1 /* 2 * linux/fs/befs/btree.c 3 * 4 * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com> 5 * 6 * Licensed under the GNU GPL. See the file COPYING for details. 7 * 8 * 2002-02-05: Sergey S. Kostyliov added binary search within 9 * btree nodes. 10 * 11 * Many thanks to: 12 * 13 * Dominic Giampaolo, author of "Practical File System 14 * Design with the Be File System", for such a helpful book. 15 * 16 * Marcus J. Ranum, author of the b+tree package in 17 * comp.sources.misc volume 10. This code is not copied from that 18 * work, but it is partially based on it. 19 * 20 * Makoto Kato, author of the original BeFS for linux filesystem 21 * driver. 22 */ 23 24 #include <linux/kernel.h> 25 #include <linux/string.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/buffer_head.h> 29 30 #include "befs.h" 31 #include "btree.h" 32 #include "datastream.h" 33 34 /* 35 * The btree functions in this file are built on top of the 36 * datastream.c interface, which is in turn built on top of the 37 * io.c interface. 38 */ 39 40 /* Befs B+tree structure: 41 * 42 * The first thing in the tree is the tree superblock. It tells you 43 * all kinds of useful things about the tree, like where the rootnode 44 * is located, and the size of the nodes (always 1024 with current version 45 * of BeOS). 46 * 47 * The rest of the tree consists of a series of nodes. Nodes contain a header 48 * (struct befs_btree_nodehead), the packed key data, an array of shorts 49 * containing the ending offsets for each of the keys, and an array of 50 * befs_off_t values. In interior nodes, the keys are the ending keys for 51 * the childnode they point to, and the values are offsets into the 52 * datastream containing the tree. 53 */ 54 55 /* Note: 56 * 57 * The book states 2 confusing things about befs b+trees. First, 58 * it states that the overflow field of node headers is used by internal nodes 59 * to point to another node that "effectively continues this one". Here is what 60 * I believe that means. Each key in internal nodes points to another node that 61 * contains key values less than itself. Inspection reveals that the last key 62 * in the internal node is not the last key in the index. Keys that are 63 * greater than the last key in the internal node go into the overflow node. 64 * I imagine there is a performance reason for this. 65 * 66 * Second, it states that the header of a btree node is sufficient to 67 * distinguish internal nodes from leaf nodes. Without saying exactly how. 68 * After figuring out the first, it becomes obvious that internal nodes have 69 * overflow nodes and leafnodes do not. 70 */ 71 72 /* 73 * Currently, this code is only good for directory B+trees. 74 * In order to be used for other BFS indexes, it needs to be extended to handle 75 * duplicate keys and non-string keytypes (int32, int64, float, double). 76 */ 77 78 /* 79 * In memory structure of each btree node 80 */ 81 typedef struct { 82 befs_host_btree_nodehead head; /* head of node converted to cpu byteorder */ 83 struct buffer_head *bh; 84 befs_btree_nodehead *od_node; /* on disk node */ 85 } befs_btree_node; 86 87 /* local constants */ 88 static const befs_off_t befs_bt_inval = 0xffffffffffffffffULL; 89 90 /* local functions */ 91 static int befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds, 92 befs_btree_super * bt_super, 93 befs_btree_node * this_node, 94 befs_off_t * node_off); 95 96 static int befs_bt_read_super(struct super_block *sb, befs_data_stream * ds, 97 befs_btree_super * sup); 98 99 static int befs_bt_read_node(struct super_block *sb, befs_data_stream * ds, 100 befs_btree_node * node, befs_off_t node_off); 101 102 static int befs_leafnode(befs_btree_node * node); 103 104 static fs16 *befs_bt_keylen_index(befs_btree_node * node); 105 106 static fs64 *befs_bt_valarray(befs_btree_node * node); 107 108 static char *befs_bt_keydata(befs_btree_node * node); 109 110 static int befs_find_key(struct super_block *sb, befs_btree_node * node, 111 const char *findkey, befs_off_t * value); 112 113 static char *befs_bt_get_key(struct super_block *sb, befs_btree_node * node, 114 int index, u16 * keylen); 115 116 static int befs_compare_strings(const void *key1, int keylen1, 117 const void *key2, int keylen2); 118 119 /** 120 * befs_bt_read_super - read in btree superblock convert to cpu byteorder 121 * @sb: Filesystem superblock 122 * @ds: Datastream to read from 123 * @sup: Buffer in which to place the btree superblock 124 * 125 * Calls befs_read_datastream to read in the btree superblock and 126 * makes sure it is in cpu byteorder, byteswapping if necessary. 