xref: /openbmc/linux/fs/binfmt_elf.c (revision 09b35b41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/binfmt_elf.c
4  *
5  * These are the functions used to load ELF format executables as used
6  * on SVr4 machines.  Information on the format may be found in the book
7  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8  * Tools".
9  *
10  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/errno.h>
19 #include <linux/signal.h>
20 #include <linux/binfmts.h>
21 #include <linux/string.h>
22 #include <linux/file.h>
23 #include <linux/slab.h>
24 #include <linux/personality.h>
25 #include <linux/elfcore.h>
26 #include <linux/init.h>
27 #include <linux/highuid.h>
28 #include <linux/compiler.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/random.h>
34 #include <linux/elf.h>
35 #include <linux/elf-randomize.h>
36 #include <linux/utsname.h>
37 #include <linux/coredump.h>
38 #include <linux/sched.h>
39 #include <linux/sched/coredump.h>
40 #include <linux/sched/task_stack.h>
41 #include <linux/sched/cputime.h>
42 #include <linux/cred.h>
43 #include <linux/dax.h>
44 #include <linux/uaccess.h>
45 #include <asm/param.h>
46 #include <asm/page.h>
47 
48 #ifndef user_long_t
49 #define user_long_t long
50 #endif
51 #ifndef user_siginfo_t
52 #define user_siginfo_t siginfo_t
53 #endif
54 
55 /* That's for binfmt_elf_fdpic to deal with */
56 #ifndef elf_check_fdpic
57 #define elf_check_fdpic(ex) false
58 #endif
59 
60 static int load_elf_binary(struct linux_binprm *bprm);
61 
62 #ifdef CONFIG_USELIB
63 static int load_elf_library(struct file *);
64 #else
65 #define load_elf_library NULL
66 #endif
67 
68 /*
69  * If we don't support core dumping, then supply a NULL so we
70  * don't even try.
71  */
72 #ifdef CONFIG_ELF_CORE
73 static int elf_core_dump(struct coredump_params *cprm);
74 #else
75 #define elf_core_dump	NULL
76 #endif
77 
78 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
79 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
80 #else
81 #define ELF_MIN_ALIGN	PAGE_SIZE
82 #endif
83 
84 #ifndef ELF_CORE_EFLAGS
85 #define ELF_CORE_EFLAGS	0
86 #endif
87 
88 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
89 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
90 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
91 
92 static struct linux_binfmt elf_format = {
93 	.module		= THIS_MODULE,
94 	.load_binary	= load_elf_binary,
95 	.load_shlib	= load_elf_library,
96 	.core_dump	= elf_core_dump,
97 	.min_coredump	= ELF_EXEC_PAGESIZE,
98 };
99 
100 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
101 
102 static int set_brk(unsigned long start, unsigned long end, int prot)
103 {
104 	start = ELF_PAGEALIGN(start);
105 	end = ELF_PAGEALIGN(end);
106 	if (end > start) {
107 		/*
108 		 * Map the last of the bss segment.
109 		 * If the header is requesting these pages to be
110 		 * executable, honour that (ppc32 needs this).
111 		 */
112 		int error = vm_brk_flags(start, end - start,
113 				prot & PROT_EXEC ? VM_EXEC : 0);
114 		if (error)
115 			return error;
116 	}
117 	current->mm->start_brk = current->mm->brk = end;
118 	return 0;
119 }
120 
121 /* We need to explicitly zero any fractional pages
122    after the data section (i.e. bss).  This would
123    contain the junk from the file that should not
124    be in memory
125  */
126 static int padzero(unsigned long elf_bss)
127 {
128 	unsigned long nbyte;
129 
130 	nbyte = ELF_PAGEOFFSET(elf_bss);
131 	if (nbyte) {
132 		nbyte = ELF_MIN_ALIGN - nbyte;
133 		if (clear_user((void __user *) elf_bss, nbyte))
134 			return -EFAULT;
135 	}
136 	return 0;
137 }
138 
139 /* Let's use some macros to make this stack manipulation a little clearer */
140 #ifdef CONFIG_STACK_GROWSUP
141 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
142 #define STACK_ROUND(sp, items) \
143 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
144 #define STACK_ALLOC(sp, len) ({ \
145 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
146 	old_sp; })
147 #else
148 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
149 #define STACK_ROUND(sp, items) \
150 	(((unsigned long) (sp - items)) &~ 15UL)
151 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
152 #endif
153 
154 #ifndef ELF_BASE_PLATFORM
155 /*
156  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
157  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
158  * will be copied to the user stack in the same manner as AT_PLATFORM.
159  */
160 #define ELF_BASE_PLATFORM NULL
161 #endif
162 
163 static int
164 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
165 		unsigned long load_addr, unsigned long interp_load_addr)
166 {
167 	unsigned long p = bprm->p;
168 	int argc = bprm->argc;
169 	int envc = bprm->envc;
170 	elf_addr_t __user *sp;
171 	elf_addr_t __user *u_platform;
172 	elf_addr_t __user *u_base_platform;
173 	elf_addr_t __user *u_rand_bytes;
174 	const char *k_platform = ELF_PLATFORM;
175 	const char *k_base_platform = ELF_BASE_PLATFORM;
176 	unsigned char k_rand_bytes[16];
177 	int items;
178 	elf_addr_t *elf_info;
179 	int ei_index = 0;
180 	const struct cred *cred = current_cred();
181 	struct vm_area_struct *vma;
182 
183 	/*
184 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
185 	 * evictions by the processes running on the same package. One
186 	 * thing we can do is to shuffle the initial stack for them.
187 	 */
188 
189 	p = arch_align_stack(p);
190 
191 	/*
192 	 * If this architecture has a platform capability string, copy it
193 	 * to userspace.  In some cases (Sparc), this info is impossible
194 	 * for userspace to get any other way, in others (i386) it is
195 	 * merely difficult.
196 	 */
197 	u_platform = NULL;
198 	if (k_platform) {
199 		size_t len = strlen(k_platform) + 1;
200 
201 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
202 		if (__copy_to_user(u_platform, k_platform, len))
203 			return -EFAULT;
204 	}
205 
206 	/*
207 	 * If this architecture has a "base" platform capability
208 	 * string, copy it to userspace.
209 	 */
210 	u_base_platform = NULL;
211 	if (k_base_platform) {
212 		size_t len = strlen(k_base_platform) + 1;
213 
214 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
215 		if (__copy_to_user(u_base_platform, k_base_platform, len))
216 			return -EFAULT;
217 	}
218 
219 	/*
220 	 * Generate 16 random bytes for userspace PRNG seeding.
221 	 */
222 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
223 	u_rand_bytes = (elf_addr_t __user *)
224 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
225 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
226 		return -EFAULT;
227 
228 	/* Create the ELF interpreter info */
229 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
230 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
231 #define NEW_AUX_ENT(id, val) \
232 	do { \
233 		elf_info[ei_index++] = id; \
234 		elf_info[ei_index++] = val; \
235 	} while (0)
236 
237 #ifdef ARCH_DLINFO
238 	/*
239 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
240 	 * AUXV.
241 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
242 	 * ARCH_DLINFO changes
243 	 */
244 	ARCH_DLINFO;
245 #endif
246 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
247 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
248 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
249 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
250 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
251 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
252 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
253 	NEW_AUX_ENT(AT_FLAGS, 0);
254 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
255 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
256 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
257 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
258 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
259 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
260 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
261 #ifdef ELF_HWCAP2
262 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
263 #endif
264 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
265 	if (k_platform) {
266 		NEW_AUX_ENT(AT_PLATFORM,
267 			    (elf_addr_t)(unsigned long)u_platform);
268 	}
269 	if (k_base_platform) {
270 		NEW_AUX_ENT(AT_BASE_PLATFORM,
271 			    (elf_addr_t)(unsigned long)u_base_platform);
272 	}
273 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
274 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
275 	}
276 #undef NEW_AUX_ENT
277 	/* AT_NULL is zero; clear the rest too */
278 	memset(&elf_info[ei_index], 0,
279 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
280 
281 	/* And advance past the AT_NULL entry.  */
282 	ei_index += 2;
283 
284 	sp = STACK_ADD(p, ei_index);
285 
286 	items = (argc + 1) + (envc + 1) + 1;
287 	bprm->p = STACK_ROUND(sp, items);
288 
289 	/* Point sp at the lowest address on the stack */
290 #ifdef CONFIG_STACK_GROWSUP
291 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
292 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
293 #else
294 	sp = (elf_addr_t __user *)bprm->p;
295 #endif
296 
297 
298 	/*
299 	 * Grow the stack manually; some architectures have a limit on how
300 	 * far ahead a user-space access may be in order to grow the stack.
