xref: /openbmc/linux/fs/binfmt_elf.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/binfmt_elf.c
4  *
5  * These are the functions used to load ELF format executables as used
6  * on SVr4 machines.  Information on the format may be found in the book
7  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8  * Tools".
9  *
10  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/errno.h>
19 #include <linux/signal.h>
20 #include <linux/binfmts.h>
21 #include <linux/string.h>
22 #include <linux/file.h>
23 #include <linux/slab.h>
24 #include <linux/personality.h>
25 #include <linux/elfcore.h>
26 #include <linux/init.h>
27 #include <linux/highuid.h>
28 #include <linux/compiler.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/random.h>
34 #include <linux/elf.h>
35 #include <linux/elf-randomize.h>
36 #include <linux/utsname.h>
37 #include <linux/coredump.h>
38 #include <linux/sched.h>
39 #include <linux/sched/coredump.h>
40 #include <linux/sched/task_stack.h>
41 #include <linux/sched/cputime.h>
42 #include <linux/cred.h>
43 #include <linux/dax.h>
44 #include <linux/uaccess.h>
45 #include <asm/param.h>
46 #include <asm/page.h>
47 
48 #ifndef user_long_t
49 #define user_long_t long
50 #endif
51 #ifndef user_siginfo_t
52 #define user_siginfo_t siginfo_t
53 #endif
54 
55 /* That's for binfmt_elf_fdpic to deal with */
56 #ifndef elf_check_fdpic
57 #define elf_check_fdpic(ex) false
58 #endif
59 
60 static int load_elf_binary(struct linux_binprm *bprm);
61 
62 #ifdef CONFIG_USELIB
63 static int load_elf_library(struct file *);
64 #else
65 #define load_elf_library NULL
66 #endif
67 
68 /*
69  * If we don't support core dumping, then supply a NULL so we
70  * don't even try.
71  */
72 #ifdef CONFIG_ELF_CORE
73 static int elf_core_dump(struct coredump_params *cprm);
74 #else
75 #define elf_core_dump	NULL
76 #endif
77 
78 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
79 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
80 #else
81 #define ELF_MIN_ALIGN	PAGE_SIZE
82 #endif
83 
84 #ifndef ELF_CORE_EFLAGS
85 #define ELF_CORE_EFLAGS	0
86 #endif
87 
88 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
89 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
90 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
91 
92 static struct linux_binfmt elf_format = {
93 	.module		= THIS_MODULE,
94 	.load_binary	= load_elf_binary,
95 	.load_shlib	= load_elf_library,
96 	.core_dump	= elf_core_dump,
97 	.min_coredump	= ELF_EXEC_PAGESIZE,
98 };
99 
100 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
101 
102 static int set_brk(unsigned long start, unsigned long end, int prot)
103 {
104 	start = ELF_PAGEALIGN(start);
105 	end = ELF_PAGEALIGN(end);
106 	if (end > start) {
107 		/*
108 		 * Map the last of the bss segment.
109 		 * If the header is requesting these pages to be
110 		 * executable, honour that (ppc32 needs this).
111 		 */
112 		int error = vm_brk_flags(start, end - start,
113 				prot & PROT_EXEC ? VM_EXEC : 0);
114 		if (error)
115 			return error;
116 	}
117 	current->mm->start_brk = current->mm->brk = end;
118 	return 0;
119 }
120 
121 /* We need to explicitly zero any fractional pages
122    after the data section (i.e. bss).  This would
123    contain the junk from the file that should not
124    be in memory
125  */
126 static int padzero(unsigned long elf_bss)
127 {
128 	unsigned long nbyte;
129 
130 	nbyte = ELF_PAGEOFFSET(elf_bss);
131 	if (nbyte) {
132 		nbyte = ELF_MIN_ALIGN - nbyte;
133 		if (clear_user((void __user *) elf_bss, nbyte))
134 			return -EFAULT;
135 	}
136 	return 0;
137 }
138 
139 /* Let's use some macros to make this stack manipulation a little clearer */
140 #ifdef CONFIG_STACK_GROWSUP
141 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
142 #define STACK_ROUND(sp, items) \
143 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
144 #define STACK_ALLOC(sp, len) ({ \
145 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
146 	old_sp; })
147 #else
148 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
149 #define STACK_ROUND(sp, items) \
150 	(((unsigned long) (sp - items)) &~ 15UL)
151 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
152 #endif
153 
154 #ifndef ELF_BASE_PLATFORM
155 /*
156  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
157  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
158  * will be copied to the user stack in the same manner as AT_PLATFORM.
159  */
160 #define ELF_BASE_PLATFORM NULL
161 #endif
162 
163 static int
164 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
165 		unsigned long load_addr, unsigned long interp_load_addr)
166 {
167 	unsigned long p = bprm->p;
168 	int argc = bprm->argc;
169 	int envc = bprm->envc;
170 	elf_addr_t __user *sp;
171 	elf_addr_t __user *u_platform;
172 	elf_addr_t __user *u_base_platform;
173 	elf_addr_t __user *u_rand_bytes;
174 	const char *k_platform = ELF_PLATFORM;
175 	const char *k_base_platform = ELF_BASE_PLATFORM;
176 	unsigned char k_rand_bytes[16];
177 	int items;
178 	elf_addr_t *elf_info;
179 	int ei_index = 0;
180 	const struct cred *cred = current_cred();
181 	struct vm_area_struct *vma;
182 
183 	/*
184 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
185 	 * evictions by the processes running on the same package. One
186 	 * thing we can do is to shuffle the initial stack for them.
187 	 */
188 
189 	p = arch_align_stack(p);
190 
191 	/*
192 	 * If this architecture has a platform capability string, copy it
193 	 * to userspace.  In some cases (Sparc), this info is impossible
194 	 * for userspace to get any other way, in others (i386) it is
195 	 * merely difficult.
196 	 */
197 	u_platform = NULL;
198 	if (k_platform) {
199 		size_t len = strlen(k_platform) + 1;
200 
201 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
202 		if (__copy_to_user(u_platform, k_platform, len))
203 			return -EFAULT;
204 	}
205 
206 	/*
207 	 * If this architecture has a "base" platform capability
208 	 * string, copy it to userspace.
209 	 */
210 	u_base_platform = NULL;
211 	if (k_base_platform) {
212 		size_t len = strlen(k_base_platform) + 1;
213 
214 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
215 		if (__copy_to_user(u_base_platform, k_base_platform, len))
216 			return -EFAULT;
217 	}
218 
219 	/*
220 	 * Generate 16 random bytes for userspace PRNG seeding.
221 	 */
222 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
223 	u_rand_bytes = (elf_addr_t __user *)
224 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
225 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
226 		return -EFAULT;
227 
228 	/* Create the ELF interpreter info */
229 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
230 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
231 #define NEW_AUX_ENT(id, val) \
232 	do { \
233 		elf_info[ei_index++] = id; \
234 		elf_info[ei_index++] = val; \
235 	} while (0)
236 
237 #ifdef ARCH_DLINFO
238 	/*
239 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
240 	 * AUXV.
241 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
242 	 * ARCH_DLINFO changes
243 	 */
244 	ARCH_DLINFO;
245 #endif
246 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
247 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
248 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
249 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
250 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
251 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
252 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
253 	NEW_AUX_ENT(AT_FLAGS, 0);
254 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
255 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
256 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
257 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
258 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
259 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
260 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
261 #ifdef ELF_HWCAP2
262 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
263 #endif
264 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
265 	if (k_platform) {
266 		NEW_AUX_ENT(AT_PLATFORM,
267 			    (elf_addr_t)(unsigned long)u_platform);
268 	}
269 	if (k_base_platform) {
270 		NEW_AUX_ENT(AT_BASE_PLATFORM,
271 			    (elf_addr_t)(unsigned long)u_base_platform);
272 	}
273 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
274 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
275 	}
276 #undef NEW_AUX_ENT
277 	/* AT_NULL is zero; clear the rest too */
278 	memset(&elf_info[ei_index], 0,
279 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
280 
281 	/* And advance past the AT_NULL entry.  */
282 	ei_index += 2;
283 
284 	sp = STACK_ADD(p, ei_index);
285 
286 	items = (argc + 1) + (envc + 1) + 1;
287 	bprm->p = STACK_ROUND(sp, items);
288 
289 	/* Point sp at the lowest address on the stack */
290 #ifdef CONFIG_STACK_GROWSUP
291 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
292 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
293 #else
294 	sp = (elf_addr_t __user *)bprm->p;
295 #endif
296 
297 
298 	/*
299 	 * Grow the stack manually; some architectures have a limit on how
300 	 * far ahead a user-space access may be in order to grow the stack.
301 	 */
302 	vma = find_extend_vma(current->mm, bprm->p);
303 	if (!vma)
304 		return -EFAULT;
305 
306 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
307 	if (__put_user(argc, sp++))
308 		return -EFAULT;
309 
310 	/* Populate list of argv pointers back to argv strings. */
311 	p = current->mm->arg_end = current->mm->arg_start;
312 	while (argc-- > 0) {
313 		size_t len;
314 		if (__put_user((elf_addr_t)p, sp++))
315 			return -EFAULT;
316 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
317 		if (!len || len > MAX_ARG_STRLEN)
318 			return -EINVAL;
319 		p += len;
320 	}
321 	if (__put_user(0, sp++))
322 		return -EFAULT;
323 	current->mm->arg_end = p;
324 
325 	/* Populate list of envp pointers back to envp strings. */
326 	current->mm->env_end = current->mm->env_start = p;
327 	while (envc-- > 0) {
328 		size_t len;
329 		if (__put_user((elf_addr_t)p, sp++))
330 			return -EFAULT;
331 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
332 		if (!len || len > MAX_ARG_STRLEN)
333 			return -EINVAL;
334 		p += len;
335 	}
336 	if (__put_user(0, sp++))
337 		return -EFAULT;
338 	current->mm->env_end = p;
339 
340 	/* Put the elf_info on the stack in the right place.  */
341 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
342 		return -EFAULT;
343 	return 0;
344 }
345 
346 #ifndef elf_map
347 
348 static unsigned long elf_map(struct file *filep, unsigned long addr,
349 		const struct elf_phdr *eppnt, int prot, int type,
350 		unsigned long total_size)
351 {
352 	unsigned long map_addr;
353 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
354 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
355 	addr = ELF_PAGESTART(addr);
356 	size = ELF_PAGEALIGN(size);
357 
358 	/* mmap() will return -EINVAL if given a zero size, but a
359 	 * segment with zero filesize is perfectly valid */
360 	if (!size)
361 		return addr;
362 
363 	/*
364 	* total_size is the size of the ELF (interpreter) image.
