1 /* 2 * linux/fs/befs/btree.c 3 * 4 * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com> 5 * 6 * Licensed under the GNU GPL. See the file COPYING for details. 7 * 8 * 2002-02-05: Sergey S. Kostyliov added binary search within 9 * btree nodes. 10 * 11 * Many thanks to: 12 * 13 * Dominic Giampaolo, author of "Practical File System 14 * Design with the Be File System", for such a helpful book. 15 * 16 * Marcus J. Ranum, author of the b+tree package in 17 * comp.sources.misc volume 10. This code is not copied from that 18 * work, but it is partially based on it. 19 * 20 * Makoto Kato, author of the original BeFS for linux filesystem 21 * driver. 22 */ 23 24 #include <linux/kernel.h> 25 #include <linux/string.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/buffer_head.h> 29 30 #include "befs.h" 31 #include "btree.h" 32 #include "datastream.h" 33 34 /* 35 * The btree functions in this file are built on top of the 36 * datastream.c interface, which is in turn built on top of the 37 * io.c interface. 38 */ 39 40 /* Befs B+tree structure: 41 * 42 * The first thing in the tree is the tree superblock. It tells you 43 * all kinds of useful things about the tree, like where the rootnode 44 * is located, and the size of the nodes (always 1024 with current version 45 * of BeOS). 46 * 47 * The rest of the tree consists of a series of nodes. Nodes contain a header 48 * (struct befs_btree_nodehead), the packed key data, an array of shorts 49 * containing the ending offsets for each of the keys, and an array of 50 * befs_off_t values. In interior nodes, the keys are the ending keys for 51 * the childnode they point to, and the values are offsets into the 52 * datastream containing the tree. 53 */ 54 55 /* Note: 56 * 57 * The book states 2 confusing things about befs b+trees. First, 58 * it states that the overflow field of node headers is used by internal nodes 59 * to point to another node that "effectively continues this one". Here is what 60 * I believe that means. Each key in internal nodes points to another node that 61 * contains key values less than itself. Inspection reveals that the last key 62 * in the internal node is not the last key in the index. Keys that are 63 * greater than the last key in the internal node go into the overflow node. 64 * I imagine there is a performance reason for this. 65 * 66 * Second, it states that the header of a btree node is sufficient to 67 * distinguish internal nodes from leaf nodes. Without saying exactly how. 68 * After figuring out the first, it becomes obvious that internal nodes have 69 * overflow nodes and leafnodes do not. 70 */ 71 72 /* 73 * Currently, this code is only good for directory B+trees. 74 * In order to be used for other BFS indexes, it needs to be extended to handle 75 * duplicate keys and non-string keytypes (int32, int64, float, double). 76 */ 77 78 /* 79 * In memory structure of each btree node 80 */ 81 struct befs_btree_node { 82 befs_host_btree_nodehead head; /* head of node converted to cpu byteorder */ 83 struct buffer_head *bh; 84 befs_btree_nodehead *od_node; /* on disk node */ 85 }; 86 87 /* local constants */ 88 static const befs_off_t BEFS_BT_INVAL = 0xffffffffffffffffULL; 89 90 /* local functions */ 91 static int befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds, 92 befs_btree_super * bt_super, 93 struct befs_btree_node *this_node, 94 befs_off_t * node_off); 95 96 static int befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds, 97 befs_btree_super * sup); 98 99 static int befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds, 100 struct befs_btree_node *node, 101 befs_off_t node_off); 102 103 static int befs_leafnode(struct befs_btree_node *node); 104 105 static fs16 *befs_bt_keylen_index(struct befs_btree_node *node); 106 107 static fs64 *befs_bt_valarray(struct befs_btree_node *node); 108 109 static char *befs_bt_keydata(struct befs_btree_node *node); 110 111 static int befs_find_key(struct super_block *sb, 112 struct befs_btree_node *node, 113 