301 	 */
302 	vma = find_extend_vma(current->mm, bprm->p);
303 	if (!vma)
304 		return -EFAULT;
305 
306 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
307 	if (__put_user(argc, sp++))
308 		return -EFAULT;
309 
310 	/* Populate list of argv pointers back to argv strings. */
311 	p = current->mm->arg_end = current->mm->arg_start;
312 	while (argc-- > 0) {
313 		size_t len;
314 		if (__put_user((elf_addr_t)p, sp++))
315 			return -EFAULT;
316 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
317 		if (!len || len > MAX_ARG_STRLEN)
318 			return -EINVAL;
319 		p += len;
320 	}
321 	if (__put_user(0, sp++))
322 		return -EFAULT;
323 	current->mm->arg_end = p;
324 
325 	/* Populate list of envp pointers back to envp strings. */
326 	current->mm->env_end = current->mm->env_start = p;
327 	while (envc-- > 0) {
328 		size_t len;
329 		if (__put_user((elf_addr_t)p, sp++))
330 			return -EFAULT;
331 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
332 		if (!len || len > MAX_ARG_STRLEN)
333 			return -EINVAL;
334 		p += len;
335 	}
336 	if (__put_user(0, sp++))
337 		return -EFAULT;
338 	current->mm->env_end = p;
339 
340 	/* Put the elf_info on the stack in the right place.  */
341 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
342 		return -EFAULT;
343 	return 0;
344 }
345 
346 #ifndef elf_map
347 
348 static unsigned long elf_map(struct file *filep, unsigned long addr,
349 		const struct elf_phdr *eppnt, int prot, int type,
350 		unsigned long total_size)
351 {
352 	unsigned long map_addr;
353 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
354 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
355 	addr = ELF_PAGESTART(addr);
356 	size = ELF_PAGEALIGN(size);
357 
358 	/* mmap() will return -EINVAL if given a zero size, but a
359 	 * segment with zero filesize is perfectly valid */
360 	if (!size)
361 		return addr;
362 
363 	/*
364 	* total_size is the size of the ELF (interpreter) image.
365 	* The _first_ mmap needs to know the full size, otherwise
366 	* randomization might put this image into an overlapping
367 	* position with the ELF binary image. (since size < total_size)
368 	* So we first map the 'big' image - and unmap the remainder at
369 	* the end. (which unmap is needed for ELF images with holes.)
370 	*/
371 	if (total_size) {
372 		total_size = ELF_PAGEALIGN(total_size);
373 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
374 		if (!BAD_ADDR(map_addr))
375 			vm_munmap(map_addr+size, total_size-size);
376 	} else
377 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
378 
379 	if ((type & MAP_FIXED_NOREPLACE) &&
380 	    PTR_ERR((void *)map_addr) == -EEXIST)
381 		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
382 			task_pid_nr(current), current->comm, (void *)addr);
383 
384 	return(map_addr);
385 }
386 
387 #endif /* !elf_map */
388 
389 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
390 {
391 	int i, first_idx = -1, last_idx = -1;
392 
393 	for (i = 0; i < nr; i++) {
394 		if (cmds[i].p_type == PT_LOAD) {
395 			last_idx = i;
396 			if (first_idx == -1)
397 				first_idx = i;
398 		}
399 	}
400 	if (first_idx == -1)
401 		return 0;
402 
403 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
404 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
405 }
406 
407 /**
408  * load_elf_phdrs() - load ELF program headers
409  * @elf_ex:   ELF header of the binary whose program headers should be loaded
410  * @elf_file: the opened ELF binary file
411  *
412  * Loads ELF program headers from the binary file elf_file, which has the ELF
413  * header pointed to by elf_ex, into a newly allocated array. The caller is
414  * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
415  */
416 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
417 				       struct file *elf_file)
418 {
419 	struct elf_phdr *elf_phdata = NULL;
420 	int retval, err = -1;
421 	loff_t pos = elf_ex->e_phoff;
422 	unsigned int size;
423 
424 	/*
425 	 * If the size of this structure has changed, then punt, since
426 	 * we will be doing the wrong thing.
427 	 */
428 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
429 		goto out;
430 
431 	/* Sanity check the number of program headers... */
432 	/* ...and their total size. */
433 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
434 	if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
435 		goto out;
436 
437 	elf_phdata = kmalloc(size, GFP_KERNEL);
438 	if (!elf_phdata)
439 		goto out;
440 
441 	/* Read in the program headers */
442 	retval = kernel_read(elf_file, elf_phdata, size, &pos);
443 	if (retval != size) {
444 		err = (retval < 0) ? retval : -EIO;
445 		goto out;
446 	}
447 
448 	/* Success! */
449 	err = 0;
450 out:
451 	if (err) {
452 		kfree(elf_phdata);
453 		elf_phdata = NULL;
454 	}
455 	return elf_phdata;
456 }
457 
458 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
459 
460 /**
461  * struct arch_elf_state - arch-specific ELF loading state
462  *
463  * This structure is used to preserve architecture specific data during
464  * the loading of an ELF file, throughout the checking of architecture
465  * specific ELF headers & through to the point where the ELF load is
466  * known to be proceeding (ie. SET_PERSONALITY).
467  *
468  * This implementation is a dummy for architectures which require no
469  * specific state.
470  */
471 struct arch_elf_state {
472 };
473 
474 #define INIT_ARCH_ELF_STATE {}
475 
476 /**
477  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
478  * @ehdr:	The main ELF header
479  * @phdr:	The program header to check
480  * @elf:	The open ELF file
481  * @is_interp:	True if the phdr is from the interpreter of the ELF being
482  *		loaded, else false.
483  * @state:	Architecture-specific state preserved throughout the process
484  *		of loading the ELF.
485  *
486  * Inspects the program header phdr to validate its correctness and/or
487  * suitability for the system. Called once per ELF program header in the
488  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
489  * interpreter.
490  *
491  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
492  *         with that return code.
493  */
494 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
495 				   struct elf_phdr *phdr,
496 				   struct file *elf, bool is_interp,
497 				   struct arch_elf_state *state)
498 {
499 	/* Dummy implementation, always proceed */
500 	return 0;
501 }
502 
503 /**
504  * arch_check_elf() - check an ELF executable
505  * @ehdr:	The main ELF header
506  * @has_interp:	True if the ELF has an interpreter, else false.
507  * @interp_ehdr: The interpreter's ELF header
508  * @state:	Architecture-specific state preserved throughout the process
509  *		of loading the ELF.
510  *
511  * Provides a final opportunity for architecture code to reject the loading
512  * of the ELF & cause an exec syscall to return an error. This is called after
513  * all program headers to be checked by arch_elf_pt_proc have been.
514  *
515  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
516  *         with that return code.
517  */
518 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
519 				 struct elfhdr *interp_ehdr,
520 				 struct arch_elf_state *state)
521 {
522 	/* Dummy implementation, always proceed */
523 	return 0;
524 }
525 
526 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
527 
528 static inline int make_prot(u32 p_flags)
529 {
530 	int prot = 0;
531 
532 	if (p_flags & PF_R)
533 		prot |= PROT_READ;
534 	if (p_flags & PF_W)
535 		prot |= PROT_WRITE;
536 	if (p_flags & PF_X)
537 		prot |= PROT_EXEC;
538 	return prot;
539 }
540 
541 /* This is much more generalized than the library routine read function,
542    so we keep this separate.  Technically the library read function
543    is only provided so that we can read a.out libraries that have
544    an ELF header */
545 
546 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
547 		struct file *interpreter, unsigned long *interp_map_addr,
548 		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
549 {
550 	struct elf_phdr *eppnt;
551 	unsigned long load_addr = 0;
552 	int load_addr_set = 0;
553 	unsigned long last_bss = 0, elf_bss = 0;
554 	int bss_prot = 0;
555 	unsigned long error = ~0UL;
556 	unsigned long total_size;
557 	int i;
558 
559 	/* First of all, some simple consistency checks */
560 	if (interp_elf_ex->e_type != ET_EXEC &&
561 	    interp_elf_ex->e_type != ET_DYN)
562 		goto out;
563 	if (!elf_check_arch(interp_elf_ex) ||
564 	    elf_check_fdpic(interp_elf_ex))
565 		goto out;
566 	if (!interpreter->f_op->mmap)
567 		goto out;
568 
569 	total_size = total_mapping_size(interp_elf_phdata,
570 					interp_elf_ex->e_phnum);
571 	if (!total_size) {
572 		error = -EINVAL;
573 		goto out;
574 	}
575 
576 	eppnt = interp_elf_phdata;
577 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
578 		if (eppnt->p_type == PT_LOAD) {
579 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
580 			int elf_prot = make_prot(eppnt->p_flags);
581 			unsigned long vaddr = 0;
582 			unsigned long k, map_addr;
583 
584 			vaddr = eppnt->p_vaddr;
585 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
586 				elf_type |= MAP_FIXED_NOREPLACE;
587 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
588 				load_addr = -vaddr;
589 
590 			map_addr = elf_map(interpreter, load_addr + vaddr,
591 					eppnt, elf_prot, elf_type, total_size);
592 			total_size = 0;
593 			if (!*interp_map_addr)
594 				*interp_map_addr = map_addr;
595 			error = map_addr;
596 			if (BAD_ADDR(map_addr))
597 				goto out;
598 
599 			if (!load_addr_set &&
600 			    interp_elf_ex->e_type == ET_DYN) {
601 				load_addr = map_addr - ELF_PAGESTART(vaddr);
602 				load_addr_set = 1;
603 			}
604 
605 			/*
606 			 * Check to see if the section's size will overflow the
607 			 * allowed task size. Note that p_filesz must always be
608 			 * <= p_memsize so it's only necessary to check p_memsz.
609 			 */
610 			k = load_addr + eppnt->p_vaddr;
611 			if (BAD_ADDR(k) ||
612 			    eppnt->p_filesz > eppnt->p_memsz ||
613 			    eppnt->p_memsz > TASK_SIZE ||
614 			    TASK_SIZE - eppnt->p_memsz < k) {
615 				error = -ENOMEM;
616 				goto out;
617 			}
618 
619 			/*
620 			 * Find the end of the file mapping for this phdr, and
621 			 * keep track of the largest address we see for this.
622 			 */
623 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
624 			if (k > elf_bss)
625 				elf_bss = k;
626 
627 			/*
628 			 * Do the same thing for the memory mapping - between
629 			 * elf_bss and last_bss is the bss section.
