xref: /openbmc/linux/fs/aio.c (revision feac8c8b)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched/signal.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <linux/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;	/* Written to by userland or under ring_lock
56 				 * mutex by aio_read_events_ring(). */
57 	unsigned	tail;
58 
59 	unsigned	magic;
60 	unsigned	compat_features;
61 	unsigned	incompat_features;
62 	unsigned	header_length;	/* size of aio_ring */
63 
64 
65 	struct io_event		io_events[0];
66 }; /* 128 bytes + ring size */
67 
68 #define AIO_RING_PAGES	8
69 
70 struct kioctx_table {
71 	struct rcu_head	rcu;
72 	unsigned	nr;
73 	struct kioctx	*table[];
74 };
75 
76 struct kioctx_cpu {
77 	unsigned		reqs_available;
78 };
79 
80 struct ctx_rq_wait {
81 	struct completion comp;
82 	atomic_t count;
83 };
84 
85 struct kioctx {
86 	struct percpu_ref	users;
87 	atomic_t		dead;
88 
89 	struct percpu_ref	reqs;
90 
91 	unsigned long		user_id;
92 
93 	struct __percpu kioctx_cpu *cpu;
94 
95 	/*
96 	 * For percpu reqs_available, number of slots we move to/from global
97 	 * counter at a time:
98 	 */
99 	unsigned		req_batch;
100 	/*
101 	 * This is what userspace passed to io_setup(), it's not used for
102 	 * anything but counting against the global max_reqs quota.
103 	 *
104 	 * The real limit is nr_events - 1, which will be larger (see
105 	 * aio_setup_ring())
106 	 */
107 	unsigned		max_reqs;
108 
109 	/* Size of ringbuffer, in units of struct io_event */
110 	unsigned		nr_events;
111 
112 	unsigned long		mmap_base;
113 	unsigned long		mmap_size;
114 
115 	struct page		**ring_pages;
116 	long			nr_pages;
117 
118 	struct work_struct	free_work;
119 
120 	/*
121 	 * signals when all in-flight requests are done
122 	 */
123 	struct ctx_rq_wait	*rq_wait;
124 
125 	struct {
126 		/*
127 		 * This counts the number of available slots in the ringbuffer,
128 		 * so we avoid overflowing it: it's decremented (if positive)
129 		 * when allocating a kiocb and incremented when the resulting
130 		 * io_event is pulled off the ringbuffer.
131 		 *
132 		 * We batch accesses to it with a percpu version.
133 		 */
134 		atomic_t	reqs_available;
135 	} ____cacheline_aligned_in_smp;
136 
137 	struct {
138 		spinlock_t	ctx_lock;
139 		struct list_head active_reqs;	/* used for cancellation */
140 	} ____cacheline_aligned_in_smp;
141 
142 	struct {
143 		struct mutex	ring_lock;
144 		wait_queue_head_t wait;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		unsigned	tail;
149 		unsigned	completed_events;
150 		spinlock_t	completion_lock;
151 	} ____cacheline_aligned_in_smp;
152 
153 	struct page		*internal_pages[AIO_RING_PAGES];
154 	struct file		*aio_ring_file;
155 
156 	unsigned		id;
157 };
158 
159 /*
160  * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
161  * cancelled or completed (this makes a certain amount of sense because
162  * successful cancellation - io_cancel() - does deliver the completion to
163  * userspace).
164  *
165  * And since most things don't implement kiocb cancellation and we'd really like
166  * kiocb completion to be lockless when possible, we use ki_cancel to
167  * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
168  * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
169  */
170 #define KIOCB_CANCELLED		((void *) (~0ULL))
171 
172 struct aio_kiocb {
173 	struct kiocb		common;
174 
175 	struct kioctx		*ki_ctx;
176 	kiocb_cancel_fn		*ki_cancel;
177 
178 	struct iocb __user	*ki_user_iocb;	/* user's aiocb */
179 	__u64			ki_user_data;	/* user's data for completion */
180 
181 	struct list_head	ki_list;	/* the aio core uses this
182 						 * for cancellation */
183 
184 	/*
185 	 * If the aio_resfd field of the userspace iocb is not zero,
186 	 * this is the underlying eventfd context to deliver events to.
187 	 */
188 	struct eventfd_ctx	*ki_eventfd;
189 };
190 
191 /*------ sysctl variables----*/
192 static DEFINE_SPINLOCK(aio_nr_lock);
193 unsigned long aio_nr;		/* current system wide number of aio requests */
194 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
195 /*----end sysctl variables---*/
196 
197 static struct kmem_cache	*kiocb_cachep;
198 static struct kmem_cache	*kioctx_cachep;
199 
200 static struct vfsmount *aio_mnt;
201 
202 static const struct file_operations aio_ring_fops;
203 static const struct address_space_operations aio_ctx_aops;
204 
205 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
206 {
207 	struct qstr this = QSTR_INIT("[aio]", 5);
208 	struct file *file;
209 	struct path path;
210 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
211 	if (IS_ERR(inode))
212 		return ERR_CAST(inode);
213 
214 	inode->i_mapping->a_ops = &aio_ctx_aops;
215 	inode->i_mapping->private_data = ctx;
216 	inode->i_size = PAGE_SIZE * nr_pages;
217 
218 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
219 	if (!path.dentry) {
220 		iput(inode);
221 		return ERR_PTR(-ENOMEM);
222 	}
223 	path.mnt = mntget(aio_mnt);
224 
225 	d_instantiate(path.dentry, inode);
226 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
227 	if (IS_ERR(file)) {
228 		path_put(&path);
229 		return file;
230 	}
231 
232 	file->f_flags = O_RDWR;
233 	return file;
234 }
235 
236 static struct dentry *aio_mount(struct file_system_type *fs_type,
237 				int flags, const char *dev_name, void *data)
238 {
239 	static const struct dentry_operations ops = {
240 		.d_dname	= simple_dname,
241 	};
242 	struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
243 					   AIO_RING_MAGIC);
244 
245 	if (!IS_ERR(root))
246 		root->d_sb->s_iflags |= SB_I_NOEXEC;
247 	return root;
248 }
249 
250 /* aio_setup
251  *	Creates the slab caches used by the aio routines, panic on
252  *	failure as this is done early during the boot sequence.
253  */
254 static int __init aio_setup(void)
255 {
256 	static struct file_system_type aio_fs = {
257 		.name		= "aio",
258 		.mount		= aio_mount,
259 		.kill_sb	= kill_anon_super,
260 	};
261 	aio_mnt = kern_mount(&aio_fs);
262 	if (IS_ERR(aio_mnt))
263 		panic("Failed to create aio fs mount.");
264 
265 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
266 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
267 
268 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
269 
270 	return 0;
271 }
272 __initcall(aio_setup);
273 
274 static void put_aio_ring_file(struct kioctx *ctx)
275 {
276 	struct file *aio_ring_file = ctx->aio_ring_file;
277 	struct address_space *i_mapping;
278 
279 	if (aio_ring_file) {
280 		truncate_setsize(file_inode(aio_ring_file), 0);
281 
282 		/* Prevent further access to the kioctx from migratepages */
283 		i_mapping = aio_ring_file->f_mapping;
284 		spin_lock(&i_mapping->private_lock);
285 		i_mapping->private_data = NULL;
286 		ctx->aio_ring_file = NULL;
287 		spin_unlock(&i_mapping->private_lock);
288 
289 		fput(aio_ring_file);
290 	}
291 }
292 
293 static void aio_free_ring(struct kioctx *ctx)
294 {
295 	int i;
296 
297 	/* Disconnect the kiotx from the ring file.  This prevents future
298 	 * accesses to the kioctx from page migration.