365 	* The _first_ mmap needs to know the full size, otherwise
366 	* randomization might put this image into an overlapping
367 	* position with the ELF binary image. (since size < total_size)
368 	* So we first map the 'big' image - and unmap the remainder at
369 	* the end. (which unmap is needed for ELF images with holes.)
370 	*/
371 	if (total_size) {
372 		total_size = ELF_PAGEALIGN(total_size);
373 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
374 		if (!BAD_ADDR(map_addr))
375 			vm_munmap(map_addr+size, total_size-size);
376 	} else
377 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
378 
379 	if ((type & MAP_FIXED_NOREPLACE) &&
380 	    PTR_ERR((void *)map_addr) == -EEXIST)
381 		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
382 			task_pid_nr(current), current->comm, (void *)addr);
383 
384 	return(map_addr);
385 }
386 
387 #endif /* !elf_map */
388 
389 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
390 {
391 	int i, first_idx = -1, last_idx = -1;
392 
393 	for (i = 0; i < nr; i++) {
394 		if (cmds[i].p_type == PT_LOAD) {
395 			last_idx = i;
396 			if (first_idx == -1)
397 				first_idx = i;
398 		}
399 	}
400 	if (first_idx == -1)
401 		return 0;
402 
403 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
404 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
405 }
406 
407 /**
408  * load_elf_phdrs() - load ELF program headers
409  * @elf_ex:   ELF header of the binary whose program headers should be loaded
410  * @elf_file: the opened ELF binary file
411  *
412  * Loads ELF program headers from the binary file elf_file, which has the ELF
413  * header pointed to by elf_ex, into a newly allocated array. The caller is
414  * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
415  */
416 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
417 				       struct file *elf_file)
418 {
419 	struct elf_phdr *elf_phdata = NULL;
420 	int retval, err = -1;
421 	loff_t pos = elf_ex->e_phoff;
422 	unsigned int size;
423 
424 	/*
425 	 * If the size of this structure has changed, then punt, since
426 	 * we will be doing the wrong thing.
427 	 */
428 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
429 		goto out;
430 
431 	/* Sanity check the number of program headers... */
432 	/* ...and their total size. */
433 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
434 	if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
435 		goto out;
436 
437 	elf_phdata = kmalloc(size, GFP_KERNEL);
438 	if (!elf_phdata)
439 		goto out;
440 
441 	/* Read in the program headers */
442 	retval = kernel_read(elf_file, elf_phdata, size, &pos);
443 	if (retval != size) {
444 		err = (retval < 0) ? retval : -EIO;
445 		goto out;
446 	}
447 
448 	/* Success! */
449 	err = 0;
450 out:
451 	if (err) {
452 		kfree(elf_phdata);
453 		elf_phdata = NULL;
454 	}
455 	return elf_phdata;
456 }
457 
458 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
459 
460 /**
461  * struct arch_elf_state - arch-specific ELF loading state
462  *
463  * This structure is used to preserve architecture specific data during
464  * the loading of an ELF file, throughout the checking of architecture
465  * specific ELF headers & through to the point where the ELF load is
466  * known to be proceeding (ie. SET_PERSONALITY).
467  *
468  * This implementation is a dummy for architectures which require no
469  * specific state.
470  */
471 struct arch_elf_state {
472 };
473 
474 #define INIT_ARCH_ELF_STATE {}
475 
476 /**
477  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
478  * @ehdr:	The main ELF header
479  * @phdr:	The program header to check
480  * @elf:	The open ELF file
481  * @is_interp:	True if the phdr is from the interpreter of the ELF being
482  *		loaded, else false.
483  * @state:	Architecture-specific state preserved throughout the process
484  *		of loading the ELF.
485  *
486  * Inspects the program header phdr to validate its correctness and/or
487  * suitability for the system. Called once per ELF program header in the
488  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
489  * interpreter.
490  *
491  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
492  *         with that return code.
493  */
494 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
495 				   struct elf_phdr *phdr,
496 				   struct file *elf, bool is_interp,
497 				   struct arch_elf_state *state)
498 {
499 	/* Dummy implementation, always proceed */
500 	return 0;
501 }
502 
503 /**
504  * arch_check_elf() - check an ELF executable
505  * @ehdr:	The main ELF header
506  * @has_interp:	True if the ELF has an interpreter, else false.
507  * @interp_ehdr: The interpreter's ELF header
508  * @state:	Architecture-specific state preserved throughout the process
509  *		of loading the ELF.
510  *
511  * Provides a final opportunity for architecture code to reject the loading
512  * of the ELF & cause an exec syscall to return an error. This is called after
513  * all program headers to be checked by arch_elf_pt_proc have been.
514  *
515  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
516  *         with that return code.
517  */
518 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
519 				 struct elfhdr *interp_ehdr,
520 				 struct arch_elf_state *state)
521 {
522 	/* Dummy implementation, always proceed */
523 	return 0;
524 }
525 
526 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
527 
528 static inline int make_prot(u32 p_flags)
529 {
530 	int prot = 0;
531 
532 	if (p_flags & PF_R)
533 		prot |= PROT_READ;
534 	if (p_flags & PF_W)
535 		prot |= PROT_WRITE;
536 	if (p_flags & PF_X)
537 		prot |= PROT_EXEC;
538 	return prot;
539 }
540 
541 /* This is much more generalized than the library routine read function,
542    so we keep this separate.  Technically the library read function
543    is only provided so that we can read a.out libraries that have
544    an ELF header */
545 
546 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
547 		struct file *interpreter, unsigned long *interp_map_addr,
548 		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
549 {
550 	struct elf_phdr *eppnt;
551 	unsigned long load_addr = 0;
552 	int load_addr_set = 0;
553 	unsigned long last_bss = 0, elf_bss = 0;
554 	int bss_prot = 0;
555 	unsigned long error = ~0UL;
556 	unsigned long total_size;
557 	int i;
558 
559 	/* First of all, some simple consistency checks */
560 	if (interp_elf_ex->e_type != ET_EXEC &&
561 	    interp_elf_ex->e_type != ET_DYN)
562 		goto out;
563 	if (!elf_check_arch(interp_elf_ex) ||
564 	    elf_check_fdpic(interp_elf_ex))
565 		goto out;
566 	if (!interpreter->f_op->mmap)
567 		goto out;
568 
569 	total_size = total_mapping_size(interp_elf_phdata,
570 					interp_elf_ex->e_phnum);
571 	if (!total_size) {
572 		error = -EINVAL;
573 		goto out;
574 	}
575 
576 	eppnt = interp_elf_phdata;
577 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
578 		if (eppnt->p_type == PT_LOAD) {
579 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
580 			int elf_prot = make_prot(eppnt->p_flags);
581 			unsigned long vaddr = 0;
582 			unsigned long k, map_addr;
583 
584 			vaddr = eppnt->p_vaddr;
585 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
586 				elf_type |= MAP_FIXED_NOREPLACE;
587 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
588 				load_addr = -vaddr;
589 
590 			map_addr = elf_map(interpreter, load_addr + vaddr,
591 					eppnt, elf_prot, elf_type, total_size);
592 			total_size = 0;
593 			if (!*interp_map_addr)
594 				*interp_map_addr = map_addr;
595 			error = map_addr;
596 			if (BAD_ADDR(map_addr))
597 				goto out;
598 
599 			if (!load_addr_set &&
600 			    interp_elf_ex->e_type == ET_DYN) {
601 				load_addr = map_addr - ELF_PAGESTART(vaddr);
602 				load_addr_set = 1;
603 			}
604 
605 			/*
606 			 * Check to see if the section's size will overflow the
607 			 * allowed task size. Note that p_filesz must always be
608 			 * <= p_memsize so it's only necessary to check p_memsz.
609 			 */
610 			k = load_addr + eppnt->p_vaddr;
611 			if (BAD_ADDR(k) ||
612 			    eppnt->p_filesz > eppnt->p_memsz ||
613 			    eppnt->p_memsz > TASK_SIZE ||
614 			    TASK_SIZE - eppnt->p_memsz < k) {
615 				error = -ENOMEM;
616 				goto out;
617 			}
618 
619 			/*
620 			 * Find the end of the file mapping for this phdr, and
621 			 * keep track of the largest address we see for this.
622 			 */
623 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
624 			if (k > elf_bss)
625 				elf_bss = k;
626 
627 			/*
628 			 * Do the same thing for the memory mapping - between
629 			 * elf_bss and last_bss is the bss section.
630 			 */
631 			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
632 			if (k > last_bss) {
633 				last_bss = k;
634 				bss_prot = elf_prot;
635 			}
636 		}
637 	}
638 
639 	/*
640 	 * Now fill out the bss section: first pad the last page from
641 	 * the file up to the page boundary, and zero it from elf_bss
642 	 * up to the end of the page.
