_ident[EI_DATA] = ELF_DATA; 1493 elf->e_ident[EI_VERSION] = EV_CURRENT; 1494 elf->e_ident[EI_OSABI] = ELF_OSABI; 1495 1496 elf->e_type = ET_CORE; 1497 elf->e_machine = machine; 1498 elf->e_version = EV_CURRENT; 1499 elf->e_phoff = sizeof(struct elfhdr); 1500 elf->e_flags = flags; 1501 elf->e_ehsize = sizeof(struct elfhdr); 1502 elf->e_phentsize = sizeof(struct elf_phdr); 1503 elf->e_phnum = segs; 1504 } 1505 1506 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1507 { 1508 phdr->p_type = PT_NOTE; 1509 phdr->p_offset = offset; 1510 phdr->p_vaddr = 0; 1511 phdr->p_paddr = 0; 1512 phdr->p_filesz = sz; 1513 phdr->p_memsz = 0; 1514 phdr->p_flags = 0; 1515 phdr->p_align = 0; 1516 } 1517 1518 static void fill_note(struct memelfnote *note, const char *name, int type, 1519 unsigned int sz, void *data) 1520 { 1521 note->name = name; 1522 note->type = type; 1523 note->datasz = sz; 1524 note->data = data; 1525 } 1526 1527 /* 1528 * fill up all the fields in prstatus from the given task struct, except 1529 * registers which need to be filled up separately. 1530 */ 1531 static void fill_prstatus(struct elf_prstatus_common *prstatus, 1532 struct task_struct *p, long signr) 1533 { 1534 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1535 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1536 prstatus->pr_sighold = p->blocked.sig[0]; 1537 rcu_read_lock(); 1538 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1539 rcu_read_unlock(); 1540 prstatus->pr_pid = task_pid_vnr(p); 1541 prstatus->pr_pgrp = task_pgrp_vnr(p); 1542 prstatus->pr_sid = task_session_vnr(p); 1543 if (thread_group_leader(p)) { 1544 struct task_cputime cputime; 1545 1546 /* 1547 * This is the record for the group leader. It shows the 1548 * group-wide total, not its individual thread total. 1549 */ 1550 thread_group_cputime(p, &cputime); 1551 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime); 1552 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime); 1553 } else { 1554 u64 utime, stime; 1555 1556 task_cputime(p, &utime, &stime); 1557 prstatus->pr_utime = ns_to_kernel_old_timeval(utime); 1558 prstatus->pr_stime = ns_to_kernel_old_timeval(stime); 1559 } 1560 1561 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime); 1562 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime); 1563 } 1564 1565 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1566 struct mm_struct *mm) 1567 { 1568 const struct cred *cred; 1569 unsigned int i, len; 1570 unsigned int state; 1571 1572 /* first copy the parameters from user space */ 1573 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1574 1575 len = mm->arg_end - mm->arg_start; 1576 if (len >= ELF_PRARGSZ) 1577 len = ELF_PRARGSZ-1; 1578 if (copy_from_user(&psinfo->pr_psargs, 1579 (const char __user *)mm->arg_start, len)) 1580 return -EFAULT; 1581 for(i = 0; i < len; i++) 1582 if (psinfo->pr_psargs[i] == 0) 1583 psinfo->pr_psargs[i] = ' '; 1584 psinfo->pr_psargs[len] = 0; 1585 1586 rcu_read_lock(); 1587 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1588 rcu_read_unlock(); 1589 psinfo->pr_pid = task_pid_vnr(p); 1590 psinfo->pr_pgrp = task_pgrp_vnr(p); 1591 psinfo->pr_sid = task_session_vnr(p); 1592 1593 state = READ_ONCE(p->__state); 1594 i = state ? ffz(~state) + 1 : 0; 1595 psinfo->pr_state = i; 1596 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1597 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1598 psinfo->pr_nice = task_nice(p); 1599 psinfo->pr_flag = p->flags; 1600 rcu_read_lock(); 1601 cred = __task_cred(p); 1602 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid)); 1603 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid)); 1604 rcu_read_unlock(); 1605 get_task_comm(psinfo->pr_fname, p); 1606 1607 return 0; 1608 } 1609 1610 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1611 { 1612 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1613 int i = 0; 1614 do 1615 i += 2; 1616 while (auxv[i - 2] != AT_NULL); 1617 