299 	 */
300 	put_aio_ring_file(ctx);
301 
302 	for (i = 0; i < ctx->nr_pages; i++) {
303 		struct page *page;
304 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
305 				page_count(ctx->ring_pages[i]));
306 		page = ctx->ring_pages[i];
307 		if (!page)
308 			continue;
309 		ctx->ring_pages[i] = NULL;
310 		put_page(page);
311 	}
312 
313 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
314 		kfree(ctx->ring_pages);
315 		ctx->ring_pages = NULL;
316 	}
317 }
318 
319 static int aio_ring_mremap(struct vm_area_struct *vma)
320 {
321 	struct file *file = vma->vm_file;
322 	struct mm_struct *mm = vma->vm_mm;
323 	struct kioctx_table *table;
324 	int i, res = -EINVAL;
325 
326 	spin_lock(&mm->ioctx_lock);
327 	rcu_read_lock();
328 	table = rcu_dereference(mm->ioctx_table);
329 	for (i = 0; i < table->nr; i++) {
330 		struct kioctx *ctx;
331 
332 		ctx = table->table[i];
333 		if (ctx && ctx->aio_ring_file == file) {
334 			if (!atomic_read(&ctx->dead)) {
335 				ctx->user_id = ctx->mmap_base = vma->vm_start;
336 				res = 0;
337 			}
338 			break;
339 		}
340 	}
341 
342 	rcu_read_unlock();
343 	spin_unlock(&mm->ioctx_lock);
344 	return res;
345 }
346 
347 static const struct vm_operations_struct aio_ring_vm_ops = {
348 	.mremap		= aio_ring_mremap,
349 #if IS_ENABLED(CONFIG_MMU)
350 	.fault		= filemap_fault,
351 	.map_pages	= filemap_map_pages,
352 	.page_mkwrite	= filemap_page_mkwrite,
353 #endif
354 };
355 
356 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
357 {
358 	vma->vm_flags |= VM_DONTEXPAND;
359 	vma->vm_ops = &aio_ring_vm_ops;
360 	return 0;
361 }
362 
363 static const struct file_operations aio_ring_fops = {
364 	.mmap = aio_ring_mmap,
365 };
366 
367 #if IS_ENABLED(CONFIG_MIGRATION)
368 static int aio_migratepage(struct address_space *mapping, struct page *new,
369 			struct page *old, enum migrate_mode mode)
370 {
371 	struct kioctx *ctx;
372 	unsigned long flags;
373 	pgoff_t idx;
374 	int rc;
375 
376 	/*
377 	 * We cannot support the _NO_COPY case here, because copy needs to
378 	 * happen under the ctx->completion_lock. That does not work with the
379 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
380 	 */
381 	if (mode == MIGRATE_SYNC_NO_COPY)
382 		return -EINVAL;
383 
384 	rc = 0;
385 
386 	/* mapping->private_lock here protects against the kioctx teardown.  */
387 	spin_lock(&mapping->private_lock);
388 	ctx = mapping->private_data;
389 	if (!ctx) {
390 		rc = -EINVAL;
391 		goto out;
392 	}
393 
394 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
395 	 * to the ring's head, and prevents page migration from mucking in
396 	 * a partially initialized kiotx.
397 	 */
398 	if (!mutex_trylock(&ctx->ring_lock)) {
399 		rc = -EAGAIN;
400 		goto out;
401 	}
402 
403 	idx = old->index;
404 	if (idx < (pgoff_t)ctx->nr_pages) {
405 		/* Make sure the old page hasn't already been changed */
406 		if (ctx->ring_pages[idx] != old)
407 			rc = -EAGAIN;
408 	} else
409 		rc = -EINVAL;
410 
411 	if (rc != 0)
412 		goto out_unlock;
413 
414 	/* Writeback must be complete */
415 	BUG_ON(PageWriteback(old));
416 	get_page(new);
417 
418 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
419 	if (rc != MIGRATEPAGE_SUCCESS) {
420 		put_page(new);
421 		goto out_unlock;
422 	}
423 
424 	/* Take completion_lock to prevent other writes to the ring buffer
425 	 * while the old page is copied to the new.  This prevents new
426 	 * events from being lost.
427 	 */
428 	spin_lock_irqsave(&ctx->completion_lock, flags);
429 	migrate_page_copy(new, old);
430 	BUG_ON(ctx->ring_pages[idx] != old);
431 	ctx->ring_pages[idx] = new;
432 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
433 
434 	/* The old page is no longer accessible. */
435 	put_page(old);
436 
437 out_unlock:
438 	mutex_unlock(&ctx->ring_lock);
439 out:
440 	spin_unlock(&mapping->private_lock);
441 	return rc;
442 }
443 #endif
444 
445 static const struct address_space_operations aio_ctx_aops = {
446 	.set_page_dirty = __set_page_dirty_no_writeback,
447 #if IS_ENABLED(CONFIG_MIGRATION)
448 	.migratepage	= aio_migratepage,
449 #endif
450 };
451 
452 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
453 {
454 	struct aio_ring *ring;
455 	struct mm_struct *mm = current->mm;
456 	unsigned long size, unused;
457 	int nr_pages;
458 	int i;
459 	struct file *file;
460 
461 	/* Compensate for the ring buffer's head/tail overlap entry */
462 	nr_events += 2;	/* 1 is required, 2 for good luck */
463 
464 	size = sizeof(struct aio_ring);
465 	size += sizeof(struct io_event) * nr_events;
466 
467 	nr_pages = PFN_UP(size);
468 	if (nr_pages < 0)
469 		return -EINVAL;
470 
471 	file = aio_private_file(ctx, nr_pages);
472 	if (IS_ERR(file)) {
473 		ctx->aio_ring_file = NULL;
474 		return -ENOMEM;
475 	}
476 
477 	ctx->aio_ring_file = file;
478 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
479 			/ sizeof(struct io_event);
480 
481 	ctx->ring_pages = ctx->internal_pages;
482 	if (nr_pages > AIO_RING_PAGES) {
483 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
484 					  GFP_KERNEL);
485 		if (!ctx->ring_pages) {
486 			put_aio_ring_file(ctx);
487 			return -ENOMEM;
488 		}
489 	}
490 
491 	for (i = 0; i < nr_pages; i++) {
492 		struct page *page;
493 		page = find_or_create_page(file->f_mapping,
494 					   i, GFP_HIGHUSER | __GFP_ZERO);
495 		if (!page)
496 			break;
497 		pr_debug("pid(%d) page[%d]->count=%d\n",
498 			 current->pid, i, page_count(page));
499 		SetPageUptodate(page);
500 		unlock_page(page);
501 
502 		ctx->ring_pages[i] = page;
503 	}
504 	ctx->nr_pages = i;
505 
506 	if (unlikely(i != nr_pages)) {
507 		aio_free_ring(ctx);
508 		return -ENOMEM;
509 	}
510 
511 	ctx->mmap_size = nr_pages * PAGE_SIZE;
512 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
513 
514 	if (down_write_killable(&mm->mmap_sem)) {
515 		ctx->mmap_size = 0;
516 		aio_free_ring(ctx);