643 	 */
644 	if (padzero(elf_bss)) {
645 		error = -EFAULT;
646 		goto out;
647 	}
648 	/*
649 	 * Next, align both the file and mem bss up to the page size,
650 	 * since this is where elf_bss was just zeroed up to, and where
651 	 * last_bss will end after the vm_brk_flags() below.
652 	 */
653 	elf_bss = ELF_PAGEALIGN(elf_bss);
654 	last_bss = ELF_PAGEALIGN(last_bss);
655 	/* Finally, if there is still more bss to allocate, do it. */
656 	if (last_bss > elf_bss) {
657 		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
658 				bss_prot & PROT_EXEC ? VM_EXEC : 0);
659 		if (error)
660 			goto out;
661 	}
662 
663 	error = load_addr;
664 out:
665 	return error;
666 }
667 
668 /*
669  * These are the functions used to load ELF style executables and shared
670  * libraries.  There is no binary dependent code anywhere else.
671  */
672 
673 #ifndef STACK_RND_MASK
674 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
675 #endif
676 
677 static unsigned long randomize_stack_top(unsigned long stack_top)
678 {
679 	unsigned long random_variable = 0;
680 
681 	if (current->flags & PF_RANDOMIZE) {
682 		random_variable = get_random_long();
683 		random_variable &= STACK_RND_MASK;
684 		random_variable <<= PAGE_SHIFT;
685 	}
686 #ifdef CONFIG_STACK_GROWSUP
687 	return PAGE_ALIGN(stack_top) + random_variable;
688 #else
689 	return PAGE_ALIGN(stack_top) - random_variable;
690 #endif
691 }
692 
693 static int load_elf_binary(struct linux_binprm *bprm)
694 {
695 	struct file *interpreter = NULL; /* to shut gcc up */
696  	unsigned long load_addr = 0, load_bias = 0;
697 	int load_addr_set = 0;
698 	unsigned long error;
699 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
700 	unsigned long elf_bss, elf_brk;
701 	int bss_prot = 0;
702 	int retval, i;
703 	unsigned long elf_entry;
704 	unsigned long interp_load_addr = 0;
705 	unsigned long start_code, end_code, start_data, end_data;
706 	unsigned long reloc_func_desc __maybe_unused = 0;
707 	int executable_stack = EXSTACK_DEFAULT;
708 	struct {
709 		struct elfhdr elf_ex;
710 		struct elfhdr interp_elf_ex;
711 	} *loc;
712 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
713 	struct pt_regs *regs;
714 
715 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
716 	if (!loc) {
717 		retval = -ENOMEM;
718 		goto out_ret;
719 	}
720 
721 	/* Get the exec-header */
722 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
723 
724 	retval = -ENOEXEC;
725 	/* First of all, some simple consistency checks */
726 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
727 		goto out;
728 
729 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
730 		goto out;
731 	if (!elf_check_arch(&loc->elf_ex))
732 		goto out;
733 	if (elf_check_fdpic(&loc->elf_ex))
734 		goto out;
735 	if (!bprm->file->f_op->mmap)
736 		goto out;
737 
738 	elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
739 	if (!elf_phdata)
740 		goto out;
741 
742 	elf_ppnt = elf_phdata;
743 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
744 		char *elf_interpreter;
745 		loff_t pos;
746 
747 		if (elf_ppnt->p_type != PT_INTERP)
748 			continue;
749 
750 		/*
751 		 * This is the program interpreter used for shared libraries -
752 		 * for now assume that this is an a.out format binary.
753 		 */
754 		retval = -ENOEXEC;
755 		if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
756 			goto out_free_ph;
757 
758 		retval = -ENOMEM;
759 		elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
760 		if (!elf_interpreter)
761 			goto out_free_ph;
762 
763 		pos = elf_ppnt->p_offset;
764 		retval = kernel_read(bprm->file, elf_interpreter,
765 				     elf_ppnt->p_filesz, &pos);
766 		if (retval != elf_ppnt->p_filesz) {
767 			if (retval >= 0)
768 				retval = -EIO;
769 			goto out_free_interp;
770 		}
771 		/* make sure path is NULL terminated */
772 		retval = -ENOEXEC;
773 		if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
774 			goto out_free_interp;
775 
776 		interpreter = open_exec(elf_interpreter);
777 		kfree(elf_interpreter);
778 		retval = PTR_ERR(interpreter);
779 		if (IS_ERR(interpreter))
780 			goto out_free_ph;
781 
782 		/*
783 		 * If the binary is not readable then enforce mm->dumpable = 0
784 		 * regardless of the interpreter's permissions.
785 		 */
786 		would_dump(bprm, interpreter);
787 
788 		/* Get the exec headers */
789 		pos = 0;
790 		retval = kernel_read(interpreter, &loc->interp_elf_ex,
791 				     sizeof(loc->interp_elf_ex), &pos);
792 		if (retval != sizeof(loc->interp_elf_ex)) {
793 			if (retval >= 0)
794 				retval = -EIO;
795 			goto out_free_dentry;
796 		}
797 
798 		break;
799 
800 out_free_interp:
801 		kfree(elf_interpreter);
802 		goto out_free_ph;
803 	}
804 
805 	elf_ppnt = elf_phdata;
806 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
807 		switch (elf_ppnt->p_type) {
808 		case PT_GNU_STACK:
809 			if (elf_ppnt->p_flags & PF_X)
810 				executable_stack = EXSTACK_ENABLE_X;
811 			else
812 				executable_stack = EXSTACK_DISABLE_X;
813 			break;
814 
815 		case PT_LOPROC ... PT_HIPROC:
816 			retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
817 						  bprm->file, false,
818 						  &arch_state);
819 			if (retval)
820 				goto out_free_dentry;
821 			break;
822 		}
823 
824 	/* Some simple consistency checks for the interpreter */
825 	if (interpreter) {
826 		retval = -ELIBBAD;
827 		/* Not an ELF interpreter */
828 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
829 			goto out_free_dentry;
830 		/* Verify the interpreter has a valid arch */
831 		if (!elf_check_arch(&loc->interp_elf_ex) ||
832 		    elf_check_fdpic(&loc->interp_elf_ex))
833 			goto out_free_dentry;
834 
835 		/* Load the interpreter program headers */
836 		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
837 						   interpreter);
838 		if (!interp_elf_phdata)
839 			goto out_free_dentry;
840 
841 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
842 		elf_ppnt = interp_elf_phdata;
843 		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
844 			switch (elf_ppnt->p_type) {
845 			case PT_LOPROC ... PT_HIPROC:
846 				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
847 							  elf_ppnt, interpreter,
848 							  true, &arch_state);
849 				if (retval)
850 					goto out_free_dentry;
851 				break;
852 			}
853 	}
854 
855 	/*
856 	 * Allow arch code to reject the ELF at this point, whilst it's
857 	 * still possible to return an error to the code that invoked
858 	 * the exec syscall.
859 	 */
860 	retval = arch_check_elf(&loc->elf_ex,
861 				!!interpreter, &loc->interp_elf_ex,
862 				&arch_state);
863 	if (retval)
864 		goto out_free_dentry;
865 
866 	/* Flush all traces of the currently running executable */
867 	retval = flush_old_exec(bprm);
868 	if (retval)
869 		goto out_free_dentry;
870 
871 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
872 	   may depend on the personality.  */
873 	SET_PERSONALITY2(loc->elf_ex, &arch_state);
874 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
875 		current->personality |= READ_IMPLIES_EXEC;
876 
877 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
878 		current->flags |= PF_RANDOMIZE;
879 
880 	setup_new_exec(bprm);
881 	install_exec_creds(bprm);
882 
883 	/* Do this so that we can load the interpreter, if need be.  We will
884 	   change some of these later */
885 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
886 				 executable_stack);
887 	if (retval < 0)
888 		goto out_free_dentry;
889 
890 	elf_bss = 0;
891 	elf_brk = 0;
892 
893 	start_code = ~0UL;
894 	end_code = 0;
895 	start_data = 0;
896 	end_data = 0;
897 
898 	/* Now we do a little grungy work by mmapping the ELF image into
899 	   the correct location in memory. */
900 	for(i = 0, elf_ppnt = elf_phdata;
901 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
902 		int elf_prot, elf_flags, elf_fixed = MAP_FIXED_NOREPLACE;
903 		unsigned long k, vaddr;
904 		unsigned long total_size = 0;
905 
906 		if (elf_ppnt->p_type != PT_LOAD)
907 			continue;
908 
909 		if (unlikely (elf_brk > elf_bss)) {
910 			unsigned long nbyte;
911 
912 			/* There was a PT_LOAD segment with p_memsz > p_filesz
913 			   before this one. Map anonymous pages, if needed,
914 			   and clear the area.  */
915 			retval = set_brk(elf_bss + load_bias,
916 					 elf_brk + load_bias,
917 					 bss_prot);
918 			if (retval)
919 				goto out_free_dentry;
920 			nbyte = ELF_PAGEOFFSET(elf_bss);
921 			if (nbyte) {
922 				nbyte = ELF_MIN_ALIGN - nbyte;
923 				if (nbyte > elf_brk - elf_bss)
924 					nbyte = elf_brk - elf_bss;
925 				if (clear_user((void __user *)elf_bss +
926 							load_bias, nbyte)) {
927 					/*
928 					 * This bss-zeroing can fail if the ELF
929 					 * file specifies odd protections. So
930 					 * we don't check the return value
931 					 */
932 				}
933 			}
934 
935 			/*
936 			 * Some binaries have overlapping elf segments and then
937 			 * we have to forcefully map over an existing mapping
938 			 * e.g. over this newly established brk mapping.