const char *findkey, befs_off_t * value); 114 115 static char *befs_bt_get_key(struct super_block *sb, 116 struct befs_btree_node *node, 117 int index, u16 * keylen); 118 119 static int befs_compare_strings(const void *key1, int keylen1, 120 const void *key2, int keylen2); 121 122 /** 123 * befs_bt_read_super - read in btree superblock convert to cpu byteorder 124 * @sb: Filesystem superblock 125 * @ds: Datastream to read from 126 * @sup: Buffer in which to place the btree superblock 127 * 128 * Calls befs_read_datastream to read in the btree superblock and 129 * makes sure it is in cpu byteorder, byteswapping if necessary. 130 * 131 * On success, returns BEFS_OK and *@sup contains the btree superblock, 132 * in cpu byte order. 133 * 134 * On failure, BEFS_ERR is returned. 135 */ 136 static int 137 befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds, 138 befs_btree_super * sup) 139 { 140 struct buffer_head *bh; 141 befs_disk_btree_super *od_sup; 142 143 befs_debug(sb, "---> %s", __func__); 144 145 bh = befs_read_datastream(sb, ds, 0, NULL); 146 147 if (!bh) { 148 befs_error(sb, "Couldn't read index header."); 149 goto error; 150 } 151 od_sup = (befs_disk_btree_super *) bh->b_data; 152 befs_dump_index_entry(sb, od_sup); 153 154 sup->magic = fs32_to_cpu(sb, od_sup->magic); 155 sup->node_size = fs32_to_cpu(sb, od_sup->node_size); 156 sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth); 157 sup->data_type = fs32_to_cpu(sb, od_sup->data_type); 158 sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr); 159 160 brelse(bh); 161 if (sup->magic != BEFS_BTREE_MAGIC) { 162 befs_error(sb, "Index header has bad magic."); 163 goto error; 164 } 165 166 befs_debug(sb, "<--- %s", __func__); 167 return BEFS_OK; 168 169 error: 170 befs_debug(sb, "<--- %s ERROR", __func__); 171 return BEFS_ERR; 172 } 173 174 /** 175 * befs_bt_read_node - read in btree node and convert to cpu byteorder 176 * @sb: Filesystem superblock 177 * @ds: Datastream to read from 178 * @node: Buffer in which to place the btree node 179 * @node_off: Starting offset (in bytes) of the node in @ds 180 * 181 * Calls befs_read_datastream to read in the indicated btree node and 182 * makes sure its header fields are in cpu byteorder, byteswapping if 183 * necessary. 184 * Note: node->bh must be NULL when this function is called the first time. 185 * Don't forget brelse(node->bh) after last call. 186 * 187 * On success, returns BEFS_OK and *@node contains the btree node that 188 * starts at @node_off, with the node->head fields in cpu byte order. 189 * 190 * On failure, BEFS_ERR is returned. 191 */ 192 193 static int 194 befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds, 195 struct befs_btree_node *node, befs_off_t node_off) 196 { 197 uint off = 0; 198 199 befs_debug(sb, "---> %s", __func__); 200 201 if (node->bh) 202 brelse(node->bh); 203 204 node->bh = befs_read_datastream(sb, ds, node_off, &off); 205 if (!node->bh) { 206 befs_error(sb, "%s failed to read " 207 "node at %llu", __func__, node_off); 208 befs_debug(sb, "<--- %s ERROR", __func__); 209 210 return BEFS_ERR; 211 } 212 node->od_node = 213 (befs_btree_nodehead *) ((void *) node->bh->b_data + off); 214 215 befs_dump_index_node(sb, node->od_node); 216 217 node->head.left = fs64_to_cpu(sb, node->od_node->left); 218 node->head.right = fs64_to_cpu(sb, node->od_node->right); 219 node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow); 220 node->head.all_key_count = 221 fs16_to_cpu(sb, node->od_node->all_key_count); 222 node->head.all_key_length = 223 fs16_to_cpu(sb, node->od_node->all_key_length); 224 225 befs_debug(sb, "<--- %s", __func__); 226 return BEFS_OK; 227 } 228 229 /** 230 * befs_btree_find - Find a key in a befs B+tree 231 * @sb: Filesystem superblock 232 * @ds: Datastream containing btree 233 * @key: Key string to lookup in btree 234 * @value: Value stored with @key 235 * 236 * On success, returns BEFS_OK and sets *@value to the value stored 237 * with @key (usually the disk block number of an inode). 