630 			 */
631 			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
632 			if (k > last_bss) {
633 				last_bss = k;
634 				bss_prot = elf_prot;
635 			}
636 		}
637 	}
638 
639 	/*
640 	 * Now fill out the bss section: first pad the last page from
641 	 * the file up to the page boundary, and zero it from elf_bss
642 	 * up to the end of the page.
643 	 */
644 	if (padzero(elf_bss)) {
645 		error = -EFAULT;
646 		goto out;
647 	}
648 	/*
649 	 * Next, align both the file and mem bss up to the page size,
650 	 * since this is where elf_bss was just zeroed up to, and where
651 	 * last_bss will end after the vm_brk_flags() below.
652 	 */
653 	elf_bss = ELF_PAGEALIGN(elf_bss);
654 	last_bss = ELF_PAGEALIGN(last_bss);
655 	/* Finally, if there is still more bss to allocate, do it. */
656 	if (last_bss > elf_bss) {
657 		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
658 				bss_prot & PROT_EXEC ? VM_EXEC : 0);
659 		if (error)
660 			goto out;
661 	}
662 
663 	error = load_addr;
664 out:
665 	return error;
666 }
667 
668 /*
669  * These are the functions used to load ELF style executables and shared
670  * libraries.  There is no binary dependent code anywhere else.
671  */
672 
673 static int load_elf_binary(struct linux_binprm *bprm)
674 {
675 	struct file *interpreter = NULL; /* to shut gcc up */
676  	unsigned long load_addr = 0, load_bias = 0;
677 	int load_addr_set = 0;
678 	unsigned long error;
679 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
680 	unsigned long elf_bss, elf_brk;
681 	int bss_prot = 0;
682 	int retval, i;
683 	unsigned long elf_entry;
684 	unsigned long interp_load_addr = 0;
685 	unsigned long start_code, end_code, start_data, end_data;
686 	unsigned long reloc_func_desc __maybe_unused = 0;
687 	int executable_stack = EXSTACK_DEFAULT;
688 	struct {
689 		struct elfhdr elf_ex;
690 		struct elfhdr interp_elf_ex;
691 	} *loc;
692 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
693 	struct pt_regs *regs;
694 
695 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
696 	if (!loc) {
697 		retval = -ENOMEM;
698 		goto out_ret;
699 	}
700 
701 	/* Get the exec-header */
702 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
703 
704 	retval = -ENOEXEC;
705 	/* First of all, some simple consistency checks */
706 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
707 		goto out;
708 
709 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
710 		goto out;
711 	if (!elf_check_arch(&loc->elf_ex))
712 		goto out;
713 	if (elf_check_fdpic(&loc->elf_ex))
714 		goto out;
715 	if (!bprm->file->f_op->mmap)
716 		goto out;
717 
718 	elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
719 	if (!elf_phdata)
720 		goto out;
721 
722 	elf_ppnt = elf_phdata;
723 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
724 		char *elf_interpreter;
725 		loff_t pos;
726 
727 		if (elf_ppnt->p_type != PT_INTERP)
728 			continue;
729 
730 		/*
731 		 * This is the program interpreter used for shared libraries -
732 		 * for now assume that this is an a.out format binary.
733 		 */
734 		retval = -ENOEXEC;
735 		if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
736 			goto out_free_ph;
737 
738 		retval = -ENOMEM;
739 		elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
740 		if (!elf_interpreter)
741 			goto out_free_ph;
742 
743 		pos = elf_ppnt->p_offset;
744 		retval = kernel_read(bprm->file, elf_interpreter,
745 				     elf_ppnt->p_filesz, &pos);
746 		if (retval != elf_ppnt->p_filesz) {
747 			if (retval >= 0)
748 				retval = -EIO;
749 			goto out_free_interp;
750 		}
751 		/* make sure path is NULL terminated */
752 		retval = -ENOEXEC;
753 		if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
754 			goto out_free_interp;
755 
756 		interpreter = open_exec(elf_interpreter);
757 		kfree(elf_interpreter);
758 		retval = PTR_ERR(interpreter);
759 		if (IS_ERR(interpreter))
760 			goto out_free_ph;
761 
762 		/*
763 		 * If the binary is not readable then enforce mm->dumpable = 0
764 		 * regardless of the interpreter's permissions.
765 		 */
766 		would_dump(bprm, interpreter);
767 
768 		/* Get the exec headers */
769 		pos = 0;
770 		retval = kernel_read(interpreter, &loc->interp_elf_ex,
771 				     sizeof(loc->interp_elf_ex), &pos);
772 		if (retval != sizeof(loc->interp_elf_ex)) {
773 			if (retval >= 0)
774 				retval = -EIO;
775 			goto out_free_dentry;
776 		}
777 
778 		break;
779 
780 out_free_interp:
781 		kfree(elf_interpreter);
782 		goto out_free_ph;
783 	}
784 
785 	elf_ppnt = elf_phdata;
786 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
787 		switch (elf_ppnt->p_type) {
788 		case PT_GNU_STACK:
789 			if (elf_ppnt->p_flags & PF_X)
790 				executable_stack = EXSTACK_ENABLE_X;
791 			else
792 				executable_stack = EXSTACK_DISABLE_X;
793 			break;
794 
795 		case PT_LOPROC ... PT_HIPROC:
796 			retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
797 						  bprm->file, false,
798 						  &arch_state);
799 			if (retval)
800 				goto out_free_dentry;
801 			break;
802 		}
803 
804 	/* Some simple consistency checks for the interpreter */
805 	if (interpreter) {
806 		retval = -ELIBBAD;
807 		/* Not an ELF interpreter */
808 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
809 			goto out_free_dentry;
810 		/* Verify the interpreter has a valid arch */
811 		if (!elf_check_arch(&loc->interp_elf_ex) ||
812 		    elf_check_fdpic(&loc->interp_elf_ex))
813 			goto out_free_dentry;
814 
815 		/* Load the interpreter program headers */
816 		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
817 						   interpreter);
818 		if (!interp_elf_phdata)
819 			goto out_free_dentry;
820 
821 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
822 		elf_ppnt = interp_elf_phdata;
823 		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
824 			switch (elf_ppnt->p_type) {
825 			case PT_LOPROC ... PT_HIPROC:
826 				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
827 							  elf_ppnt, interpreter,
828 							  true, &arch_state);
829 				if (retval)
830 					goto out_free_dentry;
831 				break;
832 			}
833 	}
834 
835 	/*
836 	 * Allow arch code to reject the ELF at this point, whilst it's
837 	 * still possible to return an error to the code that invoked
838 	 * the exec syscall.
839 	 */
840 	retval = arch_check_elf(&loc->elf_ex,
841 				!!interpreter, &loc->interp_elf_ex,
842 				&arch_state);
843 	if (retval)
844 		goto out_free_dentry;
845 
846 	/* Flush all traces of the currently running executable */
847 	retval = flush_old_exec(bprm);
848 	if (retval)
849 		goto out_free_dentry;
850 
851 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
852 	   may depend on the personality.  */
853 	SET_PERSONALITY2(loc->elf_ex, &arch_state);
854 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
855 		current->personality |= READ_IMPLIES_EXEC;
856 
857 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
858 		current->flags |= PF_RANDOMIZE;
859 
860 	setup_new_exec(bprm);
861 	install_exec_creds(bprm);
862 
863 	/* Do this so that we can load the interpreter, if need be.  We will
864 	   change some of these later */
865 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
866 				 executable_stack);
867 	if (retval < 0)
868 		goto out_free_dentry;
869 
870 	elf_bss = 0;
871 	elf_brk = 0;
872 
873 	start_code = ~0UL;
874 	end_code = 0;
875 	start_data = 0;
876 	end_data = 0;
877 
878 	/* Now we do a little grungy work by mmapping the ELF image into
879 	   the correct location in memory. */
880 	for(i = 0, elf_ppnt = elf_phdata;
881 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
882 		int elf_prot, elf_flags, elf_fixed = MAP_FIXED_NOREPLACE;
883 		unsigned long k, vaddr;
884 		unsigned long total_size = 0;
885 
886 		if (elf_ppnt->p_type != PT_LOAD)
887 			continue;
888 
889 		if (unlikely (elf_brk > elf_bss)) {
890 			unsigned long nbyte;
891 
892 			/* There was a PT_LOAD segment with p_memsz > p_filesz
893 			   before this one. Map anonymous pages, if needed,
894 			   and clear the area.  */
895 			retval = set_brk(elf_bss + load_bias,
896 					 elf_brk + load_bias,
897 					 bss_prot);
898 			if (retval)
899 				goto out_free_dentry;
900 			nbyte = ELF_PAGEOFFSET(elf_bss);
901 			if (nbyte) {
902 				nbyte = ELF_MIN_ALIGN - nbyte;
903 				if (nbyte > elf_brk - elf_bss)
904 					nbyte = elf_brk - elf_bss;
905 				if (clear_user((void __user *)elf_bss +
906 							load_bias, nbyte)) {
907 					/*
908 					 * This bss-zeroing can fail if the ELF
909 					 * file specifies odd protections. So
910 					 * we don't check the return value
911 					 */
912 				}
913 			}
914 
915 			/*
916 			 * Some binaries have overlapping elf segments and then
917 			 * we have to forcefully map over an existing mapping
918 			 * e.g. over this newly established brk mapping.
919 			 */
920 			elf_fixed = MAP_FIXED;
921 		}
922 
923 		elf_prot = make_prot(elf_ppnt->p_flags);
924 
925 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
926 
927 		vaddr = elf_ppnt->p_vaddr;
928 		/*
929 		 * If we are loading ET_EXEC or we have already performed
930 		 * the ET_DYN load_addr calculations, proceed normally.