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1618 } 1619 1620 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata, 1621 const kernel_siginfo_t *siginfo) 1622 { 1623 copy_siginfo_to_external(csigdata, siginfo); 1624 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata); 1625 } 1626 1627 #define MAX_FILE_NOTE_SIZE (4*1024*1024) 1628 /* 1629 * Format of NT_FILE note: 1630 * 1631 * long count -- how many files are mapped 1632 * long page_size -- units for file_ofs 1633 * array of [COUNT] elements of 1634 * long start 1635 * long end 1636 * long file_ofs 1637 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... 1638 */ 1639 static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm) 1640 { 1641 unsigned count, size, names_ofs, remaining, n; 1642 user_long_t *data; 1643 user_long_t *start_end_ofs; 1644 char *name_base, *name_curpos; 1645 int i; 1646 1647 /* *Estimated* file count and total data size needed */ 1648 count = cprm->vma_count; 1649 if (count > UINT_MAX / 64) 1650 return -EINVAL; 1651 size = count * 64; 1652 1653 names_ofs = (2 + 3 * count) * sizeof(data[0]); 1654 alloc: 1655 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */ 1656 return -EINVAL; 1657 size = round_up(size, PAGE_SIZE); 1658 /* 1659 * "size" can be 0 here legitimately. 1660 * Let it ENOMEM and omit NT_FILE section which will be empty anyway. 1661 */ 1662 data = kvmalloc(size, GFP_KERNEL); 1663 if (ZERO_OR_NULL_PTR(data)) 1664 return -ENOMEM; 1665 1666 start_end_ofs = data + 2; 1667 name_base = name_curpos = ((char *)data) + names_ofs; 1668 remaining = size - names_ofs; 1669 count = 0; 1670 for (i = 0; i < cprm->vma_count; i++) { 1671 struct core_vma_metadata *m = &cprm->vma_meta[i]; 1672 struct file *file; 1673 const char *filename; 1674 1675 file = m->file; 1676 if (!file) 1677 continue; 1678 filename = file_path(file, name_curpos, remaining); 1679 if (IS_ERR(filename)) { 1680 if (PTR_ERR(filename) == -ENAMETOOLONG) { 1681 kvfree(data); 1682 size = size * 5 / 4; 1683 goto alloc; 1684 } 1685 continue; 1686 } 1687 1688 /* file_path() fills at the end, move name down */ 1689 /* n = strlen(filename) + 1: */ 1690 n = (name_curpos + remaining) - filename; 1691 remaining = filename - name_curpos; 1692 memmove(name_curpos, filename, n); 1693 name_curpos += n; 1694 1695 *start_end_ofs++ = m->start; 1696 *start_end_ofs++ = m->end; 1697 *start_end_ofs++ = m->pgoff; 1698 count++; 1699 } 1700 1701 /* Now we know exact count of files, can store it */ 1702 data[0] = count; 1703 data[1] = PAGE_SIZE; 1704 /* 1705 * Count usually is less than mm->map_count, 1706 * we need to move filenames down. 1707 */ 1708 n = cprm->vma_count - count; 1709 if (n != 0) { 1710 unsigned shift_bytes = n * 3 * sizeof(data[0]); 1711 memmove(name_base - shift_bytes, name_base, 1712 name_curpos - name_base); 1713 name_curpos -= shift_bytes; 1714 } 1715 1716 size = name_curpos - (char *)data; 1717 fill_note(note, "CORE", NT_FILE, size, data); 1718 return 0; 1719 } 1720 1721 #include <linux/regset.h> 1722 1723 struct elf_thread_core_info { 1724 struct elf_thread_core_info *next; 1725 struct task_struct *task; 1726 struct elf_prstatus prstatus; 1727 struct memelfnote notes[]; 1728 }; 1729 1730 struct elf_note_info { 1731 struct elf_thread_core_info *thread; 1732 struct memelfnote psinfo; 1733 struct memelfnote signote; 1734 struct memelfnote auxv; 1735 struct memelfnote files; 1736 user_siginfo_t csigdata; 1737 size_t size; 1738 int thread_notes; 1739 }; 1740 1741 #ifdef CORE_DUMP_USE_REGSET 1742 /* 1743 * When a regset has a writeback hook, we call it on each thread before 1744 * dumping user memory. On register window machines, this makes sure the 1745 * user memory backing the register data is up to date before we read it. 1746 */ 1747 static void do_thread_regset_writeback(struct task_struct *task, 1748 const struct user_regset *regset) 1749 { 1750 if (regset->writeback) 1751 regset->writeback(task, regset, 1); 1752 } 1753 1754 #ifndef PRSTATUS_SIZE 