238 * 239 * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND. 240 * 241 * Algorithm: 242 * Read the superblock and rootnode of the b+tree. 243 * Drill down through the interior nodes using befs_find_key(). 244 * Once at the correct leaf node, use befs_find_key() again to get the 245 * actual value stored with the key. 246 */ 247 int 248 befs_btree_find(struct super_block *sb, const befs_data_stream *ds, 249 const char *key, befs_off_t * value) 250 { 251 struct befs_btree_node *this_node; 252 befs_btree_super bt_super; 253 befs_off_t node_off; 254 int res; 255 256 befs_debug(sb, "---> %s Key: %s", __func__, key); 257 258 if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) { 259 befs_error(sb, 260 "befs_btree_find() failed to read index superblock"); 261 goto error; 262 } 263 264 this_node = kmalloc(sizeof(struct befs_btree_node), 265 GFP_NOFS); 266 if (!this_node) { 267 befs_error(sb, "befs_btree_find() failed to allocate %zu " 268 "bytes of memory", sizeof(struct befs_btree_node)); 269 goto error; 270 } 271 272 this_node->bh = NULL; 273 274 /* read in root node */ 275 node_off = bt_super.root_node_ptr; 276 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { 277 befs_error(sb, "befs_btree_find() failed to read " 278 "node at %llu", node_off); 279 goto error_alloc; 280 } 281 282 while (!befs_leafnode(this_node)) { 283 res = befs_find_key(sb, this_node, key, &node_off); 284 /* if no key set, try the overflow node */ 285 if (res == BEFS_BT_OVERFLOW) 286 node_off = this_node->head.overflow; 287 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { 288 befs_error(sb, "befs_btree_find() failed to read " 289 "node at %llu", node_off); 290 goto error_alloc; 291 } 292 } 293 294 /* at a leaf node now, check if it is correct */ 295 res = befs_find_key(sb, this_node, key, value); 296 297 brelse(this_node->bh); 298 kfree(this_node); 299 300 if (res != BEFS_BT_MATCH) { 301 befs_error(sb, "<--- %s Key %s not found", __func__, key); 302 befs_debug(sb, "<--- %s ERROR", __func__); 303 *value = 0; 304 return BEFS_BT_NOT_FOUND; 305 } 306 befs_debug(sb, "<--- %s Found key %s, value %llu", __func__, 307 key, *value); 308 return BEFS_OK; 309 310 error_alloc: 311 kfree(this_node); 312 error: 313 *value = 0; 314 befs_debug(sb, "<--- %s ERROR", __func__); 315 return BEFS_ERR; 316 } 317 318 /** 319 * befs_find_key - Search for a key within a node 320 * @sb: Filesystem superblock 321 * @node: Node to find the key within 322 * @findkey: Keystring to search for 323 * @value: If key is found, the value stored with the key is put here 324 * 325 * Finds exact match if one exists, and returns BEFS_BT_MATCH. 326 * If there is no match and node's value array is too small for key, return 327 * BEFS_BT_OVERFLOW. 328 * If no match and node should countain this key, return BEFS_BT_NOT_FOUND. 329 * 330 * Uses binary search instead of a linear. 331 */ 332 static int 333 befs_find_key(struct super_block *sb, struct befs_btree_node *node, 334 const char *findkey, befs_off_t * value) 335 { 336 int first, last, mid; 337 int eq; 338 u16 keylen; 339 int findkey_len; 340 char *thiskey; 341 fs64 *valarray; 342 343 befs_debug(sb, "---> %s %s", __func__, findkey); 344 345 findkey_len = strlen(findkey); 346 347 /* if node can not contain key, just skip this node */ 348 last = node->head.all_key_count - 1; 349 thiskey = befs_bt_get_key(sb, node, last, &keylen); 350 351 eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len); 352 if (eq < 0) { 353 befs_debug(sb, "<--- node can't contain %s", findkey); 354 return BEFS_BT_OVERFLOW; 355 } 356 357 valarray = befs_bt_valarray(node); 358 359 /* simple binary search */ 360 first = 0; 361 mid = 0; 362 while (last >= first) { 363 mid = (last + first) / 2; 364 befs_debug(sb, "first: %d, last: %d, mid: %d", first, last, 365 mid); 366 thiskey = befs_bt_get_key(sb, node, mid, &keylen); 367 eq = befs_compare_strings(thiskey, keylen, findkey, 368 findkey_len); 369 370 if (eq == 0) { 371 befs_debug(sb, "<--- %s found %s at %d", 372 __func__, thiskey, mid); 373 374 *value = fs64_to_cpu(sb, valarray[mid]); 375 return BEFS_BT_MATCH; 376 } 377 if (eq > 0) 378 last = mid - 1; 379 else 380 first = mid + 1; 381 } 382 383 /* return an existing value so caller can arrive to a leaf node */ 384 if (eq < 0) 385 *value = fs64_to_cpu(sb, valarray[mid + 1]); 386 else 387 *value = fs64_to_cpu(sb, valarray[mid]); 388 befs_error(sb, "<--- %s %s not found", __func__, findkey); 389 befs_debug(sb, "<--- %s ERROR", __func__); 390 return BEFS_BT_NOT_FOUND; 391 } 392 393 /** 394 * befs_btree_read - Traverse leafnodes of a btree 395 * @sb: Filesystem superblock 396 * @ds: Datastream containing btree 397 * @key_no: Key number (alphabetical order) of key to read 398 * @bufsize: Size of the buffer to return key in 399 * @keybuf: Pointer to a buffer to put the key in 400 * @keysize: Length of the returned key 401 * @value: Value stored with the returned key 402 * 403 * Here's how it works: Key_no is the index of the key/value pair to 404 * return in keybuf/value. 405 * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is 406 * the number of characters in the key (just a convenience). 407 * 408 * Algorithm: 409 * Get the first leafnode of the tree. See if the requested key is in that 410 * node. If not, follow the node->right link to the next leafnode. Repeat 411 * until the (key_no)th key is found or the tree is out of keys. 412 */ 413 int 414 befs_btree_read(struct super_block *sb, const befs_data_stream *ds, 415 loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize, 416 befs_off_t * value) 417 { 418 struct befs_btree_node *this_node; 419 befs_btree_super bt_super; 420 befs_off_t node_off; 421 int cur_key; 422 fs64 *valarray; 423 char *keystart; 424 u16 keylen; 425 int res; 426 427 uint key_sum = 0; 428 429 befs_debug(sb, "---> %s", __func__); 430 431 if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) { 432 befs_error(sb, 433 "befs_btree_read() failed to read index superblock"); 434 goto error; 435 } 436 437 this_node = kmalloc(sizeof(struct befs_btree_node), GFP_NOFS); 438 if (this_node == NULL) { 439 befs_error(sb, "befs_btree_read() failed to allocate %zu " 440 "bytes of memory", sizeof(struct befs_btree_node)); 441 goto error; 442 } 443 444 node_off = bt_super.root_node_ptr; 445 this_node->bh = NULL; 446 447 /* seeks down to first leafnode, reads it into this_node */ 448 res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off); 449 if (res == BEFS_BT_EMPTY) { 450 brelse(this_node->bh); 451 kfree(this_node); 452 *value = 0; 453 *keysize = 0; 454 befs_debug(sb, "<--- %s Tree is EMPTY", __func__); 455 return BEFS_BT_EMPTY; 456 } else if (res == BEFS_ERR) { 457 goto error_alloc; 458 } 459 460 /* find the leaf node containing the key_no key */ 461 462 while (key_sum + this_node->head.all_key_count <= key_no) { 463 464 /* no more nodes to look in: key_no is too large */ 465 if (this_node->head.right == BEFS_BT_INVAL) { 466 *keysize = 0; 467 *value = 0; 468 befs_debug(sb, 469 "<--- %s END of keys at %llu", __func__, 470 (unsigned long long) 471 key_sum + this_node->head.all_key_count); 472 brelse(this_node->bh); 473 kfree(this_node); 474 return BEFS_BT_END; 475 } 476 477 key_sum += this_node->head.all_key_count; 478 node_off = this_node->head.right; 479 480 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { 481 befs_error(sb, "%s failed to read node at %llu", 482 __func__, (unsigned long long)node_off); 483 goto error_alloc; 484 } 485 } 486 487 /* how many keys into this_node is key_no */ 488 cur_key = key_no - key_sum; 489 490 /* get pointers to datastructures within the node body */ 491 valarray = befs_bt_valarray(this_node); 492 493 keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen); 494 495 befs_debug(sb, "Read [%llu,%d]: keysize %d", 496 (long long unsigned int)node_off, (int)cur_key, 497 (int)keylen); 498 499 if (bufsize < keylen + 1) { 500 befs_error(sb, "%s keybuf too small (%zu) " 501 "for key of size %d", __func__, bufsize, keylen); 502 brelse(this_node->bh); 503 goto error_alloc; 504 } 505 506 strlcpy(keybuf, keystart, keylen + 1); 507 *value = fs64_to_cpu(sb, valarray[cur_key]); 508 *keysize = keylen; 509 510 befs_debug(sb, "Read [%llu,%d]: Key \"%.