127 * 128 * On success, returns BEFS_OK and *@sup contains the btree superblock, 129 * in cpu byte order. 130 * 131 * On failure, BEFS_ERR is returned. 132 */ 133 static int 134 befs_bt_read_super(struct super_block *sb, befs_data_stream * ds, 135 befs_btree_super * sup) 136 { 137 struct buffer_head *bh = NULL; 138 befs_disk_btree_super *od_sup = NULL; 139 140 befs_debug(sb, "---> %s", __func__); 141 142 bh = befs_read_datastream(sb, ds, 0, NULL); 143 144 if (!bh) { 145 befs_error(sb, "Couldn't read index header."); 146 goto error; 147 } 148 od_sup = (befs_disk_btree_super *) bh->b_data; 149 befs_dump_index_entry(sb, od_sup); 150 151 sup->magic = fs32_to_cpu(sb, od_sup->magic); 152 sup->node_size = fs32_to_cpu(sb, od_sup->node_size); 153 sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth); 154 sup->data_type = fs32_to_cpu(sb, od_sup->data_type); 155 sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr); 156 sup->free_node_ptr = fs64_to_cpu(sb, od_sup->free_node_ptr); 157 sup->max_size = fs64_to_cpu(sb, od_sup->max_size); 158 159 brelse(bh); 160 if (sup->magic != BEFS_BTREE_MAGIC) { 161 befs_error(sb, "Index header has bad magic."); 162 goto error; 163 } 164 165 befs_debug(sb, "<--- %s", __func__); 166 return BEFS_OK; 167 168 error: 169 befs_debug(sb, "<--- %s ERROR", __func__); 170 return BEFS_ERR; 171 } 172 173 /** 174 * befs_bt_read_node - read in btree node and convert to cpu byteorder 175 * @sb: Filesystem superblock 176 * @ds: Datastream to read from 177 * @node: Buffer in which to place the btree node 178 * @node_off: Starting offset (in bytes) of the node in @ds 179 * 180 * Calls befs_read_datastream to read in the indicated btree node and 181 * makes sure its header fields are in cpu byteorder, byteswapping if 182 * necessary. 183 * Note: node->bh must be NULL when this function called first 184 * time. Don't forget brelse(node->bh) after last call. 185 * 186 * On success, returns BEFS_OK and *@node contains the btree node that 187 * starts at @node_off, with the node->head fields in cpu byte order. 188 * 189 * On failure, BEFS_ERR is returned. 190 */ 191 192 static int 193 befs_bt_read_node(struct super_block *sb, befs_data_stream * ds, 194 befs_btree_node * node, befs_off_t node_off) 195 { 196 uint off = 0; 197 198 befs_debug(sb, "---> %s", __func__); 199 200 if (node->bh) 201 brelse(node->bh); 202 203 node->bh = befs_read_datastream(sb, ds, node_off, &off); 204 if (!node->bh) { 205 befs_error(sb, "%s failed to read " 206 "node at %llu", __func__, node_off); 207 befs_debug(sb, "<--- %s ERROR", __func__); 208 209 return BEFS_ERR; 210 } 211 node->od_node = 212 (befs_btree_nodehead *) ((void *) node->bh->b_data + off); 213 214 befs_dump_index_node(sb, node->od_node); 215 216 node->head.left = fs64_to_cpu(sb, node->od_node->left); 217 node->head.right = fs64_to_cpu(sb, node->od_node->right); 218 node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow); 219 node->head.all_key_count = 220 fs16_to_cpu(sb, node->od_node->all_key_count); 221 node->head.all_key_length = 222 fs16_to_cpu(sb, node->od_node->all_key_length); 223 224 befs_debug(sb, "<--- %s", __func__); 225 return BEFS_OK; 226 } 227 228 /** 229 * befs_btree_find - Find a key in a befs B+tree 230 * @sb: Filesystem superblock 231 * @ds: Datastream containing btree 232 * @key: Key string to lookup in btree 233 * @value: Value stored with @key 234 * 235 * On success, returns BEFS_OK and sets *@value to the value stored 236 * with @key (usually the disk block number of an inode). 