931 		 */
932 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
933 			elf_flags |= elf_fixed;
934 		} else if (loc->elf_ex.e_type == ET_DYN) {
935 			/*
936 			 * This logic is run once for the first LOAD Program
937 			 * Header for ET_DYN binaries to calculate the
938 			 * randomization (load_bias) for all the LOAD
939 			 * Program Headers, and to calculate the entire
940 			 * size of the ELF mapping (total_size). (Note that
941 			 * load_addr_set is set to true later once the
942 			 * initial mapping is performed.)
943 			 *
944 			 * There are effectively two types of ET_DYN
945 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
946 			 * and loaders (ET_DYN without INTERP, since they
947 			 * _are_ the ELF interpreter). The loaders must
948 			 * be loaded away from programs since the program
949 			 * may otherwise collide with the loader (especially
950 			 * for ET_EXEC which does not have a randomized
951 			 * position). For example to handle invocations of
952 			 * "./ld.so someprog" to test out a new version of
953 			 * the loader, the subsequent program that the
954 			 * loader loads must avoid the loader itself, so
955 			 * they cannot share the same load range. Sufficient
956 			 * room for the brk must be allocated with the
957 			 * loader as well, since brk must be available with
958 			 * the loader.
959 			 *
960 			 * Therefore, programs are loaded offset from
961 			 * ELF_ET_DYN_BASE and loaders are loaded into the
962 			 * independently randomized mmap region (0 load_bias
963 			 * without MAP_FIXED).
964 			 */
965 			if (interpreter) {
966 				load_bias = ELF_ET_DYN_BASE;
967 				if (current->flags & PF_RANDOMIZE)
968 					load_bias += arch_mmap_rnd();
969 				elf_flags |= elf_fixed;
970 			} else
971 				load_bias = 0;
972 
973 			/*
974 			 * Since load_bias is used for all subsequent loading
975 			 * calculations, we must lower it by the first vaddr
976 			 * so that the remaining calculations based on the
977 			 * ELF vaddrs will be correctly offset. The result
978 			 * is then page aligned.
979 			 */
980 			load_bias = ELF_PAGESTART(load_bias - vaddr);
981 
982 			total_size = total_mapping_size(elf_phdata,
983 							loc->elf_ex.e_phnum);
984 			if (!total_size) {
985 				retval = -EINVAL;
986 				goto out_free_dentry;
987 			}
988 		}
989 
990 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
991 				elf_prot, elf_flags, total_size);
992 		if (BAD_ADDR(error)) {
993 			retval = IS_ERR((void *)error) ?
994 				PTR_ERR((void*)error) : -EINVAL;
995 			goto out_free_dentry;
996 		}
997 
998 		if (!load_addr_set) {
999 			load_addr_set = 1;
1000 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1001 			if (loc->elf_ex.e_type == ET_DYN) {
1002 				load_bias += error -
1003 				             ELF_PAGESTART(load_bias + vaddr);
1004 				load_addr += load_bias;
1005 				reloc_func_desc = load_bias;
1006 			}
1007 		}
1008 		k = elf_ppnt->p_vaddr;
1009 		if (k < start_code)
1010 			start_code = k;
1011 		if (start_data < k)
1012 			start_data = k;
1013 
1014 		/*
1015 		 * Check to see if the section's size will overflow the
1016 		 * allowed task size. Note that p_filesz must always be
1017 		 * <= p_memsz so it is only necessary to check p_memsz.
1018 		 */
1019 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1020 		    elf_ppnt->p_memsz > TASK_SIZE ||
1021 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1022 			/* set_brk can never work. Avoid overflows. */
1023 			retval = -EINVAL;
1024 			goto out_free_dentry;
1025 		}
1026 
1027 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1028 
1029 		if (k > elf_bss)
1030 			elf_bss = k;
1031 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1032 			end_code = k;
1033 		if (end_data < k)
1034 			end_data = k;
1035 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1036 		if (k > elf_brk) {
1037 			bss_prot = elf_prot;
1038 			elf_brk = k;
1039 		}
1040 	}
1041 
1042 	loc->elf_ex.e_entry += load_bias;
1043 	elf_bss += load_bias;
1044 	elf_brk += load_bias;
1045 	start_code += load_bias;
1046 	end_code += load_bias;
1047 	start_data += load_bias;
1048 	end_data += load_bias;
1049 
1050 	/* Calling set_brk effectively mmaps the pages that we need
1051 	 * for the bss and break sections.  We must do this before
1052 	 * mapping in the interpreter, to make sure it doesn't wind
1053 	 * up getting placed where the bss needs to go.
1054 	 */
1055 	retval = set_brk(elf_bss, elf_brk, bss_prot);
1056 	if (retval)
1057 		goto out_free_dentry;
1058 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1059 		retval = -EFAULT; /* Nobody gets to see this, but.. */
1060 		goto out_free_dentry;
1061 	}
1062 
1063 	if (interpreter) {
1064 		unsigned long interp_map_addr = 0;
1065 
1066 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
1067 					    interpreter,
1068 					    &interp_map_addr,
1069 					    load_bias, interp_elf_phdata);
1070 		if (!IS_ERR((void *)elf_entry)) {
1071 			/*
1072 			 * load_elf_interp() returns relocation
1073 			 * adjustment
1074 			 */
1075 			interp_load_addr = elf_entry;
1076 			elf_entry += loc->interp_elf_ex.e_entry;
1077 		}
1078 		if (BAD_ADDR(elf_entry)) {
1079 			retval = IS_ERR((void *)elf_entry) ?
1080 					(int)elf_entry : -EINVAL;
1081 			goto out_free_dentry;
1082 		}
1083 		reloc_func_desc = interp_load_addr;
1084 
1085 		allow_write_access(interpreter);
1086 		fput(interpreter);
1087 	} else {
1088 		elf_entry = loc->elf_ex.e_entry;
1089 		if (BAD_ADDR(elf_entry)) {
1090 			retval = -EINVAL;
1091 			goto out_free_dentry;
1092 		}
1093 	}
1094 
1095 	kfree(interp_elf_phdata);
1096 	kfree(elf_phdata);
1097 
1098 	set_binfmt(&elf_format);
1099 
1100 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1101 	retval = arch_setup_additional_pages(bprm, !!interpreter);
1102 	if (retval < 0)
1103 		goto out;
1104 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1105 
1106 	retval = create_elf_tables(bprm, &loc->elf_ex,
1107 			  load_addr, interp_load_addr);
1108 	if (retval < 0)
1109 		goto out;
1110 	current->mm->end_code = end_code;
1111 	current->mm->start_code = start_code;
1112 	current->mm->start_data = start_data;
1113 	current->mm->end_data = end_data;
1114 	current->mm->start_stack = bprm->p;
1115 
1116 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1117 		/*
1118 		 * For architectures with ELF randomization, when executing
1119 		 * a loader directly (i.e. no interpreter listed in ELF
1120 		 * headers), move the brk area out of the mmap region
1121 		 * (since it grows up, and may collide early with the stack
1122 		 * growing down), and into the unused ELF_ET_DYN_BASE region.
1123 		 */
1124 		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && !interpreter)
1125 			current->mm->brk = current->mm->start_brk =
1126 				ELF_ET_DYN_BASE;
1127 
1128 		current->mm->brk = current->mm->start_brk =
1129 			arch_randomize_brk(current->mm);
1130 #ifdef compat_brk_randomized
1131 		current->brk_randomized = 1;
1132 #endif
1133 	}
1134 
1135 	if (current->personality & MMAP_PAGE_ZERO) {
1136 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1137 		   and some applications "depend" upon this behavior.
1138 		   Since we do not have the power to recompile these, we
1139 		   emulate the SVr4 behavior. Sigh. */
1140 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1141 				MAP_FIXED | MAP_PRIVATE, 0);
1142 	}
1143 
1144 	regs = current_pt_regs();
1145 #ifdef ELF_PLAT_INIT
1146 	/*
1147 	 * The ABI may specify that certain registers be set up in special
1148 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1149 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1150 	 * that the e_entry field is the address of the function descriptor
1151 	 * for the startup routine, rather than the address of the startup
1152 	 * routine itself.  This macro performs whatever initialization to
1153 	 * the regs structure is required as well as any relocations to the
1154 	 * function descriptor entries when executing dynamically links apps.