*s\", Value %llu", node_off, 511 cur_key, keylen, keybuf, *value); 512 513 brelse(this_node->bh); 514 kfree(this_node); 515 516 befs_debug(sb, "<--- %s", __func__); 517 518 return BEFS_OK; 519 520 error_alloc: 521 kfree(this_node); 522 523 error: 524 *keysize = 0; 525 *value = 0; 526 befs_debug(sb, "<--- %s ERROR", __func__); 527 return BEFS_ERR; 528 } 529 530 /** 531 * befs_btree_seekleaf - Find the first leafnode in the btree 532 * @sb: Filesystem superblock 533 * @ds: Datastream containing btree 534 * @bt_super: Pointer to the superblock of the btree 535 * @this_node: Buffer to return the leafnode in 536 * @node_off: Pointer to offset of current node within datastream. Modified 537 * by the function. 538 * 539 * Helper function for btree traverse. Moves the current position to the 540 * start of the first leaf node. 541 * 542 * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY. 543 */ 544 static int 545 befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds, 546 befs_btree_super *bt_super, 547 struct befs_btree_node *this_node, 548 befs_off_t * node_off) 549 { 550 551 befs_debug(sb, "---> %s", __func__); 552 553 if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) { 554 befs_error(sb, "%s failed to read " 555 "node at %llu", __func__, *node_off); 556 goto error; 557 } 558 befs_debug(sb, "Seekleaf to root node %llu", *node_off); 559 560 if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) { 561 befs_debug(sb, "<--- %s Tree is EMPTY", __func__); 562 return BEFS_BT_EMPTY; 563 } 564 565 while (!befs_leafnode(this_node)) { 566 567 if (this_node->head.all_key_count == 0) { 568 befs_debug(sb, "%s encountered " 569 "an empty interior node: %llu. Using Overflow " 570 "node: %llu", __func__, *node_off, 571 this_node->head.overflow); 572 *node_off = this_node->head.overflow; 573 } else { 574 fs64 *valarray = befs_bt_valarray(this_node); 575 *node_off = fs64_to_cpu(sb, valarray[0]); 576 } 577 if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) { 578 befs_error(sb, "%s failed to read " 579 "node at %llu", __func__, *node_off); 580 goto error; 581 } 582 583 befs_debug(sb, "Seekleaf to child node %llu", *node_off); 584 } 585 befs_debug(sb, "Node %llu is a leaf node", *node_off); 586 587 return BEFS_OK; 588 589 error: 590 befs_debug(sb, "<--- %s ERROR", __func__); 591 return BEFS_ERR; 592 } 593 594 /** 595 * befs_leafnode - Determine if the btree node is a leaf node or an 596 * interior node 597 * @node: Pointer to node structure to test 598 * 599 * Return 1 if leaf, 0 if interior 600 */ 601 static int 602 befs_leafnode(struct befs_btree_node *node) 603 { 604 /* all interior nodes (and only interior nodes) have an overflow node */ 605 if (node->head.overflow == BEFS_BT_INVAL) 606 return 1; 607 else 608 return 0; 609 } 610 611 /** 612 * befs_bt_keylen_index - Finds start of keylen index in a node 613 * @node: Pointer to the node structure to find the keylen index within 614 * 615 * Returns a pointer to the start of the key length index array 616 * of the B+tree node *@node 617 * 618 * "The length of all the keys in the node is added to the size of the 619 * header and then rounded up to a multiple of four to get the beginning 620 * of the key length index" (p.88, practical filesystem design). 