517 		return -EINTR;
518 	}
519 
520 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
521 				       PROT_READ | PROT_WRITE,
522 				       MAP_SHARED, 0, &unused, NULL);
523 	up_write(&mm->mmap_sem);
524 	if (IS_ERR((void *)ctx->mmap_base)) {
525 		ctx->mmap_size = 0;
526 		aio_free_ring(ctx);
527 		return -ENOMEM;
528 	}
529 
530 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
531 
532 	ctx->user_id = ctx->mmap_base;
533 	ctx->nr_events = nr_events; /* trusted copy */
534 
535 	ring = kmap_atomic(ctx->ring_pages[0]);
536 	ring->nr = nr_events;	/* user copy */
537 	ring->id = ~0U;
538 	ring->head = ring->tail = 0;
539 	ring->magic = AIO_RING_MAGIC;
540 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
541 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
542 	ring->header_length = sizeof(struct aio_ring);
543 	kunmap_atomic(ring);
544 	flush_dcache_page(ctx->ring_pages[0]);
545 
546 	return 0;
547 }
548 
549 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
550 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
551 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
552 
553 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
554 {
555 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
556 	struct kioctx *ctx = req->ki_ctx;
557 	unsigned long flags;
558 
559 	spin_lock_irqsave(&ctx->ctx_lock, flags);
560 
561 	if (!req->ki_list.next)
562 		list_add(&req->ki_list, &ctx->active_reqs);
563 
564 	req->ki_cancel = cancel;
565 
566 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
567 }
568 EXPORT_SYMBOL(kiocb_set_cancel_fn);
569 
570 static int kiocb_cancel(struct aio_kiocb *kiocb)
571 {
572 	kiocb_cancel_fn *old, *cancel;
573 
574 	/*
575 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
576 	 * actually has a cancel function, hence the cmpxchg()
577 	 */
578 
579 	cancel = READ_ONCE(kiocb->ki_cancel);
580 	do {
581 		if (!cancel || cancel == KIOCB_CANCELLED)
582 			return -EINVAL;
583 
584 		old = cancel;
585 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
586 	} while (cancel != old);
587 
588 	return cancel(&kiocb->common);
589 }
590 
591 static void free_ioctx(struct work_struct *work)
592 {
593 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
594 
595 	pr_debug("freeing %p\n", ctx);
596 
597 	aio_free_ring(ctx);
598 	free_percpu(ctx->cpu);
599 	percpu_ref_exit(&ctx->reqs);
600 	percpu_ref_exit(&ctx->users);
601 	kmem_cache_free(kioctx_cachep, ctx);
602 }
603 
604 static void free_ioctx_reqs(struct percpu_ref *ref)
605 {
606 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
607 
608 	/* At this point we know that there are no any in-flight requests */
609 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
610 		complete(&ctx->rq_wait->comp);
611 
612 	INIT_WORK(&ctx->free_work, free_ioctx);
613 	schedule_work(&ctx->free_work);
614 }
615 
616 /*
617  * When this function runs, the kioctx has been removed from the "hash table"
618  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
619  * now it's safe to cancel any that need to be.
620  */
621 static void free_ioctx_users(struct percpu_ref *ref)
622 {
623 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
624 	struct aio_kiocb *req;
625 
626 	spin_lock_irq(&ctx->ctx_lock);
627 
628 	while (!list_empty(&ctx->active_reqs)) {
629 		req = list_first_entry(&ctx->active_reqs,
630 				       struct aio_kiocb, ki_list);
631 
632 		list_del_init(&req->ki_list);
633 		kiocb_cancel(req);
634 	}
635 
636 	spin_unlock_irq(&ctx->ctx_lock);
637 
638 	percpu_ref_kill(&ctx->reqs);
639 	percpu_ref_put(&ctx->reqs);
640 }
641 
642 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
643 {
644 	unsigned i, new_nr;
645 	struct kioctx_table *table, *old;
646 	struct aio_ring *ring;
647 
648 	spin_lock(&mm->ioctx_lock);
649 	table = rcu_dereference_raw(mm->ioctx_table);
650 
651 	while (1) {
652 		if (table)
653 			for (i = 0; i < table->nr; i++)
654 				if (!table->table[i]) {
655 					ctx->id = i;
656 					table->table[i] = ctx;
657 					spin_unlock(&mm->ioctx_lock);
658 
659 					/* While kioctx setup is in progress,
660 					 * we are protected from page migration
661 					 * changes ring_pages by ->ring_lock.
662 					 */
663 					ring = kmap_atomic(ctx->ring_pages[0]);
664 					ring->id = ctx->id;
665 					kunmap_atomic(ring);
666 					return 0;
667 				}
668 
669 		new_nr = (table ? table->nr : 1) * 4;
670 		spin_unlock(&mm->ioctx_lock);
671 
672 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
673 				new_nr, GFP_KERNEL);
674 		if (!table)
675 			return -ENOMEM;
676 
677 		table->nr = new_nr;
678 
679 		spin_lock(&mm->ioctx_lock);
680 		old = rcu_dereference_raw(mm->ioctx_table);
681 
682 		if (!old) {
683 			rcu_assign_pointer(mm->ioctx_table, table);
684 		} else if (table->nr > old->nr) {
685 			memcpy(table->table, old->table,
686 			       old->nr * sizeof(struct kioctx *));
687 
688 			rcu_assign_pointer(mm->ioctx_table, table);
689 			kfree_rcu(old, rcu);
690 		} else {
691 			kfree(table);
692 			table = old;
693 		}
694 	}
695 }
696 
697 static void aio_nr_sub(unsigned nr)
698 {
699 	spin_lock(&aio_nr_lock);
700 	if (WARN_ON(aio_nr - nr > aio_nr))
701 		aio_nr = 0;
702 	else
703 		aio_nr -= nr;
704 	spin_unlock(&aio_nr_lock);
705 }
706 
707 /* ioctx_alloc
708  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
709  */
710 static struct kioctx *ioctx_alloc(unsigned nr_events)
711 {
712 	struct mm_struct *mm = current->mm;
713 	struct kioctx *ctx;
714 	int err = -ENOMEM;
715 
716 	/*
717 	 * Store the original nr_events -- what userspace passed to io_setup(),
718 	 * for counting against the global limit -- before it changes.
719 	 */
720 	unsigned int max_reqs = nr_events;
721 
722 	/*
723 	 * We keep track of the number of available ringbuffer slots, to prevent
724 	 * overflow (reqs_available), and we also use percpu counters for this.