939 			 */
940 			elf_fixed = MAP_FIXED;
941 		}
942 
943 		elf_prot = make_prot(elf_ppnt->p_flags);
944 
945 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
946 
947 		vaddr = elf_ppnt->p_vaddr;
948 		/*
949 		 * If we are loading ET_EXEC or we have already performed
950 		 * the ET_DYN load_addr calculations, proceed normally.
951 		 */
952 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
953 			elf_flags |= elf_fixed;
954 		} else if (loc->elf_ex.e_type == ET_DYN) {
955 			/*
956 			 * This logic is run once for the first LOAD Program
957 			 * Header for ET_DYN binaries to calculate the
958 			 * randomization (load_bias) for all the LOAD
959 			 * Program Headers, and to calculate the entire
960 			 * size of the ELF mapping (total_size). (Note that
961 			 * load_addr_set is set to true later once the
962 			 * initial mapping is performed.)
963 			 *
964 			 * There are effectively two types of ET_DYN
965 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
966 			 * and loaders (ET_DYN without INTERP, since they
967 			 * _are_ the ELF interpreter). The loaders must
968 			 * be loaded away from programs since the program
969 			 * may otherwise collide with the loader (especially
970 			 * for ET_EXEC which does not have a randomized
971 			 * position). For example to handle invocations of
972 			 * "./ld.so someprog" to test out a new version of
973 			 * the loader, the subsequent program that the
974 			 * loader loads must avoid the loader itself, so
975 			 * they cannot share the same load range. Sufficient
976 			 * room for the brk must be allocated with the
977 			 * loader as well, since brk must be available with
978 			 * the loader.
979 			 *
980 			 * Therefore, programs are loaded offset from
981 			 * ELF_ET_DYN_BASE and loaders are loaded into the
982 			 * independently randomized mmap region (0 load_bias
983 			 * without MAP_FIXED).
984 			 */
985 			if (interpreter) {
986 				load_bias = ELF_ET_DYN_BASE;
987 				if (current->flags & PF_RANDOMIZE)
988 					load_bias += arch_mmap_rnd();
989 				elf_flags |= elf_fixed;
990 			} else
991 				load_bias = 0;
992 
993 			/*
994 			 * Since load_bias is used for all subsequent loading
995 			 * calculations, we must lower it by the first vaddr
996 			 * so that the remaining calculations based on the
997 			 * ELF vaddrs will be correctly offset. The result
998 			 * is then page aligned.
999 			 */
1000 			load_bias = ELF_PAGESTART(load_bias - vaddr);
1001 
1002 			total_size = total_mapping_size(elf_phdata,
1003 							loc->elf_ex.e_phnum);
1004 			if (!total_size) {
1005 				retval = -EINVAL;
1006 				goto out_free_dentry;
1007 			}
1008 		}
1009 
1010 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1011 				elf_prot, elf_flags, total_size);
1012 		if (BAD_ADDR(error)) {
1013 			retval = IS_ERR((void *)error) ?
1014 				PTR_ERR((void*)error) : -EINVAL;
1015 			goto out_free_dentry;
1016 		}
1017 
1018 		if (!load_addr_set) {
1019 			load_addr_set = 1;
1020 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1021 			if (loc->elf_ex.e_type == ET_DYN) {
1022 				load_bias += error -
1023 				             ELF_PAGESTART(load_bias + vaddr);
1024 				load_addr += load_bias;
1025 				reloc_func_desc = load_bias;
1026 			}
1027 		}
1028 		k = elf_ppnt->p_vaddr;
1029 		if (k < start_code)
1030 			start_code = k;
1031 		if (start_data < k)
1032 			start_data = k;
1033 
1034 		/*
1035 		 * Check to see if the section's size will overflow the
1036 		 * allowed task size. Note that p_filesz must always be
1037 		 * <= p_memsz so it is only necessary to check p_memsz.
1038 		 */
1039 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1040 		    elf_ppnt->p_memsz > TASK_SIZE ||
1041 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1042 			/* set_brk can never work. Avoid overflows. */
1043 			retval = -EINVAL;
1044 			goto out_free_dentry;
1045 		}
1046 
1047 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1048 
1049 		if (k > elf_bss)
1050 			elf_bss = k;
1051 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1052 			end_code = k;
1053 		if (end_data < k)
1054 			end_data = k;
1055 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1056 		if (k > elf_brk) {
1057 			bss_prot = elf_prot;
1058 			elf_brk = k;
1059 		}
1060 	}
1061 
1062 	loc->elf_ex.e_entry += load_bias;
1063 	elf_bss += load_bias;
1064 	elf_brk += load_bias;
1065 	start_code += load_bias;
1066 	end_code += load_bias;
1067 	start_data += load_bias;
1068 	end_data += load_bias;
1069 
1070 	/* Calling set_brk effectively mmaps the pages that we need
1071 	 * for the bss and break sections.  We must do this before
1072 	 * mapping in the interpreter, to make sure it doesn't wind
1073 	 * up getting placed where the bss needs to go.
1074 	 */
1075 	retval = set_brk(elf_bss, elf_brk, bss_prot);
1076 	if (retval)
1077 		goto out_free_dentry;
1078 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1079 		retval = -EFAULT; /* Nobody gets to see this, but.. */
1080 		goto out_free_dentry;
1081 	}
1082 
1083 	if (interpreter) {
1084 		unsigned long interp_map_addr = 0;
1085 
1086 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
1087 					    interpreter,
1088 					    &interp_map_addr,
1089 					    load_bias, interp_elf_phdata);
1090 		if (!IS_ERR((void *)elf_entry)) {
1091 			/*
1092 			 * load_elf_interp() returns relocation
1093 			 * adjustment
1094 			 */
1095 			interp_load_addr = elf_entry;
1096 			elf_entry += loc->interp_elf_ex.e_entry;
1097 		}
1098 		if (BAD_ADDR(elf_entry)) {
1099 			retval = IS_ERR((void *)elf_entry) ?
1100 					(int)elf_entry : -EINVAL;
1101 			goto out_free_dentry;
1102 		}
1103 		reloc_func_desc = interp_load_addr;
1104 
1105 		allow_write_access(interpreter);
1106 		fput(interpreter);
1107 	} else {
1108 		elf_entry = loc->elf_ex.e_entry;
1109 		if (BAD_ADDR(elf_entry)) {
1110 			retval = -EINVAL;
1111 			goto out_free_dentry;
1112 		}
1113 	}
1114 
1115 	kfree(interp_elf_phdata);
1116 	kfree(elf_phdata);
1117 
1118 	set_binfmt(&elf_format);
1119 
1120 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1121 	retval = arch_setup_additional_pages(bprm, !!interpreter);
1122 	if (retval < 0)
1123 		goto out;
1124 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1125 
1126 	retval = create_elf_tables(bprm, &loc->elf_ex,
1127 			  load_addr, interp_load_addr);
1128 	if (retval < 0)
1129 		goto out;
1130 	current->mm->end_code = end_code;
1131 	current->mm->start_code = start_code;
1132 	current->mm->start_data = start_data;
1133 	current->mm->end_data = end_data;
1134 	current->mm->start_stack = bprm->p;
1135 
1136 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1137 		/*
1138 		 * For architectures with ELF randomization, when executing
1139 		 * a loader directly (i.e. no interpreter listed in ELF
1140 		 * headers), move the brk area out of the mmap region
1141 		 * (since it grows up, and may collide early with the stack
1142 		 * growing down), and into the unused ELF_ET_DYN_BASE region.
1143 		 */
1144 		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && !interpreter)
1145 			current->mm->brk = current->mm->start_brk =
1146 				ELF_ET_DYN_BASE;
1147 
1148 		current->mm->brk = current->mm->start_brk =
1149 			arch_randomize_brk(current->mm);
1150 #ifdef compat_brk_randomized
1151 		current->brk_randomized = 1;
1152 #endif
1153 	}
1154 
1155 	if (current->personality & MMAP_PAGE_ZERO) {
1156 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1157 		   and some applications "depend" upon this behavior.
1158 		   Since we do not have the power to recompile these, we
1159 		   emulate the SVr4 behavior. Sigh. */
1160 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1161 				MAP_FIXED | MAP_PRIVATE, 0);
1162 	}
1163 
1164 	regs = current_pt_regs();
1165 #ifdef ELF_PLAT_INIT
1166 	/*
1167 	 * The ABI may specify that certain registers be set up in special
1168 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1169 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1170 	 * that the e_entry field is the address of the function descriptor
1171 	 * for the startup routine, rather than the address of the startup
1172 	 * routine itself.  This macro performs whatever initialization to
1173 	 * the regs structure is required as well as any relocations to the
1174 	 * function descriptor entries when executing dynamically links apps.