1155 	 */
1156 	ELF_PLAT_INIT(regs, reloc_func_desc);
1157 #endif
1158 
1159 	finalize_exec(bprm);
1160 	start_thread(regs, elf_entry, bprm->p);
1161 	retval = 0;
1162 out:
1163 	kfree(loc);
1164 out_ret:
1165 	return retval;
1166 
1167 	/* error cleanup */
1168 out_free_dentry:
1169 	kfree(interp_elf_phdata);
1170 	allow_write_access(interpreter);
1171 	if (interpreter)
1172 		fput(interpreter);
1173 out_free_ph:
1174 	kfree(elf_phdata);
1175 	goto out;
1176 }
1177 
1178 #ifdef CONFIG_USELIB
1179 /* This is really simpleminded and specialized - we are loading an
1180    a.out library that is given an ELF header. */
1181 static int load_elf_library(struct file *file)
1182 {
1183 	struct elf_phdr *elf_phdata;
1184 	struct elf_phdr *eppnt;
1185 	unsigned long elf_bss, bss, len;
1186 	int retval, error, i, j;
1187 	struct elfhdr elf_ex;
1188 	loff_t pos = 0;
1189 
1190 	error = -ENOEXEC;
1191 	retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1192 	if (retval != sizeof(elf_ex))
1193 		goto out;
1194 
1195 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1196 		goto out;
1197 
1198 	/* First of all, some simple consistency checks */
1199 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1200 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1201 		goto out;
1202 	if (elf_check_fdpic(&elf_ex))
1203 		goto out;
1204 
1205 	/* Now read in all of the header information */
1206 
1207 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1208 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1209 
1210 	error = -ENOMEM;
1211 	elf_phdata = kmalloc(j, GFP_KERNEL);
1212 	if (!elf_phdata)
1213 		goto out;
1214 
1215 	eppnt = elf_phdata;
1216 	error = -ENOEXEC;
1217 	pos =  elf_ex.e_phoff;
1218 	retval = kernel_read(file, eppnt, j, &pos);
1219 	if (retval != j)
1220 		goto out_free_ph;
1221 
1222 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1223 		if ((eppnt + i)->p_type == PT_LOAD)
1224 			j++;
1225 	if (j != 1)
1226 		goto out_free_ph;
1227 
1228 	while (eppnt->p_type != PT_LOAD)
1229 		eppnt++;
1230 
1231 	/* Now use mmap to map the library into memory. */
1232 	error = vm_mmap(file,
1233 			ELF_PAGESTART(eppnt->p_vaddr),
1234 			(eppnt->p_filesz +
1235 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1236 			PROT_READ | PROT_WRITE | PROT_EXEC,
1237 			MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1238 			(eppnt->p_offset -
1239 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1240 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1241 		goto out_free_ph;
1242 
1243 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1244 	if (padzero(elf_bss)) {
1245 		error = -EFAULT;
1246 		goto out_free_ph;
1247 	}
1248 
1249 	len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1250 	bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1251 	if (bss > len) {
1252 		error = vm_brk(len, bss - len);
1253 		if (error)
1254 			goto out_free_ph;
1255 	}
1256 	error = 0;
1257 
1258 out_free_ph:
1259 	kfree(elf_phdata);
1260 out:
1261 	return error;
1262 }
1263 #endif /* #ifdef CONFIG_USELIB */
1264 
1265 #ifdef CONFIG_ELF_CORE
1266 /*
1267  * ELF core dumper
1268  *
1269  * Modelled on fs/exec.c:aout_core_dump()
1270  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1271  */
1272 
1273 /*
1274  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1275  * that are useful for post-mortem analysis are included in every core dump.
1276  * In that way we ensure that the core dump is fully interpretable later
1277  * without matching up the same kernel and hardware config to see what PC values
1278  * meant. These special mappings include - vDSO, vsyscall, and other
1279  * architecture specific mappings
1280  */
1281 static bool always_dump_vma(struct vm_area_struct *vma)
1282 {
1283 	/* Any vsyscall mappings? */
1284 	if (vma == get_gate_vma(vma->vm_mm))
1285 		return true;
1286 
1287 	/*
1288 	 * Assume that all vmas with a .name op should always be dumped.
1289 	 * If this changes, a new vm_ops field can easily be added.
1290 	 */
1291 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1292 		return true;
1293 
1294 	/*
1295 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1296 	 * such as vDSO sections.
1297 	 */
1298 	if (arch_vma_name(vma))
1299 		return true;
1300 
1301 	return false;
1302 }
1303 
1304 /*
1305  * Decide what to dump of a segment, part, all or none.
1306  */
1307 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1308 				   unsigned long mm_flags)
1309 {
1310 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1311 
1312 	/* always dump the vdso and vsyscall sections */
1313 	if (always_dump_vma(vma))
1314 		goto whole;
1315 
1316 	if (vma->vm_flags & VM_DONTDUMP)
1317 		return 0;
1318 
1319 	/* support for DAX */
1320 	if (vma_is_dax(vma)) {
1321 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1322 			goto whole;
1323 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1324 			goto whole;
1325 		return 0;
1326 	}
1327 
1328 	/* Hugetlb memory check */
1329 	if (vma->vm_flags & VM_HUGETLB) {
1330 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1331 			goto whole;
1332 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1333 			goto whole;
1334 		return 0;
1335 	}
1336 
1337 	/* Do not dump I/O mapped devices or special mappings */
1338 	if (vma->vm_flags & VM_IO)
1339 		return 0;
1340 
1341 	/* By default, dump shared memory if mapped from an anonymous file. */
1342 	if (vma->vm_flags & VM_SHARED) {
1343 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1344 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1345 			goto whole;
1346 		return 0;
1347 	}
1348 
1349 	/* Dump segments that have been written to.  */
1350 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1351 		goto whole;
1352 	if (vma->vm_file == NULL)
1353 		return 0;
1354 
1355 	if (FILTER(MAPPED_PRIVATE))
1356 		goto whole;
1357 
1358 	/*
1359 	 * If this looks like the beginning of a DSO or executable mapping,
1360 	 * check for an ELF header.  If we find one, dump the first page to
1361 	 * aid in determining what was mapped here.
1362 	 */
1363 	if (FILTER(ELF_HEADERS) &&
1364 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1365 		u32 __user *header = (u32 __user *) vma->vm_start;
1366 		u32 word;
1367 		mm_segment_t fs = get_fs();
1368 		/*
1369 		 * Doing it this way gets the constant folded by GCC.
1370 		 */
1371 		union {
1372 			u32 cmp;
1373 			char elfmag[SELFMAG];
1374 		} magic;
1375 		BUILD_BUG_ON(SELFMAG != sizeof word);
1376 		magic.elfmag[EI_MAG0] = ELFMAG0;
1377 		magic.elfmag[EI_MAG1] = ELFMAG1;
1378 		magic.elfmag[EI_MAG2] = ELFMAG2;
1379 		magic.elfmag[EI_MAG3] = ELFMAG3;
1380 		/*
1381 		 * Switch to the user "segment" for get_user(),
1382 		 * then put back what elf_core_dump() had in place.
1383 		 */
1384 		set_fs(USER_DS);
1385 		if (unlikely(get_user(word, header)))
1386 			word = 0;
1387 		set_fs(fs);
1388 		if (word == magic.cmp)
1389 			return PAGE_SIZE;
1390 	}
1391 
1392 #undef	FILTER
1393 
1394 	return 0;
1395 
1396 whole:
1397 	return vma->vm_end - vma->vm_start;
1398 }
1399 
1400 /* An ELF note in memory */
1401 struct memelfnote
1402 {
1403 	const char *name;
1404 	int type;
1405 	unsigned int datasz;
1406 	void *data;
1407 };
1408 
1409 static int notesize(struct memelfnote *en)
1410 {
1411 	int sz;
1412 
1413 	sz = sizeof(struct elf_note);
1414 	sz += roundup(strlen(en->name) + 1, 4);
1415 	sz += roundup(en->datasz, 4);
1416 
1417 	return sz;
1418 }
1419 
1420 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1421 {
1422 	struct elf_note en;
1423 	en.n_namesz = strlen(men->name) + 1;
1424 	en.n_descsz = men->datasz;
1425 	en.n_type = men->type;
1426 
1427 	return dump_emit(cprm, &en, sizeof(en)) &&
1428 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1429 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1430 }
1431 
1432 static void fill_elf_header(struct elfhdr *elf, int segs,
1433 			    u16 machine, u32 flags)
1434 {
1435 	memset(elf, 0, sizeof(*elf));
1436 
1437 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1438 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1439 	elf->e_ident[EI_DATA] = ELF_DATA;
1440 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1441 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1442 
1443 	elf->e_type = ET_CORE;
1444 	elf->e_machine = machine;
1445 	elf->e_version = EV_CURRENT;
1446 	elf->e_phoff = sizeof(struct elfhdr);
1447 	elf->e_flags = flags;
1448 	elf->e_ehsize = sizeof(struct elfhdr);
1449 	elf->e_phentsize = sizeof(struct elf_phdr);
1450 	elf->e_phnum = segs;
1451 }
1452 
1453 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1454 {
1455 	phdr->p_type = PT_NOTE;
1456 	phdr->p_offset = offset;
1457 	phdr->p_vaddr = 0;
1458 	phdr->p_paddr = 0;
1459 	phdr->p_filesz = sz;
1460 	phdr->p_memsz = 0;
1461 	phdr->p_flags = 0;
1462 	phdr->p_align = 0;
1463 }
1464 
1465 static void fill_note(struct memelfnote *note, const char *name, int type,
1466 		unsigned int sz, void *data)
1467 {
1468 	note->name = name;
1469 	note->type = type;
1470 	note->datasz = sz;
1471 	note->data = data;
1472 }
1473 
1474 /*
1475  * fill up all the fields in prstatus from the given task struct, except
1476  * registers which need to be filled up separately.
1477  */
1478 static void fill_prstatus(struct elf_prstatus *prstatus,
1479 		struct task_struct *p, long signr)
1480 {
1481 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1482 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1483 	prstatus->pr_sighold = p->blocked.sig[0];
1484 	rcu_read_lock();
1485 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1486 	rcu_read_unlock();
1487 	prstatus->pr_pid = task_pid_vnr(p);
1488 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1489 	prstatus->pr_sid = task_session_vnr(p);
1490 	if (thread_group_leader(p)) {
1491 		struct task_cputime cputime;
1492 
1493 		/*
1494 		 * This is the record for the group leader.  It shows the
1495 		 * group-wide total, not its individual thread total.