725 	 *
726 	 * So since up to half the slots might be on other cpu's percpu counters
727 	 * and unavailable, double nr_events so userspace sees what they
728 	 * expected: additionally, we move req_batch slots to/from percpu
729 	 * counters at a time, so make sure that isn't 0:
730 	 */
731 	nr_events = max(nr_events, num_possible_cpus() * 4);
732 	nr_events *= 2;
733 
734 	/* Prevent overflows */
735 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
736 		pr_debug("ENOMEM: nr_events too high\n");
737 		return ERR_PTR(-EINVAL);
738 	}
739 
740 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
741 		return ERR_PTR(-EAGAIN);
742 
743 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
744 	if (!ctx)
745 		return ERR_PTR(-ENOMEM);
746 
747 	ctx->max_reqs = max_reqs;
748 
749 	spin_lock_init(&ctx->ctx_lock);
750 	spin_lock_init(&ctx->completion_lock);
751 	mutex_init(&ctx->ring_lock);
752 	/* Protect against page migration throughout kiotx setup by keeping
753 	 * the ring_lock mutex held until setup is complete. */
754 	mutex_lock(&ctx->ring_lock);
755 	init_waitqueue_head(&ctx->wait);
756 
757 	INIT_LIST_HEAD(&ctx->active_reqs);
758 
759 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
760 		goto err;
761 
762 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
763 		goto err;
764 
765 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
766 	if (!ctx->cpu)
767 		goto err;
768 
769 	err = aio_setup_ring(ctx, nr_events);
770 	if (err < 0)
771 		goto err;
772 
773 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
774 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
775 	if (ctx->req_batch < 1)
776 		ctx->req_batch = 1;
777 
778 	/* limit the number of system wide aios */
779 	spin_lock(&aio_nr_lock);
780 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
781 	    aio_nr + ctx->max_reqs < aio_nr) {
782 		spin_unlock(&aio_nr_lock);
783 		err = -EAGAIN;
784 		goto err_ctx;
785 	}
786 	aio_nr += ctx->max_reqs;
787 	spin_unlock(&aio_nr_lock);
788 
789 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
790 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
791 
792 	err = ioctx_add_table(ctx, mm);
793 	if (err)
794 		goto err_cleanup;
795 
796 	/* Release the ring_lock mutex now that all setup is complete. */
797 	mutex_unlock(&ctx->ring_lock);
798 
799 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
800 		 ctx, ctx->user_id, mm, ctx->nr_events);
801 	return ctx;
802 
803 err_cleanup:
804 	aio_nr_sub(ctx->max_reqs);
805 err_ctx:
806 	atomic_set(&ctx->dead, 1);
807 	if (ctx->mmap_size)
808 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
809 	aio_free_ring(ctx);
810 err:
811 	mutex_unlock(&ctx->ring_lock);
812 	free_percpu(ctx->cpu);
813 	percpu_ref_exit(&ctx->reqs);
814 	percpu_ref_exit(&ctx->users);
815 	kmem_cache_free(kioctx_cachep, ctx);
816 	pr_debug("error allocating ioctx %d\n", err);
817 	return ERR_PTR(err);
818 }
819 
820 /* kill_ioctx
821  *	Cancels all outstanding aio requests on an aio context.  Used
822  *	when the processes owning a context have all exited to encourage
823  *	the rapid destruction of the kioctx.
824  */
825 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
826 		      struct ctx_rq_wait *wait)
827 {
828 	struct kioctx_table *table;
829 
830 	spin_lock(&mm->ioctx_lock);
831 	if (atomic_xchg(&ctx->dead, 1)) {
832 		spin_unlock(&mm->ioctx_lock);
833 		return -EINVAL;
834 	}
835 
836 	table = rcu_dereference_raw(mm->ioctx_table);
837 	WARN_ON(ctx != table->table[ctx->id]);
838 	table->table[ctx->id] = NULL;
839 	spin_unlock(&mm->ioctx_lock);
840 
841 	/* percpu_ref_kill() will do the necessary call_rcu() */
842 	wake_up_all(&ctx->wait);
843 
844 	/*
845 	 * It'd be more correct to do this in free_ioctx(), after all
846 	 * the outstanding kiocbs have finished - but by then io_destroy
847 	 * has already returned, so io_setup() could potentially return
848 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
849 	 *  could tell).
850 	 */
851 	aio_nr_sub(ctx->max_reqs);
852 
853 	if (ctx->mmap_size)
854 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
855 
856 	ctx->rq_wait = wait;
857 	percpu_ref_kill(&ctx->users);
858 	return 0;
859 }
860 
861 /*
862  * exit_aio: called when the last user of mm goes away.  At this point, there is
863  * no way for any new requests to be submited or any of the io_* syscalls to be
864  * called on the context.
865  *
866  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
867  * them.
868  */
869 void exit_aio(struct mm_struct *mm)
870 {
871 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
872 	struct ctx_rq_wait wait;
873 	int i, skipped;
874 
875 	if (!table)
876 		return;
877 
878 	atomic_set(&wait.count, table->nr);
879 	init_completion(&wait.comp);
880 
881 	skipped = 0;
882 	for (i = 0; i < table->nr; ++i) {
883 		struct kioctx *ctx = table->table[i];
884 
885 		if (!ctx) {
886 			skipped++;
887 			continue;
888 		}
889 
890 		/*
891 		 * We don't need to bother with munmap() here - exit_mmap(mm)
892 		 * is coming and it'll unmap everything. And we simply can't,
893 		 * this is not necessarily our ->mm.
894 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
895 		 * that it needs to unmap the area, just set it to 0.
896 		 */
897 		ctx->mmap_size = 0;
898 		kill_ioctx(mm, ctx, &wait);
899 	}
900 
901 	if (!atomic_sub_and_test(skipped, &wait.count)) {
902 		/* Wait until all IO for the context are done. */
903 		wait_for_completion(&wait.comp);
904 	}
905 
906 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
907 	kfree(table);
908 }
909 
910 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
911 {
912 	struct kioctx_cpu *kcpu;
913 	unsigned long flags;
914 
915 	local_irq_save(flags);
916 	kcpu = this_cpu_ptr(ctx->cpu);
917 	kcpu->reqs_available += nr;
918 
919 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
920 		kcpu->reqs_available -= ctx->req_batch;
921 		atomic_add(ctx->req_batch, &ctx->reqs_available);
922 	}
923 
924 	local_irq_restore(flags);
925 }
926 
927 static bool get_reqs_available(struct kioctx *ctx)
928 {
929 	struct kioctx_cpu *kcpu;
930 	bool ret = false;
931 	unsigned long flags;
932 
933 	local_irq_save(flags);
934 	kcpu = this_cpu_ptr(ctx->cpu);
935 	if (!kcpu->reqs_available) {
936 		int old, avail = atomic_read(&ctx->reqs_available);
937 
938 		do {
939 			if (avail < ctx->req_batch)
940 				goto out;
941 
942 			old = avail;
943 			avail = atomic_cmpxchg(&ctx->reqs_available,
944 					       avail, avail - ctx->req_batch);
945 		} while (avail != old);
946 
947 		kcpu->reqs_available += ctx->req_batch;
948 	}
949 
950 	ret = true;
951 	kcpu->reqs_available--;
952 out:
953 	local_irq_restore(flags);
954 	return ret;
955 }
956 
957 /* refill_reqs_available
958  *	Updates the reqs_available reference counts used for tracking the
959  *	number of free slots in the completion ring.  This can be called
960  *	from aio_complete() (to optimistically update reqs_available) or
961  *	from aio_get_req() (the we're out of events case).  It must be
962  *	called holding ctx->completion_lock.
963  */
964 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
965                                   unsigned tail)
966 {
967 	unsigned events_in_ring, completed;
968 
969 	/* Clamp head since userland can write to it. */
970 	head %= ctx->nr_events;
971 	if (head <= tail)
972 		events_in_ring = tail - head;
973 	else
974 		events_in_ring = ctx->nr_events - (head - tail);
975 
976 	completed = ctx->completed_events;
977 	if (events_in_ring < completed)
978 		completed -= events_in_ring;
979 	else
980 		completed = 0;
981 
982 	if (!completed)
983 		return;
984 
985 	ctx->completed_events -= completed;
986 	put_reqs_available(ctx, completed);
987 }
988 
989 /* user_refill_reqs_available
990  *	Called to refill reqs_available when aio_get_req() encounters an
991  *	out of space in the completion ring.
