xref: /openbmc/linux/fs/binfmt_elf.c (revision 09717af7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/binfmt_elf.c
4  *
5  * These are the functions used to load ELF format executables as used
6  * on SVr4 machines.  Information on the format may be found in the book
7  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8  * Tools".
9  *
10  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/log2.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/slab.h>
25 #include <linux/personality.h>
26 #include <linux/elfcore.h>
27 #include <linux/init.h>
28 #include <linux/highuid.h>
29 #include <linux/compiler.h>
30 #include <linux/highmem.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vmalloc.h>
34 #include <linux/security.h>
35 #include <linux/random.h>
36 #include <linux/elf.h>
37 #include <linux/elf-randomize.h>
38 #include <linux/utsname.h>
39 #include <linux/coredump.h>
40 #include <linux/sched.h>
41 #include <linux/sched/coredump.h>
42 #include <linux/sched/task_stack.h>
43 #include <linux/sched/cputime.h>
44 #include <linux/sizes.h>
45 #include <linux/types.h>
46 #include <linux/cred.h>
47 #include <linux/dax.h>
48 #include <linux/uaccess.h>
49 #include <asm/param.h>
50 #include <asm/page.h>
51 
52 #ifndef ELF_COMPAT
53 #define ELF_COMPAT 0
54 #endif
55 
56 #ifndef user_long_t
57 #define user_long_t long
58 #endif
59 #ifndef user_siginfo_t
60 #define user_siginfo_t siginfo_t
61 #endif
62 
63 /* That's for binfmt_elf_fdpic to deal with */
64 #ifndef elf_check_fdpic
65 #define elf_check_fdpic(ex) false
66 #endif
67 
68 static int load_elf_binary(struct linux_binprm *bprm);
69 
70 #ifdef CONFIG_USELIB
71 static int load_elf_library(struct file *);
72 #else
73 #define load_elf_library NULL
74 #endif
75 
76 /*
77  * If we don't support core dumping, then supply a NULL so we
78  * don't even try.
79  */
80 #ifdef CONFIG_ELF_CORE
81 static int elf_core_dump(struct coredump_params *cprm);
82 #else
83 #define elf_core_dump	NULL
84 #endif
85 
86 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
87 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
88 #else
89 #define ELF_MIN_ALIGN	PAGE_SIZE
90 #endif
91 
92 #ifndef ELF_CORE_EFLAGS
93 #define ELF_CORE_EFLAGS	0
94 #endif
95 
96 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
97 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
98 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
99 
100 static struct linux_binfmt elf_format = {
101 	.module		= THIS_MODULE,
102 	.load_binary	= load_elf_binary,
103 	.load_shlib	= load_elf_library,
104 	.core_dump	= elf_core_dump,
105 	.min_coredump	= ELF_EXEC_PAGESIZE,
106 };
107 
108 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
109 
110 static int set_brk(unsigned long start, unsigned long end, int prot)
111 {
112 	start = ELF_PAGEALIGN(start);
113 	end = ELF_PAGEALIGN(end);
114 	if (end > start) {
115 		/*
116 		 * Map the last of the bss segment.
117 		 * If the header is requesting these pages to be
118 		 * executable, honour that (ppc32 needs this).
119 		 */
120 		int error = vm_brk_flags(start, end - start,
121 				prot & PROT_EXEC ? VM_EXEC : 0);
122 		if (error)
123 			return error;
124 	}
125 	current->mm->start_brk = current->mm->brk = end;
126 	return 0;
127 }
128 
129 /* We need to explicitly zero any fractional pages
130    after the data section (i.e. bss).  This would
131    contain the junk from the file that should not
132    be in memory
133  */
134 static int padzero(unsigned long elf_bss)
135 {
136 	unsigned long nbyte;
137 
138 	nbyte = ELF_PAGEOFFSET(elf_bss);
139 	if (nbyte) {
140 		nbyte = ELF_MIN_ALIGN - nbyte;
141 		if (clear_user((void __user *) elf_bss, nbyte))
142 			return -EFAULT;
143 	}
144 	return 0;
145 }
146 
147 /* Let's use some macros to make this stack manipulation a little clearer */
148 #ifdef CONFIG_STACK_GROWSUP
149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
150 #define STACK_ROUND(sp, items) \
151 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
152 #define STACK_ALLOC(sp, len) ({ \
153 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
154 	old_sp; })
155 #else
156 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
157 #define STACK_ROUND(sp, items) \
158 	(((unsigned long) (sp - items)) &~ 15UL)
159 #define STACK_ALLOC(sp, len) (sp -= len)
160 #endif
161 
162 #ifndef ELF_BASE_PLATFORM
163 /*
164  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
165  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
166  * will be copied to the user stack in the same manner as AT_PLATFORM.
167  */
168 #define ELF_BASE_PLATFORM NULL
169 #endif
170 
171 static int
172 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
173 		unsigned long load_addr, unsigned long interp_load_addr,
174 		unsigned long e_entry)
175 {
176 	struct mm_struct *mm = current->mm;
177 	unsigned long p = bprm->p;
178 	int argc = bprm->argc;
179 	int envc = bprm->envc;
180 	elf_addr_t __user *sp;
181 	elf_addr_t __user *u_platform;
182 	elf_addr_t __user *u_base_platform;
183 	elf_addr_t __user *u_rand_bytes;
184 	const char *k_platform = ELF_PLATFORM;
185 	const char *k_base_platform = ELF_BASE_PLATFORM;
186 	unsigned char k_rand_bytes[16];
187 	int items;
188 	elf_addr_t *elf_info;
189 	elf_addr_t flags = 0;
190 	int ei_index;
191 	const struct cred *cred = current_cred();
192 	struct vm_area_struct *vma;
193 
194 	/*
195 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
196 	 * evictions by the processes running on the same package. One
197 	 * thing we can do is to shuffle the initial stack for them.
198 	 */
199 
200 	p = arch_align_stack(p);
201 
202 	/*
203 	 * If this architecture has a platform capability string, copy it
204 	 * to userspace.  In some cases (Sparc), this info is impossible
205 	 * for userspace to get any other way, in others (i386) it is
206 	 * merely difficult.
207 	 */
208 	u_platform = NULL;
209 	if (k_platform) {
210 		size_t len = strlen(k_platform) + 1;
211 
212 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
213 		if (copy_to_user(u_platform, k_platform, len))
214 			return -EFAULT;
215 	}
216 
217 	/*
218 	 * If this architecture has a "base" platform capability
219 	 * string, copy it to userspace.
220 	 */
221 	u_base_platform = NULL;
222 	if (k_base_platform) {
223 		size_t len = strlen(k_base_platform) + 1;
224 
225 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
226 		if (copy_to_user(u_base_platform, k_base_platform, len))
227 			return -EFAULT;
228 	}
229 
230 	/*
231 	 * Generate 16 random bytes for userspace PRNG seeding.
232 	 */
233 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
234 	u_rand_bytes = (elf_addr_t __user *)
235 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
236 	if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
237 		return -EFAULT;
238 
239 	/* Create the ELF interpreter info */
240 	elf_info = (elf_addr_t *)mm->saved_auxv;
241 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
242 #define NEW_AUX_ENT(id, val) \
243 	do { \
244 		*elf_info++ = id; \
245 		*elf_info++ = val; \
246 	} while (0)
247 
248 #ifdef ARCH_DLINFO
249 	/*
250 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
251 	 * AUXV.
252 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
253 	 * ARCH_DLINFO changes
254 	 */
255 	ARCH_DLINFO;
256 #endif
257 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
258 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
259 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
260 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
261 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
262 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
263 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
264 	if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0)
265 		flags |= AT_FLAGS_PRESERVE_ARGV0;
266 	NEW_AUX_ENT(AT_FLAGS, flags);
267 	NEW_AUX_ENT(AT_ENTRY, e_entry);
268 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
269 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
270 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
271 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
272 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
273 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
274 #ifdef ELF_HWCAP2
275 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
276 #endif
277 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
278 	if (k_platform) {
279 		NEW_AUX_ENT(AT_PLATFORM,
280 			    (elf_addr_t)(unsigned long)u_platform);
281 	}
282 	if (k_base_platform) {
283 		NEW_AUX_ENT(AT_BASE_PLATFORM,
284 			    (elf_addr_t)(unsigned long)u_base_platform);
285 	}
286 	if (bprm->have_execfd) {
287 		NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
288 	}
289 #undef NEW_AUX_ENT
290 	/* AT_NULL is zero; clear the rest too */
291 	memset(elf_info, 0, (char *)mm->saved_auxv +
292 			sizeof(mm->saved_auxv) - (char *)elf_info);
293 
294 	/* And advance past the AT_NULL entry.  */
295 	elf_info += 2;
296 
297 	ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
298 	sp = STACK_ADD(p, ei_index);
299 
300 	items = (argc + 1) + (envc + 1) + 1;
301 	bprm->p = STACK_ROUND(sp, items);
302 
303 	/* Point sp at the lowest address on the stack */
304 #ifdef CONFIG_STACK_GROWSUP
305 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
306 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
307 #else
308 	sp = (elf_addr_t __user *)bprm->p;
309 #endif
310 
311 
312 	/*
313 	 * Grow the stack manually; some architectures have a limit on how
314 	 * far ahead a user-space access may be in order to grow the stack.