1175 	 */
1176 	ELF_PLAT_INIT(regs, reloc_func_desc);
1177 #endif
1178 
1179 	finalize_exec(bprm);
1180 	start_thread(regs, elf_entry, bprm->p);
1181 	retval = 0;
1182 out:
1183 	kfree(loc);
1184 out_ret:
1185 	return retval;
1186 
1187 	/* error cleanup */
1188 out_free_dentry:
1189 	kfree(interp_elf_phdata);
1190 	allow_write_access(interpreter);
1191 	if (interpreter)
1192 		fput(interpreter);
1193 out_free_ph:
1194 	kfree(elf_phdata);
1195 	goto out;
1196 }
1197 
1198 #ifdef CONFIG_USELIB
1199 /* This is really simpleminded and specialized - we are loading an
1200    a.out library that is given an ELF header. */
1201 static int load_elf_library(struct file *file)
1202 {
1203 	struct elf_phdr *elf_phdata;
1204 	struct elf_phdr *eppnt;
1205 	unsigned long elf_bss, bss, len;
1206 	int retval, error, i, j;
1207 	struct elfhdr elf_ex;
1208 	loff_t pos = 0;
1209 
1210 	error = -ENOEXEC;
1211 	retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1212 	if (retval != sizeof(elf_ex))
1213 		goto out;
1214 
1215 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1216 		goto out;
1217 
1218 	/* First of all, some simple consistency checks */
1219 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1220 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1221 		goto out;
1222 	if (elf_check_fdpic(&elf_ex))
1223 		goto out;
1224 
1225 	/* Now read in all of the header information */
1226 
1227 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1228 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1229 
1230 	error = -ENOMEM;
1231 	elf_phdata = kmalloc(j, GFP_KERNEL);
1232 	if (!elf_phdata)
1233 		goto out;
1234 
1235 	eppnt = elf_phdata;
1236 	error = -ENOEXEC;
1237 	pos =  elf_ex.e_phoff;
1238 	retval = kernel_read(file, eppnt, j, &pos);
1239 	if (retval != j)
1240 		goto out_free_ph;
1241 
1242 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1243 		if ((eppnt + i)->p_type == PT_LOAD)
1244 			j++;
1245 	if (j != 1)
1246 		goto out_free_ph;
1247 
1248 	while (eppnt->p_type != PT_LOAD)
1249 		eppnt++;
1250 
1251 	/* Now use mmap to map the library into memory. */
1252 	error = vm_mmap(file,
1253 			ELF_PAGESTART(eppnt->p_vaddr),
1254 			(eppnt->p_filesz +
1255 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1256 			PROT_READ | PROT_WRITE | PROT_EXEC,
1257 			MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1258 			(eppnt->p_offset -
1259 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1260 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1261 		goto out_free_ph;
1262 
1263 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1264 	if (padzero(elf_bss)) {
1265 		error = -EFAULT;
1266 		goto out_free_ph;
1267 	}
1268 
1269 	len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1270 	bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1271 	if (bss > len) {
1272 		error = vm_brk(len, bss - len);
1273 		if (error)
1274 			goto out_free_ph;
1275 	}
1276 	error = 0;
1277 
1278 out_free_ph:
1279 	kfree(elf_phdata);
1280 out:
1281 	return error;
1282 }
1283 #endif /* #ifdef CONFIG_USELIB */
1284 
1285 #ifdef CONFIG_ELF_CORE
1286 /*
1287  * ELF core dumper
1288  *
1289  * Modelled on fs/exec.c:aout_core_dump()
1290  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1291  */
1292 
1293 /*
1294  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1295  * that are useful for post-mortem analysis are included in every core dump.
1296  * In that way we ensure that the core dump is fully interpretable later
1297  * without matching up the same kernel and hardware config to see what PC values
1298  * meant. These special mappings include - vDSO, vsyscall, and other
1299  * architecture specific mappings
1300  */
1301 static bool always_dump_vma(struct vm_area_struct *vma)
1302 {
1303 	/* Any vsyscall mappings? */
1304 	if (vma == get_gate_vma(vma->vm_mm))
1305 		return true;
1306 
1307 	/*
1308 	 * Assume that all vmas with a .name op should always be dumped.
1309 	 * If this changes, a new vm_ops field can easily be added.
1310 	 */
1311 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1312 		return true;
1313 
1314 	/*
1315 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1316 	 * such as vDSO sections.
1317 	 */
1318 	if (arch_vma_name(vma))
1319 		return true;
1320 
1321 	return false;
1322 }
1323 
1324 /*
1325  * Decide what to dump of a segment, part, all or none.
1326  */
1327 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1328 				   unsigned long mm_flags)
1329 {
1330 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1331 
1332 	/* always dump the vdso and vsyscall sections */
1333 	if (always_dump_vma(vma))
1334 		goto whole;
1335 
1336 	if (vma->vm_flags & VM_DONTDUMP)
1337 		return 0;
1338 
1339 	/* support for DAX */
1340 	if (vma_is_dax(vma)) {
1341 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1342 			goto whole;
1343 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1344 			goto whole;
1345 		return 0;
1346 	}
1347 
1348 	/* Hugetlb memory check */
1349 	if (vma->vm_flags & VM_HUGETLB) {
1350 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1351 			goto whole;
1352 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1353 			goto whole;
1354 		return 0;
1355 	}
1356 
1357 	/* Do not dump I/O mapped devices or special mappings */
1358 	if (vma->vm_flags & VM_IO)
1359 		return 0;
1360 
1361 	/* By default, dump shared memory if mapped from an anonymous file. */
1362 	if (vma->vm_flags & VM_SHARED) {
1363 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1364 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1365 			goto whole;
1366 		return 0;
1367 	}
1368 
1369 	/* Dump segments that have been written to.  */
1370 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1371 		goto whole;
1372 	if (vma->vm_file == NULL)
1373 		return 0;
1374 
1375 	if (FILTER(MAPPED_PRIVATE))
1376 		goto whole;
1377 
1378 	/*
1379 	 * If this looks like the beginning of a DSO or executable mapping,
1380 	 * check for an ELF header.  If we find one, dump the first page to
1381 	 * aid in determining what was mapped here.
1382 	 */
1383 	if (FILTER(ELF_HEADERS) &&
1384 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1385 		u32 __user *header = (u32 __user *) vma->vm_start;
1386 		u32 word;
1387 		mm_segment_t fs = get_fs();
1388 		/*
1389 		 * Doing it this way gets the constant folded by GCC.
1390 		 */
1391 		union {
1392 			u32 cmp;
1393 			char elfmag[SELFMAG];
1394 		} magic;
1395 		BUILD_BUG_ON(SELFMAG != sizeof word);
1396 		magic.elfmag[EI_MAG0] = ELFMAG0;
1397 		magic.elfmag[EI_MAG1] = ELFMAG1;
1398 		magic.elfmag[EI_MAG2] = ELFMAG2;
1399 		magic.elfmag[EI_MAG3] = ELFMAG3;
1400 		/*
1401 		 * Switch to the user "segment" for get_user(),
1402 		 * then put back what elf_core_dump() had in place.
1403 		 */
1404 		set_fs(USER_DS);
1405 		if (unlikely(get_user(word, header)))
1406 			word = 0;
1407 		set_fs(fs);
1408 		if (word == magic.cmp)
1409 			return PAGE_SIZE;
1410 	}
1411 
1412 #undef	FILTER
1413 
1414 	return 0;
1415 
1416 whole:
1417 	return vma->vm_end - vma->vm_start;
1418 }
1419 
1420 /* An ELF note in memory */
1421 struct memelfnote
1422 {
1423 	const char *name;
1424 	int type;
1425 	unsigned int datasz;
1426 	void *data;
1427 };
1428 
1429 static int notesize(struct memelfnote *en)
1430 {
1431 	int sz;
1432 
1433 	sz = sizeof(struct elf_note);
1434 	sz += roundup(strlen(en->name) + 1, 4);
1435 	sz += roundup(en->datasz, 4);
1436 
1437 	return sz;
1438 }
1439 
1440 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1441 {
1442 	struct elf_note en;
1443 	en.n_namesz = strlen(men->name) + 1;
1444 	en.n_descsz = men->datasz;
1445 	en.n_type = men->type;
1446 
1447 	return dump_emit(cprm, &en, sizeof(en)) &&
1448 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1449 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1450 }
1451 
1452 static void fill_elf_header(struct elfhdr *elf, int segs,
1453 			    u16 machine, u32 flags)
1454 {
1455 	memset(elf, 0, sizeof(*elf));
1456 
1457 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1458 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1459 	elf->e_ident[EI_DATA] = ELF_DATA;
1460 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1461 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1462 
1463 	elf->e_type = ET_CORE;
1464 	elf->e_machine = machine;
1465 	elf->e_version = EV_CURRENT;
1466 	elf->e_phoff = sizeof(struct elfhdr);
1467 	elf->e_flags = flags;
1468 	elf->e_ehsize = sizeof(struct elfhdr);
1469 	elf->e_phentsize = sizeof(struct elf_phdr);
1470 	elf->e_phnum = segs;
1471 }
1472 
1473 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1474 {
1475 	phdr->p_type = PT_NOTE;
1476 	phdr->p_offset = offset;
1477 	phdr->p_vaddr = 0;
1478 	phdr->p_paddr = 0;
1479 	phdr->p_filesz = sz;
1480 	phdr->p_memsz = 0;
1481 	phdr->p_flags = 0;
1482 	phdr->p_align = 0;
1483 }
1484 
1485 static void fill_note(struct memelfnote *note, const char *name, int type,
1486 		unsigned int sz, void *data)
1487 {
1488 	note->name = name;
1489 	note->type = type;
1490 	note->datasz = sz;
1491 	note->data = data;
1492 }
1493 
1494 /*
1495  * fill up all the fields in prstatus from the given task struct, except
1496  * registers which need to be filled up separately.
1497  */
1498 static void fill_prstatus(struct elf_prstatus *prstatus,
1499 		struct task_struct *p, long signr)
1500 {
1501 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1502 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1503 	prstatus->pr_sighold = p->blocked.sig[0];
1504 	rcu_read_lock();
1505 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1506 	rcu_read_unlock();
1507 	prstatus->pr_pid = task_pid_vnr(p);
1508 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1509 	prstatus->pr_sid = task_session_vnr(p);
1510 	if (thread_group_leader(p)) {
1511 		struct task_cputime cputime;
1512 
1513 		/*
1514 		 * This is the record for the group leader.  It shows the
1515 		 * group-wide total, not its individual thread total.