992  */
993 static void user_refill_reqs_available(struct kioctx *ctx)
994 {
995 	spin_lock_irq(&ctx->completion_lock);
996 	if (ctx->completed_events) {
997 		struct aio_ring *ring;
998 		unsigned head;
999 
1000 		/* Access of ring->head may race with aio_read_events_ring()
1001 		 * here, but that's okay since whether we read the old version
1002 		 * or the new version, and either will be valid.  The important
1003 		 * part is that head cannot pass tail since we prevent
1004 		 * aio_complete() from updating tail by holding
1005 		 * ctx->completion_lock.  Even if head is invalid, the check
1006 		 * against ctx->completed_events below will make sure we do the
1007 		 * safe/right thing.
1008 		 */
1009 		ring = kmap_atomic(ctx->ring_pages[0]);
1010 		head = ring->head;
1011 		kunmap_atomic(ring);
1012 
1013 		refill_reqs_available(ctx, head, ctx->tail);
1014 	}
1015 
1016 	spin_unlock_irq(&ctx->completion_lock);
1017 }
1018 
1019 /* aio_get_req
1020  *	Allocate a slot for an aio request.
1021  * Returns NULL if no requests are free.
1022  */
1023 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1024 {
1025 	struct aio_kiocb *req;
1026 
1027 	if (!get_reqs_available(ctx)) {
1028 		user_refill_reqs_available(ctx);
1029 		if (!get_reqs_available(ctx))
1030 			return NULL;
1031 	}
1032 
1033 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1034 	if (unlikely(!req))
1035 		goto out_put;
1036 
1037 	percpu_ref_get(&ctx->reqs);
1038 
1039 	req->ki_ctx = ctx;
1040 	return req;
1041 out_put:
1042 	put_reqs_available(ctx, 1);
1043 	return NULL;
1044 }
1045 
1046 static void kiocb_free(struct aio_kiocb *req)
1047 {
1048 	if (req->common.ki_filp)
1049 		fput(req->common.ki_filp);
1050 	if (req->ki_eventfd != NULL)
1051 		eventfd_ctx_put(req->ki_eventfd);
1052 	kmem_cache_free(kiocb_cachep, req);
1053 }
1054 
1055 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1056 {
1057 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1058 	struct mm_struct *mm = current->mm;
1059 	struct kioctx *ctx, *ret = NULL;
1060 	struct kioctx_table *table;
1061 	unsigned id;
1062 
1063 	if (get_user(id, &ring->id))
1064 		return NULL;
1065 
1066 	rcu_read_lock();
1067 	table = rcu_dereference(mm->ioctx_table);
1068 
1069 	if (!table || id >= table->nr)
1070 		goto out;
1071 
1072 	ctx = table->table[id];
1073 	if (ctx && ctx->user_id == ctx_id) {
1074 		percpu_ref_get(&ctx->users);
1075 		ret = ctx;
1076 	}
1077 out:
1078 	rcu_read_unlock();
1079 	return ret;
1080 }
1081 
1082 /* aio_complete
1083  *	Called when the io request on the given iocb is complete.
1084  */
1085 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1086 {
1087 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1088 	struct kioctx	*ctx = iocb->ki_ctx;
1089 	struct aio_ring	*ring;
1090 	struct io_event	*ev_page, *event;
1091 	unsigned tail, pos, head;
1092 	unsigned long	flags;
1093 
1094 	if (kiocb->ki_flags & IOCB_WRITE) {
1095 		struct file *file = kiocb->ki_filp;
1096 
1097 		/*
1098 		 * Tell lockdep we inherited freeze protection from submission
1099 		 * thread.
1100 		 */
1101 		if (S_ISREG(file_inode(file)->i_mode))
1102 			__sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1103 		file_end_write(file);
1104 	}
1105 
1106 	/*
1107 	 * Special case handling for sync iocbs:
1108 	 *  - events go directly into the iocb for fast handling
1109 	 *  - the sync task with the iocb in its stack holds the single iocb
1110 	 *    ref, no other paths have a way to get another ref
1111 	 *  - the sync task helpfully left a reference to itself in the iocb
1112 	 */
1113 	BUG_ON(is_sync_kiocb(kiocb));
1114 
1115 	if (iocb->ki_list.next) {
1116 		unsigned long flags;
1117 
1118 		spin_lock_irqsave(&ctx->ctx_lock, flags);
1119 		list_del(&iocb->ki_list);
1120 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1121 	}
1122 
1123 	/*
1124 	 * Add a completion event to the ring buffer. Must be done holding
1125 	 * ctx->completion_lock to prevent other code from messing with the tail
1126 	 * pointer since we might be called from irq context.
1127 	 */
1128 	spin_lock_irqsave(&ctx->completion_lock, flags);
1129 
1130 	tail = ctx->tail;
1131 	pos = tail + AIO_EVENTS_OFFSET;
1132 
1133 	if (++tail >= ctx->nr_events)
1134 		tail = 0;
1135 
1136 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1137 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1138 
1139 	event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1140 	event->data = iocb->ki_user_data;
1141 	event->res = res;
1142 	event->res2 = res2;
1143 
1144 	kunmap_atomic(ev_page);
1145 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1146 
1147 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1148 		 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1149 		 res, res2);
1150 
1151 	/* after flagging the request as done, we
1152 	 * must never even look at it again
1153 	 */
1154 	smp_wmb();	/* make event visible before updating tail */
1155 
1156 	ctx->tail = tail;
1157 
1158 	ring = kmap_atomic(ctx->ring_pages[0]);
1159 	head = ring->head;
1160 	ring->tail = tail;
1161 	kunmap_atomic(ring);
1162 	flush_dcache_page(ctx->ring_pages[0]);
1163 
1164 	ctx->completed_events++;
1165 	if (ctx->completed_events > 1)
1166 		refill_reqs_available(ctx, head, tail);
1167 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1168 
1169 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1170 
1171 	/*
1172 	 * Check if the user asked us to deliver the result through an
1173 	 * eventfd. The eventfd_signal() function is safe to be called
1174 	 * from IRQ context.
1175 	 */
1176 	if (iocb->ki_eventfd != NULL)
1177 		eventfd_signal(iocb->ki_eventfd, 1);
1178 
1179 	/* everything turned out well, dispose of the aiocb. */
1180 	kiocb_free(iocb);
1181 
1182 	/*
1183 	 * We have to order our ring_info tail store above and test
1184 	 * of the wait list below outside the wait lock.  This is
1185 	 * like in wake_up_bit() where clearing a bit has to be
1186 	 * ordered with the unlocked test.