315 	 */
316 	if (mmap_read_lock_killable(mm))
317 		return -EINTR;
318 	vma = find_extend_vma(mm, bprm->p);
319 	mmap_read_unlock(mm);
320 	if (!vma)
321 		return -EFAULT;
322 
323 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
324 	if (put_user(argc, sp++))
325 		return -EFAULT;
326 
327 	/* Populate list of argv pointers back to argv strings. */
328 	p = mm->arg_end = mm->arg_start;
329 	while (argc-- > 0) {
330 		size_t len;
331 		if (put_user((elf_addr_t)p, sp++))
332 			return -EFAULT;
333 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
334 		if (!len || len > MAX_ARG_STRLEN)
335 			return -EINVAL;
336 		p += len;
337 	}
338 	if (put_user(0, sp++))
339 		return -EFAULT;
340 	mm->arg_end = p;
341 
342 	/* Populate list of envp pointers back to envp strings. */
343 	mm->env_end = mm->env_start = p;
344 	while (envc-- > 0) {
345 		size_t len;
346 		if (put_user((elf_addr_t)p, sp++))
347 			return -EFAULT;
348 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
349 		if (!len || len > MAX_ARG_STRLEN)
350 			return -EINVAL;
351 		p += len;
352 	}
353 	if (put_user(0, sp++))
354 		return -EFAULT;
355 	mm->env_end = p;
356 
357 	/* Put the elf_info on the stack in the right place.  */
358 	if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
359 		return -EFAULT;
360 	return 0;
361 }
362 
363 static unsigned long elf_map(struct file *filep, unsigned long addr,
364 		const struct elf_phdr *eppnt, int prot, int type,
365 		unsigned long total_size)
366 {
367 	unsigned long map_addr;
368 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
369 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
370 	addr = ELF_PAGESTART(addr);
371 	size = ELF_PAGEALIGN(size);
372 
373 	/* mmap() will return -EINVAL if given a zero size, but a
374 	 * segment with zero filesize is perfectly valid */
375 	if (!size)
376 		return addr;
377 
378 	/*
379 	* total_size is the size of the ELF (interpreter) image.
380 	* The _first_ mmap needs to know the full size, otherwise
381 	* randomization might put this image into an overlapping
382 	* position with the ELF binary image. (since size < total_size)
383 	* So we first map the 'big' image - and unmap the remainder at
384 	* the end. (which unmap is needed for ELF images with holes.)
385 	*/
386 	if (total_size) {
387 		total_size = ELF_PAGEALIGN(total_size);
388 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
389 		if (!BAD_ADDR(map_addr))
390 			vm_munmap(map_addr+size, total_size-size);
391 	} else
392 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
393 
394 	if ((type & MAP_FIXED_NOREPLACE) &&
395 	    PTR_ERR((void *)map_addr) == -EEXIST)
396 		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
397 			task_pid_nr(current), current->comm, (void *)addr);
398 
399 	return(map_addr);
400 }
401 
402 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
403 {
404 	int i, first_idx = -1, last_idx = -1;
405 
406 	for (i = 0; i < nr; i++) {
407 		if (cmds[i].p_type == PT_LOAD) {
408 			last_idx = i;
409 			if (first_idx == -1)
410 				first_idx = i;
411 		}
412 	}
413 	if (first_idx == -1)
414 		return 0;
415 
416 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
417 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
418 }
419 
420 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
421 {
422 	ssize_t rv;
423 
424 	rv = kernel_read(file, buf, len, &pos);
425 	if (unlikely(rv != len)) {
426 		return (rv < 0) ? rv : -EIO;
427 	}
428 	return 0;
429 }
430 
431 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
432 {
433 	unsigned long alignment = 0;
434 	int i;
435 
436 	for (i = 0; i < nr; i++) {
437 		if (cmds[i].p_type == PT_LOAD) {
438 			unsigned long p_align = cmds[i].p_align;
439 
440 			/* skip non-power of two alignments as invalid */
441 			if (!is_power_of_2(p_align))
442 				continue;
443 			alignment = max(alignment, p_align);
444 		}
445 	}
446 
447 	/* ensure we align to at least one page */
448 	return ELF_PAGEALIGN(alignment);
449 }
450 
451 /**
452  * load_elf_phdrs() - load ELF program headers
453  * @elf_ex:   ELF header of the binary whose program headers should be loaded
454  * @elf_file: the opened ELF binary file
455  *
456  * Loads ELF program headers from the binary file elf_file, which has the ELF
457  * header pointed to by elf_ex, into a newly allocated array. The caller is
458  * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
459  */
460 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
461 				       struct file *elf_file)
462 {
463 	struct elf_phdr *elf_phdata = NULL;
464 	int retval, err = -1;
465 	unsigned int size;
466 
467 	/*
468 	 * If the size of this structure has changed, then punt, since
469 	 * we will be doing the wrong thing.
470 	 */
471 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
472 		goto out;
473 
474 	/* Sanity check the number of program headers... */
475 	/* ...and their total size. */
476 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
477 	if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
478 		goto out;
479 
480 	elf_phdata = kmalloc(size, GFP_KERNEL);
481 	if (!elf_phdata)
482 		goto out;
483 
484 	/* Read in the program headers */
485 	retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
486 	if (retval < 0) {
487 		err = retval;
488 		goto out;
489 	}
490 
491 	/* Success! */
492 	err = 0;
493 out:
494 	if (err) {
495 		kfree(elf_phdata);
496 		elf_phdata = NULL;
497 	}
498 	return elf_phdata;
499 }
500 
501 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
502 
503 /**
504  * struct arch_elf_state - arch-specific ELF loading state
505  *
506  * This structure is used to preserve architecture specific data during
507  * the loading of an ELF file, throughout the checking of architecture
508  * specific ELF headers & through to the point where the ELF load is
509  * known to be proceeding (ie. SET_PERSONALITY).
510  *
511  * This implementation is a dummy for architectures which require no
512  * specific state.
513  */
514 struct arch_elf_state {
515 };
516 
517 #define INIT_ARCH_ELF_STATE {}
518 
519 /**
520  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
521  * @ehdr:	The main ELF header
522  * @phdr:	The program header to check
523  * @elf:	The open ELF file
524  * @is_interp:	True if the phdr is from the interpreter of the ELF being
525  *		loaded, else false.
526  * @state:	Architecture-specific state preserved throughout the process
527  *		of loading the ELF.
528  *
529  * Inspects the program header phdr to validate its correctness and/or
530  * suitability for the system. Called once per ELF program header in the
531  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
532  * interpreter.
533  *
534  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
535  *         with that return code.
536  */
537 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
538 				   struct elf_phdr *phdr,
539 				   struct file *elf, bool is_interp,
540 				   struct arch_elf_state *state)
541 {
542 	/* Dummy implementation, always proceed */
543 	return 0;
544 }
545 
546 /**
547  * arch_check_elf() - check an ELF executable
548  * @ehdr:	The main ELF header
549  * @has_interp:	True if the ELF has an interpreter, else false.
550  * @interp_ehdr: The interpreter's ELF header
551  * @state:	Architecture-specific state preserved throughout the process
552  *		of loading the ELF.
553  *
554  * Provides a final opportunity for architecture code to reject the loading
555  * of the ELF & cause an exec syscall to return an error. This is called after
556  * all program headers to be checked by arch_elf_pt_proc have been.
557  *
558  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
559  *         with that return code.
560  */
561 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
562 				 struct elfhdr *interp_ehdr,
563 				 struct arch_elf_state *state)
564 {
565 	/* Dummy implementation, always proceed */
566 	return 0;
567 }
568 
569 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
570 
571 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
572 			    bool has_interp, bool is_interp)
573 {
574 	int prot = 0;
575 
576 	if (p_flags & PF_R)
577 		prot |= PROT_READ;
578 	if (p_flags & PF_W)
579 		prot |= PROT_WRITE;
580 	if (p_flags & PF_X)
581 		prot |= PROT_EXEC;
582 
583 	return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
584 }
585 
586 /* This is much more generalized than the library routine read function,
587    so we keep this separate.  Technically the library read function
588    is only provided so that we can read a.out libraries that have
589    an ELF header */
590 
591 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
592 		struct file *interpreter,
593 		unsigned long no_base, struct elf_phdr *interp_elf_phdata,
594 		struct arch_elf_state *arch_state)
595 {
596 	struct elf_phdr *eppnt;
597 	unsigned long load_addr = 0;
598 	int load_addr_set = 0;
599 	unsigned long last_bss = 0, elf_bss = 0;
600 	int bss_prot = 0;
601 	unsigned long error = ~0UL;
602 	unsigned long total_size;
603 	int i;
604 
605 	/* First of all, some simple consistency checks */
606 	if (interp_elf_ex->e_type != ET_EXEC &&
607 	    interp_elf_ex->e_type != ET_DYN)
608 		goto out;
609 	if (!elf_check_arch(interp_elf_ex) ||
610 	    elf_check_fdpic(interp_elf_ex))
611 		goto out;
612 	if (!interpreter->f_op->mmap)
613 		goto out;
614 
615 	total_size = total_mapping_size(interp_elf_phdata,
616 					interp_elf_ex->e_phnum);
617 	if (!total_size) {
618 		error = -EINVAL;
619 		goto out;
620 	}
621 
622 	eppnt = interp_elf_phdata;
623 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
624 		if (eppnt->p_type == PT_LOAD) {
625 			int elf_type = MAP_PRIVATE;
626 			int elf_prot = make_prot(eppnt->p_flags, arch_state,
627 						 true, true);
628 			unsigned long vaddr = 0;
629 			unsigned long k, map_addr;
630 
631 			vaddr = eppnt->p_vaddr;
632 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
633 				elf_type |= MAP_FIXED;
634 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
635 				load_addr = -vaddr;
636 
637 			map_addr = elf_map(interpreter, load_addr + vaddr,
638 					eppnt, elf_prot, elf_type, total_size);
639 			total_size = 0;
640 			error = map_addr;
641 			if (BAD_ADDR(map_addr))
642 				goto out;
643 
644 			if (!load_addr_set &&
645 			    interp_elf_ex->e_type == ET_DYN) {
646 				load_addr = map_addr - ELF_PAGESTART(vaddr);
647 				load_addr_set = 1;
648 			}
649 
650 			/*
651 			 * Check to see if the section's size will overflow the
652 			 * allowed task size. Note that p_filesz must always be
653 			 * <= p_memsize so it's only necessary to check p_memsz.