1516 		 */
1517 		thread_group_cputime(p, &cputime);
1518 		prstatus->pr_utime = ns_to_timeval(cputime.utime);
1519 		prstatus->pr_stime = ns_to_timeval(cputime.stime);
1520 	} else {
1521 		u64 utime, stime;
1522 
1523 		task_cputime(p, &utime, &stime);
1524 		prstatus->pr_utime = ns_to_timeval(utime);
1525 		prstatus->pr_stime = ns_to_timeval(stime);
1526 	}
1527 
1528 	prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1529 	prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1530 }
1531 
1532 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1533 		       struct mm_struct *mm)
1534 {
1535 	const struct cred *cred;
1536 	unsigned int i, len;
1537 
1538 	/* first copy the parameters from user space */
1539 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1540 
1541 	len = mm->arg_end - mm->arg_start;
1542 	if (len >= ELF_PRARGSZ)
1543 		len = ELF_PRARGSZ-1;
1544 	if (copy_from_user(&psinfo->pr_psargs,
1545 		           (const char __user *)mm->arg_start, len))
1546 		return -EFAULT;
1547 	for(i = 0; i < len; i++)
1548 		if (psinfo->pr_psargs[i] == 0)
1549 			psinfo->pr_psargs[i] = ' ';
1550 	psinfo->pr_psargs[len] = 0;
1551 
1552 	rcu_read_lock();
1553 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1554 	rcu_read_unlock();
1555 	psinfo->pr_pid = task_pid_vnr(p);
1556 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1557 	psinfo->pr_sid = task_session_vnr(p);
1558 
1559 	i = p->state ? ffz(~p->state) + 1 : 0;
1560 	psinfo->pr_state = i;
1561 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1562 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1563 	psinfo->pr_nice = task_nice(p);
1564 	psinfo->pr_flag = p->flags;
1565 	rcu_read_lock();
1566 	cred = __task_cred(p);
1567 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1568 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1569 	rcu_read_unlock();
1570 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1571 
1572 	return 0;
1573 }
1574 
1575 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1576 {
1577 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1578 	int i = 0;
1579 	do
1580 		i += 2;
1581 	while (auxv[i - 2] != AT_NULL);
1582 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1583 }
1584 
1585 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1586 		const kernel_siginfo_t *siginfo)
1587 {
1588 	mm_segment_t old_fs = get_fs();
1589 	set_fs(KERNEL_DS);
1590 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1591 	set_fs(old_fs);
1592 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1593 }
1594 
1595 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1596 /*
1597  * Format of NT_FILE note:
1598  *
1599  * long count     -- how many files are mapped
1600  * long page_size -- units for file_ofs
1601  * array of [COUNT] elements of
1602  *   long start
1603  *   long end
1604  *   long file_ofs
1605  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1606  */
1607 static int fill_files_note(struct memelfnote *note)
1608 {
1609 	struct vm_area_struct *vma;
1610 	unsigned count, size, names_ofs, remaining, n;
1611 	user_long_t *data;
1612 	user_long_t *start_end_ofs;
1613 	char *name_base, *name_curpos;
1614 
1615 	/* *Estimated* file count and total data size needed */
1616 	count = current->mm->map_count;
1617 	if (count > UINT_MAX / 64)
1618 		return -EINVAL;
1619 	size = count * 64;
1620 
1621 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1622  alloc:
1623 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1624 		return -EINVAL;
1625 	size = round_up(size, PAGE_SIZE);
1626 	data = kvmalloc(size, GFP_KERNEL);
1627 	if (ZERO_OR_NULL_PTR(data))
1628 		return -ENOMEM;
1629 
1630 	start_end_ofs = data + 2;
1631 	name_base = name_curpos = ((char *)data) + names_ofs;
1632 	remaining = size - names_ofs;
1633 	count = 0;
1634 	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1635 		struct file *file;
1636 		const char *filename;
1637 
1638 		file = vma->vm_file;
1639 		if (!file)
1640 			continue;
1641 		filename = file_path(file, name_curpos, remaining);
1642 		if (IS_ERR(filename)) {
1643 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1644 				kvfree(data);
1645 				size = size * 5 / 4;
1646 				goto alloc;
1647 			}
1648 			continue;
1649 		}
1650 
1651 		/* file_path() fills at the end, move name down */
1652 		/* n = strlen(filename) + 1: */
1653 		n = (name_curpos + remaining) - filename;
1654 		remaining = filename - name_curpos;
1655 		memmove(name_curpos, filename, n);
1656 		name_curpos += n;
1657 
1658 		*start_end_ofs++ = vma->vm_start;
1659 		*start_end_ofs++ = vma->vm_end;
1660 		*start_end_ofs++ = vma->vm_pgoff;
1661 		count++;
1662 	}
1663 
1664 	/* Now we know exact count of files, can store it */
1665 	data[0] = count;
1666 	data[1] = PAGE_SIZE;
1667 	/*
1668 	 * Count usually is less than current->mm->map_count,
1669 	 * we need to move filenames down.
1670 	 */
1671 	n = current->mm->map_count - count;
1672 	if (n != 0) {
1673 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1674 		memmove(name_base - shift_bytes, name_base,
1675 			name_curpos - name_base);
1676 		name_curpos -= shift_bytes;
1677 	}
1678 
1679 	size = name_curpos - (char *)data;
1680 	fill_note(note, "CORE", NT_FILE, size, data);
1681 	return 0;
1682 }
1683 
1684 #ifdef CORE_DUMP_USE_REGSET
1685 #include <linux/regset.h>
1686 
1687 struct elf_thread_core_info {
1688 	struct elf_thread_core_info *next;
1689 	struct task_struct *task;
1690 	struct elf_prstatus prstatus;
1691 	struct memelfnote notes[0];
1692 };
1693 
1694 struct elf_note_info {
1695 	struct elf_thread_core_info *thread;
1696 	struct memelfnote psinfo;
1697 	struct memelfnote signote;
1698 	struct memelfnote auxv;
1699 	struct memelfnote files;
1700 	user_siginfo_t csigdata;
1701 	size_t size;
1702 	int thread_notes;
1703 };
1704 
1705 /*
1706  * When a regset has a writeback hook, we call it on each thread before
1707  * dumping user memory.  On register window machines, this makes sure the
1708  * user memory backing the register data is up to date before we read it.
1709  */
1710 static void do_thread_regset_writeback(struct task_struct *task,
1711 				       const struct user_regset *regset)
1712 {
1713 	if (regset->writeback)
1714 		regset->writeback(task, regset, 1);
1715 }
1716 
1717 #ifndef PRSTATUS_SIZE
1718 #define PRSTATUS_SIZE(S, R) sizeof(S)
1719 #endif
1720 
1721 #ifndef SET_PR_FPVALID
1722 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1723 #endif
1724 
1725 static int fill_thread_core_info(struct elf_thread_core_info *t,
1726 				 const struct user_regset_view *view,
1727 				 long signr, size_t *total)
1728 {
1729 	unsigned int i;
1730 	unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1731 
1732 	/*
1733 	 * NT_PRSTATUS is the one special case, because the regset data
1734 	 * goes into the pr_reg field inside the note contents, rather
1735 	 * than being the whole note contents.  We fill the reset in here.
1736 	 * We assume that regset 0 is NT_PRSTATUS.
1737 	 */
1738 	fill_prstatus(&t->prstatus, t->task, signr);
1739 	(void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1740 				    &t->prstatus.pr_reg, NULL);
1741 
1742 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1743 		  PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1744 	*total += notesize(&t->notes[0]);
1745 
1746 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1747 
1748 	/*
1749 	 * Each other regset might generate a note too.  For each regset
1750 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1751 	 * all zero and we'll know to skip writing it later.
1752 	 */
1753 	for (i = 1; i < view->n; ++i) {
1754 		const struct user_regset *regset = &view->regsets[i];
1755 		do_thread_regset_writeback(t->task, regset);
1756 		if (regset->core_note_type && regset->get &&
1757 		    (!regset->active || regset->active(t->task, regset) > 0)) {
1758 			int ret;
1759 			size_t size = regset_size(t->task, regset);
1760 			void *data = kmalloc(size, GFP_KERNEL);
1761 			if (unlikely(!data))
1762 				return 0;
1763 			ret = regset->get(t->task, regset,
1764 					  0, size, data, NULL);
1765 			if (unlikely(ret))
1766 				kfree(data);
1767 			else {
1768 				if (regset->core_note_type != NT_PRFPREG)
1769 					fill_note(&t->notes[i], "LINUX",
1770 						  regset->core_note_type,
1771 						  size, data);
1772 				else {
1773 					SET_PR_FPVALID(&t->prstatus,
1774 							1, regset0_size);
1775 					fill_note(&t->notes[i], "CORE",
1776 						  NT_PRFPREG, size, data);
1777 				}
1778 				*total += notesize(&t->notes[i]);
1779 			}
1780 		}
1781 	}
1782 
1783 	return 1;
1784 }
1785 
1786 static int fill_note_info(struct elfhdr *elf, int phdrs,
1787 			  struct elf_note_info *info,
1788 			  const kernel_siginfo_t *siginfo, struct pt_regs *regs)
1789 {
1790 	struct task_struct *dump_task = current;
1791 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1792 	struct elf_thread_core_info *t;
1793 	struct elf_prpsinfo *psinfo;
1794 	struct core_thread *ct;
1795 	unsigned int i;
1796 
1797 	info->size = 0;
1798 	info->thread = NULL;
1799 
1800 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1801 	if (psinfo == NULL) {
1802 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1803 		return 0;
1804 	}
1805 
1806 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1807 
1808 	/*
1809 	 * Figure out how many notes we're going to need for each thread.