1187 	 */
1188 	smp_mb();
1189 
1190 	if (waitqueue_active(&ctx->wait))
1191 		wake_up(&ctx->wait);
1192 
1193 	percpu_ref_put(&ctx->reqs);
1194 }
1195 
1196 /* aio_read_events_ring
1197  *	Pull an event off of the ioctx's event ring.  Returns the number of
1198  *	events fetched
1199  */
1200 static long aio_read_events_ring(struct kioctx *ctx,
1201 				 struct io_event __user *event, long nr)
1202 {
1203 	struct aio_ring *ring;
1204 	unsigned head, tail, pos;
1205 	long ret = 0;
1206 	int copy_ret;
1207 
1208 	/*
1209 	 * The mutex can block and wake us up and that will cause
1210 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1211 	 * and repeat. This should be rare enough that it doesn't cause
1212 	 * peformance issues. See the comment in read_events() for more detail.
1213 	 */
1214 	sched_annotate_sleep();
1215 	mutex_lock(&ctx->ring_lock);
1216 
1217 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1218 	ring = kmap_atomic(ctx->ring_pages[0]);
1219 	head = ring->head;
1220 	tail = ring->tail;
1221 	kunmap_atomic(ring);
1222 
1223 	/*
1224 	 * Ensure that once we've read the current tail pointer, that
1225 	 * we also see the events that were stored up to the tail.
1226 	 */
1227 	smp_rmb();
1228 
1229 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1230 
1231 	if (head == tail)
1232 		goto out;
1233 
1234 	head %= ctx->nr_events;
1235 	tail %= ctx->nr_events;
1236 
1237 	while (ret < nr) {
1238 		long avail;
1239 		struct io_event *ev;
1240 		struct page *page;
1241 
1242 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1243 		if (head == tail)
1244 			break;
1245 
1246 		avail = min(avail, nr - ret);
1247 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1248 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1249 
1250 		pos = head + AIO_EVENTS_OFFSET;
1251 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1252 		pos %= AIO_EVENTS_PER_PAGE;
1253 
1254 		ev = kmap(page);
1255 		copy_ret = copy_to_user(event + ret, ev + pos,
1256 					sizeof(*ev) * avail);
1257 		kunmap(page);
1258 
1259 		if (unlikely(copy_ret)) {
1260 			ret = -EFAULT;
1261 			goto out;
1262 		}
1263 
1264 		ret += avail;
1265 		head += avail;
1266 		head %= ctx->nr_events;
1267 	}
1268 
1269 	ring = kmap_atomic(ctx->ring_pages[0]);
1270 	ring->head = head;
1271 	kunmap_atomic(ring);
1272 	flush_dcache_page(ctx->ring_pages[0]);
1273 
1274 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1275 out:
1276 	mutex_unlock(&ctx->ring_lock);
1277 
1278 	return ret;
1279 }
1280 
1281 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1282 			    struct io_event __user *event, long *i)
1283 {
1284 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1285 
1286 	if (ret > 0)
1287 		*i += ret;
1288 
1289 	if (unlikely(atomic_read(&ctx->dead)))
1290 		ret = -EINVAL;
1291 
1292 	if (!*i)
1293 		*i = ret;
1294 
1295 	return ret < 0 || *i >= min_nr;
1296 }
1297 
1298 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1299 			struct io_event __user *event,
1300 			ktime_t until)
1301 {
1302 	long ret = 0;
1303 
1304 	/*
1305 	 * Note that aio_read_events() is being called as the conditional - i.e.
1306 	 * we're calling it after prepare_to_wait() has set task state to
1307 	 * TASK_INTERRUPTIBLE.
1308 	 *
1309 	 * But aio_read_events() can block, and if it blocks it's going to flip
1310 	 * the task state back to TASK_RUNNING.
1311 	 *
1312 	 * This should be ok, provided it doesn't flip the state back to
1313 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1314 	 * will only happen if the mutex_lock() call blocks, and we then find
1315 	 * the ringbuffer empty. So in practice we should be ok, but it's
1316 	 * something to be aware of when touching this code.
1317 	 */
1318 	if (until == 0)
1319 		aio_read_events(ctx, min_nr, nr, event, &ret);
1320 	else
1321 		wait_event_interruptible_hrtimeout(ctx->wait,
1322 				aio_read_events(ctx, min_nr, nr, event, &ret),
1323 				until);
1324 
1325 	if (!ret && signal_pending(current))
1326 		ret = -EINTR;
1327 
1328 	return ret;
1329 }
1330 
1331 /* sys_io_setup:
1332  *	Create an aio_context capable of receiving at least nr_events.
1333  *	ctxp must not point to an aio_context that already exists, and
1334  *	must be initialized to 0 prior to the call.  On successful
1335  *	creation of the aio_context, *ctxp is filled in with the resulting
1336  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1337  *	if the specified nr_events exceeds internal limits.  May fail
1338  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1339  *	of available events.  May fail with -ENOMEM if insufficient kernel
1340  *	resources are available.  May fail with -EFAULT if an invalid
1341  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1342  *	implemented.
1343  */
1344 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1345 {
1346 	struct kioctx *ioctx = NULL;
1347 	unsigned long ctx;
1348 	long ret;
1349 
1350 	ret = get_user(ctx, ctxp);
1351 	if (unlikely(ret))
1352 		goto out;
1353 
1354 	ret = -EINVAL;
1355 	if (unlikely(ctx || nr_events == 0)) {
1356 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1357 		         ctx, nr_events);
1358 		goto out;
1359 	}
1360 
1361 	ioctx = ioctx_alloc(nr_events);
1362 	ret = PTR_ERR(ioctx);
1363 	if (!IS_ERR(ioctx)) {
1364 		ret = put_user(ioctx->user_id, ctxp);
1365 		if (ret)
1366 			kill_ioctx(current->mm, ioctx, NULL);
1367 		percpu_ref_put(&ioctx->users);
1368 	}
1369 
1370 out:
1371 	return ret;
1372 }
1373 
1374 #ifdef CONFIG_COMPAT
1375 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1376 {
1377 	struct kioctx *ioctx = NULL;
1378 	unsigned long ctx;
1379 	long ret;
1380 
1381 	ret = get_user(ctx, ctx32p);
1382 	if (unlikely(ret))
1383 		goto out;
1384 
1385 	ret = -EINVAL;
1386 	if (unlikely(ctx || nr_events == 0)) {
1387 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1388 		         ctx, nr_events);
1389 		goto out;
1390 	}
1391 
1392 	ioctx = ioctx_alloc(nr_events);
1393 	ret = PTR_ERR(ioctx);
1394 	if (!IS_ERR(ioctx)) {
1395 		/* truncating is ok because it's a user address */
1396 		ret = put_user((u32)ioctx->user_id, ctx32p);
1397 		if (ret)
1398 			kill_ioctx(current->mm, ioctx, NULL);
1399 		percpu_ref_put(&ioctx->users);
1400 	}
1401 
1402 out:
1403 	return ret;
1404 }
1405 #endif
1406 
1407 /* sys_io_destroy:
1408  *	Destroy the aio_context specified.  May cancel any outstanding
1409  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1410  *	implemented.  May fail with -EINVAL if the context pointed to
1411  *	is invalid.
1412  */
1413 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1414 {
1415 	struct kioctx *ioctx = lookup_ioctx(ctx);
1416 	if (likely(NULL != ioctx)) {
1417 		struct ctx_rq_wait wait;
1418 		int ret;
1419 
1420 		init_completion(&wait.comp);
1421 		atomic_set(&wait.count, 1);
1422 
1423 		/* Pass requests_done to kill_ioctx() where it can be set
1424 		 * in a thread-safe way. If we try to set it here then we have
1425 		 * a race condition if two io_destroy() called simultaneously.