654 			 */
655 			k = load_addr + eppnt->p_vaddr;
656 			if (BAD_ADDR(k) ||
657 			    eppnt->p_filesz > eppnt->p_memsz ||
658 			    eppnt->p_memsz > TASK_SIZE ||
659 			    TASK_SIZE - eppnt->p_memsz < k) {
660 				error = -ENOMEM;
661 				goto out;
662 			}
663 
664 			/*
665 			 * Find the end of the file mapping for this phdr, and
666 			 * keep track of the largest address we see for this.
667 			 */
668 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
669 			if (k > elf_bss)
670 				elf_bss = k;
671 
672 			/*
673 			 * Do the same thing for the memory mapping - between
674 			 * elf_bss and last_bss is the bss section.
675 			 */
676 			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
677 			if (k > last_bss) {
678 				last_bss = k;
679 				bss_prot = elf_prot;
680 			}
681 		}
682 	}
683 
684 	/*
685 	 * Now fill out the bss section: first pad the last page from
686 	 * the file up to the page boundary, and zero it from elf_bss
687 	 * up to the end of the page.
688 	 */
689 	if (padzero(elf_bss)) {
690 		error = -EFAULT;
691 		goto out;
692 	}
693 	/*
694 	 * Next, align both the file and mem bss up to the page size,
695 	 * since this is where elf_bss was just zeroed up to, and where
696 	 * last_bss will end after the vm_brk_flags() below.
697 	 */
698 	elf_bss = ELF_PAGEALIGN(elf_bss);
699 	last_bss = ELF_PAGEALIGN(last_bss);
700 	/* Finally, if there is still more bss to allocate, do it. */
701 	if (last_bss > elf_bss) {
702 		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
703 				bss_prot & PROT_EXEC ? VM_EXEC : 0);
704 		if (error)
705 			goto out;
706 	}
707 
708 	error = load_addr;
709 out:
710 	return error;
711 }
712 
713 /*
714  * These are the functions used to load ELF style executables and shared
715  * libraries.  There is no binary dependent code anywhere else.
716  */
717 
718 static int parse_elf_property(const char *data, size_t *off, size_t datasz,
719 			      struct arch_elf_state *arch,
720 			      bool have_prev_type, u32 *prev_type)
721 {
722 	size_t o, step;
723 	const struct gnu_property *pr;
724 	int ret;
725 
726 	if (*off == datasz)
727 		return -ENOENT;
728 
729 	if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
730 		return -EIO;
731 	o = *off;
732 	datasz -= *off;
733 
734 	if (datasz < sizeof(*pr))
735 		return -ENOEXEC;
736 	pr = (const struct gnu_property *)(data + o);
737 	o += sizeof(*pr);
738 	datasz -= sizeof(*pr);
739 
740 	if (pr->pr_datasz > datasz)
741 		return -ENOEXEC;
742 
743 	WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
744 	step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
745 	if (step > datasz)
746 		return -ENOEXEC;
747 
748 	/* Properties are supposed to be unique and sorted on pr_type: */
749 	if (have_prev_type && pr->pr_type <= *prev_type)
750 		return -ENOEXEC;
751 	*prev_type = pr->pr_type;
752 
753 	ret = arch_parse_elf_property(pr->pr_type, data + o,
754 				      pr->pr_datasz, ELF_COMPAT, arch);
755 	if (ret)
756 		return ret;
757 
758 	*off = o + step;
759 	return 0;
760 }
761 
762 #define NOTE_DATA_SZ SZ_1K
763 #define GNU_PROPERTY_TYPE_0_NAME "GNU"
764 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
765 
766 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
767 				struct arch_elf_state *arch)
768 {
769 	union {
770 		struct elf_note nhdr;
771 		char data[NOTE_DATA_SZ];
772 	} note;
773 	loff_t pos;
774 	ssize_t n;
775 	size_t off, datasz;
776 	int ret;
777 	bool have_prev_type;
778 	u32 prev_type;
779 
780 	if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
781 		return 0;
782 
783 	/* load_elf_binary() shouldn't call us unless this is true... */
784 	if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
785 		return -ENOEXEC;
786 
787 	/* If the properties are crazy large, that's too bad (for now): */
788 	if (phdr->p_filesz > sizeof(note))
789 		return -ENOEXEC;
790 
791 	pos = phdr->p_offset;
792 	n = kernel_read(f, &note, phdr->p_filesz, &pos);
793 
794 	BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
795 	if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
796 		return -EIO;
797 
798 	if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
799 	    note.nhdr.n_namesz != NOTE_NAME_SZ ||
800 	    strncmp(note.data + sizeof(note.nhdr),
801 		    GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
802 		return -ENOEXEC;
803 
804 	off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
805 		       ELF_GNU_PROPERTY_ALIGN);
806 	if (off > n)
807 		return -ENOEXEC;
808 
809 	if (note.nhdr.n_descsz > n - off)
810 		return -ENOEXEC;
811 	datasz = off + note.nhdr.n_descsz;
812 
813 	have_prev_type = false;
814 	do {
815 		ret = parse_elf_property(note.data, &off, datasz, arch,
816 					 have_prev_type, &prev_type);
817 		have_prev_type = true;
818 	} while (!ret);
819 
820 	return ret == -ENOENT ? 0 : ret;
821 }
822 
823 static int load_elf_binary(struct linux_binprm *bprm)
824 {
825 	struct file *interpreter = NULL; /* to shut gcc up */
826  	unsigned long load_addr = 0, load_bias = 0;
827 	int load_addr_set = 0;
828 	unsigned long error;
829 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
830 	struct elf_phdr *elf_property_phdata = NULL;
831 	unsigned long elf_bss, elf_brk;
832 	int bss_prot = 0;
833 	int retval, i;
834 	unsigned long elf_entry;
835 	unsigned long e_entry;
836 	unsigned long interp_load_addr = 0;
837 	unsigned long start_code, end_code, start_data, end_data;
838 	unsigned long reloc_func_desc __maybe_unused = 0;
839 	int executable_stack = EXSTACK_DEFAULT;
840 	struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
841 	struct elfhdr *interp_elf_ex = NULL;
842 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
843 	struct mm_struct *mm;
844 	struct pt_regs *regs;
845 
846 	retval = -ENOEXEC;
847 	/* First of all, some simple consistency checks */
848 	if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
849 		goto out;
850 
851 	if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
852 		goto out;
853 	if (!elf_check_arch(elf_ex))
854 		goto out;
855 	if (elf_check_fdpic(elf_ex))
856 		goto out;
857 	if (!bprm->file->f_op->mmap)
858 		goto out;
859 
860 	elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
861 	if (!elf_phdata)
862 		goto out;
863 
864 	elf_ppnt = elf_phdata;
865 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
866 		char *elf_interpreter;
867 
868 		if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
869 			elf_property_phdata = elf_ppnt;
870 			continue;
871 		}
872 
873 		if (elf_ppnt->p_type != PT_INTERP)
874 			continue;
875 
876 		/*
877 		 * This is the program interpreter used for shared libraries -
878 		 * for now assume that this is an a.out format binary.
879 		 */
880 		retval = -ENOEXEC;
881 		if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
882 			goto out_free_ph;
883 
884 		retval = -ENOMEM;
885 		elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
886 		if (!elf_interpreter)
887 			goto out_free_ph;
888 
889 		retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
890 				  elf_ppnt->p_offset);
891 		if (retval < 0)
892 			goto out_free_interp;
893 		/* make sure path is NULL terminated */
894 		retval = -ENOEXEC;
895 		if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
896 			goto out_free_interp;
897 
898 		interpreter = open_exec(elf_interpreter);
899 		kfree(elf_interpreter);
900 		retval = PTR_ERR(interpreter);
901 		if (IS_ERR(interpreter))
902 			goto out_free_ph;
903 
904 		/*
905 		 * If the binary is not readable then enforce mm->dumpable = 0
906 		 * regardless of the interpreter's permissions.