1755 #define PRSTATUS_SIZE sizeof(struct elf_prstatus) 1756 #endif 1757 1758 #ifndef SET_PR_FPVALID 1759 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1) 1760 #endif 1761 1762 static int fill_thread_core_info(struct elf_thread_core_info *t, 1763 const struct user_regset_view *view, 1764 long signr, struct elf_note_info *info) 1765 { 1766 unsigned int note_iter, view_iter; 1767 1768 /* 1769 * NT_PRSTATUS is the one special case, because the regset data 1770 * goes into the pr_reg field inside the note contents, rather 1771 * than being the whole note contents. We fill the reset in here. 1772 * We assume that regset 0 is NT_PRSTATUS. 1773 */ 1774 fill_prstatus(&t->prstatus.common, t->task, signr); 1775 regset_get(t->task, &view->regsets[0], 1776 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg); 1777 1778 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1779 PRSTATUS_SIZE, &t->prstatus); 1780 info->size += notesize(&t->notes[0]); 1781 1782 do_thread_regset_writeback(t->task, &view->regsets[0]); 1783 1784 /* 1785 * Each other regset might generate a note too. For each regset 1786 * that has no core_note_type or is inactive, skip it. 1787 */ 1788 note_iter = 1; 1789 for (view_iter = 1; view_iter < view->n; ++view_iter) { 1790 const struct user_regset *regset = &view->regsets[view_iter]; 1791 int note_type = regset->core_note_type; 1792 bool is_fpreg = note_type == NT_PRFPREG; 1793 void *data; 1794 int ret; 1795 1796 do_thread_regset_writeback(t->task, regset); 1797 if (!note_type) // not for coredumps 1798 continue; 1799 if (regset->active && regset->active(t->task, regset) <= 0) 1800 continue; 1801 1802 ret = regset_get_alloc(t->task, regset, ~0U, &data); 1803 if (ret < 0) 1804 continue; 1805 1806 if (WARN_ON_ONCE(note_iter >= info->thread_notes)) 1807 break; 1808 1809 if (is_fpreg) 1810 SET_PR_FPVALID(&t->prstatus); 1811 1812 fill_note(&t->notes[note_iter], is_fpreg ? "CORE" : "LINUX", 1813 note_type, ret, data); 1814 1815 info->size += notesize(&t->notes[note_iter]); 1816 note_iter++; 1817 } 1818 1819 return 1; 1820 } 1821 #else 1822 static int fill_thread_core_info(struct elf_thread_core_info *t, 1823 const struct user_regset_view *view, 1824 long signr, struct elf_note_info *info) 1825 { 1826 struct task_struct *p = t->task; 1827 elf_fpregset_t *fpu; 1828 1829 fill_prstatus(&t->prstatus.common, p, signr); 1830 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 1831 1832 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 1833 &(t->prstatus)); 1834 info->size += notesize(&t->notes[0]); 1835 1836 fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL); 1837 if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) { 1838 kfree(fpu); 1839 return 1; 1840 } 1841 1842 t->prstatus.pr_fpvalid = 1; 1843 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(*fpu), fpu); 1844 info->size += notesize(&t->notes[1]); 1845 1846 return 1; 1847 } 1848 #endif 1849 1850 static int fill_note_info(struct elfhdr *elf, int phdrs, 1851 struct elf_note_info *info, 1852 struct coredump_params *cprm) 1853 { 1854 struct task_struct *dump_task = current; 1855 const struct user_regset_view *view; 1856 struct elf_thread_core_info *t; 1857 struct elf_prpsinfo *psinfo; 1858 struct core_thread *ct; 1859 1860 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1861 if (!psinfo) 1862 return 0; 1863 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1864 1865 #ifdef CORE_DUMP_USE_REGSET 1866 view = task_user_regset_view(dump_task); 1867 1868 /* 1869 * Figure out how many notes we're going to need for each thread. 1870 */ 1871 info->thread_notes = 0; 1872 for (int i = 0; i < view->n; ++i) 1873 if (view->regsets[i].core_note_type != 0) 1874 ++info->thread_notes; 1875 1876 /* 1877 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1878 * since it is our one special case. 1879 */ 1880 if (unlikely(info->thread_notes == 0) || 1881 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1882 WARN_ON(1); 1883 return 0; 1884 } 1885 1886 /* 1887 * Initialize the ELF file header. 