1426 		 */
1427 		ret = kill_ioctx(current->mm, ioctx, &wait);
1428 		percpu_ref_put(&ioctx->users);
1429 
1430 		/* Wait until all IO for the context are done. Otherwise kernel
1431 		 * keep using user-space buffers even if user thinks the context
1432 		 * is destroyed.
1433 		 */
1434 		if (!ret)
1435 			wait_for_completion(&wait.comp);
1436 
1437 		return ret;
1438 	}
1439 	pr_debug("EINVAL: invalid context id\n");
1440 	return -EINVAL;
1441 }
1442 
1443 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1444 		bool vectored, bool compat, struct iov_iter *iter)
1445 {
1446 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1447 	size_t len = iocb->aio_nbytes;
1448 
1449 	if (!vectored) {
1450 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1451 		*iovec = NULL;
1452 		return ret;
1453 	}
1454 #ifdef CONFIG_COMPAT
1455 	if (compat)
1456 		return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1457 				iter);
1458 #endif
1459 	return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1460 }
1461 
1462 static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1463 {
1464 	switch (ret) {
1465 	case -EIOCBQUEUED:
1466 		return ret;
1467 	case -ERESTARTSYS:
1468 	case -ERESTARTNOINTR:
1469 	case -ERESTARTNOHAND:
1470 	case -ERESTART_RESTARTBLOCK:
1471 		/*
1472 		 * There's no easy way to restart the syscall since other AIO's
1473 		 * may be already running. Just fail this IO with EINTR.
1474 		 */
1475 		ret = -EINTR;
1476 		/*FALLTHRU*/
1477 	default:
1478 		aio_complete(req, ret, 0);
1479 		return 0;
1480 	}
1481 }
1482 
1483 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1484 		bool compat)
1485 {
1486 	struct file *file = req->ki_filp;
1487 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1488 	struct iov_iter iter;
1489 	ssize_t ret;
1490 
1491 	if (unlikely(!(file->f_mode & FMODE_READ)))
1492 		return -EBADF;
1493 	if (unlikely(!file->f_op->read_iter))
1494 		return -EINVAL;
1495 
1496 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1497 	if (ret)
1498 		return ret;
1499 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1500 	if (!ret)
1501 		ret = aio_ret(req, call_read_iter(file, req, &iter));
1502 	kfree(iovec);
1503 	return ret;
1504 }
1505 
1506 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1507 		bool compat)
1508 {
1509 	struct file *file = req->ki_filp;
1510 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1511 	struct iov_iter iter;
1512 	ssize_t ret;
1513 
1514 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1515 		return -EBADF;
1516 	if (unlikely(!file->f_op->write_iter))
1517 		return -EINVAL;
1518 
1519 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1520 	if (ret)
1521 		return ret;
1522 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1523 	if (!ret) {
1524 		req->ki_flags |= IOCB_WRITE;
1525 		file_start_write(file);
1526 		ret = aio_ret(req, call_write_iter(file, req, &iter));
1527 		/*
1528 		 * We release freeze protection in aio_complete().  Fool lockdep
1529 		 * by telling it the lock got released so that it doesn't
1530 		 * complain about held lock when we return to userspace.
1531 		 */
1532 		if (S_ISREG(file_inode(file)->i_mode))
1533 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1534 	}
1535 	kfree(iovec);
1536 	return ret;
1537 }
1538 
1539 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1540 			 struct iocb *iocb, bool compat)
1541 {
1542 	struct aio_kiocb *req;
1543 	struct file *file;
1544 	ssize_t ret;
1545 
1546 	/* enforce forwards compatibility on users */
1547 	if (unlikely(iocb->aio_reserved2)) {
1548 		pr_debug("EINVAL: reserve field set\n");
1549 		return -EINVAL;
1550 	}
1551 
1552 	/* prevent overflows */
1553 	if (unlikely(
1554 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1555 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1556 	    ((ssize_t)iocb->aio_nbytes < 0)
1557 	   )) {
1558 		pr_debug("EINVAL: overflow check\n");
1559 		return -EINVAL;
1560 	}
1561 
1562 	req = aio_get_req(ctx);
1563 	if (unlikely(!req))
1564 		return -EAGAIN;
1565 
1566 	req->common.ki_filp = file = fget(iocb->aio_fildes);
1567 	if (unlikely(!req->common.ki_filp)) {
1568 		ret = -EBADF;
1569 		goto out_put_req;
1570 	}
1571 	req->common.ki_pos = iocb->aio_offset;
1572 	req->common.ki_complete = aio_complete;
1573 	req->common.ki_flags = iocb_flags(req->common.ki_filp);
1574 	req->common.ki_hint = file_write_hint(file);
1575 
1576 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1577 		/*
1578 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1579 		 * instance of the file* now. The file descriptor must be
1580 		 * an eventfd() fd, and will be signaled for each completed
1581 		 * event using the eventfd_signal() function.
1582 		 */
1583 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1584 		if (IS_ERR(req->ki_eventfd)) {
1585 			ret = PTR_ERR(req->ki_eventfd);
1586 			req->ki_eventfd = NULL;
1587 			goto out_put_req;
1588 		}
1589 
1590 		req->common.ki_flags |= IOCB_EVENTFD;
1591 	}
1592 
1593 	ret = kiocb_set_rw_flags(&req->common, iocb->aio_rw_flags);
1594 	if (unlikely(ret)) {
1595 		pr_debug("EINVAL: aio_rw_flags\n");
1596 		goto out_put_req;
1597 	}
1598 
1599 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1600 	if (unlikely(ret)) {
1601 		pr_debug("EFAULT: aio_key\n");
1602 		goto out_put_req;
1603 	}
1604 
1605 	req->ki_user_iocb = user_iocb;
1606 	req->ki_user_data = iocb->aio_data;
1607 
1608 	get_file(file);
1609 	switch (iocb->aio_lio_opcode) {
1610 	case IOCB_CMD_PREAD:
1611 		ret = aio_read(&req->common, iocb, false, compat);
1612 		break;
1613 	case IOCB_CMD_PWRITE:
1614 		ret = aio_write(&req->common, iocb, false, compat);
1615 		break;
1616 	case IOCB_CMD_PREADV:
1617 		ret = aio_read(&req->common, iocb, true, compat);
1618 		break;
1619 	case IOCB_CMD_PWRITEV:
1620 		ret = aio_write(&req->common, iocb, true, compat);
1621 		break;
1622 	default:
1623 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1624 		ret = -EINVAL;
1625 		break;
1626 	}
1627 	fput(file);
1628 
1629 	if (ret && ret != -EIOCBQUEUED)
1630 		goto out_put_req;
1631 	return 0;
1632 out_put_req:
1633 	put_reqs_available(ctx, 1);
1634 	percpu_ref_put(&ctx->reqs);
1635 	kiocb_free(req);
1636 	return ret;
1637 }
1638 
1639 static long do_io_submit(aio_context_t ctx_id, long nr,
1640 			  struct iocb __user *__user *iocbpp, bool compat)
1641 {
1642 	struct kioctx *ctx;
1643 	long ret = 0;
1644 	int i = 0;
1645 	struct blk_plug plug;
1646 
1647 	if (unlikely(nr < 0))
1648 		return -EINVAL;
1649 
1650 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1651 		nr = LONG_MAX/sizeof(*iocbpp);
1652 
1653 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1654 		return -EFAULT;
1655 
1656 	ctx = lookup_ioctx(ctx_id);
1657 	if (unlikely(!ctx)) {
1658 		pr_debug("EINVAL: invalid context id\n");
1659 		return -EINVAL;
1660 	}
1661 
1662 	blk_start_plug(&plug);
1663 
1664 	/*
1665 	 * AKPM: should this return a partial result if some of the IOs were
1666 	 * successfully submitted?