907 		 */
908 		would_dump(bprm, interpreter);
909 
910 		interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
911 		if (!interp_elf_ex) {
912 			retval = -ENOMEM;
913 			goto out_free_ph;
914 		}
915 
916 		/* Get the exec headers */
917 		retval = elf_read(interpreter, interp_elf_ex,
918 				  sizeof(*interp_elf_ex), 0);
919 		if (retval < 0)
920 			goto out_free_dentry;
921 
922 		break;
923 
924 out_free_interp:
925 		kfree(elf_interpreter);
926 		goto out_free_ph;
927 	}
928 
929 	elf_ppnt = elf_phdata;
930 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
931 		switch (elf_ppnt->p_type) {
932 		case PT_GNU_STACK:
933 			if (elf_ppnt->p_flags & PF_X)
934 				executable_stack = EXSTACK_ENABLE_X;
935 			else
936 				executable_stack = EXSTACK_DISABLE_X;
937 			break;
938 
939 		case PT_LOPROC ... PT_HIPROC:
940 			retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
941 						  bprm->file, false,
942 						  &arch_state);
943 			if (retval)
944 				goto out_free_dentry;
945 			break;
946 		}
947 
948 	/* Some simple consistency checks for the interpreter */
949 	if (interpreter) {
950 		retval = -ELIBBAD;
951 		/* Not an ELF interpreter */
952 		if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
953 			goto out_free_dentry;
954 		/* Verify the interpreter has a valid arch */
955 		if (!elf_check_arch(interp_elf_ex) ||
956 		    elf_check_fdpic(interp_elf_ex))
957 			goto out_free_dentry;
958 
959 		/* Load the interpreter program headers */
960 		interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
961 						   interpreter);
962 		if (!interp_elf_phdata)
963 			goto out_free_dentry;
964 
965 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
966 		elf_property_phdata = NULL;
967 		elf_ppnt = interp_elf_phdata;
968 		for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
969 			switch (elf_ppnt->p_type) {
970 			case PT_GNU_PROPERTY:
971 				elf_property_phdata = elf_ppnt;
972 				break;
973 
974 			case PT_LOPROC ... PT_HIPROC:
975 				retval = arch_elf_pt_proc(interp_elf_ex,
976 							  elf_ppnt, interpreter,
977 							  true, &arch_state);
978 				if (retval)
979 					goto out_free_dentry;
980 				break;
981 			}
982 	}
983 
984 	retval = parse_elf_properties(interpreter ?: bprm->file,
985 				      elf_property_phdata, &arch_state);
986 	if (retval)
987 		goto out_free_dentry;
988 
989 	/*
990 	 * Allow arch code to reject the ELF at this point, whilst it's
991 	 * still possible to return an error to the code that invoked
992 	 * the exec syscall.
993 	 */
994 	retval = arch_check_elf(elf_ex,
995 				!!interpreter, interp_elf_ex,
996 				&arch_state);
997 	if (retval)
998 		goto out_free_dentry;
999 
1000 	/* Flush all traces of the currently running executable */
1001 	retval = begin_new_exec(bprm);
1002 	if (retval)
1003 		goto out_free_dentry;
1004 
1005 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
1006 	   may depend on the personality.  */
1007 	SET_PERSONALITY2(*elf_ex, &arch_state);
1008 	if (elf_read_implies_exec(*elf_ex, executable_stack))
1009 		current->personality |= READ_IMPLIES_EXEC;
1010 
1011 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1012 		current->flags |= PF_RANDOMIZE;
1013 
1014 	setup_new_exec(bprm);
1015 
1016 	/* Do this so that we can load the interpreter, if need be.  We will
1017 	   change some of these later */
1018 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1019 				 executable_stack);
1020 	if (retval < 0)
1021 		goto out_free_dentry;
1022 
1023 	elf_bss = 0;
1024 	elf_brk = 0;
1025 
1026 	start_code = ~0UL;
1027 	end_code = 0;
1028 	start_data = 0;
1029 	end_data = 0;
1030 
1031 	/* Now we do a little grungy work by mmapping the ELF image into
1032 	   the correct location in memory. */
1033 	for(i = 0, elf_ppnt = elf_phdata;
1034 	    i < elf_ex->e_phnum; i++, elf_ppnt++) {
1035 		int elf_prot, elf_flags;
1036 		unsigned long k, vaddr;
1037 		unsigned long total_size = 0;
1038 		unsigned long alignment;
1039 
1040 		if (elf_ppnt->p_type != PT_LOAD)
1041 			continue;
1042 
1043 		if (unlikely (elf_brk > elf_bss)) {
1044 			unsigned long nbyte;
1045 
1046 			/* There was a PT_LOAD segment with p_memsz > p_filesz
1047 			   before this one. Map anonymous pages, if needed,
1048 			   and clear the area.  */
1049 			retval = set_brk(elf_bss + load_bias,
1050 					 elf_brk + load_bias,
1051 					 bss_prot);
1052 			if (retval)
1053 				goto out_free_dentry;
1054 			nbyte = ELF_PAGEOFFSET(elf_bss);
1055 			if (nbyte) {
1056 				nbyte = ELF_MIN_ALIGN - nbyte;
1057 				if (nbyte > elf_brk - elf_bss)
1058 					nbyte = elf_brk - elf_bss;
1059 				if (clear_user((void __user *)elf_bss +
1060 							load_bias, nbyte)) {
1061 					/*
1062 					 * This bss-zeroing can fail if the ELF
1063 					 * file specifies odd protections. So
1064 					 * we don't check the return value
1065 					 */
1066 				}
1067 			}
1068 		}
1069 
1070 		elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1071 				     !!interpreter, false);
1072 
1073 		elf_flags = MAP_PRIVATE;
1074 
1075 		vaddr = elf_ppnt->p_vaddr;
1076 		/*
1077 		 * The first time through the loop, load_addr_set is false:
1078 		 * layout will be calculated. Once set, use MAP_FIXED since
1079 		 * we know we've already safely mapped the entire region with
1080 		 * MAP_FIXED_NOREPLACE in the once-per-binary logic following.
1081 		 */
1082 		if (load_addr_set) {
1083 			elf_flags |= MAP_FIXED;
1084 		} else if (elf_ex->e_type == ET_EXEC) {
1085 			/*
1086 			 * This logic is run once for the first LOAD Program
1087 			 * Header for ET_EXEC binaries. No special handling
1088 			 * is needed.
1089 			 */
1090 			elf_flags |= MAP_FIXED_NOREPLACE;
1091 		} else if (elf_ex->e_type == ET_DYN) {
1092 			/*
1093 			 * This logic is run once for the first LOAD Program
1094 			 * Header for ET_DYN binaries to calculate the
1095 			 * randomization (load_bias) for all the LOAD
1096 			 * Program Headers.
1097 			 *
1098 			 * There are effectively two types of ET_DYN
1099 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
1100 			 * and loaders (ET_DYN without INTERP, since they
1101 			 * _are_ the ELF interpreter). The loaders must
1102 			 * be loaded away from programs since the program
1103 			 * may otherwise collide with the loader (especially
1104 			 * for ET_EXEC which does not have a randomized
1105 			 * position). For example to handle invocations of
1106 			 * "./ld.so someprog" to test out a new version of
1107 			 * the loader, the subsequent program that the
1108 			 * loader loads must avoid the loader itself, so
1109 			 * they cannot share the same load range. Sufficient
1110 			 * room for the brk must be allocated with the
1111 			 * loader as well, since brk must be available with
1112 			 * the loader.
1113 			 *
1114 			 * Therefore, programs are loaded offset from
1115 			 * ELF_ET_DYN_BASE and loaders are loaded into the
1116 			 * independently randomized mmap region (0 load_bias
1117 			 * without MAP_FIXED nor MAP_FIXED_NOREPLACE).
1118 			 */
1119 			if (interpreter) {
1120 				load_bias = ELF_ET_DYN_BASE;
1121 				if (current->flags & PF_RANDOMIZE)
1122 					load_bias += arch_mmap_rnd();
1123 				alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1124 				if (alignment)
1125 					load_bias &= ~(alignment - 1);
1126 				elf_flags |= MAP_FIXED_NOREPLACE;
1127 			} else
1128 				load_bias = 0;
1129 
1130 			/*
1131 			 * Since load_bias is used for all subsequent loading
1132 			 * calculations, we must lower it by the first vaddr
1133 			 * so that the remaining calculations based on the
1134 			 * ELF vaddrs will be correctly offset. The result
1135 			 * is then page aligned.
1136 			 */
1137 			load_bias = ELF_PAGESTART(load_bias - vaddr);
1138 		}
1139 
1140 		/*
1141 		 * Calculate the entire size of the ELF mapping (total_size).
1142 		 * (Note that load_addr_set is set to true later once the
1143 		 * initial mapping is performed.)
1144 		 */
1145 		if (!load_addr_set) {
1146 			total_size = total_mapping_size(elf_phdata,
1147 							elf_ex->e_phnum);
1148 			if (!total_size) {
1149 				retval = -EINVAL;
1150 				goto out_free_dentry;
1151 			}
1152 		}
1153 
1154 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1155 				elf_prot, elf_flags, total_size);
1156 		if (BAD_ADDR(error)) {
1157 			retval = IS_ERR((void *)error) ?