237 * 238 * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND. 239 * 240 * Algorithm: 241 * Read the superblock and rootnode of the b+tree. 242 * Drill down through the interior nodes using befs_find_key(). 243 * Once at the correct leaf node, use befs_find_key() again to get the 244 * actuall value stored with the key. 245 */ 246 int 247 befs_btree_find(struct super_block *sb, befs_data_stream * ds, 248 const char *key, befs_off_t * value) 249 { 250 befs_btree_node *this_node = NULL; 251 befs_btree_super bt_super; 252 befs_off_t node_off; 253 int res; 254 255 befs_debug(sb, "---> %s Key: %s", __func__, key); 256 257 if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) { 258 befs_error(sb, 259 "befs_btree_find() failed to read index superblock"); 260 goto error; 261 } 262 263 this_node = kmalloc(sizeof (befs_btree_node), 264 GFP_NOFS); 265 if (!this_node) { 266 befs_error(sb, "befs_btree_find() failed to allocate %zu " 267 "bytes of memory", sizeof (befs_btree_node)); 268 goto error; 269 } 270 271 this_node->bh = NULL; 272 273 /* read in root node */ 274 node_off = bt_super.root_node_ptr; 275 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { 276 befs_error(sb, "befs_btree_find() failed to read " 277 "node at %llu", node_off); 278 goto error_alloc; 279 } 280 281 while (!befs_leafnode(this_node)) { 282 res = befs_find_key(sb, this_node, key, &node_off); 283 if (res == BEFS_BT_NOT_FOUND) 284 node_off = this_node->head.overflow; 285 /* if no match, go to overflow node */ 286 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { 287 befs_error(sb, "befs_btree_find() failed to read " 288 "node at %llu", node_off); 289 goto error_alloc; 290 } 291 } 292 293 /* at the correct leaf node now */ 294 295 res = befs_find_key(sb, this_node, key, value); 296 297 brelse(this_node->bh); 298 kfree(this_node); 299 300 if (res != BEFS_BT_MATCH) { 301 befs_debug(sb, "<--- %s Key %s not found", __func__, key); 302 *value = 0; 303 return BEFS_BT_NOT_FOUND; 304 } 305 befs_debug(sb, "<--- %s Found key %s, value %llu", __func__, 306 key, *value); 307 return BEFS_OK; 308 309 error_alloc: 310 kfree(this_node); 311 error: 312 *value = 0; 313 befs_debug(sb, "<--- %s ERROR", __func__); 314 return BEFS_ERR; 315 } 316 317 /** 318 * befs_find_key - Search for a key within a node 319 * @sb: Filesystem superblock 320 * @node: Node to find the key within 321 * @findkey: Keystring to search for 322 * @value: If key is found, the value stored with the key is put here 323 * 324 * finds exact match if one exists, and returns BEFS_BT_MATCH 325 * If no exact match, finds first key in node that is greater 326 * (alphabetically) than the search key and returns BEFS_BT_PARMATCH 327 * (for partial match, I guess). Can you think of something better to 328 * call it? 329 * 330 * If no key was a match or greater than the search key, return 331 * BEFS_BT_NOT_FOUND. 332 * 333 * Use binary search instead of a linear. 334 */ 335 static int 336 befs_find_key(struct super_block *sb, befs_btree_node * node, 337 const char *findkey, befs_off_t * value) 338 { 339 int first, last, mid; 340 int eq; 341 u16 keylen; 342 int findkey_len; 343 char *thiskey; 344 fs64 *valarray; 345 346 befs_debug(sb, "---> %s %s", __func__, findkey); 347 348 *value = 0; 349 350 findkey_len = strlen(findkey); 351 352 /* if node can not contain key, just skeep this node */ 353 last = node->head.all_key_count - 1; 354 thiskey = befs_bt_get_key(sb, node, last, &keylen); 355 356 eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len); 357 if (eq < 0) { 358 befs_debug(sb, "<--- %s %s not found", __func__, findkey); 359 return BEFS_BT_NOT_FOUND; 360 } 361 362 valarray = befs_bt_valarray(node); 363 364 /* simple binary search */ 365 first = 0; 366 mid = 0; 367 while (last >= first) { 368 mid = (last + first) / 2; 369 befs_debug(sb, "first: %d, last: %d, mid: %d", first, last, 370 mid); 371 thiskey = befs_bt_get_key(sb, node, mid, &keylen); 372 eq = befs_compare_strings(thiskey, keylen, findkey, 373 findkey_len); 374 375 if (eq == 0) { 376 befs_debug(sb, "<--- %s found %s at %d", 377 __func__, thiskey, mid); 378 379 *value = fs64_to_cpu(sb, valarray[mid]); 380 return BEFS_BT_MATCH; 381 } 382 if (eq > 0) 383 last = mid - 1; 384 else 385 first = mid + 1; 386 } 387 if (eq < 0) 388 *value = fs64_to_cpu(sb, valarray[mid + 1]); 389 else 390 *value = fs64_to_cpu(sb, valarray[mid]); 391 befs_debug(sb, "<--- %s found %s at %d", __func__, thiskey, mid); 392 return BEFS_BT_PARMATCH; 393 } 394 395 /** 396 * befs_btree_read - Traverse leafnodes of a btree 397 * @sb: Filesystem superblock 398 * @ds: Datastream containing btree 399 * @key_no: Key number (alphabetical order) of key to read 400 * @bufsize: Size of the buffer to return key in 401 * @keybuf: Pointer to a buffer to put the key in 402 * @keysize: Length of the returned key 403 * @value: Value stored with the returned key 404 * 405 * Heres how it works: Key_no is the index of the key/value pair to 406 * return in keybuf/value. 407 * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is 408 * the number of characters in the key (just a convenience). 409 * 410 * Algorithm: 411 * Get the first leafnode of the tree. See if the requested key is in that 412 * node. If not, follow the node->right link to the next leafnode. Repeat 413 * until the (key_no)th key is found or the tree is out of keys. 414 */ 415 int 416 befs_btree_read(struct super_block *sb, befs_data_stream * ds, 417 loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize, 418 befs_off_t * value) 419 { 420 befs_btree_node *this_node; 421 befs_btree_super bt_super; 422 befs_off_t node_off = 0; 423 int cur_key; 424 fs64 *valarray; 425 char *keystart; 426 u16 keylen; 427 int res; 428 429 uint key_sum = 0; 430 431 befs_debug(sb, "---> %s", __func__); 432 433 if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) { 434 befs_error(sb, 435 "befs_btree_read() failed to read index superblock"); 436 goto error; 437 } 438 439 if ((this_node = kmalloc(sizeof (befs_btree_node), GFP_NOFS)) == NULL) { 440 befs_error(sb, "befs_btree_read() failed to allocate %zu " 441 "bytes of memory", sizeof (befs_btree_node)); 442 goto error; 443 } 444 445 node_off = bt_super.root_node_ptr; 446 this_node->bh = NULL; 447 448 /* seeks down to first leafnode, reads it into this_node */ 449 res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off); 450 if (res == BEFS_BT_EMPTY) { 451 brelse(this_node->bh); 452 kfree(this_node); 453 *value = 0; 454 *keysize = 0; 455 befs_debug(sb, "<--- %s Tree is EMPTY", __func__); 456 return BEFS_BT_EMPTY; 457 } else if (res == BEFS_ERR) { 458 goto error_alloc; 459 } 460 461 /* find the leaf node containing the key_no key */ 462 463 while (key_sum + this_node->head.all_key_count <= key_no) { 464 465 /* no more nodes to look in: key_no is too large */ 466 if (this_node->head.right == befs_bt_inval) { 467 *keysize = 0; 468 *value = 0; 469 befs_debug(sb, 470 "<--- %s END of keys at %llu", __func__, 471 (unsigned long long) 472 key_sum + this_node->head.all_key_count); 473 brelse(this_node->bh); 474 kfree(this_node); 475 return BEFS_BT_END; 476 } 477 478 key_sum += this_node->head.all_key_count; 479 node_off = this_node->head.right; 480 481 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { 482 befs_error(sb, "%s failed to read node at %llu", 483 __func__, (unsigned long long)node_off); 484 goto error_alloc; 485 } 486 } 487 488 /* how many keys into this_node is key_no */ 489 cur_key = key_no - key_sum; 490 491 /* get pointers to datastructures within the node body */ 492 valarray = befs_bt_valarray(this_node); 493 494 keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen); 495 496 befs_debug(sb, "Read [%llu,%d]: keysize %d", 497 (long long unsigned int)node_off, (int)cur_key, 498 (int)keylen); 499 500 if (bufsize < keylen + 1) { 501 befs_error(sb, "%s keybuf too small (%zu) " 502 "for key of size %d", __func__, bufsize, keylen); 503 brelse(this_node->bh); 504 goto error_alloc; 505 } 506 507 strlcpy(keybuf, keystart, keylen + 1); 508 *value = fs64_to_cpu(sb, valarray[cur_key]); 509 *keysize = keylen; 510 511 befs_debug(sb, "Read [%llu,%d]: Key \"%.