1810 	 */
1811 	info->thread_notes = 0;
1812 	for (i = 0; i < view->n; ++i)
1813 		if (view->regsets[i].core_note_type != 0)
1814 			++info->thread_notes;
1815 
1816 	/*
1817 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1818 	 * since it is our one special case.
1819 	 */
1820 	if (unlikely(info->thread_notes == 0) ||
1821 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1822 		WARN_ON(1);
1823 		return 0;
1824 	}
1825 
1826 	/*
1827 	 * Initialize the ELF file header.
1828 	 */
1829 	fill_elf_header(elf, phdrs,
1830 			view->e_machine, view->e_flags);
1831 
1832 	/*
1833 	 * Allocate a structure for each thread.
1834 	 */
1835 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1836 		t = kzalloc(offsetof(struct elf_thread_core_info,
1837 				     notes[info->thread_notes]),
1838 			    GFP_KERNEL);
1839 		if (unlikely(!t))
1840 			return 0;
1841 
1842 		t->task = ct->task;
1843 		if (ct->task == dump_task || !info->thread) {
1844 			t->next = info->thread;
1845 			info->thread = t;
1846 		} else {
1847 			/*
1848 			 * Make sure to keep the original task at
1849 			 * the head of the list.
1850 			 */
1851 			t->next = info->thread->next;
1852 			info->thread->next = t;
1853 		}
1854 	}
1855 
1856 	/*
1857 	 * Now fill in each thread's information.
1858 	 */
1859 	for (t = info->thread; t != NULL; t = t->next)
1860 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1861 			return 0;
1862 
1863 	/*
1864 	 * Fill in the two process-wide notes.
1865 	 */
1866 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1867 	info->size += notesize(&info->psinfo);
1868 
1869 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1870 	info->size += notesize(&info->signote);
1871 
1872 	fill_auxv_note(&info->auxv, current->mm);
1873 	info->size += notesize(&info->auxv);
1874 
1875 	if (fill_files_note(&info->files) == 0)
1876 		info->size += notesize(&info->files);
1877 
1878 	return 1;
1879 }
1880 
1881 static size_t get_note_info_size(struct elf_note_info *info)
1882 {
1883 	return info->size;
1884 }
1885 
1886 /*
1887  * Write all the notes for each thread.  When writing the first thread, the
1888  * process-wide notes are interleaved after the first thread-specific note.
1889  */
1890 static int write_note_info(struct elf_note_info *info,
1891 			   struct coredump_params *cprm)
1892 {
1893 	bool first = true;
1894 	struct elf_thread_core_info *t = info->thread;
1895 
1896 	do {
1897 		int i;
1898 
1899 		if (!writenote(&t->notes[0], cprm))
1900 			return 0;
1901 
1902 		if (first && !writenote(&info->psinfo, cprm))
1903 			return 0;
1904 		if (first && !writenote(&info->signote, cprm))
1905 			return 0;
1906 		if (first && !writenote(&info->auxv, cprm))
1907 			return 0;
1908 		if (first && info->files.data &&
1909 				!writenote(&info->files, cprm))
1910 			return 0;
1911 
1912 		for (i = 1; i < info->thread_notes; ++i)
1913 			if (t->notes[i].data &&
1914 			    !writenote(&t->notes[i], cprm))
1915 				return 0;
1916 
1917 		first = false;
1918 		t = t->next;
1919 	} while (t);
1920 
1921 	return 1;
1922 }
1923 
1924 static void free_note_info(struct elf_note_info *info)
1925 {
1926 	struct elf_thread_core_info *threads = info->thread;
1927 	while (threads) {
1928 		unsigned int i;
1929 		struct elf_thread_core_info *t = threads;
1930 		threads = t->next;
1931 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1932 		for (i = 1; i < info->thread_notes; ++i)
1933 			kfree(t->notes[i].data);
1934 		kfree(t);
1935 	}
1936 	kfree(info->psinfo.data);
1937 	kvfree(info->files.data);
1938 }
1939 
1940 #else
1941 
1942 /* Here is the structure in which status of each thread is captured. */
1943 struct elf_thread_status
1944 {
1945 	struct list_head list;
1946 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1947 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1948 	struct task_struct *thread;
1949 #ifdef ELF_CORE_COPY_XFPREGS
1950 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1951 #endif
1952 	struct memelfnote notes[3];
1953 	int num_notes;
1954 };
1955 
1956 /*
1957  * In order to add the specific thread information for the elf file format,
1958  * we need to keep a linked list of every threads pr_status and then create
1959  * a single section for them in the final core file.
1960  */
1961 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1962 {
1963 	int sz = 0;
1964 	struct task_struct *p = t->thread;
1965 	t->num_notes = 0;
1966 
1967 	fill_prstatus(&t->prstatus, p, signr);
1968 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1969 
1970 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1971 		  &(t->prstatus));
1972 	t->num_notes++;
1973 	sz += notesize(&t->notes[0]);
1974 
1975 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1976 								&t->fpu))) {
1977 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1978 			  &(t->fpu));
1979 		t->num_notes++;
1980 		sz += notesize(&t->notes[1]);
1981 	}
1982 
1983 #ifdef ELF_CORE_COPY_XFPREGS
1984 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1985 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1986 			  sizeof(t->xfpu), &t->xfpu);
1987 		t->num_notes++;
1988 		sz += notesize(&t->notes[2]);
1989 	}
1990 #endif
1991 	return sz;
1992 }
1993 
1994 struct elf_note_info {
1995 	struct memelfnote *notes;
1996 	struct memelfnote *notes_files;
1997 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1998 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1999 	struct list_head thread_list;
2000 	elf_fpregset_t *fpu;
2001 #ifdef ELF_CORE_COPY_XFPREGS
2002 	elf_fpxregset_t *xfpu;
2003 #endif
2004 	user_siginfo_t csigdata;
2005 	int thread_status_size;
2006 	int numnote;
2007 };
2008 
2009 static int elf_note_info_init(struct elf_note_info *info)
2010 {
2011 	memset(info, 0, sizeof(*info));
2012 	INIT_LIST_HEAD(&info->thread_list);
2013 
2014 	/* Allocate space for ELF notes */
2015 	info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
2016 	if (!info->notes)
2017 		return 0;
2018 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2019 	if (!info->psinfo)
2020 		return 0;
2021 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2022 	if (!info->prstatus)
2023 		return 0;
2024 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2025 	if (!info->fpu)
2026 		return 0;
2027 #ifdef ELF_CORE_COPY_XFPREGS
2028 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2029 	if (!info->xfpu)
2030 		return 0;
2031 #endif
2032 	return 1;
2033 }
2034 
2035 static int fill_note_info(struct elfhdr *elf, int phdrs,
2036 			  struct elf_note_info *info,
2037 			  const kernel_siginfo_t *siginfo, struct pt_regs *regs)
2038 {
2039 	struct core_thread *ct;
2040 	struct elf_thread_status *ets;
2041 
2042 	if (!elf_note_info_init(info))
2043 		return 0;
2044 
2045 	for (ct = current->mm->core_state->dumper.next;
2046 					ct; ct = ct->next) {
2047 		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2048 		if (!ets)
2049 			return 0;
2050 
2051 		ets->thread = ct->task;
2052 		list_add(&ets->list, &info->thread_list);
2053 	}
2054 
2055 	list_for_each_entry(ets, &info->thread_list, list) {
2056 		int sz;
2057 
2058 		sz = elf_dump_thread_status(siginfo->si_signo, ets);
2059 		info->thread_status_size += sz;
2060 	}
2061 	/* now collect the dump for the current */
2062 	memset(info->prstatus, 0, sizeof(*info->prstatus));
2063 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
2064 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2065 
2066 	/* Set up header */
2067 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2068 
2069 	/*
2070 	 * Set up the notes in similar form to SVR4 core dumps made
2071 	 * with info from their /proc.
2072 	 */
2073 
2074 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2075 		  sizeof(*info->prstatus), info->prstatus);
2076 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
2077 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2078 		  sizeof(*info->psinfo), info->psinfo);
2079 
2080 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2081 	fill_auxv_note(info->notes + 3, current->mm);
2082 	info->numnote = 4;
2083 
2084 	if (fill_files_note(info->notes + info->numnote) == 0) {
2085 		info->notes_files = info->notes + info->numnote;
2086 		info->numnote++;
2087 	}
2088 
2089 	/* Try to dump the FPU. */
2090 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2091 							       info->fpu);
2092 	if (info->prstatus->pr_fpvalid)
2093 		fill_note(info->notes + info->numnote++,
2094 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2095 #ifdef ELF_CORE_COPY_XFPREGS
2096 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
2097 		fill_note(info->notes + info->numnote++,
2098 			  "LINUX", ELF_CORE_XFPREG_TYPE,
2099 			  sizeof(*info->xfpu), info->xfpu);
2100 #endif
2101 
2102 	return 1;
2103 }
2104 
2105 static size_t get_note_info_size(struct elf_note_info *info)
2106 {
2107 	int sz = 0;
2108 	int i;
2109 
2110 	for (i = 0; i < info->numnote; i++)
2111 		sz += notesize(info->notes + i);
2112 
2113 	sz += info->thread_status_size;
2114 
2115 	return sz;
2116 }
2117 
2118 static int write_note_info(struct elf_note_info *info,
2119 			   struct coredump_params *cprm)
2120 {
2121 	struct elf_thread_status *ets;
2122 	int i;
2123 
2124 	for (i = 0; i < info->numnote; i++)
2125 		if (!writenote(info->notes + i, cprm))
2126 			return 0;
2127 
2128 	/* write out the thread status notes section */
2129 	list_for_each_entry(ets, &info->thread_list, list) {
2130 		for (i = 0; i < ets->num_notes; i++)
2131 			if (!writenote(&ets->notes[i], cprm))
2132 				return 0;
2133 	}
2134 
2135 	return 1;
2136 }
2137 
2138 static void free_note_info(struct elf_note_info *info)
2139 {
2140 	while (!list_empty(&info->thread_list)) {
2141 		struct list_head *tmp = info->thread_list.next;
2142 		list_del(tmp);
2143 		kfree(list_entry(tmp, struct elf_thread_status, list));
2144 	}
2145 
2146 	/* Free data possibly allocated by fill_files_note(): */
2147 	if (info->notes_files)
2148 		kvfree(info->notes_files->data);
2149 
2150 	kfree(info->prstatus);
2151 	kfree(info->psinfo);
2152 	kfree(info->notes);
2153 	kfree(info->fpu);
2154 #ifdef ELF_CORE_COPY_XFPREGS
2155 	kfree(info->xfpu);
2156 #endif
2157 }
2158 
2159 #endif
2160 
2161 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2162 					struct vm_area_struct *gate_vma)
2163 {
2164 	struct vm_area_struct *ret = tsk->mm->mmap;
2165 
2166 	if (ret)
2167 		return ret;
2168 	return gate_vma;
2169 }
2170 /*
2171  * Helper function for iterating across a vma list.  It ensures that the caller
2172  * will visit `gate_vma' prior to terminating the search.