1158 				PTR_ERR((void*)error) : -EINVAL;
1159 			goto out_free_dentry;
1160 		}
1161 
1162 		if (!load_addr_set) {
1163 			load_addr_set = 1;
1164 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1165 			if (elf_ex->e_type == ET_DYN) {
1166 				load_bias += error -
1167 				             ELF_PAGESTART(load_bias + vaddr);
1168 				load_addr += load_bias;
1169 				reloc_func_desc = load_bias;
1170 			}
1171 		}
1172 		k = elf_ppnt->p_vaddr;
1173 		if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1174 			start_code = k;
1175 		if (start_data < k)
1176 			start_data = k;
1177 
1178 		/*
1179 		 * Check to see if the section's size will overflow the
1180 		 * allowed task size. Note that p_filesz must always be
1181 		 * <= p_memsz so it is only necessary to check p_memsz.
1182 		 */
1183 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1184 		    elf_ppnt->p_memsz > TASK_SIZE ||
1185 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1186 			/* set_brk can never work. Avoid overflows. */
1187 			retval = -EINVAL;
1188 			goto out_free_dentry;
1189 		}
1190 
1191 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1192 
1193 		if (k > elf_bss)
1194 			elf_bss = k;
1195 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1196 			end_code = k;
1197 		if (end_data < k)
1198 			end_data = k;
1199 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1200 		if (k > elf_brk) {
1201 			bss_prot = elf_prot;
1202 			elf_brk = k;
1203 		}
1204 	}
1205 
1206 	e_entry = elf_ex->e_entry + load_bias;
1207 	elf_bss += load_bias;
1208 	elf_brk += load_bias;
1209 	start_code += load_bias;
1210 	end_code += load_bias;
1211 	start_data += load_bias;
1212 	end_data += load_bias;
1213 
1214 	/* Calling set_brk effectively mmaps the pages that we need
1215 	 * for the bss and break sections.  We must do this before
1216 	 * mapping in the interpreter, to make sure it doesn't wind
1217 	 * up getting placed where the bss needs to go.
1218 	 */
1219 	retval = set_brk(elf_bss, elf_brk, bss_prot);
1220 	if (retval)
1221 		goto out_free_dentry;
1222 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1223 		retval = -EFAULT; /* Nobody gets to see this, but.. */
1224 		goto out_free_dentry;
1225 	}
1226 
1227 	if (interpreter) {
1228 		elf_entry = load_elf_interp(interp_elf_ex,
1229 					    interpreter,
1230 					    load_bias, interp_elf_phdata,
1231 					    &arch_state);
1232 		if (!IS_ERR((void *)elf_entry)) {
1233 			/*
1234 			 * load_elf_interp() returns relocation
1235 			 * adjustment
1236 			 */
1237 			interp_load_addr = elf_entry;
1238 			elf_entry += interp_elf_ex->e_entry;
1239 		}
1240 		if (BAD_ADDR(elf_entry)) {
1241 			retval = IS_ERR((void *)elf_entry) ?
1242 					(int)elf_entry : -EINVAL;
1243 			goto out_free_dentry;
1244 		}
1245 		reloc_func_desc = interp_load_addr;
1246 
1247 		allow_write_access(interpreter);
1248 		fput(interpreter);
1249 
1250 		kfree(interp_elf_ex);
1251 		kfree(interp_elf_phdata);
1252 	} else {
1253 		elf_entry = e_entry;
1254 		if (BAD_ADDR(elf_entry)) {
1255 			retval = -EINVAL;
1256 			goto out_free_dentry;
1257 		}
1258 	}
1259 
1260 	kfree(elf_phdata);
1261 
1262 	set_binfmt(&elf_format);
1263 
1264 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1265 	retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter);
1266 	if (retval < 0)
1267 		goto out;
1268 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1269 
1270 	retval = create_elf_tables(bprm, elf_ex,
1271 			  load_addr, interp_load_addr, e_entry);
1272 	if (retval < 0)
1273 		goto out;
1274 
1275 	mm = current->mm;
1276 	mm->end_code = end_code;
1277 	mm->start_code = start_code;
1278 	mm->start_data = start_data;
1279 	mm->end_data = end_data;
1280 	mm->start_stack = bprm->p;
1281 
1282 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1283 		/*
1284 		 * For architectures with ELF randomization, when executing
1285 		 * a loader directly (i.e. no interpreter listed in ELF
1286 		 * headers), move the brk area out of the mmap region
1287 		 * (since it grows up, and may collide early with the stack
1288 		 * growing down), and into the unused ELF_ET_DYN_BASE region.
1289 		 */
1290 		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1291 		    elf_ex->e_type == ET_DYN && !interpreter) {
1292 			mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1293 		}
1294 
1295 		mm->brk = mm->start_brk = arch_randomize_brk(mm);
1296 #ifdef compat_brk_randomized
1297 		current->brk_randomized = 1;
1298 #endif
1299 	}
1300 
1301 	if (current->personality & MMAP_PAGE_ZERO) {
1302 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1303 		   and some applications "depend" upon this behavior.
1304 		   Since we do not have the power to recompile these, we
1305 		   emulate the SVr4 behavior. Sigh. */
1306 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1307 				MAP_FIXED | MAP_PRIVATE, 0);
1308 	}
1309 
1310 	regs = current_pt_regs();
1311 #ifdef ELF_PLAT_INIT
1312 	/*
1313 	 * The ABI may specify that certain registers be set up in special
1314 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1315 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1316 	 * that the e_entry field is the address of the function descriptor
1317 	 * for the startup routine, rather than the address of the startup
1318 	 * routine itself.  This macro performs whatever initialization to
1319 	 * the regs structure is required as well as any relocations to the
1320 	 * function descriptor entries when executing dynamically links apps.
1321 	 */
1322 	ELF_PLAT_INIT(regs, reloc_func_desc);
1323 #endif
1324 
1325 	finalize_exec(bprm);
1326 	START_THREAD(elf_ex, regs, elf_entry, bprm->p);
1327 	retval = 0;
1328 out:
1329 	return retval;
1330 
1331 	/* error cleanup */
1332 out_free_dentry:
1333 	kfree(interp_elf_ex);
1334 	kfree(interp_elf_phdata);
1335 	allow_write_access(interpreter);
1336 	if (interpreter)
1337 		fput(interpreter);
1338 out_free_ph:
1339 	kfree(elf_phdata);
1340 	goto out;
1341 }
1342 
1343 #ifdef CONFIG_USELIB
1344 /* This is really simpleminded and specialized - we are loading an
1345    a.out library that is given an ELF header. */
1346 static int load_elf_library(struct file *file)
1347 {
1348 	struct elf_phdr *elf_phdata;
1349 	struct elf_phdr *eppnt;
1350 	unsigned long elf_bss, bss, len;
1351 	int retval, error, i, j;
1352 	struct elfhdr elf_ex;
1353 
1354 	error = -ENOEXEC;
1355 	retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1356 	if (retval < 0)
1357 		goto out;
1358 
1359 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1360 		goto out;
1361 
1362 	/* First of all, some simple consistency checks */
1363 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1364 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1365 		goto out;
1366 	if (elf_check_fdpic(&elf_ex))
1367 		goto out;
1368 
1369 	/* Now read in all of the header information */
1370 
1371 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1372 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1373 
1374 	error = -ENOMEM;
1375 	elf_phdata = kmalloc(j, GFP_KERNEL);
1376 	if (!elf_phdata)
1377 		goto out;
1378 
1379 	eppnt = elf_phdata;
1380 	error = -ENOEXEC;
1381 	retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1382 	if (retval < 0)
1383 		goto out_free_ph;
1384 
1385 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1386 		if ((eppnt + i)->p_type == PT_LOAD)
1387 			j++;
1388 	if (j != 1)
1389 		goto out_free_ph;
1390 
1391 	while (eppnt->p_type != PT_LOAD)
1392 		eppnt++;
1393 
1394 	/* Now use mmap to map the library into memory. */
1395 	error = vm_mmap(file,
1396 			ELF_PAGESTART(eppnt->p_vaddr),
1397 			(eppnt->p_filesz +
1398 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1399 			PROT_READ | PROT_WRITE | PROT_EXEC,
1400 			MAP_FIXED_NOREPLACE | MAP_PRIVATE,
1401 			(eppnt->p_offset -
1402 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1403 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1404 		goto out_free_ph;
1405 
1406 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1407 	if (padzero(elf_bss)) {
1408 		error = -EFAULT;
1409 		goto out_free_ph;
1410 	}
1411 
1412 	len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1413 	bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1414 	if (bss > len) {
1415 		error = vm_brk(len, bss - len);
1416 		if (error)
1417 			goto out_free_ph;
1418 	}
1419 	error = 0;
1420 
1421 out_free_ph:
1422 	kfree(elf_phdata);
1423 out:
1424 	return error;
1425 }
1426 #endif /* #ifdef CONFIG_USELIB */
1427 
1428 #ifdef CONFIG_ELF_CORE
1429 /*
1430  * ELF core dumper
1431  *
1432  * Modelled on fs/exec.c:aout_core_dump()
1433  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1434  */
1435 
1436 /* An ELF note in memory */
1437 struct memelfnote
1438 {
1439 	const char *name;
1440 	int type;
1441 	unsigned int datasz;
1442 	void *data;
1443 };
1444 
1445 static int notesize(struct memelfnote *en)
1446 {
1447 	int sz;
1448 
1449 	sz = sizeof(struct elf_note);
1450 	sz += roundup(strlen(en->name) + 1, 4);
1451 	sz += roundup(en->datasz, 4);
1452 
1453 	return sz;
1454 }
1455 
1456 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1457 {
1458 	struct elf_note en;
1459 	en.n_namesz = strlen(men->name) + 1;
1460 	en.n_descsz = men->datasz;
1461 	en.n_type = men->type;
1462 
1463 	return dump_emit(cprm, &en, sizeof(en)) &&
1464 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1465 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1466 }
1467 
1468 static void fill_elf_header(struct elfhdr *elf, int segs,
1469 			    u16 machine, u32 flags)
1470 {
1471 	memset(elf, 0, sizeof(*elf));
1472 
1473 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1474 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1475 	elf->e_ident[EI_DATA] = ELF_DATA;
1476 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1477 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1478 
1479 	elf->e_type = ET_CORE;
1480 	elf->e_machine = machine;
1481 	elf->e_version = EV_CURRENT;
1482 	elf->e_phoff = sizeof(struct elfhdr);
1483 	elf->e_flags = flags;
1484 	elf->e_ehsize = sizeof(struct elfhdr);
1485 	elf->e_phentsize = sizeof(struct elf_phdr);
1486 	elf->e_phnum = segs;
1487 }
1488 
1489 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1490 {
1491 	phdr->p_type = PT_NOTE;
1492 	phdr->p_offset = offset;
1493 	phdr->p_vaddr = 0;
1494 	phdr->p_paddr = 0;
1495 	phdr->p_filesz = sz;
1496 	phdr->p_memsz = 0;
1497 	phdr->p_flags = 0;
1498 	phdr->p_align = 0;
1499 }
1500 
1501 static void fill_note(struct memelfnote *note, const char *name, int type,
1502 		unsigned int sz, void *data)
1503 {
1504 	note->name = name;
1505 	note->type = type;
1506 	note->datasz = sz;
1507 	note->data = data;
1508 }
1509 
1510 /*
1511  * fill up all the fields in prstatus from the given task struct, except
1512  * registers which need to be filled up separately.