1496 		 */
1497 		thread_group_cputime(p, &cputime);
1498 		prstatus->pr_utime = ns_to_timeval(cputime.utime);
1499 		prstatus->pr_stime = ns_to_timeval(cputime.stime);
1500 	} else {
1501 		u64 utime, stime;
1502 
1503 		task_cputime(p, &utime, &stime);
1504 		prstatus->pr_utime = ns_to_timeval(utime);
1505 		prstatus->pr_stime = ns_to_timeval(stime);
1506 	}
1507 
1508 	prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1509 	prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1510 }
1511 
1512 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1513 		       struct mm_struct *mm)
1514 {
1515 	const struct cred *cred;
1516 	unsigned int i, len;
1517 
1518 	/* first copy the parameters from user space */
1519 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1520 
1521 	len = mm->arg_end - mm->arg_start;
1522 	if (len >= ELF_PRARGSZ)
1523 		len = ELF_PRARGSZ-1;
1524 	if (copy_from_user(&psinfo->pr_psargs,
1525 		           (const char __user *)mm->arg_start, len))
1526 		return -EFAULT;
1527 	for(i = 0; i < len; i++)
1528 		if (psinfo->pr_psargs[i] == 0)
1529 			psinfo->pr_psargs[i] = ' ';
1530 	psinfo->pr_psargs[len] = 0;
1531 
1532 	rcu_read_lock();
1533 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1534 	rcu_read_unlock();
1535 	psinfo->pr_pid = task_pid_vnr(p);
1536 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1537 	psinfo->pr_sid = task_session_vnr(p);
1538 
1539 	i = p->state ? ffz(~p->state) + 1 : 0;
1540 	psinfo->pr_state = i;
1541 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1542 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1543 	psinfo->pr_nice = task_nice(p);
1544 	psinfo->pr_flag = p->flags;
1545 	rcu_read_lock();
1546 	cred = __task_cred(p);
1547 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1548 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1549 	rcu_read_unlock();
1550 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1551 
1552 	return 0;
1553 }
1554 
1555 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1556 {
1557 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1558 	int i = 0;
1559 	do
1560 		i += 2;
1561 	while (auxv[i - 2] != AT_NULL);
1562 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1563 }
1564 
1565 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1566 		const kernel_siginfo_t *siginfo)
1567 {
1568 	mm_segment_t old_fs = get_fs();
1569 	set_fs(KERNEL_DS);
1570 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1571 	set_fs(old_fs);
1572 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1573 }
1574 
1575 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1576 /*
1577  * Format of NT_FILE note:
1578  *
1579  * long count     -- how many files are mapped
1580  * long page_size -- units for file_ofs
1581  * array of [COUNT] elements of
1582  *   long start
1583  *   long end
1584  *   long file_ofs
1585  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1586  */
1587 static int fill_files_note(struct memelfnote *note)
1588 {
1589 	struct vm_area_struct *vma;
1590 	unsigned count, size, names_ofs, remaining, n;
1591 	user_long_t *data;
1592 	user_long_t *start_end_ofs;
1593 	char *name_base, *name_curpos;
1594 
1595 	/* *Estimated* file count and total data size needed */
1596 	count = current->mm->map_count;
1597 	if (count > UINT_MAX / 64)
1598 		return -EINVAL;
1599 	size = count * 64;
1600 
1601 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1602  alloc:
1603 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1604 		return -EINVAL;
1605 	size = round_up(size, PAGE_SIZE);
1606 	data = kvmalloc(size, GFP_KERNEL);
1607 	if (ZERO_OR_NULL_PTR(data))
1608 		return -ENOMEM;
1609 
1610 	start_end_ofs = data + 2;
1611 	name_base = name_curpos = ((char *)data) + names_ofs;
1612 	remaining = size - names_ofs;
1613 	count = 0;
1614 	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1615 		struct file *file;
1616 		const char *filename;
1617 
1618 		file = vma->vm_file;
1619 		if (!file)
1620 			continue;
1621 		filename = file_path(file, name_curpos, remaining);
1622 		if (IS_ERR(filename)) {
1623 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1624 				kvfree(data);
1625 				size = size * 5 / 4;
1626 				goto alloc;
1627 			}
1628 			continue;
1629 		}
1630 
1631 		/* file_path() fills at the end, move name down */
1632 		/* n = strlen(filename) + 1: */
1633 		n = (name_curpos + remaining) - filename;
1634 		remaining = filename - name_curpos;
1635 		memmove(name_curpos, filename, n);
1636 		name_curpos += n;
1637 
1638 		*start_end_ofs++ = vma->vm_start;
1639 		*start_end_ofs++ = vma->vm_end;
1640 		*start_end_ofs++ = vma->vm_pgoff;
1641 		count++;
1642 	}
1643 
1644 	/* Now we know exact count of files, can store it */
1645 	data[0] = count;
1646 	data[1] = PAGE_SIZE;
1647 	/*
1648 	 * Count usually is less than current->mm->map_count,
1649 	 * we need to move filenames down.
1650 	 */
1651 	n = current->mm->map_count - count;
1652 	if (n != 0) {
1653 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1654 		memmove(name_base - shift_bytes, name_base,
1655 			name_curpos - name_base);
1656 		name_curpos -= shift_bytes;
1657 	}
1658 
1659 	size = name_curpos - (char *)data;
1660 	fill_note(note, "CORE", NT_FILE, size, data);
1661 	return 0;
1662 }
1663 
1664 #ifdef CORE_DUMP_USE_REGSET
1665 #include <linux/regset.h>
1666 
1667 struct elf_thread_core_info {
1668 	struct elf_thread_core_info *next;
1669 	struct task_struct *task;
1670 	struct elf_prstatus prstatus;
1671 	struct memelfnote notes[0];
1672 };
1673 
1674 struct elf_note_info {
1675 	struct elf_thread_core_info *thread;
1676 	struct memelfnote psinfo;
1677 	struct memelfnote signote;
1678 	struct memelfnote auxv;
1679 	struct memelfnote files;
1680 	user_siginfo_t csigdata;
1681 	size_t size;
1682 	int thread_notes;
1683 };
1684 
1685 /*
1686  * When a regset has a writeback hook, we call it on each thread before
1687  * dumping user memory.  On register window machines, this makes sure the
1688  * user memory backing the register data is up to date before we read it.
1689  */
1690 static void do_thread_regset_writeback(struct task_struct *task,
1691 				       const struct user_regset *regset)
1692 {
1693 	if (regset->writeback)
1694 		regset->writeback(task, regset, 1);
1695 }
1696 
1697 #ifndef PRSTATUS_SIZE
1698 #define PRSTATUS_SIZE(S, R) sizeof(S)
1699 #endif
1700 
1701 #ifndef SET_PR_FPVALID
1702 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1703 #endif
1704 
1705 static int fill_thread_core_info(struct elf_thread_core_info *t,
1706 				 const struct user_regset_view *view,
1707 				 long signr, size_t *total)
1708 {
1709 	unsigned int i;
1710 	unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1711 
1712 	/*
1713 	 * NT_PRSTATUS is the one special case, because the regset data
1714 	 * goes into the pr_reg field inside the note contents, rather
1715 	 * than being the whole note contents.  We fill the reset in here.
1716 	 * We assume that regset 0 is NT_PRSTATUS.
1717 	 */
1718 	fill_prstatus(&t->prstatus, t->task, signr);
1719 	(void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1720 				    &t->prstatus.pr_reg, NULL);
1721 
1722 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1723 		  PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1724 	*total += notesize(&t->notes[0]);
1725 
1726 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1727 
1728 	/*
1729 	 * Each other regset might generate a note too.  For each regset
1730 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1731 	 * all zero and we'll know to skip writing it later.
1732 	 */
1733 	for (i = 1; i < view->n; ++i) {
1734 		const struct user_regset *regset = &view->regsets[i];
1735 		do_thread_regset_writeback(t->task, regset);
1736 		if (regset->core_note_type && regset->get &&
1737 		    (!regset->active || regset->active(t->task, regset) > 0)) {
1738 			int ret;
1739 			size_t size = regset_size(t->task, regset);
1740 			void *data = kmalloc(size, GFP_KERNEL);
1741 			if (unlikely(!data))
1742 				return 0;
1743 			ret = regset->get(t->task, regset,
1744 					  0, size, data, NULL);
1745 			if (unlikely(ret))
1746 				kfree(data);
1747 			else {
1748 				if (regset->core_note_type != NT_PRFPREG)
1749 					fill_note(&t->notes[i], "LINUX",
1750 						  regset->core_note_type,
1751 						  size, data);
1752 				else {
1753 					SET_PR_FPVALID(&t->prstatus,
1754 							1, regset0_size);
1755 					fill_note(&t->notes[i], "CORE",
1756 						  NT_PRFPREG, size, data);
1757 				}
1758 				*total += notesize(&t->notes[i]);
1759 			}
1760 		}
1761 	}
1762 
1763 	return 1;
1764 }
1765 
1766 static int fill_note_info(struct elfhdr *elf, int phdrs,
1767 			  struct elf_note_info *info,
1768 			  const kernel_siginfo_t *siginfo, struct pt_regs *regs)
1769 {
1770 	struct task_struct *dump_task = current;
1771 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1772 	struct elf_thread_core_info *t;
1773 	struct elf_prpsinfo *psinfo;
1774 	struct core_thread *ct;
1775 	unsigned int i;
1776 
1777 	info->size = 0;
1778 	info->thread = NULL;
1779 
1780 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1781 	if (psinfo == NULL) {
1782 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1783 		return 0;
1784 	}
1785 
1786 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1787 
1788 	/*
1789 	 * Figure out how many notes we're going to need for each thread.