1888 */ 1889 fill_elf_header(elf, phdrs, 1890 view->e_machine, view->e_flags); 1891 #else 1892 view = NULL; 1893 info->thread_notes = 2; 1894 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS); 1895 #endif 1896 1897 /* 1898 * Allocate a structure for each thread. 1899 */ 1900 info->thread = kzalloc(offsetof(struct elf_thread_core_info, 1901 notes[info->thread_notes]), 1902 GFP_KERNEL); 1903 if (unlikely(!info->thread)) 1904 return 0; 1905 1906 info->thread->task = dump_task; 1907 for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) { 1908 t = kzalloc(offsetof(struct elf_thread_core_info, 1909 notes[info->thread_notes]), 1910 GFP_KERNEL); 1911 if (unlikely(!t)) 1912 return 0; 1913 1914 t->task = ct->task; 1915 t->next = info->thread->next; 1916 info->thread->next = t; 1917 } 1918 1919 /* 1920 * Now fill in each thread's information. 1921 */ 1922 for (t = info->thread; t != NULL; t = t->next) 1923 if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info)) 1924 return 0; 1925 1926 /* 1927 * Fill in the two process-wide notes. 1928 */ 1929 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1930 info->size += notesize(&info->psinfo); 1931 1932 fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo); 1933 info->size += notesize(&info->signote); 1934 1935 fill_auxv_note(&info->auxv, current->mm); 1936 info->size += notesize(&info->auxv); 1937 1938 if (fill_files_note(&info->files, cprm) == 0) 1939 info->size += notesize(&info->files); 1940 1941 return 1; 1942 } 1943 1944 /* 1945 * Write all the notes for each thread. When writing the first thread, the 1946 * process-wide notes are interleaved after the first thread-specific note. 1947 */ 1948 static int write_note_info(struct elf_note_info *info, 1949 struct coredump_params *cprm) 1950 { 1951 bool first = true; 1952 struct elf_thread_core_info *t = info->thread; 1953 1954 do { 1955 int i; 1956 1957 if (!writenote(&t->notes[0], cprm)) 1958 return 0; 1959 1960 if (first && !writenote(&info->psinfo, cprm)) 1961 return 0; 1962 if (first && !writenote(&info->signote, cprm)) 1963 return 0; 1964 if (first && !writenote(&info->auxv, cprm)) 1965 return 0; 1966 if (first && info->files.data && 1967 !writenote(&info->files, cprm)) 1968 return 0; 1969 1970 for (i = 1; i < info->thread_notes; ++i) 1971 if (t->notes[i].data && 1972 !writenote(&t->notes[i], cprm)) 1973 return 0; 1974 1975 first = false; 1976 t = t->next; 1977 } while (t); 1978 1979 return 1; 1980 } 1981 1982 static void free_note_info(struct elf_note_info *info) 1983 { 1984 struct elf_thread_core_info *threads = info->thread; 1985 while (threads) { 1986 unsigned int i; 1987 struct elf_thread_core_info *t = threads; 1988 threads = t->next; 1989 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1990 for (i = 1; i < info->thread_notes; ++i) 1991 kfree(t->notes[i].data); 1992 kfree(t); 1993 } 1994 kfree(info->psinfo.data); 1995 kvfree(info->files.data); 1996 } 1997 1998 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, 1999 elf_addr_t e_shoff, int segs) 2000 { 2001 elf->e_shoff = e_shoff; 2002 elf->e_shentsize = sizeof(*shdr4extnum); 2003 elf->e_shnum = 1; 2004 elf->e_shstrndx = SHN_UNDEF; 2005 2006 memset(shdr4extnum, 0, sizeof(*shdr4extnum)); 2007 2008 shdr4extnum->sh_type = SHT_NULL; 2009 shdr4extnum->sh_size = elf->e_shnum; 2010 shdr4extnum->sh_link = elf->e_shstrndx; 2011 shdr4extnum->sh_info = segs; 2012 } 2013 2014 /* 2015 * Actual dumper 2016 * 2017 * This is a two-pass process; first we find the offsets of the bits, 2018 * and then they are actually written out. If we run out of core limit 2019 * we just truncate. 2020 */ 2021 static int elf_core_dump(struct coredump_params *cprm) 2022 { 2023 int has_dumped = 0; 2024 int segs, i; 2025 struct elfhdr elf; 2026 loff_t offset = 0, dataoff; 2027 struct elf_note_info info = { }; 2028 struct elf_phdr *phdr4note = NULL; 2029 struct elf_shdr *shdr4extnum = NULL; 2030 Elf_Half e_phnum; 2031 elf_addr_t e_shoff; 2032 2033 /* 2034 * The number of segs are recored into ELF header as 16bit value. 