1513  */
1514 static void fill_prstatus(struct elf_prstatus_common *prstatus,
1515 		struct task_struct *p, long signr)
1516 {
1517 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1518 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1519 	prstatus->pr_sighold = p->blocked.sig[0];
1520 	rcu_read_lock();
1521 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1522 	rcu_read_unlock();
1523 	prstatus->pr_pid = task_pid_vnr(p);
1524 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1525 	prstatus->pr_sid = task_session_vnr(p);
1526 	if (thread_group_leader(p)) {
1527 		struct task_cputime cputime;
1528 
1529 		/*
1530 		 * This is the record for the group leader.  It shows the
1531 		 * group-wide total, not its individual thread total.
1532 		 */
1533 		thread_group_cputime(p, &cputime);
1534 		prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1535 		prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1536 	} else {
1537 		u64 utime, stime;
1538 
1539 		task_cputime(p, &utime, &stime);
1540 		prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1541 		prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1542 	}
1543 
1544 	prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1545 	prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1546 }
1547 
1548 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1549 		       struct mm_struct *mm)
1550 {
1551 	const struct cred *cred;
1552 	unsigned int i, len;
1553 	unsigned int state;
1554 
1555 	/* first copy the parameters from user space */
1556 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1557 
1558 	len = mm->arg_end - mm->arg_start;
1559 	if (len >= ELF_PRARGSZ)
1560 		len = ELF_PRARGSZ-1;
1561 	if (copy_from_user(&psinfo->pr_psargs,
1562 		           (const char __user *)mm->arg_start, len))
1563 		return -EFAULT;
1564 	for(i = 0; i < len; i++)
1565 		if (psinfo->pr_psargs[i] == 0)
1566 			psinfo->pr_psargs[i] = ' ';
1567 	psinfo->pr_psargs[len] = 0;
1568 
1569 	rcu_read_lock();
1570 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1571 	rcu_read_unlock();
1572 	psinfo->pr_pid = task_pid_vnr(p);
1573 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1574 	psinfo->pr_sid = task_session_vnr(p);
1575 
1576 	state = READ_ONCE(p->__state);
1577 	i = state ? ffz(~state) + 1 : 0;
1578 	psinfo->pr_state = i;
1579 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1580 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1581 	psinfo->pr_nice = task_nice(p);
1582 	psinfo->pr_flag = p->flags;
1583 	rcu_read_lock();
1584 	cred = __task_cred(p);
1585 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1586 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1587 	rcu_read_unlock();
1588 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1589 
1590 	return 0;
1591 }
1592 
1593 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1594 {
1595 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1596 	int i = 0;
1597 	do
1598 		i += 2;
1599 	while (auxv[i - 2] != AT_NULL);
1600 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1601 }
1602 
1603 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1604 		const kernel_siginfo_t *siginfo)
1605 {
1606 	copy_siginfo_to_external(csigdata, siginfo);
1607 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1608 }
1609 
1610 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1611 /*
1612  * Format of NT_FILE note:
1613  *
1614  * long count     -- how many files are mapped
1615  * long page_size -- units for file_ofs
1616  * array of [COUNT] elements of
1617  *   long start
1618  *   long end
1619  *   long file_ofs
1620  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1621  */
1622 static int fill_files_note(struct memelfnote *note)
1623 {
1624 	struct mm_struct *mm = current->mm;
1625 	struct vm_area_struct *vma;
1626 	unsigned count, size, names_ofs, remaining, n;
1627 	user_long_t *data;
1628 	user_long_t *start_end_ofs;
1629 	char *name_base, *name_curpos;
1630 
1631 	/* *Estimated* file count and total data size needed */
1632 	count = mm->map_count;
1633 	if (count > UINT_MAX / 64)
1634 		return -EINVAL;
1635 	size = count * 64;
1636 
1637 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1638  alloc:
1639 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1640 		return -EINVAL;
1641 	size = round_up(size, PAGE_SIZE);
1642 	/*
1643 	 * "size" can be 0 here legitimately.
1644 	 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1645 	 */
1646 	data = kvmalloc(size, GFP_KERNEL);
1647 	if (ZERO_OR_NULL_PTR(data))
1648 		return -ENOMEM;
1649 
1650 	start_end_ofs = data + 2;
1651 	name_base = name_curpos = ((char *)data) + names_ofs;
1652 	remaining = size - names_ofs;
1653 	count = 0;
1654 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1655 		struct file *file;
1656 		const char *filename;
1657 
1658 		file = vma->vm_file;
1659 		if (!file)
1660 			continue;
1661 		filename = file_path(file, name_curpos, remaining);
1662 		if (IS_ERR(filename)) {
1663 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1664 				kvfree(data);
1665 				size = size * 5 / 4;
1666 				goto alloc;
1667 			}
1668 			continue;
1669 		}
1670 
1671 		/* file_path() fills at the end, move name down */
1672 		/* n = strlen(filename) + 1: */
1673 		n = (name_curpos + remaining) - filename;
1674 		remaining = filename - name_curpos;
1675 		memmove(name_curpos, filename, n);
1676 		name_curpos += n;
1677 
1678 		*start_end_ofs++ = vma->vm_start;
1679 		*start_end_ofs++ = vma->vm_end;
1680 		*start_end_ofs++ = vma->vm_pgoff;
1681 		count++;
1682 	}
1683 
1684 	/* Now we know exact count of files, can store it */
1685 	data[0] = count;
1686 	data[1] = PAGE_SIZE;
1687 	/*
1688 	 * Count usually is less than mm->map_count,
1689 	 * we need to move filenames down.
1690 	 */
1691 	n = mm->map_count - count;
1692 	if (n != 0) {
1693 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1694 		memmove(name_base - shift_bytes, name_base,
1695 			name_curpos - name_base);
1696 		name_curpos -= shift_bytes;
1697 	}
1698 
1699 	size = name_curpos - (char *)data;
1700 	fill_note(note, "CORE", NT_FILE, size, data);
1701 	return 0;
1702 }
1703 
1704 #ifdef CORE_DUMP_USE_REGSET
1705 #include <linux/regset.h>
1706 
1707 struct elf_thread_core_info {
1708 	struct elf_thread_core_info *next;
1709 	struct task_struct *task;
1710 	struct elf_prstatus prstatus;
1711 	struct memelfnote notes[];
1712 };
1713 
1714 struct elf_note_info {
1715 	struct elf_thread_core_info *thread;
1716 	struct memelfnote psinfo;
1717 	struct memelfnote signote;
1718 	struct memelfnote auxv;
1719 	struct memelfnote files;
1720 	user_siginfo_t csigdata;
1721 	size_t size;
1722 	int thread_notes;
1723 };
1724 
1725 /*
1726  * When a regset has a writeback hook, we call it on each thread before
1727  * dumping user memory.  On register window machines, this makes sure the
1728  * user memory backing the register data is up to date before we read it.
1729  */
1730 static void do_thread_regset_writeback(struct task_struct *task,
1731 				       const struct user_regset *regset)
1732 {
1733 	if (regset->writeback)
1734 		regset->writeback(task, regset, 1);
1735 }
1736 
1737 #ifndef PRSTATUS_SIZE
1738 #define PRSTATUS_SIZE sizeof(struct elf_prstatus)
1739 #endif
1740 
1741 #ifndef SET_PR_FPVALID
1742 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1)
1743 #endif
1744 
1745 static int fill_thread_core_info(struct elf_thread_core_info *t,
1746 				 const struct user_regset_view *view,
1747 				 long signr, size_t *total)
1748 {
1749 	unsigned int i;
1750 
1751 	/*
1752 	 * NT_PRSTATUS is the one special case, because the regset data
1753 	 * goes into the pr_reg field inside the note contents, rather
1754 	 * than being the whole note contents.  We fill the reset in here.