1790 	 */
1791 	info->thread_notes = 0;
1792 	for (i = 0; i < view->n; ++i)
1793 		if (view->regsets[i].core_note_type != 0)
1794 			++info->thread_notes;
1795 
1796 	/*
1797 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1798 	 * since it is our one special case.
1799 	 */
1800 	if (unlikely(info->thread_notes == 0) ||
1801 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1802 		WARN_ON(1);
1803 		return 0;
1804 	}
1805 
1806 	/*
1807 	 * Initialize the ELF file header.
1808 	 */
1809 	fill_elf_header(elf, phdrs,
1810 			view->e_machine, view->e_flags);
1811 
1812 	/*
1813 	 * Allocate a structure for each thread.
1814 	 */
1815 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1816 		t = kzalloc(offsetof(struct elf_thread_core_info,
1817 				     notes[info->thread_notes]),
1818 			    GFP_KERNEL);
1819 		if (unlikely(!t))
1820 			return 0;
1821 
1822 		t->task = ct->task;
1823 		if (ct->task == dump_task || !info->thread) {
1824 			t->next = info->thread;
1825 			info->thread = t;
1826 		} else {
1827 			/*
1828 			 * Make sure to keep the original task at
1829 			 * the head of the list.
1830 			 */
1831 			t->next = info->thread->next;
1832 			info->thread->next = t;
1833 		}
1834 	}
1835 
1836 	/*
1837 	 * Now fill in each thread's information.
1838 	 */
1839 	for (t = info->thread; t != NULL; t = t->next)
1840 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1841 			return 0;
1842 
1843 	/*
1844 	 * Fill in the two process-wide notes.
1845 	 */
1846 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1847 	info->size += notesize(&info->psinfo);
1848 
1849 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1850 	info->size += notesize(&info->signote);
1851 
1852 	fill_auxv_note(&info->auxv, current->mm);
1853 	info->size += notesize(&info->auxv);
1854 
1855 	if (fill_files_note(&info->files) == 0)
1856 		info->size += notesize(&info->files);
1857 
1858 	return 1;
1859 }
1860 
1861 static size_t get_note_info_size(struct elf_note_info *info)
1862 {
1863 	return info->size;
1864 }
1865 
1866 /*
1867  * Write all the notes for each thread.  When writing the first thread, the
1868  * process-wide notes are interleaved after the first thread-specific note.
1869  */
1870 static int write_note_info(struct elf_note_info *info,
1871 			   struct coredump_params *cprm)
1872 {
1873 	bool first = true;
1874 	struct elf_thread_core_info *t = info->thread;
1875 
1876 	do {
1877 		int i;
1878 
1879 		if (!writenote(&t->notes[0], cprm))
1880 			return 0;
1881 
1882 		if (first && !writenote(&info->psinfo, cprm))
1883 			return 0;
1884 		if (first && !writenote(&info->signote, cprm))
1885 			return 0;
1886 		if (first && !writenote(&info->auxv, cprm))
1887 			return 0;
1888 		if (first && info->files.data &&
1889 				!writenote(&info->files, cprm))
1890 			return 0;
1891 
1892 		for (i = 1; i < info->thread_notes; ++i)
1893 			if (t->notes[i].data &&
1894 			    !writenote(&t->notes[i], cprm))
1895 				return 0;
1896 
1897 		first = false;
1898 		t = t->next;
1899 	} while (t);
1900 
1901 	return 1;
1902 }
1903 
1904 static void free_note_info(struct elf_note_info *info)
1905 {
1906 	struct elf_thread_core_info *threads = info->thread;
1907 	while (threads) {
1908 		unsigned int i;
1909 		struct elf_thread_core_info *t = threads;
1910 		threads = t->next;
1911 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1912 		for (i = 1; i < info->thread_notes; ++i)
1913 			kfree(t->notes[i].data);
1914 		kfree(t);
1915 	}
1916 	kfree(info->psinfo.data);
1917 	kvfree(info->files.data);
1918 }
1919 
1920 #else
1921 
1922 /* Here is the structure in which status of each thread is captured. */
1923 struct elf_thread_status
1924 {
1925 	struct list_head list;
1926 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1927 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1928 	struct task_struct *thread;
1929 #ifdef ELF_CORE_COPY_XFPREGS
1930 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1931 #endif
1932 	struct memelfnote notes[3];
1933 	int num_notes;
1934 };
1935 
1936 /*
1937  * In order to add the specific thread information for the elf file format,
1938  * we need to keep a linked list of every threads pr_status and then create
1939  * a single section for them in the final core file.
1940  */
1941 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1942 {
1943 	int sz = 0;
1944 	struct task_struct *p = t->thread;
1945 	t->num_notes = 0;
1946 
1947 	fill_prstatus(&t->prstatus, p, signr);
1948 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1949 
1950 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1951 		  &(t->prstatus));
1952 	t->num_notes++;
1953 	sz += notesize(&t->notes[0]);
1954 
1955 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1956 								&t->fpu))) {
1957 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1958 			  &(t->fpu));
1959 		t->num_notes++;
1960 		sz += notesize(&t->notes[1]);
1961 	}
1962 
1963 #ifdef ELF_CORE_COPY_XFPREGS
1964 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1965 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1966 			  sizeof(t->xfpu), &t->xfpu);
1967 		t->num_notes++;
1968 		sz += notesize(&t->notes[2]);
1969 	}
1970 #endif
1971 	return sz;
1972 }
1973 
1974 struct elf_note_info {
1975 	struct memelfnote *notes;
1976 	struct memelfnote *notes_files;
1977 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1978 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1979 	struct list_head thread_list;
1980 	elf_fpregset_t *fpu;
1981 #ifdef ELF_CORE_COPY_XFPREGS
1982 	elf_fpxregset_t *xfpu;
1983 #endif
1984 	user_siginfo_t csigdata;
1985 	int thread_status_size;
1986 	int numnote;
1987 };
1988 
1989 static int elf_note_info_init(struct elf_note_info *info)
1990 {
1991 	memset(info, 0, sizeof(*info));
1992 	INIT_LIST_HEAD(&info->thread_list);
1993 
1994 	/* Allocate space for ELF notes */
1995 	info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
1996 	if (!info->notes)
1997 		return 0;
1998 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1999 	if (!info->psinfo)
2000 		return 0;
2001 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2002 	if (!info->prstatus)
2003 		return 0;
2004 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2005 	if (!info->fpu)
2006 		return 0;
2007 #ifdef ELF_CORE_COPY_XFPREGS
2008 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2009 	if (!info->xfpu)
2010 		return 0;
2011 #endif
2012 	return 1;
2013 }
2014 
2015 static int fill_note_info(struct elfhdr *elf, int phdrs,
2016 			  struct elf_note_info *info,
2017 			  const kernel_siginfo_t *siginfo, struct pt_regs *regs)
2018 {
2019 	struct core_thread *ct;
2020 	struct elf_thread_status *ets;
2021 
2022 	if (!elf_note_info_init(info))
2023 		return 0;
2024 
2025 	for (ct = current->mm->core_state->dumper.next;
2026 					ct; ct = ct->next) {
2027 		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2028 		if (!ets)
2029 			return 0;
2030 
2031 		ets->thread = ct->task;
2032 		list_add(&ets->list, &info->thread_list);
2033 	}
2034 
2035 	list_for_each_entry(ets, &info->thread_list, list) {
2036 		int sz;
2037 
2038 		sz = elf_dump_thread_status(siginfo->si_signo, ets);
2039 		info->thread_status_size += sz;
2040 	}
2041 	/* now collect the dump for the current */
2042 	memset(info->prstatus, 0, sizeof(*info->prstatus));
2043 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
2044 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2045 
2046 	/* Set up header */
2047 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2048 
2049 	/*
2050 	 * Set up the notes in similar form to SVR4 core dumps made
2051 	 * with info from their /proc.
2052 	 */
2053 
2054 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2055 		  sizeof(*info->prstatus), info->prstatus);
2056 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
2057 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2058 		  sizeof(*info->psinfo), info->psinfo);
2059 
2060 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2061 	fill_auxv_note(info->notes + 3, current->mm);
2062 	info->numnote = 4;
2063 
2064 	if (fill_files_note(info->notes + info->numnote) == 0) {
2065 		info->notes_files = info->notes + info->numnote;
2066 		info->numnote++;
2067 	}
2068 
2069 	/* Try to dump the FPU. */
2070 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2071 							       info->fpu);
2072 	if (info->prstatus->pr_fpvalid)
2073 		fill_note(info->notes + info->numnote++,
2074 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2075 #ifdef ELF_CORE_COPY_XFPREGS
2076 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
2077 		fill_note(info->notes + info->numnote++,
2078 			  "LINUX", ELF_CORE_XFPREG_TYPE,
2079 			  sizeof(*info->xfpu), info->xfpu);
2080 #endif
2081 
2082 	return 1;
2083 }
2084 
2085 static size_t get_note_info_size(struct elf_note_info *info)
2086 {
2087 	int sz = 0;
2088 	int i;
2089 
2090 	for (i = 0; i < info->numnote; i++)
2091 		sz += notesize(info->notes + i);
2092 
2093 	sz += info->thread_status_size;
2094 
2095 	return sz;
2096 }
2097 
2098 static int write_note_info(struct elf_note_info *info,
2099 			   struct coredump_params *cprm)
2100 {
2101 	struct elf_thread_status *ets;
2102 	int i;
2103 
2104 	for (i = 0; i < info->numnote; i++)
2105 		if (!writenote(info->notes + i, cprm))
2106 			return 0;
2107 
2108 	/* write out the thread status notes section */
2109 	list_for_each_entry(ets, &info->thread_list, list) {
2110 		for (i = 0; i < ets->num_notes; i++)
2111 			if (!writenote(&ets->notes[i], cprm))
2112 				return 0;
2113 	}
2114 
2115 	return 1;
2116 }
2117 
2118 static void free_note_info(struct elf_note_info *info)
2119 {
2120 	while (!list_empty(&info->thread_list)) {
2121 		struct list_head *tmp = info->thread_list.next;
2122 		list_del(tmp);
2123 		kfree(list_entry(tmp, struct elf_thread_status, list));
2124 	}
2125 
2126 	/* Free data possibly allocated by fill_files_note(): */
2127 	if (info->notes_files)
2128 		kvfree(info->notes_files->data);
2129 
2130 	kfree(info->prstatus);
2131 	kfree(info->psinfo);
2132 	kfree(info->notes);
2133 	kfree(info->fpu);
2134 #ifdef ELF_CORE_COPY_XFPREGS
2135 	kfree(info->xfpu);
2136 #endif
2137 }
2138 
2139 #endif
2140 
2141 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2142 					struct vm_area_struct *gate_vma)
2143 {
2144 	struct vm_area_struct *ret = tsk->mm->mmap;
2145 
2146 	if (ret)
2147 		return ret;
2148 	return gate_vma;
2149 }
2150 /*
2151  * Helper function for iterating across a vma list.  It ensures that the caller
2152  * will visit `gate_vma' prior to terminating the search.