2035 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. 2036 */ 2037 segs = cprm->vma_count + elf_core_extra_phdrs(); 2038 2039 /* for notes section */ 2040 segs++; 2041 2042 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid 2043 * this, kernel supports extended numbering. Have a look at 2044 * include/linux/elf.h for further information. */ 2045 e_phnum = segs > PN_XNUM ? PN_XNUM : segs; 2046 2047 /* 2048 * Collect all the non-memory information about the process for the 2049 * notes. This also sets up the file header. 2050 */ 2051 if (!fill_note_info(&elf, e_phnum, &info, cprm)) 2052 goto end_coredump; 2053 2054 has_dumped = 1; 2055 2056 offset += sizeof(elf); /* Elf header */ 2057 offset += segs * sizeof(struct elf_phdr); /* Program headers */ 2058 2059 /* Write notes phdr entry */ 2060 { 2061 size_t sz = info.size; 2062 2063 /* For cell spufs */ 2064 sz += elf_coredump_extra_notes_size(); 2065 2066 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); 2067 if (!phdr4note) 2068 goto end_coredump; 2069 2070 fill_elf_note_phdr(phdr4note, sz, offset); 2071 offset += sz; 2072 } 2073 2074 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 2075 2076 offset += cprm->vma_data_size; 2077 offset += elf_core_extra_data_size(); 2078 e_shoff = offset; 2079 2080 if (e_phnum == PN_XNUM) { 2081 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); 2082 if (!shdr4extnum) 2083 goto end_coredump; 2084 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs); 2085 } 2086 2087 offset = dataoff; 2088 2089 if (!dump_emit(cprm, &elf, sizeof(elf))) 2090 goto end_coredump; 2091 2092 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note))) 2093 goto end_coredump; 2094 2095 /* Write program headers for segments dump */ 2096 for (i = 0; i < cprm->vma_count; i++) { 2097 struct core_vma_metadata *meta = cprm->vma_meta + i; 2098 struct elf_phdr phdr; 2099 2100 phdr.p_type = PT_LOAD; 2101 phdr.p_offset = offset; 2102 phdr.p_vaddr = meta->start; 2103 phdr.p_paddr = 0; 2104 phdr.p_filesz = meta->dump_size; 2105 phdr.p_memsz = meta->end - meta->start; 2106 offset += phdr.p_filesz; 2107 phdr.p_flags = 0; 2108 if (meta->flags & VM_READ) 2109 phdr.p_flags |= PF_R; 2110 if (meta->flags & VM_WRITE) 2111 phdr.p_flags |= PF_W; 2112 if (meta->flags & VM_EXEC) 2113 phdr.p_flags |= PF_X; 2114 phdr.p_align = ELF_EXEC_PAGESIZE; 2115 2116 if (!dump_emit(cprm, &phdr, sizeof(phdr))) 2117 goto end_coredump; 2118 } 2119 2120 if (!elf_core_write_extra_phdrs(cprm, offset)) 2121 goto end_coredump; 2122 2123 /* write out the notes section */ 2124 if (!write_note_info(&info, cprm)) 2125 goto end_coredump; 2126 2127 /* For cell spufs */ 2128 if (elf_coredump_extra_notes_write(cprm)) 2129 goto end_coredump; 2130 2131 /* Align to page */ 2132 dump_skip_to(cprm, dataoff); 2133 2134 for (i = 0; i < cprm->vma_count; i++) { 2135 struct core_vma_metadata *meta = cprm->vma_meta + i; 2136 2137 if (!dump_user_range(cprm, meta->start, meta->dump_size)) 2138 goto end_coredump; 2139 } 2140 2141 if (!elf_core_write_extra_data(cprm)) 2142 goto end_coredump; 2143 2144 if (e_phnum == PN_XNUM) { 2145 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum))) 2146 goto end_coredump; 2147 } 2148 2149 end_coredump: 2150 free_note_info(&info); 2151 kfree(shdr4extnum); 2152 kfree(phdr4note); 2153 return has_dumped; 2154 } 2155 2156 #endif /* CONFIG_ELF_CORE */ 2157 2158 static int __init init_elf_binfmt(void) 2159 { 2160 register_binfmt(&elf_format); 2161 return 0; 2162 } 2163 2164 static void __exit exit_elf_binfmt(void) 2165 { 2166 /* Remove the COFF and ELF loaders. */ 2167 unregister_binfmt(&elf_format); 2168 } 2169 2170 core_initcall(init_elf_binfmt); 2171 module_exit(exit_elf_binfmt); 2172 MODULE_LICENSE("GPL"); 2173 2174 #ifdef CONFIG_BINFMT_ELF_KUNIT_TEST 2175 #include "binfmt_elf_test.c" 2176 #endif 2177