1755 	 * We assume that regset 0 is NT_PRSTATUS.
1756 	 */
1757 	fill_prstatus(&t->prstatus.common, t->task, signr);
1758 	regset_get(t->task, &view->regsets[0],
1759 		   sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1760 
1761 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1762 		  PRSTATUS_SIZE, &t->prstatus);
1763 	*total += notesize(&t->notes[0]);
1764 
1765 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1766 
1767 	/*
1768 	 * Each other regset might generate a note too.  For each regset
1769 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1770 	 * all zero and we'll know to skip writing it later.
1771 	 */
1772 	for (i = 1; i < view->n; ++i) {
1773 		const struct user_regset *regset = &view->regsets[i];
1774 		int note_type = regset->core_note_type;
1775 		bool is_fpreg = note_type == NT_PRFPREG;
1776 		void *data;
1777 		int ret;
1778 
1779 		do_thread_regset_writeback(t->task, regset);
1780 		if (!note_type) // not for coredumps
1781 			continue;
1782 		if (regset->active && regset->active(t->task, regset) <= 0)
1783 			continue;
1784 
1785 		ret = regset_get_alloc(t->task, regset, ~0U, &data);
1786 		if (ret < 0)
1787 			continue;
1788 
1789 		if (is_fpreg)
1790 			SET_PR_FPVALID(&t->prstatus);
1791 
1792 		fill_note(&t->notes[i], is_fpreg ? "CORE" : "LINUX",
1793 			  note_type, ret, data);
1794 
1795 		*total += notesize(&t->notes[i]);
1796 	}
1797 
1798 	return 1;
1799 }
1800 
1801 static int fill_note_info(struct elfhdr *elf, int phdrs,
1802 			  struct elf_note_info *info,
1803 			  const kernel_siginfo_t *siginfo, struct pt_regs *regs)
1804 {
1805 	struct task_struct *dump_task = current;
1806 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1807 	struct elf_thread_core_info *t;
1808 	struct elf_prpsinfo *psinfo;
1809 	struct core_thread *ct;
1810 	unsigned int i;
1811 
1812 	info->size = 0;
1813 	info->thread = NULL;
1814 
1815 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1816 	if (psinfo == NULL) {
1817 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1818 		return 0;
1819 	}
1820 
1821 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1822 
1823 	/*
1824 	 * Figure out how many notes we're going to need for each thread.
1825 	 */
1826 	info->thread_notes = 0;
1827 	for (i = 0; i < view->n; ++i)
1828 		if (view->regsets[i].core_note_type != 0)
1829 			++info->thread_notes;
1830 
1831 	/*
1832 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1833 	 * since it is our one special case.
1834 	 */
1835 	if (unlikely(info->thread_notes == 0) ||
1836 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1837 		WARN_ON(1);
1838 		return 0;
1839 	}
1840 
1841 	/*
1842 	 * Initialize the ELF file header.
1843 	 */
1844 	fill_elf_header(elf, phdrs,
1845 			view->e_machine, view->e_flags);
1846 
1847 	/*
1848 	 * Allocate a structure for each thread.
1849 	 */
1850 	for (ct = &dump_task->signal->core_state->dumper; ct; ct = ct->next) {
1851 		t = kzalloc(offsetof(struct elf_thread_core_info,
1852 				     notes[info->thread_notes]),
1853 			    GFP_KERNEL);
1854 		if (unlikely(!t))
1855 			return 0;
1856 
1857 		t->task = ct->task;
1858 		if (ct->task == dump_task || !info->thread) {
1859 			t->next = info->thread;
1860 			info->thread = t;
1861 		} else {
1862 			/*
1863 			 * Make sure to keep the original task at
1864 			 * the head of the list.
1865 			 */
1866 			t->next = info->thread->next;
1867 			info->thread->next = t;
1868 		}
1869 	}
1870 
1871 	/*
1872 	 * Now fill in each thread's information.
1873 	 */
1874 	for (t = info->thread; t != NULL; t = t->next)
1875 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1876 			return 0;
1877 
1878 	/*
1879 	 * Fill in the two process-wide notes.
1880 	 */
1881 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1882 	info->size += notesize(&info->psinfo);
1883 
1884 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1885 	info->size += notesize(&info->signote);
1886 
1887 	fill_auxv_note(&info->auxv, current->mm);
1888 	info->size += notesize(&info->auxv);
1889 
1890 	if (fill_files_note(&info->files) == 0)
1891 		info->size += notesize(&info->files);
1892 
1893 	return 1;
1894 }
1895 
1896 static size_t get_note_info_size(struct elf_note_info *info)
1897 {
1898 	return info->size;
1899 }
1900 
1901 /*
1902  * Write all the notes for each thread.  When writing the first thread, the
1903  * process-wide notes are interleaved after the first thread-specific note.
1904  */
1905 static int write_note_info(struct elf_note_info *info,
1906 			   struct coredump_params *cprm)
1907 {
1908 	bool first = true;
1909 	struct elf_thread_core_info *t = info->thread;
1910 
1911 	do {
1912 		int i;
1913 
1914 		if (!writenote(&t->notes[0], cprm))
1915 			return 0;
1916 
1917 		if (first && !writenote(&info->psinfo, cprm))
1918 			return 0;
1919 		if (first && !writenote(&info->signote, cprm))
1920 			return 0;
1921 		if (first && !writenote(&info->auxv, cprm))
1922 			return 0;
1923 		if (first && info->files.data &&
1924 				!writenote(&info->files, cprm))
1925 			return 0;
1926 
1927 		for (i = 1; i < info->thread_notes; ++i)
1928 			if (t->notes[i].data &&
1929 			    !writenote(&t->notes[i], cprm))
1930 				return 0;
1931 
1932 		first = false;
1933 		t = t->next;
1934 	} while (t);
1935 
1936 	return 1;
1937 }
1938 
1939 static void free_note_info(struct elf_note_info *info)
1940 {
1941 	struct elf_thread_core_info *threads = info->thread;
1942 	while (threads) {
1943 		unsigned int i;
1944 		struct elf_thread_core_info *t = threads;
1945 		threads = t->next;
1946 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1947 		for (i = 1; i < info->thread_notes; ++i)
1948 			kfree(t->notes[i].data);
1949 		kfree(t);
1950 	}
1951 	kfree(info->psinfo.data);
1952 	kvfree(info->files.data);
1953 }
1954 
1955 #else
1956 
1957 /* Here is the structure in which status of each thread is captured. */
1958 struct elf_thread_status
1959 {
1960 	struct list_head list;
1961 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1962 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1963 	struct task_struct *thread;
1964 	struct memelfnote notes[3];
1965 	int num_notes;
1966 };
1967 
1968 /*
1969  * In order to add the specific thread information for the elf file format,
1970  * we need to keep a linked list of every threads pr_status and then create
1971  * a single section for them in the final core file.
1972  */
1973 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1974 {
1975 	int sz = 0;
1976 	struct task_struct *p = t->thread;
1977 	t->num_notes = 0;
1978 
1979 	fill_prstatus(&t->prstatus.common, p, signr);
1980 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1981 
1982 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1983 		  &(t->prstatus));
1984 	t->num_notes++;
1985 	sz += notesize(&t->notes[0]);
1986 
1987 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1988 								&t->fpu))) {
1989 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1990 			  &(t->fpu));
1991 		t->num_notes++;
1992 		sz += notesize(&t->notes[1]);
1993 	}
1994 	return sz;
1995 }
1996 
1997 struct elf_note_info {
1998 	struct memelfnote *notes;
1999 	struct memelfnote *notes_files;
2000 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
2001 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
2002 	struct list_head thread_list;
2003 	elf_fpregset_t *fpu;
2004 	user_siginfo_t csigdata;
2005 	int thread_status_size;
2006 	int numnote;
2007 };
2008 
2009 static int elf_note_info_init(struct elf_note_info *info)
2010 {
2011 	memset(info, 0, sizeof(*info));
2012 	INIT_LIST_HEAD(&info->thread_list);
2013 
2014 	/* Allocate space for ELF notes */
2015 	info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
2016 	if (!info->notes)
2017 		return 0;
2018 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2019 	if (!info->psinfo)
2020 		return 0;
2021 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2022 	if (!info->prstatus)
2023 		return 0;
2024 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2025 	if (!info->fpu)
2026 		return 0;
2027 	return 1;
2028 }
2029 
2030 static int fill_note_info(struct elfhdr *elf, int phdrs,
2031 			  struct elf_note_info *info,
2032 			  const kernel_siginfo_t *siginfo, struct pt_regs *regs)
2033 {
2034 	struct core_thread *ct;
2035 	struct elf_thread_status *ets;
2036 
2037 	if (!elf_note_info_init(info))
2038 		return 0;
2039 
2040 	for (ct = current->signal->core_state->dumper.next;
2041 					ct; ct = ct->next) {
2042 		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2043 		if (!ets)
2044 			return 0;
2045 
2046 		ets->thread = ct->task;
2047 		list_add(&ets->list, &info->thread_list);
2048 	}
2049 
2050 	list_for_each_entry(ets, &info->thread_list, list) {
2051 		int sz;
2052 
2053 		sz = elf_dump_thread_status(siginfo->si_signo, ets);
2054 		info->thread_status_size += sz;
2055 	}
2056 	/* now collect the dump for the current */
2057 	memset(info->prstatus, 0, sizeof(*info->prstatus));
2058 	fill_prstatus(&info->prstatus->common, current, siginfo->si_signo);
2059 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2060 
2061 	/* Set up header */
2062 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2063 
2064 	/*
2065 	 * Set up the notes in similar form to SVR4 core dumps made
2066 	 * with info from their /proc.