2153  */
2154 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2155 					struct vm_area_struct *gate_vma)
2156 {
2157 	struct vm_area_struct *ret;
2158 
2159 	ret = this_vma->vm_next;
2160 	if (ret)
2161 		return ret;
2162 	if (this_vma == gate_vma)
2163 		return NULL;
2164 	return gate_vma;
2165 }
2166 
2167 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2168 			     elf_addr_t e_shoff, int segs)
2169 {
2170 	elf->e_shoff = e_shoff;
2171 	elf->e_shentsize = sizeof(*shdr4extnum);
2172 	elf->e_shnum = 1;
2173 	elf->e_shstrndx = SHN_UNDEF;
2174 
2175 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2176 
2177 	shdr4extnum->sh_type = SHT_NULL;
2178 	shdr4extnum->sh_size = elf->e_shnum;
2179 	shdr4extnum->sh_link = elf->e_shstrndx;
2180 	shdr4extnum->sh_info = segs;
2181 }
2182 
2183 /*
2184  * Actual dumper
2185  *
2186  * This is a two-pass process; first we find the offsets of the bits,
2187  * and then they are actually written out.  If we run out of core limit
2188  * we just truncate.
2189  */
2190 static int elf_core_dump(struct coredump_params *cprm)
2191 {
2192 	int has_dumped = 0;
2193 	mm_segment_t fs;
2194 	int segs, i;
2195 	size_t vma_data_size = 0;
2196 	struct vm_area_struct *vma, *gate_vma;
2197 	struct elfhdr *elf = NULL;
2198 	loff_t offset = 0, dataoff;
2199 	struct elf_note_info info = { };
2200 	struct elf_phdr *phdr4note = NULL;
2201 	struct elf_shdr *shdr4extnum = NULL;
2202 	Elf_Half e_phnum;
2203 	elf_addr_t e_shoff;
2204 	elf_addr_t *vma_filesz = NULL;
2205 
2206 	/*
2207 	 * We no longer stop all VM operations.
2208 	 *
2209 	 * This is because those proceses that could possibly change map_count
2210 	 * or the mmap / vma pages are now blocked in do_exit on current
2211 	 * finishing this core dump.
2212 	 *
2213 	 * Only ptrace can touch these memory addresses, but it doesn't change
2214 	 * the map_count or the pages allocated. So no possibility of crashing
2215 	 * exists while dumping the mm->vm_next areas to the core file.
2216 	 */
2217 
2218 	/* alloc memory for large data structures: too large to be on stack */
2219 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2220 	if (!elf)
2221 		goto out;
2222 	/*
2223 	 * The number of segs are recored into ELF header as 16bit value.
2224 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2225 	 */
2226 	segs = current->mm->map_count;
2227 	segs += elf_core_extra_phdrs();
2228 
2229 	gate_vma = get_gate_vma(current->mm);
2230 	if (gate_vma != NULL)
2231 		segs++;
2232 
2233 	/* for notes section */
2234 	segs++;
2235 
2236 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2237 	 * this, kernel supports extended numbering. Have a look at
2238 	 * include/linux/elf.h for further information. */
2239 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2240 
2241 	/*
2242 	 * Collect all the non-memory information about the process for the
2243 	 * notes.  This also sets up the file header.
2244 	 */
2245 	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2246 		goto cleanup;
2247 
2248 	has_dumped = 1;
2249 
2250 	fs = get_fs();
2251 	set_fs(KERNEL_DS);
2252 
2253 	offset += sizeof(*elf);				/* Elf header */
2254 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2255 
2256 	/* Write notes phdr entry */
2257 	{
2258 		size_t sz = get_note_info_size(&info);
2259 
2260 		sz += elf_coredump_extra_notes_size();
2261 
2262 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2263 		if (!phdr4note)
2264 			goto end_coredump;
2265 
2266 		fill_elf_note_phdr(phdr4note, sz, offset);
2267 		offset += sz;
2268 	}
2269 
2270 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2271 
2272 	if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2273 		goto end_coredump;
2274 	vma_filesz = kvmalloc(array_size(sizeof(*vma_filesz), (segs - 1)),
2275 			      GFP_KERNEL);
2276 	if (ZERO_OR_NULL_PTR(vma_filesz))
2277 		goto end_coredump;
2278 
2279 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2280 			vma = next_vma(vma, gate_vma)) {
2281 		unsigned long dump_size;
2282 
2283 		dump_size = vma_dump_size(vma, cprm->mm_flags);
2284 		vma_filesz[i++] = dump_size;
2285 		vma_data_size += dump_size;
2286 	}
2287 
2288 	offset += vma_data_size;
2289 	offset += elf_core_extra_data_size();
2290 	e_shoff = offset;
2291 
2292 	if (e_phnum == PN_XNUM) {
2293 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2294 		if (!shdr4extnum)
2295 			goto end_coredump;
2296 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2297 	}
2298 
2299 	offset = dataoff;
2300 
2301 	if (!dump_emit(cprm, elf, sizeof(*elf)))
2302 		goto end_coredump;
2303 
2304 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2305 		goto end_coredump;
2306 
2307 	/* Write program headers for segments dump */
2308 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2309 			vma = next_vma(vma, gate_vma)) {
2310 		struct elf_phdr phdr;
2311 
2312 		phdr.p_type = PT_LOAD;
2313 		phdr.p_offset = offset;
2314 		phdr.p_vaddr = vma->vm_start;
2315 		phdr.p_paddr = 0;
2316 		phdr.p_filesz = vma_filesz[i++];
2317 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2318 		offset += phdr.p_filesz;
2319 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2320 		if (vma->vm_flags & VM_WRITE)
2321 			phdr.p_flags |= PF_W;
2322 		if (vma->vm_flags & VM_EXEC)
2323 			phdr.p_flags |= PF_X;
2324 		phdr.p_align = ELF_EXEC_PAGESIZE;
2325 
2326 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2327 			goto end_coredump;
2328 	}
2329 
2330 	if (!elf_core_write_extra_phdrs(cprm, offset))
2331 		goto end_coredump;
2332 
2333  	/* write out the notes section */
2334 	if (!write_note_info(&info, cprm))
2335 		goto end_coredump;
2336 
2337 	if (elf_coredump_extra_notes_write(cprm))
2338 		goto end_coredump;
2339 
2340 	/* Align to page */
2341 	if (!dump_skip(cprm, dataoff - cprm->pos))
2342 		goto end_coredump;
2343 
2344 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2345 			vma = next_vma(vma, gate_vma)) {
2346 		unsigned long addr;
2347 		unsigned long end;
2348 
2349 		end = vma->vm_start + vma_filesz[i++];
2350 
2351 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2352 			struct page *page;
2353 			int stop;
2354 
2355 			page = get_dump_page(addr);
2356 			if (page) {
2357 				void *kaddr = kmap(page);
2358 				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2359 				kunmap(page);
2360 				put_page(page);
2361 			} else
2362 				stop = !dump_skip(cprm, PAGE_SIZE);
2363 			if (stop)
2364 				goto end_coredump;
2365 		}
2366 	}
2367 	dump_truncate(cprm);
2368 
2369 	if (!elf_core_write_extra_data(cprm))
2370 		goto end_coredump;
2371 
2372 	if (e_phnum == PN_XNUM) {
2373 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2374 			goto end_coredump;
2375 	}
2376 
2377 end_coredump:
2378 	set_fs(fs);
2379 
2380 cleanup:
2381 	free_note_info(&info);
2382 	kfree(shdr4extnum);
2383 	kvfree(vma_filesz);
2384 	kfree(phdr4note);
2385 	kfree(elf);
2386 out:
2387 	return has_dumped;
2388 }
2389 
2390 #endif		/* CONFIG_ELF_CORE */
2391 
2392 static int __init init_elf_binfmt(void)
2393 {
2394 	register_binfmt(&elf_format);
2395 	return 0;
2396 }
2397 
2398 static void __exit exit_elf_binfmt(void)
2399 {
2400 	/* Remove the COFF and ELF loaders. */
2401 	unregister_binfmt(&elf_format);
2402 }
2403 
2404 core_initcall(init_elf_binfmt);
2405 module_exit(exit_elf_binfmt);
2406 MODULE_LICENSE("GPL");
2407