2173  */
2174 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2175 					struct vm_area_struct *gate_vma)
2176 {
2177 	struct vm_area_struct *ret;
2178 
2179 	ret = this_vma->vm_next;
2180 	if (ret)
2181 		return ret;
2182 	if (this_vma == gate_vma)
2183 		return NULL;
2184 	return gate_vma;
2185 }
2186 
2187 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2188 			     elf_addr_t e_shoff, int segs)
2189 {
2190 	elf->e_shoff = e_shoff;
2191 	elf->e_shentsize = sizeof(*shdr4extnum);
2192 	elf->e_shnum = 1;
2193 	elf->e_shstrndx = SHN_UNDEF;
2194 
2195 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2196 
2197 	shdr4extnum->sh_type = SHT_NULL;
2198 	shdr4extnum->sh_size = elf->e_shnum;
2199 	shdr4extnum->sh_link = elf->e_shstrndx;
2200 	shdr4extnum->sh_info = segs;
2201 }
2202 
2203 /*
2204  * Actual dumper
2205  *
2206  * This is a two-pass process; first we find the offsets of the bits,
2207  * and then they are actually written out.  If we run out of core limit
2208  * we just truncate.
2209  */
2210 static int elf_core_dump(struct coredump_params *cprm)
2211 {
2212 	int has_dumped = 0;
2213 	mm_segment_t fs;
2214 	int segs, i;
2215 	size_t vma_data_size = 0;
2216 	struct vm_area_struct *vma, *gate_vma;
2217 	struct elfhdr *elf = NULL;
2218 	loff_t offset = 0, dataoff;
2219 	struct elf_note_info info = { };
2220 	struct elf_phdr *phdr4note = NULL;
2221 	struct elf_shdr *shdr4extnum = NULL;
2222 	Elf_Half e_phnum;
2223 	elf_addr_t e_shoff;
2224 	elf_addr_t *vma_filesz = NULL;
2225 
2226 	/*
2227 	 * We no longer stop all VM operations.
2228 	 *
2229 	 * This is because those proceses that could possibly change map_count
2230 	 * or the mmap / vma pages are now blocked in do_exit on current
2231 	 * finishing this core dump.
2232 	 *
2233 	 * Only ptrace can touch these memory addresses, but it doesn't change
2234 	 * the map_count or the pages allocated. So no possibility of crashing
2235 	 * exists while dumping the mm->vm_next areas to the core file.
2236 	 */
2237 
2238 	/* alloc memory for large data structures: too large to be on stack */
2239 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2240 	if (!elf)
2241 		goto out;
2242 	/*
2243 	 * The number of segs are recored into ELF header as 16bit value.
2244 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2245 	 */
2246 	segs = current->mm->map_count;
2247 	segs += elf_core_extra_phdrs();
2248 
2249 	gate_vma = get_gate_vma(current->mm);
2250 	if (gate_vma != NULL)
2251 		segs++;
2252 
2253 	/* for notes section */
2254 	segs++;
2255 
2256 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2257 	 * this, kernel supports extended numbering. Have a look at
2258 	 * include/linux/elf.h for further information. */
2259 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2260 
2261 	/*
2262 	 * Collect all the non-memory information about the process for the
2263 	 * notes.  This also sets up the file header.
2264 	 */
2265 	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2266 		goto cleanup;
2267 
2268 	has_dumped = 1;
2269 
2270 	fs = get_fs();
2271 	set_fs(KERNEL_DS);
2272 
2273 	offset += sizeof(*elf);				/* Elf header */
2274 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2275 
2276 	/* Write notes phdr entry */
2277 	{
2278 		size_t sz = get_note_info_size(&info);
2279 
2280 		sz += elf_coredump_extra_notes_size();
2281 
2282 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2283 		if (!phdr4note)
2284 			goto end_coredump;
2285 
2286 		fill_elf_note_phdr(phdr4note, sz, offset);
2287 		offset += sz;
2288 	}
2289 
2290 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2291 
2292 	if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2293 		goto end_coredump;
2294 	vma_filesz = kvmalloc(array_size(sizeof(*vma_filesz), (segs - 1)),
2295 			      GFP_KERNEL);
2296 	if (ZERO_OR_NULL_PTR(vma_filesz))
2297 		goto end_coredump;
2298 
2299 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2300 			vma = next_vma(vma, gate_vma)) {
2301 		unsigned long dump_size;
2302 
2303 		dump_size = vma_dump_size(vma, cprm->mm_flags);
2304 		vma_filesz[i++] = dump_size;
2305 		vma_data_size += dump_size;
2306 	}
2307 
2308 	offset += vma_data_size;
2309 	offset += elf_core_extra_data_size();
2310 	e_shoff = offset;
2311 
2312 	if (e_phnum == PN_XNUM) {
2313 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2314 		if (!shdr4extnum)
2315 			goto end_coredump;
2316 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2317 	}
2318 
2319 	offset = dataoff;
2320 
2321 	if (!dump_emit(cprm, elf, sizeof(*elf)))
2322 		goto end_coredump;
2323 
2324 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2325 		goto end_coredump;
2326 
2327 	/* Write program headers for segments dump */
2328 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2329 			vma = next_vma(vma, gate_vma)) {
2330 		struct elf_phdr phdr;
2331 
2332 		phdr.p_type = PT_LOAD;
2333 		phdr.p_offset = offset;
2334 		phdr.p_vaddr = vma->vm_start;
2335 		phdr.p_paddr = 0;
2336 		phdr.p_filesz = vma_filesz[i++];
2337 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2338 		offset += phdr.p_filesz;
2339 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2340 		if (vma->vm_flags & VM_WRITE)
2341 			phdr.p_flags |= PF_W;
2342 		if (vma->vm_flags & VM_EXEC)
2343 			phdr.p_flags |= PF_X;
2344 		phdr.p_align = ELF_EXEC_PAGESIZE;
2345 
2346 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2347 			goto end_coredump;
2348 	}
2349 
2350 	if (!elf_core_write_extra_phdrs(cprm, offset))
2351 		goto end_coredump;
2352 
2353  	/* write out the notes section */
2354 	if (!write_note_info(&info, cprm))
2355 		goto end_coredump;
2356 
2357 	if (elf_coredump_extra_notes_write(cprm))
2358 		goto end_coredump;
2359 
2360 	/* Align to page */
2361 	if (!dump_skip(cprm, dataoff - cprm->pos))
2362 		goto end_coredump;
2363 
2364 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2365 			vma = next_vma(vma, gate_vma)) {
2366 		unsigned long addr;
2367 		unsigned long end;
2368 
2369 		end = vma->vm_start + vma_filesz[i++];
2370 
2371 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2372 			struct page *page;
2373 			int stop;
2374 
2375 			page = get_dump_page(addr);
2376 			if (page) {
2377 				void *kaddr = kmap(page);
2378 				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2379 				kunmap(page);
2380 				put_page(page);
2381 			} else
2382 				stop = !dump_skip(cprm, PAGE_SIZE);
2383 			if (stop)
2384 				goto end_coredump;
2385 		}
2386 	}
2387 	dump_truncate(cprm);
2388 
2389 	if (!elf_core_write_extra_data(cprm))
2390 		goto end_coredump;
2391 
2392 	if (e_phnum == PN_XNUM) {
2393 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2394 			goto end_coredump;
2395 	}
2396 
2397 end_coredump:
2398 	set_fs(fs);
2399 
2400 cleanup:
2401 	free_note_info(&info);
2402 	kfree(shdr4extnum);
2403 	kvfree(vma_filesz);
2404 	kfree(phdr4note);
2405 	kfree(elf);
2406 out:
2407 	return has_dumped;
2408 }
2409 
2410 #endif		/* CONFIG_ELF_CORE */
2411 
2412 static int __init init_elf_binfmt(void)
2413 {
2414 	register_binfmt(&elf_format);
2415 	return 0;
2416 }
2417 
2418 static void __exit exit_elf_binfmt(void)
2419 {
2420 	/* Remove the COFF and ELF loaders. */
2421 	unregister_binfmt(&elf_format);
2422 }
2423 
2424 core_initcall(init_elf_binfmt);
2425 module_exit(exit_elf_binfmt);
2426 MODULE_LICENSE("GPL");
2427