2067 	 */
2068 
2069 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2070 		  sizeof(*info->prstatus), info->prstatus);
2071 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
2072 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2073 		  sizeof(*info->psinfo), info->psinfo);
2074 
2075 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2076 	fill_auxv_note(info->notes + 3, current->mm);
2077 	info->numnote = 4;
2078 
2079 	if (fill_files_note(info->notes + info->numnote) == 0) {
2080 		info->notes_files = info->notes + info->numnote;
2081 		info->numnote++;
2082 	}
2083 
2084 	/* Try to dump the FPU. */
2085 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2086 							       info->fpu);
2087 	if (info->prstatus->pr_fpvalid)
2088 		fill_note(info->notes + info->numnote++,
2089 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2090 	return 1;
2091 }
2092 
2093 static size_t get_note_info_size(struct elf_note_info *info)
2094 {
2095 	int sz = 0;
2096 	int i;
2097 
2098 	for (i = 0; i < info->numnote; i++)
2099 		sz += notesize(info->notes + i);
2100 
2101 	sz += info->thread_status_size;
2102 
2103 	return sz;
2104 }
2105 
2106 static int write_note_info(struct elf_note_info *info,
2107 			   struct coredump_params *cprm)
2108 {
2109 	struct elf_thread_status *ets;
2110 	int i;
2111 
2112 	for (i = 0; i < info->numnote; i++)
2113 		if (!writenote(info->notes + i, cprm))
2114 			return 0;
2115 
2116 	/* write out the thread status notes section */
2117 	list_for_each_entry(ets, &info->thread_list, list) {
2118 		for (i = 0; i < ets->num_notes; i++)
2119 			if (!writenote(&ets->notes[i], cprm))
2120 				return 0;
2121 	}
2122 
2123 	return 1;
2124 }
2125 
2126 static void free_note_info(struct elf_note_info *info)
2127 {
2128 	while (!list_empty(&info->thread_list)) {
2129 		struct list_head *tmp = info->thread_list.next;
2130 		list_del(tmp);
2131 		kfree(list_entry(tmp, struct elf_thread_status, list));
2132 	}
2133 
2134 	/* Free data possibly allocated by fill_files_note(): */
2135 	if (info->notes_files)
2136 		kvfree(info->notes_files->data);
2137 
2138 	kfree(info->prstatus);
2139 	kfree(info->psinfo);
2140 	kfree(info->notes);
2141 	kfree(info->fpu);
2142 }
2143 
2144 #endif
2145 
2146 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2147 			     elf_addr_t e_shoff, int segs)
2148 {
2149 	elf->e_shoff = e_shoff;
2150 	elf->e_shentsize = sizeof(*shdr4extnum);
2151 	elf->e_shnum = 1;
2152 	elf->e_shstrndx = SHN_UNDEF;
2153 
2154 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2155 
2156 	shdr4extnum->sh_type = SHT_NULL;
2157 	shdr4extnum->sh_size = elf->e_shnum;
2158 	shdr4extnum->sh_link = elf->e_shstrndx;
2159 	shdr4extnum->sh_info = segs;
2160 }
2161 
2162 /*
2163  * Actual dumper
2164  *
2165  * This is a two-pass process; first we find the offsets of the bits,
2166  * and then they are actually written out.  If we run out of core limit
2167  * we just truncate.
2168  */
2169 static int elf_core_dump(struct coredump_params *cprm)
2170 {
2171 	int has_dumped = 0;
2172 	int vma_count, segs, i;
2173 	size_t vma_data_size;
2174 	struct elfhdr elf;
2175 	loff_t offset = 0, dataoff;
2176 	struct elf_note_info info = { };
2177 	struct elf_phdr *phdr4note = NULL;
2178 	struct elf_shdr *shdr4extnum = NULL;
2179 	Elf_Half e_phnum;
2180 	elf_addr_t e_shoff;
2181 	struct core_vma_metadata *vma_meta;
2182 
2183 	if (dump_vma_snapshot(cprm, &vma_count, &vma_meta, &vma_data_size))
2184 		return 0;
2185 
2186 	/*
2187 	 * The number of segs are recored into ELF header as 16bit value.
2188 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2189 	 */
2190 	segs = vma_count + elf_core_extra_phdrs();
2191 
2192 	/* for notes section */
2193 	segs++;
2194 
2195 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2196 	 * this, kernel supports extended numbering. Have a look at
2197 	 * include/linux/elf.h for further information. */
2198 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2199 
2200 	/*
2201 	 * Collect all the non-memory information about the process for the
2202 	 * notes.  This also sets up the file header.
2203 	 */
2204 	if (!fill_note_info(&elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2205 		goto end_coredump;
2206 
2207 	has_dumped = 1;
2208 
2209 	offset += sizeof(elf);				/* Elf header */
2210 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2211 
2212 	/* Write notes phdr entry */
2213 	{
2214 		size_t sz = get_note_info_size(&info);
2215 
2216 		/* For cell spufs */
2217 		sz += elf_coredump_extra_notes_size();
2218 
2219 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2220 		if (!phdr4note)
2221 			goto end_coredump;
2222 
2223 		fill_elf_note_phdr(phdr4note, sz, offset);
2224 		offset += sz;
2225 	}
2226 
2227 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2228 
2229 	offset += vma_data_size;
2230 	offset += elf_core_extra_data_size();
2231 	e_shoff = offset;
2232 
2233 	if (e_phnum == PN_XNUM) {
2234 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2235 		if (!shdr4extnum)
2236 			goto end_coredump;
2237 		fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2238 	}
2239 
2240 	offset = dataoff;
2241 
2242 	if (!dump_emit(cprm, &elf, sizeof(elf)))
2243 		goto end_coredump;
2244 
2245 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2246 		goto end_coredump;
2247 
2248 	/* Write program headers for segments dump */
2249 	for (i = 0; i < vma_count; i++) {
2250 		struct core_vma_metadata *meta = vma_meta + i;
2251 		struct elf_phdr phdr;
2252 
2253 		phdr.p_type = PT_LOAD;
2254 		phdr.p_offset = offset;
2255 		phdr.p_vaddr = meta->start;
2256 		phdr.p_paddr = 0;
2257 		phdr.p_filesz = meta->dump_size;
2258 		phdr.p_memsz = meta->end - meta->start;
2259 		offset += phdr.p_filesz;
2260 		phdr.p_flags = 0;
2261 		if (meta->flags & VM_READ)
2262 			phdr.p_flags |= PF_R;
2263 		if (meta->flags & VM_WRITE)
2264 			phdr.p_flags |= PF_W;
2265 		if (meta->flags & VM_EXEC)
2266 			phdr.p_flags |= PF_X;
2267 		phdr.p_align = ELF_EXEC_PAGESIZE;
2268 
2269 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2270 			goto end_coredump;
2271 	}
2272 
2273 	if (!elf_core_write_extra_phdrs(cprm, offset))
2274 		goto end_coredump;
2275 
2276  	/* write out the notes section */
2277 	if (!write_note_info(&info, cprm))
2278 		goto end_coredump;
2279 
2280 	/* For cell spufs */
2281 	if (elf_coredump_extra_notes_write(cprm))
2282 		goto end_coredump;
2283 
2284 	/* Align to page */
2285 	dump_skip_to(cprm, dataoff);
2286 
2287 	for (i = 0; i < vma_count; i++) {
2288 		struct core_vma_metadata *meta = vma_meta + i;
2289 
2290 		if (!dump_user_range(cprm, meta->start, meta->dump_size))
2291 			goto end_coredump;
2292 	}
2293 
2294 	if (!elf_core_write_extra_data(cprm))
2295 		goto end_coredump;
2296 
2297 	if (e_phnum == PN_XNUM) {
2298 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2299 			goto end_coredump;
2300 	}
2301 
2302 end_coredump:
2303 	free_note_info(&info);
2304 	kfree(shdr4extnum);
2305 	kvfree(vma_meta);
2306 	kfree(phdr4note);
2307 	return has_dumped;
2308 }
2309 
2310 #endif		/* CONFIG_ELF_CORE */
2311 
2312 static int __init init_elf_binfmt(void)
2313 {
2314 	register_binfmt(&elf_format);
2315 	return 0;
2316 }
2317 
2318 static void __exit exit_elf_binfmt(void)
2319 {
2320 	/* Remove the COFF and ELF loaders. */
2321 	unregister_binfmt(&elf_format);
2322 }
2323 
2324 core_initcall(init_elf_binfmt);
2325 module_exit(exit_elf_binfmt);
2326 MODULE_LICENSE("GPL");
2327