621 * 622 * Except that rounding up to 8 works, and rounding up to 4 doesn't. 623 */ 624 static fs16 * 625 befs_bt_keylen_index(struct befs_btree_node *node) 626 { 627 const int keylen_align = 8; 628 unsigned long int off = 629 (sizeof (befs_btree_nodehead) + node->head.all_key_length); 630 ulong tmp = off % keylen_align; 631 632 if (tmp) 633 off += keylen_align - tmp; 634 635 return (fs16 *) ((void *) node->od_node + off); 636 } 637 638 /** 639 * befs_bt_valarray - Finds the start of value array in a node 640 * @node: Pointer to the node structure to find the value array within 641 * 642 * Returns a pointer to the start of the value array 643 * of the node pointed to by the node header 644 */ 645 static fs64 * 646 befs_bt_valarray(struct befs_btree_node *node) 647 { 648 void *keylen_index_start = (void *) befs_bt_keylen_index(node); 649 size_t keylen_index_size = node->head.all_key_count * sizeof (fs16); 650 651 return (fs64 *) (keylen_index_start + keylen_index_size); 652 } 653 654 /** 655 * befs_bt_keydata - Finds start of keydata array in a node 656 * @node: Pointer to the node structure to find the keydata array within 657 * 658 * Returns a pointer to the start of the keydata array 659 * of the node pointed to by the node header 660 */ 661 static char * 662 befs_bt_keydata(struct befs_btree_node *node) 663 { 664 return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead)); 665 } 666 667 /** 668 * befs_bt_get_key - returns a pointer to the start of a key 669 * @sb: filesystem superblock 670 * @node: node in which to look for the key 671 * @index: the index of the key to get 672 * @keylen: modified to be the length of the key at @index 673 * 674 * Returns a valid pointer into @node on success. 675 * Returns NULL on failure (bad input) and sets *@keylen = 0 676 */ 677 static char * 678 befs_bt_get_key(struct super_block *sb, struct befs_btree_node *node, 679 int index, u16 * keylen) 680 { 681 int prev_key_end; 682 char *keystart; 683 fs16 *keylen_index; 684 685 if (index < 0 || index > node->head.all_key_count) { 686 *keylen = 0; 687 return NULL; 688 } 689 690 keystart = befs_bt_keydata(node); 691 keylen_index = befs_bt_keylen_index(node); 692 693 if (index == 0) 694 prev_key_end = 0; 695 else 696 prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]); 697 698 *keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end; 699 700 return keystart + prev_key_end; 701 } 702 703 /** 704 * befs_compare_strings - compare two strings 705 * @key1: pointer to the first key to be compared 706 * @keylen1: length in bytes of key1 707 * @key2: pointer to the second key to be compared 708 * @keylen2: length in bytes of key2 709 * 710 * Returns 0 if @key1 and @key2 are equal. 711 * Returns >0 if @key1 is greater. 712 * Returns <0 if @key2 is greater. 713 */ 714 static int 715 befs_compare_strings(const void *key1, int keylen1, 716 const void *key2, int keylen2) 717 { 718 int len = min_t(int, keylen1, keylen2); 719 int result = strncmp(key1, key2, len); 720 if (result == 0) 721 result = keylen1 - keylen2; 722 return result; 723 } 724 725 /* These will be used for non-string keyed btrees */ 726 #if 0 727 static int 728 btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2) 729 { 730 return *(int32_t *) key1 - *(int32_t *) key2; 731 } 732 733 static int 734 btree_compare_uint32(cont void *key1, int keylen1, 735 const void *key2, int keylen2) 736 { 737 if (*(u_int32_t *) key1 == *(u_int32_t *) key2) 738 return 0; 739 else if (*(u_int32_t *) key1 > *(u_int32_t *) key2) 740 return 1; 741 742 return -1; 743 } 744 static int 745 btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2) 746 { 747 if (*(int64_t *) key1 == *(int64_t *) key2) 748 return 0; 749 else if (*(int64_t *) key1 > *(int64_t *) key2) 750 return 1; 751 752 return -1; 753 } 754 755 static int 756 btree_compare_uint64(cont void *key1, int keylen1, 757 const void *key2, int keylen2) 758 { 759 if (*(u_int64_t *) key1 == *(u_int64_t *) key2) 760 return 0; 761 else if (*(u_int64_t *) key1 > *(u_int64_t *) key2) 762 return 1; 763 764 return -1; 765 } 766 767 static int 768 btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2) 769 { 770 float result = *(float *) key1 - *(float *) key2; 771 if (result == 0.0f) 772 return 0; 773 774 return (result < 0.0f) ? -1 : 1; 775 } 776 777 static int 778 btree_compare_double(cont void *key1, int keylen1, 779 const void *key2, int keylen2) 780 { 781 double result = *(double *) key1 - *(double *) key2; 782 if (result == 0.0) 783 return 0; 784 785 return (result < 0.0) ? -1 : 1; 786 } 787 #endif //0 788