1667 	 */
1668 	for (i=0; i<nr; i++) {
1669 		struct iocb __user *user_iocb;
1670 		struct iocb tmp;
1671 
1672 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1673 			ret = -EFAULT;
1674 			break;
1675 		}
1676 
1677 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1678 			ret = -EFAULT;
1679 			break;
1680 		}
1681 
1682 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1683 		if (ret)
1684 			break;
1685 	}
1686 	blk_finish_plug(&plug);
1687 
1688 	percpu_ref_put(&ctx->users);
1689 	return i ? i : ret;
1690 }
1691 
1692 /* sys_io_submit:
1693  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1694  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1695  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1696  *	*iocbpp[0] is not properly initialized, if the operation specified
1697  *	is invalid for the file descriptor in the iocb.  May fail with
1698  *	-EFAULT if any of the data structures point to invalid data.  May
1699  *	fail with -EBADF if the file descriptor specified in the first
1700  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1701  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1702  *	fail with -ENOSYS if not implemented.
1703  */
1704 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1705 		struct iocb __user * __user *, iocbpp)
1706 {
1707 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1708 }
1709 
1710 #ifdef CONFIG_COMPAT
1711 static inline long
1712 copy_iocb(long nr, u32 __user *ptr32, struct iocb __user * __user *ptr64)
1713 {
1714 	compat_uptr_t uptr;
1715 	int i;
1716 
1717 	for (i = 0; i < nr; ++i) {
1718 		if (get_user(uptr, ptr32 + i))
1719 			return -EFAULT;
1720 		if (put_user(compat_ptr(uptr), ptr64 + i))
1721 			return -EFAULT;
1722 	}
1723 	return 0;
1724 }
1725 
1726 #define MAX_AIO_SUBMITS 	(PAGE_SIZE/sizeof(struct iocb *))
1727 
1728 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1729 		       int, nr, u32 __user *, iocb)
1730 {
1731 	struct iocb __user * __user *iocb64;
1732 	long ret;
1733 
1734 	if (unlikely(nr < 0))
1735 		return -EINVAL;
1736 
1737 	if (nr > MAX_AIO_SUBMITS)
1738 		nr = MAX_AIO_SUBMITS;
1739 
1740 	iocb64 = compat_alloc_user_space(nr * sizeof(*iocb64));
1741 	ret = copy_iocb(nr, iocb, iocb64);
1742 	if (!ret)
1743 		ret = do_io_submit(ctx_id, nr, iocb64, 1);
1744 	return ret;
1745 }
1746 #endif
1747 
1748 /* lookup_kiocb
1749  *	Finds a given iocb for cancellation.
1750  */
1751 static struct aio_kiocb *
1752 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1753 {
1754 	struct aio_kiocb *kiocb;
1755 
1756 	assert_spin_locked(&ctx->ctx_lock);
1757 
1758 	if (key != KIOCB_KEY)
1759 		return NULL;
1760 
1761 	/* TODO: use a hash or array, this sucks. */
1762 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1763 		if (kiocb->ki_user_iocb == iocb)
1764 			return kiocb;
1765 	}
1766 	return NULL;
1767 }
1768 
1769 /* sys_io_cancel:
1770  *	Attempts to cancel an iocb previously passed to io_submit.  If
1771  *	the operation is successfully cancelled, the resulting event is
1772  *	copied into the memory pointed to by result without being placed
1773  *	into the completion queue and 0 is returned.  May fail with
1774  *	-EFAULT if any of the data structures pointed to are invalid.
1775  *	May fail with -EINVAL if aio_context specified by ctx_id is
1776  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1777  *	cancelled.  Will fail with -ENOSYS if not implemented.
1778  */
1779 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1780 		struct io_event __user *, result)
1781 {
1782 	struct kioctx *ctx;
1783 	struct aio_kiocb *kiocb;
1784 	u32 key;
1785 	int ret;
1786 
1787 	ret = get_user(key, &iocb->aio_key);
1788 	if (unlikely(ret))
1789 		return -EFAULT;
1790 
1791 	ctx = lookup_ioctx(ctx_id);
1792 	if (unlikely(!ctx))
1793 		return -EINVAL;
1794 
1795 	spin_lock_irq(&ctx->ctx_lock);
1796 
1797 	kiocb = lookup_kiocb(ctx, iocb, key);
1798 	if (kiocb)
1799 		ret = kiocb_cancel(kiocb);
1800 	else
1801 		ret = -EINVAL;
1802 
1803 	spin_unlock_irq(&ctx->ctx_lock);
1804 
1805 	if (!ret) {
1806 		/*
1807 		 * The result argument is no longer used - the io_event is
1808 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1809 		 * cancellation is progress:
1810 		 */
1811 		ret = -EINPROGRESS;
1812 	}
1813 
1814 	percpu_ref_put(&ctx->users);
1815 
1816 	return ret;
1817 }
1818 
1819 static long do_io_getevents(aio_context_t ctx_id,
1820 		long min_nr,
1821 		long nr,
1822 		struct io_event __user *events,
1823 		struct timespec64 *ts)
1824 {
1825 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
1826 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1827 	long ret = -EINVAL;
1828 
1829 	if (likely(ioctx)) {
1830 		if (likely(min_nr <= nr && min_nr >= 0))
1831 			ret = read_events(ioctx, min_nr, nr, events, until);
1832 		percpu_ref_put(&ioctx->users);
1833 	}
1834 
1835 	return ret;
1836 }
1837 
1838 /* io_getevents:
1839  *	Attempts to read at least min_nr events and up to nr events from
1840  *	the completion queue for the aio_context specified by ctx_id. If
1841  *	it succeeds, the number of read events is returned. May fail with
1842  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1843  *	out of range, if timeout is out of range.  May fail with -EFAULT
1844  *	if any of the memory specified is invalid.  May return 0 or
1845  *	< min_nr if the timeout specified by timeout has elapsed
1846  *	before sufficient events are available, where timeout == NULL
1847  *	specifies an infinite timeout. Note that the timeout pointed to by
1848  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1849  */
1850 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1851 		long, min_nr,
1852 		long, nr,
1853 		struct io_event __user *, events,
1854 		struct timespec __user *, timeout)
1855 {
1856 	struct timespec64	ts;
1857 
1858 	if (timeout) {
1859 		if (unlikely(get_timespec64(&ts, timeout)))
1860 			return -EFAULT;
1861 	}
1862 
1863 	return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1864 }
1865 
1866 #ifdef CONFIG_COMPAT
1867 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1868 		       compat_long_t, min_nr,
1869 		       compat_long_t, nr,
1870 		       struct io_event __user *, events,
1871 		       struct compat_timespec __user *, timeout)
1872 {
1873 	struct timespec64 t;
1874 
1875 	if (timeout) {
1876 		if (compat_get_timespec64(&t, timeout))
1877 			return -EFAULT;
1878 
1879 	}
1880 
1881 	return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
1882 }
1883 #endif
1884