*s\", Value %llu", node_off, 512 cur_key, keylen, keybuf, *value); 513 514 brelse(this_node->bh); 515 kfree(this_node); 516 517 befs_debug(sb, "<--- %s", __func__); 518 519 return BEFS_OK; 520 521 error_alloc: 522 kfree(this_node); 523 524 error: 525 *keysize = 0; 526 *value = 0; 527 befs_debug(sb, "<--- %s ERROR", __func__); 528 return BEFS_ERR; 529 } 530 531 /** 532 * befs_btree_seekleaf - Find the first leafnode in the btree 533 * @sb: Filesystem superblock 534 * @ds: Datastream containing btree 535 * @bt_super: Pointer to the superblock of the btree 536 * @this_node: Buffer to return the leafnode in 537 * @node_off: Pointer to offset of current node within datastream. Modified 538 * by the function. 539 * 540 * 541 * Helper function for btree traverse. Moves the current position to the 542 * start of the first leaf node. 543 * 544 * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY. 545 */ 546 static int 547 befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds, 548 befs_btree_super * bt_super, befs_btree_node * this_node, 549 befs_off_t * node_off) 550 { 551 552 befs_debug(sb, "---> %s", __func__); 553 554 if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) { 555 befs_error(sb, "%s failed to read " 556 "node at %llu", __func__, *node_off); 557 goto error; 558 } 559 befs_debug(sb, "Seekleaf to root node %llu", *node_off); 560 561 if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) { 562 befs_debug(sb, "<--- %s Tree is EMPTY", __func__); 563 return BEFS_BT_EMPTY; 564 } 565 566 while (!befs_leafnode(this_node)) { 567 568 if (this_node->head.all_key_count == 0) { 569 befs_debug(sb, "%s encountered " 570 "an empty interior node: %llu. Using Overflow " 571 "node: %llu", __func__, *node_off, 572 this_node->head.overflow); 573 *node_off = this_node->head.overflow; 574 } else { 575 fs64 *valarray = befs_bt_valarray(this_node); 576 *node_off = fs64_to_cpu(sb, valarray[0]); 577 } 578 if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) { 579 befs_error(sb, "%s failed to read " 580 "node at %llu", __func__, *node_off); 581 goto error; 582 } 583 584 befs_debug(sb, "Seekleaf to child node %llu", *node_off); 585 } 586 befs_debug(sb, "Node %llu is a leaf node", *node_off); 587 588 return BEFS_OK; 589 590 error: 591 befs_debug(sb, "<--- %s ERROR", __func__); 592 return BEFS_ERR; 593 } 594 595 /** 596 * befs_leafnode - Determine if the btree node is a leaf node or an 597 * interior node 598 * @node: Pointer to node structure to test 599 * 600 * Return 1 if leaf, 0 if interior 601 */ 602 static int 603 befs_leafnode(befs_btree_node * node) 604 { 605 /* all interior nodes (and only interior nodes) have an overflow node */ 606 if (node->head.overflow == befs_bt_inval) 607 return 1; 608 else 609 return 0; 610 } 611 612 /** 613 * befs_bt_keylen_index - Finds start of keylen index in a node 614 * @node: Pointer to the node structure to find the keylen index within 615 * 616 * Returns a pointer to the start of the key length index array 617 * of the B+tree node *@node 618 * 619 * "The length of all the keys in the node is added to the size of the 620 * header and then rounded up to a multiple of four to get the beginning 621 * of the key length index" (p.88, practical filesystem design). 622 * 623 * Except that rounding up to 8 works, and rounding up to 4 doesn't. 624 */ 625 static fs16 * 626 befs_bt_keylen_index(befs_btree_node * node) 627 { 628 const int keylen_align = 8; 629 unsigned long int off = 630 (sizeof (befs_btree_nodehead) + node->head.all_key_length); 631 ulong tmp = off % keylen_align; 632 633 if (tmp) 634 off += keylen_align - tmp; 635 636 return (fs16 *) ((void *) node->od_node + off); 637 } 638 639 /** 640 * befs_bt_valarray - Finds the start of value array in a node 641 * @node: Pointer to the node structure to find the value array within 642 * 643 * Returns a pointer to the start of the value array 644 * of the node pointed to by the node header 645 */ 646 static fs64 * 647 befs_bt_valarray(befs_btree_node * node) 648 { 649 void *keylen_index_start = (void *) befs_bt_keylen_index(node); 650 size_t keylen_index_size = node->head.all_key_count * sizeof (fs16); 651 652 return (fs64 *) (keylen_index_start + keylen_index_size); 653 } 654 655 /** 656 * befs_bt_keydata - Finds start of keydata array in a node 657 * @node: Pointer to the node structure to find the keydata array within 658 * 659 * Returns a pointer to the start of the keydata array 660 * of the node pointed to by the node header 661 */ 662 static char * 663 befs_bt_keydata(befs_btree_node * node) 664 { 665 return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead)); 666 } 667 668 /** 669 * befs_bt_get_key - returns a pointer to the start of a key 670 * @sb: filesystem superblock 671 * @node: node in which to look for the key 672 * @index: the index of the key to get 673 * @keylen: modified to be the length of the key at @index 674 * 675 * Returns a valid pointer into @node on success. 676 * Returns NULL on failure (bad input) and sets *@keylen = 0 677 */ 678 static char * 679 befs_bt_get_key(struct super_block *sb, befs_btree_node * node, 680 int index, u16 * keylen) 681 { 682 int prev_key_end; 683 char *keystart; 684 fs16 *keylen_index; 685 686 if (index < 0 || index > node->head.all_key_count) { 687 *keylen = 0; 688 return NULL; 689 } 690 691 keystart = befs_bt_keydata(node); 692 keylen_index = befs_bt_keylen_index(node); 693 694 if (index == 0) 695 prev_key_end = 0; 696 else 697 prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]); 698 699 *keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end; 700 701 return keystart + prev_key_end; 702 } 703 704 /** 705 * befs_compare_strings - compare two strings 706 * @key1: pointer to the first key to be compared 707 * @keylen1: length in bytes of key1 708 * @key2: pointer to the second key to be compared 709 * @keylen2: length in bytes of key2 710 * 711 * Returns 0 if @key1 and @key2 are equal. 712 * Returns >0 if @key1 is greater. 713 * Returns <0 if @key2 is greater.. 714 */ 715 static int 716 befs_compare_strings(const void *key1, int keylen1, 717 const void *key2, int keylen2) 718 { 719 int len = min_t(int, keylen1, keylen2); 720 int result = strncmp(key1, key2, len); 721 if (result == 0) 722 result = keylen1 - keylen2; 723 return result; 724 } 725 726 /* These will be used for non-string keyed btrees */ 727 #if 0 728 static int 729 btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2) 730 { 731 return *(int32_t *) key1 - *(int32_t *) key2; 732 } 733 734 static int 735 btree_compare_uint32(cont void *key1, int keylen1, 736 const void *key2, int keylen2) 737 { 738 if (*(u_int32_t *) key1 == *(u_int32_t *) key2) 739 return 0; 740 else if (*(u_int32_t *) key1 > *(u_int32_t *) key2) 741 return 1; 742 743 return -1; 744 } 745 static int 746 btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2) 747 { 748 if (*(int64_t *) key1 == *(int64_t *) key2) 749 return 0; 750 else if (*(int64_t *) key1 > *(int64_t *) key2) 751 return 1; 752 753 return -1; 754 } 755 756 static int 757 btree_compare_uint64(cont void *key1, int keylen1, 758 const void *key2, int keylen2) 759 { 760 if (*(u_int64_t *) key1 == *(u_int64_t *) key2) 761 return 0; 762 else if (*(u_int64_t *) key1 > *(u_int64_t *) key2) 763 return 1; 764 765 return -1; 766 } 767 768 static int 769 btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2) 770 { 771 float result = *(float *) key1 - *(float *) key2; 772 if (result == 0.0f) 773 return 0; 774 775 return (result < 0.0f) ? -1 : 1; 776 } 777 778 static int 779 btree_compare_double(cont void *key1, int keylen1, 780 const void *key2, int keylen2) 781 { 782 double result = *(double *) key1 - *(double *) key2; 783 if (result == 0.0) 784 return 0; 785 786 return (result < 0.0) ? -1 : 1; 787 } 788 #endif //0 789